github.com/ethereumproject/go-ethereum@v5.5.2+incompatible/crypto/secp256k1/libsecp256k1/src/group_impl.h (about) 1 /********************************************************************** 2 * Copyright (c) 2013, 2014 Pieter Wuille * 3 * Distributed under the MIT software license, see the accompanying * 4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.* 5 **********************************************************************/ 6 7 #ifndef _SECP256K1_GROUP_IMPL_H_ 8 #define _SECP256K1_GROUP_IMPL_H_ 9 10 #include <string.h> 11 12 #include "num.h" 13 #include "field.h" 14 #include "group.h" 15 16 /** Generator for secp256k1, value 'g' defined in 17 * "Standards for Efficient Cryptography" (SEC2) 2.7.1. 18 */ 19 static const secp256k1_ge secp256k1_ge_const_g = SECP256K1_GE_CONST( 20 0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL, 21 0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL, 22 0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL, 23 0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL 24 ); 25 26 static void secp256k1_ge_set_gej_zinv(secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zi) { 27 secp256k1_fe zi2; 28 secp256k1_fe zi3; 29 secp256k1_fe_sqr(&zi2, zi); 30 secp256k1_fe_mul(&zi3, &zi2, zi); 31 secp256k1_fe_mul(&r->x, &a->x, &zi2); 32 secp256k1_fe_mul(&r->y, &a->y, &zi3); 33 r->infinity = a->infinity; 34 } 35 36 static void secp256k1_ge_set_infinity(secp256k1_ge *r) { 37 r->infinity = 1; 38 } 39 40 static void secp256k1_ge_set_xy(secp256k1_ge *r, const secp256k1_fe *x, const secp256k1_fe *y) { 41 r->infinity = 0; 42 r->x = *x; 43 r->y = *y; 44 } 45 46 static int secp256k1_ge_is_infinity(const secp256k1_ge *a) { 47 return a->infinity; 48 } 49 50 static void secp256k1_ge_neg(secp256k1_ge *r, const secp256k1_ge *a) { 51 *r = *a; 52 secp256k1_fe_normalize_weak(&r->y); 53 secp256k1_fe_negate(&r->y, &r->y, 1); 54 } 55 56 static void secp256k1_ge_set_gej(secp256k1_ge *r, secp256k1_gej *a) { 57 secp256k1_fe z2, z3; 58 r->infinity = a->infinity; 59 secp256k1_fe_inv(&a->z, &a->z); 60 secp256k1_fe_sqr(&z2, &a->z); 61 secp256k1_fe_mul(&z3, &a->z, &z2); 62 secp256k1_fe_mul(&a->x, &a->x, &z2); 63 secp256k1_fe_mul(&a->y, &a->y, &z3); 64 secp256k1_fe_set_int(&a->z, 1); 65 r->x = a->x; 66 r->y = a->y; 67 } 68 69 static void secp256k1_ge_set_gej_var(secp256k1_ge *r, secp256k1_gej *a) { 70 secp256k1_fe z2, z3; 71 r->infinity = a->infinity; 72 if (a->infinity) { 73 return; 74 } 75 secp256k1_fe_inv_var(&a->z, &a->z); 76 secp256k1_fe_sqr(&z2, &a->z); 77 secp256k1_fe_mul(&z3, &a->z, &z2); 78 secp256k1_fe_mul(&a->x, &a->x, &z2); 79 secp256k1_fe_mul(&a->y, &a->y, &z3); 80 secp256k1_fe_set_int(&a->z, 1); 81 r->x = a->x; 82 r->y = a->y; 83 } 84 85 static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_callback *cb) { 86 secp256k1_fe *az; 87 secp256k1_fe *azi; 88 size_t i; 89 size_t count = 0; 90 az = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * len); 91 for (i = 0; i < len; i++) { 92 if (!a[i].infinity) { 93 az[count++] = a[i].z; 94 } 95 } 96 97 azi = (secp256k1_fe *)checked_malloc(cb, sizeof(secp256k1_fe) * count); 98 secp256k1_fe_inv_all_var(count, azi, az); 99 free(az); 100 101 count = 0; 102 for (i = 0; i < len; i++) { 103 r[i].infinity = a[i].infinity; 104 if (!a[i].infinity) { 105 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &azi[count++]); 106 } 107 } 108 free(azi); 109 } 110 111 static void secp256k1_ge_set_table_gej_var(size_t len, secp256k1_ge *r, const secp256k1_gej *a, const secp256k1_fe *zr) { 112 size_t i = len - 1; 113 secp256k1_fe zi; 114 115 if (len > 0) { 116 /* Compute the inverse of the last z coordinate, and use it to compute the last affine output. */ 117 secp256k1_fe_inv(&zi, &a[i].z); 118 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi); 119 120 /* Work out way backwards, using the z-ratios to scale the x/y values. */ 121 while (i > 0) { 122 secp256k1_fe_mul(&zi, &zi, &zr[i]); 123 i--; 124 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zi); 125 } 126 } 127 } 128 129 static void secp256k1_ge_globalz_set_table_gej(size_t len, secp256k1_ge *r, secp256k1_fe *globalz, const secp256k1_gej *a, const secp256k1_fe *zr) { 130 size_t i = len - 1; 131 secp256k1_fe zs; 132 133 if (len > 0) { 134 /* The z of the final point gives us the "global Z" for the table. */ 135 r[i].x = a[i].x; 136 r[i].y = a[i].y; 137 *globalz = a[i].z; 138 r[i].infinity = 0; 139 zs = zr[i]; 140 141 /* Work our way backwards, using the z-ratios to scale the x/y values. */ 142 while (i > 0) { 143 if (i != len - 1) { 144 secp256k1_fe_mul(&zs, &zs, &zr[i]); 145 } 146 i--; 147 secp256k1_ge_set_gej_zinv(&r[i], &a[i], &zs); 148 } 149 } 150 } 151 152 static void secp256k1_gej_set_infinity(secp256k1_gej *r) { 153 r->infinity = 1; 154 secp256k1_fe_set_int(&r->x, 0); 155 secp256k1_fe_set_int(&r->y, 0); 156 secp256k1_fe_set_int(&r->z, 0); 157 } 158 159 static void secp256k1_gej_set_xy(secp256k1_gej *r, const secp256k1_fe *x, const secp256k1_fe *y) { 160 r->infinity = 0; 161 r->x = *x; 162 r->y = *y; 163 secp256k1_fe_set_int(&r->z, 1); 164 } 165 166 static void secp256k1_gej_clear(secp256k1_gej *r) { 167 r->infinity = 0; 168 secp256k1_fe_clear(&r->x); 169 secp256k1_fe_clear(&r->y); 170 secp256k1_fe_clear(&r->z); 171 } 172 173 static void secp256k1_ge_clear(secp256k1_ge *r) { 174 r->infinity = 0; 175 secp256k1_fe_clear(&r->x); 176 secp256k1_fe_clear(&r->y); 177 } 178 179 static int secp256k1_ge_set_xo_var(secp256k1_ge *r, const secp256k1_fe *x, int odd) { 180 secp256k1_fe x2, x3, c; 181 r->x = *x; 182 secp256k1_fe_sqr(&x2, x); 183 secp256k1_fe_mul(&x3, x, &x2); 184 r->infinity = 0; 185 secp256k1_fe_set_int(&c, 7); 186 secp256k1_fe_add(&c, &x3); 187 if (!secp256k1_fe_sqrt_var(&r->y, &c)) { 188 return 0; 189 } 190 secp256k1_fe_normalize_var(&r->y); 191 if (secp256k1_fe_is_odd(&r->y) != odd) { 192 secp256k1_fe_negate(&r->y, &r->y, 1); 193 } 194 return 1; 195 } 196 197 static void secp256k1_gej_set_ge(secp256k1_gej *r, const secp256k1_ge *a) { 198 r->infinity = a->infinity; 199 r->x = a->x; 200 r->y = a->y; 201 secp256k1_fe_set_int(&r->z, 1); 202 } 203 204 static int secp256k1_gej_eq_x_var(const secp256k1_fe *x, const secp256k1_gej *a) { 205 secp256k1_fe r, r2; 206 VERIFY_CHECK(!a->infinity); 207 secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x); 208 r2 = a->x; secp256k1_fe_normalize_weak(&r2); 209 return secp256k1_fe_equal_var(&r, &r2); 210 } 211 212 static void secp256k1_gej_neg(secp256k1_gej *r, const secp256k1_gej *a) { 213 r->infinity = a->infinity; 214 r->x = a->x; 215 r->y = a->y; 216 r->z = a->z; 217 secp256k1_fe_normalize_weak(&r->y); 218 secp256k1_fe_negate(&r->y, &r->y, 1); 219 } 220 221 static int secp256k1_gej_is_infinity(const secp256k1_gej *a) { 222 return a->infinity; 223 } 224 225 static int secp256k1_gej_is_valid_var(const secp256k1_gej *a) { 226 secp256k1_fe y2, x3, z2, z6; 227 if (a->infinity) { 228 return 0; 229 } 230 /** y^2 = x^3 + 7 231 * (Y/Z^3)^2 = (X/Z^2)^3 + 7 232 * Y^2 / Z^6 = X^3 / Z^6 + 7 233 * Y^2 = X^3 + 7*Z^6 234 */ 235 secp256k1_fe_sqr(&y2, &a->y); 236 secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); 237 secp256k1_fe_sqr(&z2, &a->z); 238 secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2); 239 secp256k1_fe_mul_int(&z6, 7); 240 secp256k1_fe_add(&x3, &z6); 241 secp256k1_fe_normalize_weak(&x3); 242 return secp256k1_fe_equal_var(&y2, &x3); 243 } 244 245 static int secp256k1_ge_is_valid_var(const secp256k1_ge *a) { 246 secp256k1_fe y2, x3, c; 247 if (a->infinity) { 248 return 0; 249 } 250 /* y^2 = x^3 + 7 */ 251 secp256k1_fe_sqr(&y2, &a->y); 252 secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x); 253 secp256k1_fe_set_int(&c, 7); 254 secp256k1_fe_add(&x3, &c); 255 secp256k1_fe_normalize_weak(&x3); 256 return secp256k1_fe_equal_var(&y2, &x3); 257 } 258 259 static void secp256k1_gej_double_var(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) { 260 /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate */ 261 secp256k1_fe t1,t2,t3,t4; 262 /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity, 263 * Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have 264 * y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p. 265 */ 266 r->infinity = a->infinity; 267 if (r->infinity) { 268 if (rzr != NULL) { 269 secp256k1_fe_set_int(rzr, 1); 270 } 271 return; 272 } 273 274 if (rzr != NULL) { 275 *rzr = a->y; 276 secp256k1_fe_normalize_weak(rzr); 277 secp256k1_fe_mul_int(rzr, 2); 278 } 279 280 secp256k1_fe_mul(&r->z, &a->z, &a->y); 281 secp256k1_fe_mul_int(&r->z, 2); /* Z' = 2*Y*Z (2) */ 282 secp256k1_fe_sqr(&t1, &a->x); 283 secp256k1_fe_mul_int(&t1, 3); /* T1 = 3*X^2 (3) */ 284 secp256k1_fe_sqr(&t2, &t1); /* T2 = 9*X^4 (1) */ 285 secp256k1_fe_sqr(&t3, &a->y); 286 secp256k1_fe_mul_int(&t3, 2); /* T3 = 2*Y^2 (2) */ 287 secp256k1_fe_sqr(&t4, &t3); 288 secp256k1_fe_mul_int(&t4, 2); /* T4 = 8*Y^4 (2) */ 289 secp256k1_fe_mul(&t3, &t3, &a->x); /* T3 = 2*X*Y^2 (1) */ 290 r->x = t3; 291 secp256k1_fe_mul_int(&r->x, 4); /* X' = 8*X*Y^2 (4) */ 292 secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */ 293 secp256k1_fe_add(&r->x, &t2); /* X' = 9*X^4 - 8*X*Y^2 (6) */ 294 secp256k1_fe_negate(&t2, &t2, 1); /* T2 = -9*X^4 (2) */ 295 secp256k1_fe_mul_int(&t3, 6); /* T3 = 12*X*Y^2 (6) */ 296 secp256k1_fe_add(&t3, &t2); /* T3 = 12*X*Y^2 - 9*X^4 (8) */ 297 secp256k1_fe_mul(&r->y, &t1, &t3); /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */ 298 secp256k1_fe_negate(&t2, &t4, 2); /* T2 = -8*Y^4 (3) */ 299 secp256k1_fe_add(&r->y, &t2); /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */ 300 } 301 302 static SECP256K1_INLINE void secp256k1_gej_double_nonzero(secp256k1_gej *r, const secp256k1_gej *a, secp256k1_fe *rzr) { 303 VERIFY_CHECK(!secp256k1_gej_is_infinity(a)); 304 secp256k1_gej_double_var(r, a, rzr); 305 } 306 307 static void secp256k1_gej_add_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_gej *b, secp256k1_fe *rzr) { 308 /* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */ 309 secp256k1_fe z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; 310 311 if (a->infinity) { 312 VERIFY_CHECK(rzr == NULL); 313 *r = *b; 314 return; 315 } 316 317 if (b->infinity) { 318 if (rzr != NULL) { 319 secp256k1_fe_set_int(rzr, 1); 320 } 321 *r = *a; 322 return; 323 } 324 325 r->infinity = 0; 326 secp256k1_fe_sqr(&z22, &b->z); 327 secp256k1_fe_sqr(&z12, &a->z); 328 secp256k1_fe_mul(&u1, &a->x, &z22); 329 secp256k1_fe_mul(&u2, &b->x, &z12); 330 secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z); 331 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); 332 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); 333 secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); 334 if (secp256k1_fe_normalizes_to_zero_var(&h)) { 335 if (secp256k1_fe_normalizes_to_zero_var(&i)) { 336 secp256k1_gej_double_var(r, a, rzr); 337 } else { 338 if (rzr != NULL) { 339 secp256k1_fe_set_int(rzr, 0); 340 } 341 r->infinity = 1; 342 } 343 return; 344 } 345 secp256k1_fe_sqr(&i2, &i); 346 secp256k1_fe_sqr(&h2, &h); 347 secp256k1_fe_mul(&h3, &h, &h2); 348 secp256k1_fe_mul(&h, &h, &b->z); 349 if (rzr != NULL) { 350 *rzr = h; 351 } 352 secp256k1_fe_mul(&r->z, &a->z, &h); 353 secp256k1_fe_mul(&t, &u1, &h2); 354 r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); 355 secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); 356 secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); 357 secp256k1_fe_add(&r->y, &h3); 358 } 359 360 static void secp256k1_gej_add_ge_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, secp256k1_fe *rzr) { 361 /* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */ 362 secp256k1_fe z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; 363 if (a->infinity) { 364 VERIFY_CHECK(rzr == NULL); 365 secp256k1_gej_set_ge(r, b); 366 return; 367 } 368 if (b->infinity) { 369 if (rzr != NULL) { 370 secp256k1_fe_set_int(rzr, 1); 371 } 372 *r = *a; 373 return; 374 } 375 r->infinity = 0; 376 377 secp256k1_fe_sqr(&z12, &a->z); 378 u1 = a->x; secp256k1_fe_normalize_weak(&u1); 379 secp256k1_fe_mul(&u2, &b->x, &z12); 380 s1 = a->y; secp256k1_fe_normalize_weak(&s1); 381 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z); 382 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); 383 secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); 384 if (secp256k1_fe_normalizes_to_zero_var(&h)) { 385 if (secp256k1_fe_normalizes_to_zero_var(&i)) { 386 secp256k1_gej_double_var(r, a, rzr); 387 } else { 388 if (rzr != NULL) { 389 secp256k1_fe_set_int(rzr, 0); 390 } 391 r->infinity = 1; 392 } 393 return; 394 } 395 secp256k1_fe_sqr(&i2, &i); 396 secp256k1_fe_sqr(&h2, &h); 397 secp256k1_fe_mul(&h3, &h, &h2); 398 if (rzr != NULL) { 399 *rzr = h; 400 } 401 secp256k1_fe_mul(&r->z, &a->z, &h); 402 secp256k1_fe_mul(&t, &u1, &h2); 403 r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); 404 secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); 405 secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); 406 secp256k1_fe_add(&r->y, &h3); 407 } 408 409 static void secp256k1_gej_add_zinv_var(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b, const secp256k1_fe *bzinv) { 410 /* 9 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */ 411 secp256k1_fe az, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t; 412 413 if (b->infinity) { 414 *r = *a; 415 return; 416 } 417 if (a->infinity) { 418 secp256k1_fe bzinv2, bzinv3; 419 r->infinity = b->infinity; 420 secp256k1_fe_sqr(&bzinv2, bzinv); 421 secp256k1_fe_mul(&bzinv3, &bzinv2, bzinv); 422 secp256k1_fe_mul(&r->x, &b->x, &bzinv2); 423 secp256k1_fe_mul(&r->y, &b->y, &bzinv3); 424 secp256k1_fe_set_int(&r->z, 1); 425 return; 426 } 427 r->infinity = 0; 428 429 /** We need to calculate (rx,ry,rz) = (ax,ay,az) + (bx,by,1/bzinv). Due to 430 * secp256k1's isomorphism we can multiply the Z coordinates on both sides 431 * by bzinv, and get: (rx,ry,rz*bzinv) = (ax,ay,az*bzinv) + (bx,by,1). 432 * This means that (rx,ry,rz) can be calculated as 433 * (ax,ay,az*bzinv) + (bx,by,1), when not applying the bzinv factor to rz. 434 * The variable az below holds the modified Z coordinate for a, which is used 435 * for the computation of rx and ry, but not for rz. 436 */ 437 secp256k1_fe_mul(&az, &a->z, bzinv); 438 439 secp256k1_fe_sqr(&z12, &az); 440 u1 = a->x; secp256k1_fe_normalize_weak(&u1); 441 secp256k1_fe_mul(&u2, &b->x, &z12); 442 s1 = a->y; secp256k1_fe_normalize_weak(&s1); 443 secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &az); 444 secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2); 445 secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2); 446 if (secp256k1_fe_normalizes_to_zero_var(&h)) { 447 if (secp256k1_fe_normalizes_to_zero_var(&i)) { 448 secp256k1_gej_double_var(r, a, NULL); 449 } else { 450 r->infinity = 1; 451 } 452 return; 453 } 454 secp256k1_fe_sqr(&i2, &i); 455 secp256k1_fe_sqr(&h2, &h); 456 secp256k1_fe_mul(&h3, &h, &h2); 457 r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h); 458 secp256k1_fe_mul(&t, &u1, &h2); 459 r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2); 460 secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i); 461 secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1); 462 secp256k1_fe_add(&r->y, &h3); 463 } 464 465 466 static void secp256k1_gej_add_ge(secp256k1_gej *r, const secp256k1_gej *a, const secp256k1_ge *b) { 467 /* Operations: 7 mul, 5 sqr, 4 normalize, 21 mul_int/add/negate/cmov */ 468 static const secp256k1_fe fe_1 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1); 469 secp256k1_fe zz, u1, u2, s1, s2, t, tt, m, n, q, rr; 470 secp256k1_fe m_alt, rr_alt; 471 int infinity, degenerate; 472 VERIFY_CHECK(!b->infinity); 473 VERIFY_CHECK(a->infinity == 0 || a->infinity == 1); 474 475 /** In: 476 * Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks. 477 * In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002. 478 * we find as solution for a unified addition/doubling formula: 479 * lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation. 480 * x3 = lambda^2 - (x1 + x2) 481 * 2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2). 482 * 483 * Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives: 484 * U1 = X1*Z2^2, U2 = X2*Z1^2 485 * S1 = Y1*Z2^3, S2 = Y2*Z1^3 486 * Z = Z1*Z2 487 * T = U1+U2 488 * M = S1+S2 489 * Q = T*M^2 490 * R = T^2-U1*U2 491 * X3 = 4*(R^2-Q) 492 * Y3 = 4*(R*(3*Q-2*R^2)-M^4) 493 * Z3 = 2*M*Z 494 * (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.) 495 * 496 * This formula has the benefit of being the same for both addition 497 * of distinct points and doubling. However, it breaks down in the 498 * case that either point is infinity, or that y1 = -y2. We handle 499 * these cases in the following ways: 500 * 501 * - If b is infinity we simply bail by means of a VERIFY_CHECK. 502 * 503 * - If a is infinity, we detect this, and at the end of the 504 * computation replace the result (which will be meaningless, 505 * but we compute to be constant-time) with b.x : b.y : 1. 506 * 507 * - If a = -b, we have y1 = -y2, which is a degenerate case. 508 * But here the answer is infinity, so we simply set the 509 * infinity flag of the result, overriding the computed values 510 * without even needing to cmov. 511 * 512 * - If y1 = -y2 but x1 != x2, which does occur thanks to certain 513 * properties of our curve (specifically, 1 has nontrivial cube 514 * roots in our field, and the curve equation has no x coefficient) 515 * then the answer is not infinity but also not given by the above 516 * equation. In this case, we cmov in place an alternate expression 517 * for lambda. Specifically (y1 - y2)/(x1 - x2). Where both these 518 * expressions for lambda are defined, they are equal, and can be 519 * obtained from each other by multiplication by (y1 + y2)/(y1 + y2) 520 * then substitution of x^3 + 7 for y^2 (using the curve equation). 521 * For all pairs of nonzero points (a, b) at least one is defined, 522 * so this covers everything. 523 */ 524 525 secp256k1_fe_sqr(&zz, &a->z); /* z = Z1^2 */ 526 u1 = a->x; secp256k1_fe_normalize_weak(&u1); /* u1 = U1 = X1*Z2^2 (1) */ 527 secp256k1_fe_mul(&u2, &b->x, &zz); /* u2 = U2 = X2*Z1^2 (1) */ 528 s1 = a->y; secp256k1_fe_normalize_weak(&s1); /* s1 = S1 = Y1*Z2^3 (1) */ 529 secp256k1_fe_mul(&s2, &b->y, &zz); /* s2 = Y2*Z1^2 (1) */ 530 secp256k1_fe_mul(&s2, &s2, &a->z); /* s2 = S2 = Y2*Z1^3 (1) */ 531 t = u1; secp256k1_fe_add(&t, &u2); /* t = T = U1+U2 (2) */ 532 m = s1; secp256k1_fe_add(&m, &s2); /* m = M = S1+S2 (2) */ 533 secp256k1_fe_sqr(&rr, &t); /* rr = T^2 (1) */ 534 secp256k1_fe_negate(&m_alt, &u2, 1); /* Malt = -X2*Z1^2 */ 535 secp256k1_fe_mul(&tt, &u1, &m_alt); /* tt = -U1*U2 (2) */ 536 secp256k1_fe_add(&rr, &tt); /* rr = R = T^2-U1*U2 (3) */ 537 /** If lambda = R/M = 0/0 we have a problem (except in the "trivial" 538 * case that Z = z1z2 = 0, and this is special-cased later on). */ 539 degenerate = secp256k1_fe_normalizes_to_zero(&m) & 540 secp256k1_fe_normalizes_to_zero(&rr); 541 /* This only occurs when y1 == -y2 and x1^3 == x2^3, but x1 != x2. 542 * This means either x1 == beta*x2 or beta*x1 == x2, where beta is 543 * a nontrivial cube root of one. In either case, an alternate 544 * non-indeterminate expression for lambda is (y1 - y2)/(x1 - x2), 545 * so we set R/M equal to this. */ 546 rr_alt = s1; 547 secp256k1_fe_mul_int(&rr_alt, 2); /* rr = Y1*Z2^3 - Y2*Z1^3 (2) */ 548 secp256k1_fe_add(&m_alt, &u1); /* Malt = X1*Z2^2 - X2*Z1^2 */ 549 550 secp256k1_fe_cmov(&rr_alt, &rr, !degenerate); 551 secp256k1_fe_cmov(&m_alt, &m, !degenerate); 552 /* Now Ralt / Malt = lambda and is guaranteed not to be 0/0. 553 * From here on out Ralt and Malt represent the numerator 554 * and denominator of lambda; R and M represent the explicit 555 * expressions x1^2 + x2^2 + x1x2 and y1 + y2. */ 556 secp256k1_fe_sqr(&n, &m_alt); /* n = Malt^2 (1) */ 557 secp256k1_fe_mul(&q, &n, &t); /* q = Q = T*Malt^2 (1) */ 558 /* These two lines use the observation that either M == Malt or M == 0, 559 * so M^3 * Malt is either Malt^4 (which is computed by squaring), or 560 * zero (which is "computed" by cmov). So the cost is one squaring 561 * versus two multiplications. */ 562 secp256k1_fe_sqr(&n, &n); 563 secp256k1_fe_cmov(&n, &m, degenerate); /* n = M^3 * Malt (2) */ 564 secp256k1_fe_sqr(&t, &rr_alt); /* t = Ralt^2 (1) */ 565 secp256k1_fe_mul(&r->z, &a->z, &m_alt); /* r->z = Malt*Z (1) */ 566 infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity); 567 secp256k1_fe_mul_int(&r->z, 2); /* r->z = Z3 = 2*Malt*Z (2) */ 568 secp256k1_fe_negate(&q, &q, 1); /* q = -Q (2) */ 569 secp256k1_fe_add(&t, &q); /* t = Ralt^2-Q (3) */ 570 secp256k1_fe_normalize_weak(&t); 571 r->x = t; /* r->x = Ralt^2-Q (1) */ 572 secp256k1_fe_mul_int(&t, 2); /* t = 2*x3 (2) */ 573 secp256k1_fe_add(&t, &q); /* t = 2*x3 - Q: (4) */ 574 secp256k1_fe_mul(&t, &t, &rr_alt); /* t = Ralt*(2*x3 - Q) (1) */ 575 secp256k1_fe_add(&t, &n); /* t = Ralt*(2*x3 - Q) + M^3*Malt (3) */ 576 secp256k1_fe_negate(&r->y, &t, 3); /* r->y = Ralt*(Q - 2x3) - M^3*Malt (4) */ 577 secp256k1_fe_normalize_weak(&r->y); 578 secp256k1_fe_mul_int(&r->x, 4); /* r->x = X3 = 4*(Ralt^2-Q) */ 579 secp256k1_fe_mul_int(&r->y, 4); /* r->y = Y3 = 4*Ralt*(Q - 2x3) - 4*M^3*Malt (4) */ 580 581 /** In case a->infinity == 1, replace r with (b->x, b->y, 1). */ 582 secp256k1_fe_cmov(&r->x, &b->x, a->infinity); 583 secp256k1_fe_cmov(&r->y, &b->y, a->infinity); 584 secp256k1_fe_cmov(&r->z, &fe_1, a->infinity); 585 r->infinity = infinity; 586 } 587 588 static void secp256k1_gej_rescale(secp256k1_gej *r, const secp256k1_fe *s) { 589 /* Operations: 4 mul, 1 sqr */ 590 secp256k1_fe zz; 591 VERIFY_CHECK(!secp256k1_fe_is_zero(s)); 592 secp256k1_fe_sqr(&zz, s); 593 secp256k1_fe_mul(&r->x, &r->x, &zz); /* r->x *= s^2 */ 594 secp256k1_fe_mul(&r->y, &r->y, &zz); 595 secp256k1_fe_mul(&r->y, &r->y, s); /* r->y *= s^3 */ 596 secp256k1_fe_mul(&r->z, &r->z, s); /* r->z *= s */ 597 } 598 599 static void secp256k1_ge_to_storage(secp256k1_ge_storage *r, const secp256k1_ge *a) { 600 secp256k1_fe x, y; 601 VERIFY_CHECK(!a->infinity); 602 x = a->x; 603 secp256k1_fe_normalize(&x); 604 y = a->y; 605 secp256k1_fe_normalize(&y); 606 secp256k1_fe_to_storage(&r->x, &x); 607 secp256k1_fe_to_storage(&r->y, &y); 608 } 609 610 static void secp256k1_ge_from_storage(secp256k1_ge *r, const secp256k1_ge_storage *a) { 611 secp256k1_fe_from_storage(&r->x, &a->x); 612 secp256k1_fe_from_storage(&r->y, &a->y); 613 r->infinity = 0; 614 } 615 616 static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage *r, const secp256k1_ge_storage *a, int flag) { 617 secp256k1_fe_storage_cmov(&r->x, &a->x, flag); 618 secp256k1_fe_storage_cmov(&r->y, &a->y, flag); 619 } 620 621 #ifdef USE_ENDOMORPHISM 622 static void secp256k1_ge_mul_lambda(secp256k1_ge *r, const secp256k1_ge *a) { 623 static const secp256k1_fe beta = SECP256K1_FE_CONST( 624 0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul, 625 0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul 626 ); 627 *r = *a; 628 secp256k1_fe_mul(&r->x, &r->x, &beta); 629 } 630 #endif 631 632 #endif