github.com/ethereumproject/go-ethereum@v5.5.2+incompatible/crypto/secp256k1/libsecp256k1/src/group_impl.h (about)

     1  /**********************************************************************
     2   * Copyright (c) 2013, 2014 Pieter Wuille                             *
     3   * Distributed under the MIT software license, see the accompanying   *
     4   * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
     5   **********************************************************************/
     6  
     7  #ifndef _SECP256K1_GROUP_IMPL_H_
     8  #define _SECP256K1_GROUP_IMPL_H_
     9  
    10  #include <string.h>
    11  
    12  #include "num.h"
    13  #include "field.h"
    14  #include "group.h"
    15  
    16  /** Generator for secp256k1, value 'g' defined in
    17   *  "Standards for Efficient Cryptography" (SEC2) 2.7.1.
    18   */
    19  static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST(
    20      0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL,
    21      0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL,
    22      0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL,
    23      0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL
    24  );
    25  
    26  static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) {
    27      secp256k1_fe zi2; 
    28      secp256k1_fe zi3;
    29      secp256k1_fe_sqr(&zi2, zi);
    30      secp256k1_fe_mul(&zi3, &zi2, zi);
    31      secp256k1_fe_mul(&r->x, &a->x, &zi2);
    32      secp256k1_fe_mul(&r->y, &a->y, &zi3);
    33      r->infinity = a->infinity;
    34  }
    35  
    36  static void secp256k1_ge_set_infinity(secp256k1_ge *r) {
    37      r->infinity = 1;
    38  }
    39  
    40  static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) {
    41      r->infinity = 0;
    42      r->x = *x;
    43      r->y = *y;
    44  }
    45  
    46  static int secp256k1_ge_is_infinity(const secp256k1_ge *a) {
    47      return a->infinity;
    48  }
    49  
    50  static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) {
    51      *r = *a;
    52      secp256k1_fe_normalize_weak(&r->y);
    53      secp256k1_fe_negate(&r->y, &r->y, 1);
    54  }
    55  
    56  static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) {
    57      secp256k1_fe z2, z3;
    58      r->infinity = a->infinity;
    59      secp256k1_fe_inv(&a->z, &a->z);
    60      secp256k1_fe_sqr(&z2, &a->z);
    61      secp256k1_fe_mul(&z3, &a->z, &z2);
    62      secp256k1_fe_mul(&a->x, &a->x, &z2);
    63      secp256k1_fe_mul(&a->y, &a->y, &z3);
    64      secp256k1_fe_set_int(&a->z, 1);
    65      r->x = a->x;
    66      r->y = a->y;
    67  }
    68  
    69  static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) {
    70      secp256k1_fe z2, z3;
    71      r->infinity = a->infinity;
    72      if (a->infinity) {
    73          return;
    74      }
    75      secp256k1_fe_inv_var(&a->z, &a->z);
    76      secp256k1_fe_sqr(&z2, &a->z);
    77      secp256k1_fe_mul(&z3, &a->z, &z2);
    78      secp256k1_fe_mul(&a->x, &a->x, &z2);
    79      secp256k1_fe_mul(&a->y, &a->y, &z3);
    80      secp256k1_fe_set_int(&a->z, 1);
    81      r->x = a->x;
    82      r->y = a->y;
    83  }
    84  
    85  static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_callback *cb) {
    86      secp256k1_fe *az;
    87      secp256k1_fe *azi;
    88      size_t i;
    89      size_t count = 0;
    90      az = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * len);
    91      for (i = 0; i < len; i++) {
    92          if (!a[i].infinity) {
    93              az[count++] = a[i].z;
    94          }
    95      }
    96  
    97      azi = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * count);
    98      secp256k1_fe_inv_all_var(count, azi, az);
    99      free(az);
   100  
   101      count = 0;
   102      for (i = 0; i < len; i++) {
   103          r[i].infinity = a[i].infinity;
   104          if (!a[i].infinity) {
   105              secp256k1_ge_set_gej_zinv(&r[i], &a[i], &azi[count++]);
   106          }
   107      }
   108      free(azi);
   109  }
   110  
   111  static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr) {
   112      size_t i = len - 1;
   113      secp256k1_fe zi;
   114  
   115      if (len > 0) {
   116          /* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */
   117          secp256k1_fe_inv(&zi, &a[i].z);
   118          secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
   119  
   120          /* Work out way backwards, using the z-ratios to scale the x/y values. */
   121          while (i > 0) {
   122              secp256k1_fe_mul(&zi, &zi, &zr[i]);
   123              i--;
   124              secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi);
   125          }
   126      }
   127  }
   128  
   129  static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr) {
   130      size_t i = len - 1;
   131      secp256k1_fe zs;
   132  
   133      if (len > 0) {
   134          /* The z of the final point gives us the "global Z" for the table. */
   135          r[i].x = a[i].x;
   136          r[i].y = a[i].y;
   137          *globalz = a[i].z;
   138          r[i].infinity = 0;
   139          zs = zr[i];
   140  
   141          /* Work our way backwards, using the z-ratios to scale the x/y values. */
   142          while (i > 0) {
   143              if (i != len - 1) {
   144                  secp256k1_fe_mul(&zs, &zs, &zr[i]);
   145              }
   146              i--;
   147              secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs);
   148          }
   149      }
   150  }
   151  
   152  static void secp256k1_gej_set_infinity(secp256k1_gej *r) {
   153      r->infinity = 1;
   154      secp256k1_fe_set_int(&r->x, 0);
   155      secp256k1_fe_set_int(&r->y, 0);
   156      secp256k1_fe_set_int(&r->z, 0);
   157  }
   158  
   159  static void secp256k1_gej_set_xy(secp256k1_gej *r, const secp256k1_fe *x, const secp256k1_fe *y) {
   160      r->infinity = 0;
   161      r->x = *x;
   162      r->y = *y;
   163      secp256k1_fe_set_int(&r->z, 1);
   164  }
   165  
   166  static void secp256k1_gej_clear(secp256k1_gej *r) {
   167      r->infinity = 0;
   168      secp256k1_fe_clear(&r->x);
   169      secp256k1_fe_clear(&r->y);
   170      secp256k1_fe_clear(&r->z);
   171  }
   172  
   173  static void secp256k1_ge_clear(secp256k1_ge *r) {
   174      r->infinity = 0;
   175      secp256k1_fe_clear(&r->x);
   176      secp256k1_fe_clear(&r->y);
   177  }
   178  
   179  static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) {
   180      secp256k1_fe x2, x3, c;
   181      r->x = *x;
   182      secp256k1_fe_sqr(&x2, x);
   183      secp256k1_fe_mul(&x3, x, &x2);
   184      r->infinity = 0;
   185      secp256k1_fe_set_int(&c, 7);
   186      secp256k1_fe_add(&c, &x3);
   187      if (!secp256k1_fe_sqrt_var(&r->y, &c)) {
   188          return 0;
   189      }
   190      secp256k1_fe_normalize_var(&r->y);
   191      if (secp256k1_fe_is_odd(&r->y) != odd) {
   192          secp256k1_fe_negate(&r->y, &r->y, 1);
   193      }
   194      return 1;
   195  }
   196  
   197  static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) {
   198     r->infinity = a->infinity;
   199     r->x = a->x;
   200     r->y = a->y;
   201     secp256k1_fe_set_int(&r->z, 1);
   202  }
   203  
   204  static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) {
   205      secp256k1_fe r, r2;
   206      VERIFY_CHECK(!a->infinity);
   207      secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
   208      r2 = a->x; secp256k1_fe_normalize_weak(&r2);
   209      return secp256k1_fe_equal_var(&r, &r2);
   210  }
   211  
   212  static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) {
   213      r->infinity = a->infinity;
   214      r->x = a->x;
   215      r->y = a->y;
   216      r->z = a->z;
   217      secp256k1_fe_normalize_weak(&r->y);
   218      secp256k1_fe_negate(&r->y, &r->y, 1);
   219  }
   220  
   221  static int secp256k1_gej_is_infinity(const secp256k1_gej *a) {
   222      return a->infinity;
   223  }
   224  
   225  static int secp256k1_gej_is_valid_var(const secp256k1_gej *a) {
   226      secp256k1_fe y2, x3, z2, z6;
   227      if (a->infinity) {
   228          return 0;
   229      }
   230      /** y^2 = x^3 + 7
   231       *  (Y/Z^3)^2 = (X/Z^2)^3 + 7
   232       *  Y^2 / Z^6 = X^3 / Z^6 + 7
   233       *  Y^2 = X^3 + 7*Z^6
   234       */
   235      secp256k1_fe_sqr(&y2, &a->y);
   236      secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
   237      secp256k1_fe_sqr(&z2, &a->z);
   238      secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2);
   239      secp256k1_fe_mul_int(&z6, 7);
   240      secp256k1_fe_add(&x3, &z6);
   241      secp256k1_fe_normalize_weak(&x3);
   242      return secp256k1_fe_equal_var(&y2, &x3);
   243  }
   244  
   245  static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) {
   246      secp256k1_fe y2, x3, c;
   247      if (a->infinity) {
   248          return 0;
   249      }
   250      /* y^2 = x^3 + 7 */
   251      secp256k1_fe_sqr(&y2, &a->y);
   252      secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
   253      secp256k1_fe_set_int(&c, 7);
   254      secp256k1_fe_add(&x3, &c);
   255      secp256k1_fe_normalize_weak(&x3);
   256      return secp256k1_fe_equal_var(&y2, &x3);
   257  }
   258  
   259  static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
   260      /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate */
   261      secp256k1_fe t1,t2,t3,t4;
   262      /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
   263       *  Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
   264       *  y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
   265       */
   266      r->infinity = a->infinity;
   267      if (r->infinity) {
   268          if (rzr != NULL) {
   269              secp256k1_fe_set_int(rzr, 1);
   270          }
   271          return;
   272      }
   273  
   274      if (rzr != NULL) {
   275          *rzr = a->y;
   276          secp256k1_fe_normalize_weak(rzr);
   277          secp256k1_fe_mul_int(rzr, 2);
   278      }
   279  
   280      secp256k1_fe_mul(&r->z, &a->z, &a->y);
   281      secp256k1_fe_mul_int(&r->z, 2);       /* Z' = 2*Y*Z (2) */
   282      secp256k1_fe_sqr(&t1, &a->x);
   283      secp256k1_fe_mul_int(&t1, 3);         /* T1 = 3*X^2 (3) */
   284      secp256k1_fe_sqr(&t2, &t1);           /* T2 = 9*X^4 (1) */
   285      secp256k1_fe_sqr(&t3, &a->y);
   286      secp256k1_fe_mul_int(&t3, 2);         /* T3 = 2*Y^2 (2) */
   287      secp256k1_fe_sqr(&t4, &t3);
   288      secp256k1_fe_mul_int(&t4, 2);         /* T4 = 8*Y^4 (2) */
   289      secp256k1_fe_mul(&t3, &t3, &a->x);    /* T3 = 2*X*Y^2 (1) */
   290      r->x = t3;
   291      secp256k1_fe_mul_int(&r->x, 4);       /* X' = 8*X*Y^2 (4) */
   292      secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */
   293      secp256k1_fe_add(&r->x, &t2);         /* X' = 9*X^4 - 8*X*Y^2 (6) */
   294      secp256k1_fe_negate(&t2, &t2, 1);     /* T2 = -9*X^4 (2) */
   295      secp256k1_fe_mul_int(&t3, 6);         /* T3 = 12*X*Y^2 (6) */
   296      secp256k1_fe_add(&t3, &t2);           /* T3 = 12*X*Y^2 - 9*X^4 (8) */
   297      secp256k1_fe_mul(&r->y, &t1, &t3);    /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */
   298      secp256k1_fe_negate(&t2, &t4, 2);     /* T2 = -8*Y^4 (3) */
   299      secp256k1_fe_add(&r->y, &t2);         /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */
   300  }
   301  
   302  static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) {
   303      VERIFY_CHECK(!secp256k1_gej_is_infinity(a));
   304      secp256k1_gej_double_var(r, a, rzr);
   305  }
   306  
   307  static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) {
   308      /* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */
   309      secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
   310  
   311      if (a->infinity) {
   312          VERIFY_CHECK(rzr == NULL);
   313          *r = *b;
   314          return;
   315      }
   316  
   317      if (b->infinity) {
   318          if (rzr != NULL) {
   319              secp256k1_fe_set_int(rzr, 1);
   320          }
   321          *r = *a;
   322          return;
   323      }
   324  
   325      r->infinity = 0;
   326      secp256k1_fe_sqr(&z22, &b->z);
   327      secp256k1_fe_sqr(&z12, &a->z);
   328      secp256k1_fe_mul(&u1, &a->x, &z22);
   329      secp256k1_fe_mul(&u2, &b->x, &z12);
   330      secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z);
   331      secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
   332      secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
   333      secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
   334      if (secp256k1_fe_normalizes_to_zero_var(&h)) {
   335          if (secp256k1_fe_normalizes_to_zero_var(&i)) {
   336              secp256k1_gej_double_var(r, a, rzr);
   337          } else {
   338              if (rzr != NULL) {
   339                  secp256k1_fe_set_int(rzr, 0);
   340              }
   341              r->infinity = 1;
   342          }
   343          return;
   344      }
   345      secp256k1_fe_sqr(&i2, &i);
   346      secp256k1_fe_sqr(&h2, &h);
   347      secp256k1_fe_mul(&h3, &h, &h2);
   348      secp256k1_fe_mul(&h, &h, &b->z);
   349      if (rzr != NULL) {
   350          *rzr = h;
   351      }
   352      secp256k1_fe_mul(&r->z, &a->z, &h);
   353      secp256k1_fe_mul(&t, &u1, &h2);
   354      r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
   355      secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
   356      secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
   357      secp256k1_fe_add(&r->y, &h3);
   358  }
   359  
   360  static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) {
   361      /* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
   362      secp256k1_fe z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
   363      if (a->infinity) {
   364          VERIFY_CHECK(rzr == NULL);
   365          secp256k1_gej_set_ge(r, b);
   366          return;
   367      }
   368      if (b->infinity) {
   369          if (rzr != NULL) {
   370              secp256k1_fe_set_int(rzr, 1);
   371          }
   372          *r = *a;
   373          return;
   374      }
   375      r->infinity = 0;
   376  
   377      secp256k1_fe_sqr(&z12, &a->z);
   378      u1 = a->x; secp256k1_fe_normalize_weak(&u1);
   379      secp256k1_fe_mul(&u2, &b->x, &z12);
   380      s1 = a->y; secp256k1_fe_normalize_weak(&s1);
   381      secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
   382      secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
   383      secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
   384      if (secp256k1_fe_normalizes_to_zero_var(&h)) {
   385          if (secp256k1_fe_normalizes_to_zero_var(&i)) {
   386              secp256k1_gej_double_var(r, a, rzr);
   387          } else {
   388              if (rzr != NULL) {
   389                  secp256k1_fe_set_int(rzr, 0);
   390              }
   391              r->infinity = 1;
   392          }
   393          return;
   394      }
   395      secp256k1_fe_sqr(&i2, &i);
   396      secp256k1_fe_sqr(&h2, &h);
   397      secp256k1_fe_mul(&h3, &h, &h2);
   398      if (rzr != NULL) {
   399          *rzr = h;
   400      }
   401      secp256k1_fe_mul(&r->z, &a->z, &h);
   402      secp256k1_fe_mul(&t, &u1, &h2);
   403      r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
   404      secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
   405      secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
   406      secp256k1_fe_add(&r->y, &h3);
   407  }
   408  
   409  static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) {
   410      /* 9 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
   411      secp256k1_fe az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
   412  
   413      if (b->infinity) {
   414          *r = *a;
   415          return;
   416      }
   417      if (a->infinity) {
   418          secp256k1_fe bzinv2, bzinv3;
   419          r->infinity = b->infinity;
   420          secp256k1_fe_sqr(&bzinv2, bzinv);
   421          secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv);
   422          secp256k1_fe_mul(&r->x, &b->x, &bzinv2);
   423          secp256k1_fe_mul(&r->y, &b->y, &bzinv3);
   424          secp256k1_fe_set_int(&r->z, 1);
   425          return;
   426      }
   427      r->infinity = 0;
   428  
   429      /** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to
   430       *  secp256k1's isomorphism we can multiply the Z coordinates on both sides
   431       *  by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1).
   432       *  This means that (rx,ry,rz) can be calculated as
   433       *  (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz.
   434       *  The variable az below holds the modified Z coordinate for a, which is used
   435       *  for the computation of rx and ry, but not for rz.
   436       */
   437      secp256k1_fe_mul(&az, &a->z, bzinv);
   438  
   439      secp256k1_fe_sqr(&z12, &az);
   440      u1 = a->x; secp256k1_fe_normalize_weak(&u1);
   441      secp256k1_fe_mul(&u2, &b->x, &z12);
   442      s1 = a->y; secp256k1_fe_normalize_weak(&s1);
   443      secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az);
   444      secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
   445      secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
   446      if (secp256k1_fe_normalizes_to_zero_var(&h)) {
   447          if (secp256k1_fe_normalizes_to_zero_var(&i)) {
   448              secp256k1_gej_double_var(r, a, NULL);
   449          } else {
   450              r->infinity = 1;
   451          }
   452          return;
   453      }
   454      secp256k1_fe_sqr(&i2, &i);
   455      secp256k1_fe_sqr(&h2, &h);
   456      secp256k1_fe_mul(&h3, &h, &h2);
   457      r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h);
   458      secp256k1_fe_mul(&t, &u1, &h2);
   459      r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
   460      secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
   461      secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
   462      secp256k1_fe_add(&r->y, &h3);
   463  }
   464  
   465  
   466  static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) {
   467      /* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */
   468      static const secp256k1_fe fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
   469      secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr;
   470      secp256k1_fe m_alt, rr_alt;
   471      int infinity, degenerate;
   472      VERIFY_CHECK(!b->infinity);
   473      VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);
   474  
   475      /** In:
   476       *    Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks.
   477       *    In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002.
   478       *  we find as solution for a unified addition/doubling formula:
   479       *    lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation.
   480       *    x3 = lambda^2 - (x1 + x2)
   481       *    2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2).
   482       *
   483       *  Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives:
   484       *    U1 = X1*Z2^2, U2 = X2*Z1^2
   485       *    S1 = Y1*Z2^3, S2 = Y2*Z1^3
   486       *    Z = Z1*Z2
   487       *    T = U1+U2
   488       *    M = S1+S2
   489       *    Q = T*M^2
   490       *    R = T^2-U1*U2
   491       *    X3 = 4*(R^2-Q)
   492       *    Y3 = 4*(R*(3*Q-2*R^2)-M^4)
   493       *    Z3 = 2*M*Z
   494       *  (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.)
   495       *
   496       *  This formula has the benefit of being the same for both addition
   497       *  of distinct points and doubling. However, it breaks down in the
   498       *  case that either point is infinity, or that y1 = -y2. We handle
   499       *  these cases in the following ways:
   500       *
   501       *    - If b is infinity we simply bail by means of a VERIFY_CHECK.
   502       *
   503       *    - If a is infinity, we detect this, and at the end of the
   504       *      computation replace the result (which will be meaningless,
   505       *      but we compute to be constant-time) with b.x : b.y : 1.
   506       *
   507       *    - If a = -b, we have y1 = -y2, which is a degenerate case.
   508       *      But here the answer is infinity, so we simply set the
   509       *      infinity flag of the result, overriding the computed values
   510       *      without even needing to cmov.
   511       *
   512       *    - If y1 = -y2 but x1 != x2, which does occur thanks to certain
   513       *      properties of our curve (specifically, 1 has nontrivial cube
   514       *      roots in our field, and the curve equation has no x coefficient)
   515       *      then the answer is not infinity but also not given by the above
   516       *      equation. In this case, we cmov in place an alternate expression
   517       *      for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these
   518       *      expressions for lambda are defined, they are equal, and can be
   519       *      obtained from each other by multiplication by (y1 + y2)/(y1 + y2)
   520       *      then substitution of x^3 + 7 for y^2 (using the curve equation).
   521       *      For all pairs of nonzero points (a, b) at least one is defined,
   522       *      so this covers everything.
   523       */
   524  
   525      secp256k1_fe_sqr(&zz, &a->z);                       /* z = Z1^2 */
   526      u1 = a->x; secp256k1_fe_normalize_weak(&u1);        /* u1 = U1 = X1*Z2^2 (1) */
   527      secp256k1_fe_mul(&u2, &b->x, &zz);                  /* u2 = U2 = X2*Z1^2 (1) */
   528      s1 = a->y; secp256k1_fe_normalize_weak(&s1);        /* s1 = S1 = Y1*Z2^3 (1) */
   529      secp256k1_fe_mul(&s2, &b->y, &zz);                  /* s2 = Y2*Z1^2 (1) */
   530      secp256k1_fe_mul(&s2, &s2, &a->z);                  /* s2 = S2 = Y2*Z1^3 (1) */
   531      t = u1; secp256k1_fe_add(&t, &u2);                  /* t = T = U1+U2 (2) */
   532      m = s1; secp256k1_fe_add(&m, &s2);                  /* m = M = S1+S2 (2) */
   533      secp256k1_fe_sqr(&rr, &t);                          /* rr = T^2 (1) */
   534      secp256k1_fe_negate(&m_alt, &u2, 1);                /* Malt = -X2*Z1^2 */
   535      secp256k1_fe_mul(&tt, &u1, &m_alt);                 /* tt = -U1*U2 (2) */
   536      secp256k1_fe_add(&rr, &tt);                         /* rr = R = T^2-U1*U2 (3) */
   537      /** If lambda = R/M = 0/0 we have a problem (except in the "trivial"
   538       *  case that Z = z1z2 = 0, and this is special-cased later on). */
   539      degenerate = secp256k1_fe_normalizes_to_zero(&m) &
   540                   secp256k1_fe_normalizes_to_zero(&rr);
   541      /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2.
   542       * This means either x1 == beta*x2 or beta*x1 == x2, where beta is
   543       * a nontrivial cube root of one. In either case, an alternate
   544       * non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2),
   545       * so we set R/M equal to this. */
   546      rr_alt = s1;
   547      secp256k1_fe_mul_int(&rr_alt, 2);       /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */
   548      secp256k1_fe_add(&m_alt, &u1);          /* Malt = X1*Z2^2 - X2*Z1^2 */
   549  
   550      secp256k1_fe_cmov(&rr_alt, &rr, !degenerate);
   551      secp256k1_fe_cmov(&m_alt, &m, !degenerate);
   552      /* Now Ralt / Malt = lambda and is guaranteed not to be 0/0.
   553       * From here on out Ralt and Malt represent the numerator
   554       * and denominator of lambda; R and M represent the explicit
   555       * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */
   556      secp256k1_fe_sqr(&n, &m_alt);                       /* n = Malt^2 (1) */
   557      secp256k1_fe_mul(&q, &n, &t);                       /* q = Q = T*Malt^2 (1) */
   558      /* These two lines use the observation that either M == Malt or M == 0,
   559       * so M^3 * Malt is either Malt^4 (which is computed by squaring), or
   560       * zero (which is "computed" by cmov). So the cost is one squaring
   561       * versus two multiplications. */
   562      secp256k1_fe_sqr(&n, &n);
   563      secp256k1_fe_cmov(&n, &m, degenerate);              /* n = M^3 * Malt (2) */
   564      secp256k1_fe_sqr(&t, &rr_alt);                      /* t = Ralt^2 (1) */
   565      secp256k1_fe_mul(&r->z, &a->z, &m_alt);             /* r->z = Malt*Z (1) */
   566      infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity);
   567      secp256k1_fe_mul_int(&r->z, 2);                     /* r->z = Z3 = 2*Malt*Z (2) */
   568      secp256k1_fe_negate(&q, &q, 1);                     /* q = -Q (2) */
   569      secp256k1_fe_add(&t, &q);                           /* t = Ralt^2-Q (3) */
   570      secp256k1_fe_normalize_weak(&t);
   571      r->x = t;                                           /* r->x = Ralt^2-Q (1) */
   572      secp256k1_fe_mul_int(&t, 2);                        /* t = 2*x3 (2) */
   573      secp256k1_fe_add(&t, &q);                           /* t = 2*x3 - Q: (4) */
   574      secp256k1_fe_mul(&t, &t, &rr_alt);                  /* t = Ralt*(2*x3 - Q) (1) */
   575      secp256k1_fe_add(&t, &n);                           /* t = Ralt*(2*x3 - Q) + M^3*Malt (3) */
   576      secp256k1_fe_negate(&r->y, &t, 3);                  /* r->y = Ralt*(Q - 2x3) - M^3*Malt (4) */
   577      secp256k1_fe_normalize_weak(&r->y);
   578      secp256k1_fe_mul_int(&r->x, 4);                     /* r->x = X3 = 4*(Ralt^2-Q) */
   579      secp256k1_fe_mul_int(&r->y, 4);                     /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */
   580  
   581      /** In case a->infinity == 1, replace r with (b->x, b->y, 1). */
   582      secp256k1_fe_cmov(&r->x, &b->x, a->infinity);
   583      secp256k1_fe_cmov(&r->y, &b->y, a->infinity);
   584      secp256k1_fe_cmov(&r->z, &fe_1, a->infinity);
   585      r->infinity = infinity;
   586  }
   587  
   588  static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) {
   589      /* Operations: 4 mul, 1 sqr */
   590      secp256k1_fe zz;
   591      VERIFY_CHECK(!secp256k1_fe_is_zero(s));
   592      secp256k1_fe_sqr(&zz, s);
   593      secp256k1_fe_mul(&r->x, &r->x, &zz);                /* r->x *= s^2 */
   594      secp256k1_fe_mul(&r->y, &r->y, &zz);
   595      secp256k1_fe_mul(&r->y, &r->y, s);                  /* r->y *= s^3 */
   596      secp256k1_fe_mul(&r->z, &r->z, s);                  /* r->z *= s   */
   597  }
   598  
   599  static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) {
   600      secp256k1_fe x, y;
   601      VERIFY_CHECK(!a->infinity);
   602      x = a->x;
   603      secp256k1_fe_normalize(&x);
   604      y = a->y;
   605      secp256k1_fe_normalize(&y);
   606      secp256k1_fe_to_storage(&r->x, &x);
   607      secp256k1_fe_to_storage(&r->y, &y);
   608  }
   609  
   610  static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a) {
   611      secp256k1_fe_from_storage(&r->x, &a->x);
   612      secp256k1_fe_from_storage(&r->y, &a->y);
   613      r->infinity = 0;
   614  }
   615  
   616  static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) {
   617      secp256k1_fe_storage_cmov(&r->x, &a->x, flag);
   618      secp256k1_fe_storage_cmov(&r->y, &a->y, flag);
   619  }
   620  
   621  #ifdef USE_ENDOMORPHISM
   622  static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) {
   623      static const secp256k1_fe beta = SECP256K1_FE_CONST(
   624          0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
   625          0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul
   626      );
   627      *r = *a;
   628      secp256k1_fe_mul(&r->x, &r->x, &beta);
   629  }
   630  #endif
   631  
   632  #endif