github.com/ethereumproject/go-ethereum@v5.5.2+incompatible/crypto/secp256k1/libsecp256k1/src/scalar_impl.h (about) 1 /********************************************************************** 2 * Copyright (c) 2014 Pieter Wuille * 3 * Distributed under the MIT software license, see the accompanying * 4 * file COPYING or http://www.opensource.org/licenses/mit-license.php.* 5 **********************************************************************/ 6 7 #ifndef _SECP256K1_SCALAR_IMPL_H_ 8 #define _SECP256K1_SCALAR_IMPL_H_ 9 10 #include <string.h> 11 12 #include "group.h" 13 #include "scalar.h" 14 15 #if defined HAVE_CONFIG_H 16 #include "libsecp256k1-config.h" 17 #endif 18 19 #if defined(USE_SCALAR_4X64) 20 #include "scalar_4x64_impl.h" 21 #elif defined(USE_SCALAR_8X32) 22 #include "scalar_8x32_impl.h" 23 #else 24 #error "Please select scalar implementation" 25 #endif 26 27 #ifndef USE_NUM_NONE 28 static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a) { 29 unsigned char c[32]; 30 secp256k1_scalar_get_b32(c, a); 31 secp256k1_num_set_bin(r, c, 32); 32 } 33 34 /** secp256k1 curve order, see secp256k1_ecdsa_const_order_as_fe in ecdsa_impl.h */ 35 static void secp256k1_scalar_order_get_num(secp256k1_num *r) { 36 static const unsigned char order[32] = { 37 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF, 38 0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE, 39 0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B, 40 0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41 41 }; 42 secp256k1_num_set_bin(r, order, 32); 43 } 44 #endif 45 46 static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) { 47 secp256k1_scalar *t; 48 int i; 49 /* First compute x ^ (2^N - 1) for some values of N. */ 50 secp256k1_scalar x2, x3, x4, x6, x7, x8, x15, x30, x60, x120, x127; 51 52 secp256k1_scalar_sqr(&x2, x); 53 secp256k1_scalar_mul(&x2, &x2, x); 54 55 secp256k1_scalar_sqr(&x3, &x2); 56 secp256k1_scalar_mul(&x3, &x3, x); 57 58 secp256k1_scalar_sqr(&x4, &x3); 59 secp256k1_scalar_mul(&x4, &x4, x); 60 61 secp256k1_scalar_sqr(&x6, &x4); 62 secp256k1_scalar_sqr(&x6, &x6); 63 secp256k1_scalar_mul(&x6, &x6, &x2); 64 65 secp256k1_scalar_sqr(&x7, &x6); 66 secp256k1_scalar_mul(&x7, &x7, x); 67 68 secp256k1_scalar_sqr(&x8, &x7); 69 secp256k1_scalar_mul(&x8, &x8, x); 70 71 secp256k1_scalar_sqr(&x15, &x8); 72 for (i = 0; i < 6; i++) { 73 secp256k1_scalar_sqr(&x15, &x15); 74 } 75 secp256k1_scalar_mul(&x15, &x15, &x7); 76 77 secp256k1_scalar_sqr(&x30, &x15); 78 for (i = 0; i < 14; i++) { 79 secp256k1_scalar_sqr(&x30, &x30); 80 } 81 secp256k1_scalar_mul(&x30, &x30, &x15); 82 83 secp256k1_scalar_sqr(&x60, &x30); 84 for (i = 0; i < 29; i++) { 85 secp256k1_scalar_sqr(&x60, &x60); 86 } 87 secp256k1_scalar_mul(&x60, &x60, &x30); 88 89 secp256k1_scalar_sqr(&x120, &x60); 90 for (i = 0; i < 59; i++) { 91 secp256k1_scalar_sqr(&x120, &x120); 92 } 93 secp256k1_scalar_mul(&x120, &x120, &x60); 94 95 secp256k1_scalar_sqr(&x127, &x120); 96 for (i = 0; i < 6; i++) { 97 secp256k1_scalar_sqr(&x127, &x127); 98 } 99 secp256k1_scalar_mul(&x127, &x127, &x7); 100 101 /* Then accumulate the final result (t starts at x127). */ 102 t = &x127; 103 for (i = 0; i < 2; i++) { /* 0 */ 104 secp256k1_scalar_sqr(t, t); 105 } 106 secp256k1_scalar_mul(t, t, x); /* 1 */ 107 for (i = 0; i < 4; i++) { /* 0 */ 108 secp256k1_scalar_sqr(t, t); 109 } 110 secp256k1_scalar_mul(t, t, &x3); /* 111 */ 111 for (i = 0; i < 2; i++) { /* 0 */ 112 secp256k1_scalar_sqr(t, t); 113 } 114 secp256k1_scalar_mul(t, t, x); /* 1 */ 115 for (i = 0; i < 2; i++) { /* 0 */ 116 secp256k1_scalar_sqr(t, t); 117 } 118 secp256k1_scalar_mul(t, t, x); /* 1 */ 119 for (i = 0; i < 2; i++) { /* 0 */ 120 secp256k1_scalar_sqr(t, t); 121 } 122 secp256k1_scalar_mul(t, t, x); /* 1 */ 123 for (i = 0; i < 4; i++) { /* 0 */ 124 secp256k1_scalar_sqr(t, t); 125 } 126 secp256k1_scalar_mul(t, t, &x3); /* 111 */ 127 for (i = 0; i < 3; i++) { /* 0 */ 128 secp256k1_scalar_sqr(t, t); 129 } 130 secp256k1_scalar_mul(t, t, &x2); /* 11 */ 131 for (i = 0; i < 4; i++) { /* 0 */ 132 secp256k1_scalar_sqr(t, t); 133 } 134 secp256k1_scalar_mul(t, t, &x3); /* 111 */ 135 for (i = 0; i < 5; i++) { /* 00 */ 136 secp256k1_scalar_sqr(t, t); 137 } 138 secp256k1_scalar_mul(t, t, &x3); /* 111 */ 139 for (i = 0; i < 4; i++) { /* 00 */ 140 secp256k1_scalar_sqr(t, t); 141 } 142 secp256k1_scalar_mul(t, t, &x2); /* 11 */ 143 for (i = 0; i < 2; i++) { /* 0 */ 144 secp256k1_scalar_sqr(t, t); 145 } 146 secp256k1_scalar_mul(t, t, x); /* 1 */ 147 for (i = 0; i < 2; i++) { /* 0 */ 148 secp256k1_scalar_sqr(t, t); 149 } 150 secp256k1_scalar_mul(t, t, x); /* 1 */ 151 for (i = 0; i < 5; i++) { /* 0 */ 152 secp256k1_scalar_sqr(t, t); 153 } 154 secp256k1_scalar_mul(t, t, &x4); /* 1111 */ 155 for (i = 0; i < 2; i++) { /* 0 */ 156 secp256k1_scalar_sqr(t, t); 157 } 158 secp256k1_scalar_mul(t, t, x); /* 1 */ 159 for (i = 0; i < 3; i++) { /* 00 */ 160 secp256k1_scalar_sqr(t, t); 161 } 162 secp256k1_scalar_mul(t, t, x); /* 1 */ 163 for (i = 0; i < 4; i++) { /* 000 */ 164 secp256k1_scalar_sqr(t, t); 165 } 166 secp256k1_scalar_mul(t, t, x); /* 1 */ 167 for (i = 0; i < 2; i++) { /* 0 */ 168 secp256k1_scalar_sqr(t, t); 169 } 170 secp256k1_scalar_mul(t, t, x); /* 1 */ 171 for (i = 0; i < 10; i++) { /* 0000000 */ 172 secp256k1_scalar_sqr(t, t); 173 } 174 secp256k1_scalar_mul(t, t, &x3); /* 111 */ 175 for (i = 0; i < 4; i++) { /* 0 */ 176 secp256k1_scalar_sqr(t, t); 177 } 178 secp256k1_scalar_mul(t, t, &x3); /* 111 */ 179 for (i = 0; i < 9; i++) { /* 0 */ 180 secp256k1_scalar_sqr(t, t); 181 } 182 secp256k1_scalar_mul(t, t, &x8); /* 11111111 */ 183 for (i = 0; i < 2; i++) { /* 0 */ 184 secp256k1_scalar_sqr(t, t); 185 } 186 secp256k1_scalar_mul(t, t, x); /* 1 */ 187 for (i = 0; i < 3; i++) { /* 00 */ 188 secp256k1_scalar_sqr(t, t); 189 } 190 secp256k1_scalar_mul(t, t, x); /* 1 */ 191 for (i = 0; i < 3; i++) { /* 00 */ 192 secp256k1_scalar_sqr(t, t); 193 } 194 secp256k1_scalar_mul(t, t, x); /* 1 */ 195 for (i = 0; i < 5; i++) { /* 0 */ 196 secp256k1_scalar_sqr(t, t); 197 } 198 secp256k1_scalar_mul(t, t, &x4); /* 1111 */ 199 for (i = 0; i < 2; i++) { /* 0 */ 200 secp256k1_scalar_sqr(t, t); 201 } 202 secp256k1_scalar_mul(t, t, x); /* 1 */ 203 for (i = 0; i < 5; i++) { /* 000 */ 204 secp256k1_scalar_sqr(t, t); 205 } 206 secp256k1_scalar_mul(t, t, &x2); /* 11 */ 207 for (i = 0; i < 4; i++) { /* 00 */ 208 secp256k1_scalar_sqr(t, t); 209 } 210 secp256k1_scalar_mul(t, t, &x2); /* 11 */ 211 for (i = 0; i < 2; i++) { /* 0 */ 212 secp256k1_scalar_sqr(t, t); 213 } 214 secp256k1_scalar_mul(t, t, x); /* 1 */ 215 for (i = 0; i < 8; i++) { /* 000000 */ 216 secp256k1_scalar_sqr(t, t); 217 } 218 secp256k1_scalar_mul(t, t, &x2); /* 11 */ 219 for (i = 0; i < 3; i++) { /* 0 */ 220 secp256k1_scalar_sqr(t, t); 221 } 222 secp256k1_scalar_mul(t, t, &x2); /* 11 */ 223 for (i = 0; i < 3; i++) { /* 00 */ 224 secp256k1_scalar_sqr(t, t); 225 } 226 secp256k1_scalar_mul(t, t, x); /* 1 */ 227 for (i = 0; i < 6; i++) { /* 00000 */ 228 secp256k1_scalar_sqr(t, t); 229 } 230 secp256k1_scalar_mul(t, t, x); /* 1 */ 231 for (i = 0; i < 8; i++) { /* 00 */ 232 secp256k1_scalar_sqr(t, t); 233 } 234 secp256k1_scalar_mul(r, t, &x6); /* 111111 */ 235 } 236 237 SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) { 238 /* d[0] is present and is the lowest word for all representations */ 239 return !(a->d[0] & 1); 240 } 241 242 static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) { 243 #if defined(USE_SCALAR_INV_BUILTIN) 244 secp256k1_scalar_inverse(r, x); 245 #elif defined(USE_SCALAR_INV_NUM) 246 unsigned char b[32]; 247 secp256k1_num n, m; 248 secp256k1_scalar t = *x; 249 secp256k1_scalar_get_b32(b, &t); 250 secp256k1_num_set_bin(&n, b, 32); 251 secp256k1_scalar_order_get_num(&m); 252 secp256k1_num_mod_inverse(&n, &n, &m); 253 secp256k1_num_get_bin(b, 32, &n); 254 secp256k1_scalar_set_b32(r, b, NULL); 255 /* Verify that the inverse was computed correctly, without GMP code. */ 256 secp256k1_scalar_mul(&t, &t, r); 257 CHECK(secp256k1_scalar_is_one(&t)); 258 #else 259 #error "Please select scalar inverse implementation" 260 #endif 261 } 262 263 #ifdef USE_ENDOMORPHISM 264 /** 265 * The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where 266 * lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a, 267 * 0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72} 268 * 269 * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm 270 * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1 271 * and k2 have a small size. 272 * It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are: 273 * 274 * - a1 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} 275 * - b1 = -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3} 276 * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8} 277 * - b2 = {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15} 278 * 279 * The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives 280 * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and 281 * compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2. 282 * 283 * g1, g2 are precomputed constants used to replace division with a rounded multiplication 284 * when decomposing the scalar for an endomorphism-based point multiplication. 285 * 286 * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve 287 * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5. 288 * 289 * The derivation is described in the paper "Efficient Software Implementation of Public-Key 290 * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez), 291 * Section 4.3 (here we use a somewhat higher-precision estimate): 292 * d = a1*b2 - b1*a2 293 * g1 = round((2^272)*b2/d) 294 * g2 = round((2^272)*b1/d) 295 * 296 * (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found 297 * as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda'). 298 * 299 * The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order). 300 */ 301 302 static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) { 303 secp256k1_scalar c1, c2; 304 static const secp256k1_scalar minus_lambda = SECP256K1_SCALAR_CONST( 305 0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL, 306 0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL 307 ); 308 static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST( 309 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL, 310 0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL 311 ); 312 static const secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST( 313 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 314 0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL 315 ); 316 static const secp256k1_scalar g1 = SECP256K1_SCALAR_CONST( 317 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL, 318 0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL 319 ); 320 static const secp256k1_scalar g2 = SECP256K1_SCALAR_CONST( 321 0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL, 322 0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL 323 ); 324 VERIFY_CHECK(r1 != a); 325 VERIFY_CHECK(r2 != a); 326 /* these _var calls are constant time since the shift amount is constant */ 327 secp256k1_scalar_mul_shift_var(&c1, a, &g1, 272); 328 secp256k1_scalar_mul_shift_var(&c2, a, &g2, 272); 329 secp256k1_scalar_mul(&c1, &c1, &minus_b1); 330 secp256k1_scalar_mul(&c2, &c2, &minus_b2); 331 secp256k1_scalar_add(r2, &c1, &c2); 332 secp256k1_scalar_mul(r1, r2, &minus_lambda); 333 secp256k1_scalar_add(r1, r1, a); 334 } 335 #endif 336 337 #endif