github.com/ethereumproject/go-ethereum@v5.5.2+incompatible/p2p/rlpx.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package p2p 18 19 import ( 20 "bytes" 21 "crypto/aes" 22 "crypto/cipher" 23 "crypto/ecdsa" 24 "crypto/elliptic" 25 "crypto/hmac" 26 "crypto/rand" 27 "encoding/binary" 28 "errors" 29 "fmt" 30 "hash" 31 "io" 32 mrand "math/rand" 33 "net" 34 "sync" 35 "time" 36 37 "github.com/ethereumproject/go-ethereum/crypto" 38 "github.com/ethereumproject/go-ethereum/crypto/ecies" 39 "github.com/ethereumproject/go-ethereum/crypto/secp256k1" 40 "github.com/ethereumproject/go-ethereum/crypto/sha3" 41 "github.com/ethereumproject/go-ethereum/p2p/discover" 42 "github.com/ethereumproject/go-ethereum/rlp" 43 ) 44 45 const ( 46 maxUint24 = ^uint32(0) >> 8 47 48 sskLen = 16 // ecies.MaxSharedKeyLength(pubKey) / 2 49 sigLen = 65 // elliptic S256 50 pubLen = 64 // 512 bit pubkey in uncompressed representation without format byte 51 shaLen = 32 // hash length (for nonce etc) 52 53 authMsgLen = sigLen + shaLen + pubLen + shaLen + 1 54 authRespLen = pubLen + shaLen + 1 55 56 eciesOverhead = 65 /* pubkey */ + 16 /* IV */ + 32 /* MAC */ 57 58 encAuthMsgLen = authMsgLen + eciesOverhead // size of encrypted pre-EIP-8 initiator handshake 59 encAuthRespLen = authRespLen + eciesOverhead // size of encrypted pre-EIP-8 handshake reply 60 61 // total timeout for encryption handshake and protocol 62 // handshake in both directions. 63 handshakeTimeout = 5 * time.Second 64 65 // This is the timeout for sending the disconnect reason. 66 // This is shorter than the usual timeout because we don't want 67 // to wait if the connection is known to be bad anyway. 68 discWriteTimeout = 1 * time.Second 69 ) 70 71 // rlpx is the transport protocol used by actual (non-test) connections. 72 // It wraps the frame encoder with locks and read/write deadlines. 73 type rlpx struct { 74 fd net.Conn 75 76 rmu, wmu sync.Mutex 77 rw *rlpxFrameRW 78 } 79 80 func newRLPX(fd net.Conn) transport { 81 fd.SetDeadline(time.Now().Add(handshakeTimeout)) 82 return &rlpx{fd: fd} 83 } 84 85 func (t *rlpx) ReadMsg() (Msg, error) { 86 t.rmu.Lock() 87 defer t.rmu.Unlock() 88 t.fd.SetReadDeadline(time.Now().Add(frameReadTimeout)) 89 return t.rw.ReadMsg() 90 } 91 92 func (t *rlpx) WriteMsg(msg Msg) error { 93 t.wmu.Lock() 94 defer t.wmu.Unlock() 95 t.fd.SetWriteDeadline(time.Now().Add(frameWriteTimeout)) 96 return t.rw.WriteMsg(msg) 97 } 98 99 func (t *rlpx) close(err error) { 100 t.wmu.Lock() 101 defer t.wmu.Unlock() 102 // Tell the remote end why we're disconnecting if possible. 103 if t.rw != nil { 104 if r, ok := err.(DiscReason); ok && r != DiscNetworkError { 105 t.fd.SetWriteDeadline(time.Now().Add(discWriteTimeout)) 106 SendItems(t.rw, discMsg, r) 107 } 108 } 109 t.fd.Close() 110 } 111 112 // doEncHandshake runs the protocol handshake using authenticated 113 // messages. the protocol handshake is the first authenticated message 114 // and also verifies whether the encryption handshake 'worked' and the 115 // remote side actually provided the right public key. 116 func (t *rlpx) doProtoHandshake(our *protoHandshake) (their *protoHandshake, err error) { 117 // Writing our handshake happens concurrently, we prefer 118 // returning the handshake read error. If the remote side 119 // disconnects us early with a valid reason, we should return it 120 // as the error so it can be tracked elsewhere. 121 werr := make(chan error, 1) 122 go func() { 123 _, e := Send(t.rw, handshakeMsg, our) 124 werr <- e 125 }() 126 if their, err = readProtocolHandshake(t.rw, our); err != nil { 127 <-werr // make sure the write terminates too 128 return nil, err 129 } 130 if err := <-werr; err != nil { 131 return nil, fmt.Errorf("write error: %v", err) 132 } 133 return their, nil 134 } 135 136 func readProtocolHandshake(rw MsgReader, our *protoHandshake) (*protoHandshake, error) { 137 msg, err := rw.ReadMsg() 138 if err != nil { 139 return nil, err 140 } 141 if msg.Size > baseProtocolMaxMsgSize { 142 return nil, fmt.Errorf("message too big") 143 } 144 if msg.Code == discMsg { 145 // Disconnect before protocol handshake is valid according to the 146 // spec and we send it ourself if the posthandshake checks fail. 147 // We can't return the reason directly, though, because it is echoed 148 // back otherwise. Wrap it in a string instead. 149 var reason [1]DiscReason 150 rlp.Decode(msg.Payload, &reason) 151 return nil, reason[0] 152 } 153 if msg.Code != handshakeMsg { 154 return nil, fmt.Errorf("expected handshake, got %x", msg.Code) 155 } 156 var hs protoHandshake 157 if err := msg.Decode(&hs); err != nil { 158 return nil, err 159 } 160 if (hs.ID == discover.NodeID{}) { 161 return nil, DiscInvalidIdentity 162 } 163 return &hs, nil 164 } 165 166 func (t *rlpx) doEncHandshake(prv *ecdsa.PrivateKey, dial *discover.Node) (discover.NodeID, error) { 167 var ( 168 sec secrets 169 err error 170 ) 171 if dial == nil { 172 sec, err = receiverEncHandshake(t.fd, prv, nil) 173 } else { 174 sec, err = initiatorEncHandshake(t.fd, prv, dial.ID, nil) 175 } 176 if err != nil { 177 return discover.NodeID{}, err 178 } 179 t.wmu.Lock() 180 t.rw = newRLPXFrameRW(t.fd, sec) 181 t.wmu.Unlock() 182 return sec.RemoteID, nil 183 } 184 185 // encHandshake contains the state of the encryption handshake. 186 type encHandshake struct { 187 initiator bool 188 remoteID discover.NodeID 189 190 remotePub *ecies.PublicKey // remote-pubk 191 initNonce, respNonce []byte // nonce 192 randomPrivKey *ecies.PrivateKey // ecdhe-random 193 remoteRandomPub *ecies.PublicKey // ecdhe-random-pubk 194 } 195 196 // secrets represents the connection secrets 197 // which are negotiated during the encryption handshake. 198 type secrets struct { 199 RemoteID discover.NodeID 200 AES, MAC []byte 201 EgressMAC, IngressMAC hash.Hash 202 Token []byte 203 } 204 205 // RLPx v4 handshake auth (defined in EIP-8). 206 type authMsgV4 struct { 207 gotPlain bool // whether read packet had plain format. 208 209 Signature [sigLen]byte 210 InitiatorPubkey [pubLen]byte 211 Nonce [shaLen]byte 212 Version uint 213 214 // Ignore additional fields (forward-compatibility) 215 Rest []rlp.RawValue `rlp:"tail"` 216 } 217 218 // RLPx v4 handshake response (defined in EIP-8). 219 type authRespV4 struct { 220 RandomPubkey [pubLen]byte 221 Nonce [shaLen]byte 222 Version uint 223 224 // Ignore additional fields (forward-compatibility) 225 Rest []rlp.RawValue `rlp:"tail"` 226 } 227 228 // secrets is called after the handshake is completed. 229 // It extracts the connection secrets from the handshake values. 230 func (h *encHandshake) secrets(auth, authResp []byte) (secrets, error) { 231 ecdheSecret, err := h.randomPrivKey.GenerateShared(h.remoteRandomPub, sskLen, sskLen) 232 if err != nil { 233 return secrets{}, err 234 } 235 236 // derive base secrets from ephemeral key agreement 237 sharedSecret := crypto.Keccak256(ecdheSecret, crypto.Keccak256(h.respNonce, h.initNonce)) 238 aesSecret := crypto.Keccak256(ecdheSecret, sharedSecret) 239 s := secrets{ 240 RemoteID: h.remoteID, 241 AES: aesSecret, 242 MAC: crypto.Keccak256(ecdheSecret, aesSecret), 243 } 244 245 // setup sha3 instances for the MACs 246 mac1 := sha3.NewKeccak256() 247 mac1.Write(xor(s.MAC, h.respNonce)) 248 mac1.Write(auth) 249 mac2 := sha3.NewKeccak256() 250 mac2.Write(xor(s.MAC, h.initNonce)) 251 mac2.Write(authResp) 252 if h.initiator { 253 s.EgressMAC, s.IngressMAC = mac1, mac2 254 } else { 255 s.EgressMAC, s.IngressMAC = mac2, mac1 256 } 257 258 return s, nil 259 } 260 261 // staticSharedSecret returns the static shared secret, the result 262 // of key agreement between the local and remote static node key. 263 func (h *encHandshake) staticSharedSecret(prv *ecdsa.PrivateKey) ([]byte, error) { 264 return ecies.ImportECDSA(prv).GenerateShared(h.remotePub, sskLen, sskLen) 265 } 266 267 // initiatorEncHandshake negotiates a session token on conn. 268 // it should be called on the dialing side of the connection. 269 // 270 // prv is the local client's private key. 271 func initiatorEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, remoteID discover.NodeID, token []byte) (s secrets, err error) { 272 h := &encHandshake{initiator: true, remoteID: remoteID} 273 authMsg, err := h.makeAuthMsg(prv, token) 274 if err != nil { 275 return s, err 276 } 277 authPacket, err := sealEIP8(authMsg, h) 278 if err != nil { 279 return s, err 280 } 281 if _, err = conn.Write(authPacket); err != nil { 282 return s, err 283 } 284 285 authRespMsg := new(authRespV4) 286 authRespPacket, err := readHandshakeMsg(authRespMsg, encAuthRespLen, prv, conn) 287 if err != nil { 288 return s, err 289 } 290 if err := h.handleAuthResp(authRespMsg); err != nil { 291 return s, err 292 } 293 return h.secrets(authPacket, authRespPacket) 294 } 295 296 // makeAuthMsg creates the initiator handshake message. 297 func (h *encHandshake) makeAuthMsg(prv *ecdsa.PrivateKey, token []byte) (*authMsgV4, error) { 298 rpub, err := h.remoteID.Pubkey() 299 if err != nil { 300 return nil, fmt.Errorf("bad remoteID: %v", err) 301 } 302 h.remotePub = ecies.ImportECDSAPublic(rpub) 303 // Generate random initiator nonce. 304 h.initNonce = make([]byte, shaLen) 305 if _, err := rand.Read(h.initNonce); err != nil { 306 return nil, err 307 } 308 // Generate random keypair to for ECDH. 309 h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, secp256k1.S256(), nil) 310 if err != nil { 311 return nil, err 312 } 313 314 // Sign known message: static-shared-secret ^ nonce 315 token, err = h.staticSharedSecret(prv) 316 if err != nil { 317 return nil, err 318 } 319 signed := xor(token, h.initNonce) 320 signature, err := crypto.Sign(signed, h.randomPrivKey.ExportECDSA()) 321 if err != nil { 322 return nil, err 323 } 324 325 msg := new(authMsgV4) 326 copy(msg.Signature[:], signature) 327 copy(msg.InitiatorPubkey[:], crypto.FromECDSAPub(&prv.PublicKey)[1:]) 328 copy(msg.Nonce[:], h.initNonce) 329 msg.Version = 4 330 return msg, nil 331 } 332 333 func (h *encHandshake) handleAuthResp(msg *authRespV4) (err error) { 334 h.respNonce = msg.Nonce[:] 335 h.remoteRandomPub, err = importPublicKey(msg.RandomPubkey[:]) 336 return err 337 } 338 339 // receiverEncHandshake negotiates a session token on conn. 340 // it should be called on the listening side of the connection. 341 // 342 // prv is the local client's private key. 343 // token is the token from a previous session with this node. 344 func receiverEncHandshake(conn io.ReadWriter, prv *ecdsa.PrivateKey, token []byte) (s secrets, err error) { 345 authMsg := new(authMsgV4) 346 authPacket, err := readHandshakeMsg(authMsg, encAuthMsgLen, prv, conn) 347 if err != nil { 348 return s, err 349 } 350 h := new(encHandshake) 351 if err := h.handleAuthMsg(authMsg, prv); err != nil { 352 return s, err 353 } 354 355 authRespMsg, err := h.makeAuthResp() 356 if err != nil { 357 return s, err 358 } 359 var authRespPacket []byte 360 if authMsg.gotPlain { 361 authRespPacket, err = authRespMsg.sealPlain(h) 362 } else { 363 authRespPacket, err = sealEIP8(authRespMsg, h) 364 } 365 if err != nil { 366 return s, err 367 } 368 if _, err = conn.Write(authRespPacket); err != nil { 369 return s, err 370 } 371 return h.secrets(authPacket, authRespPacket) 372 } 373 374 func (h *encHandshake) handleAuthMsg(msg *authMsgV4, prv *ecdsa.PrivateKey) error { 375 // Import the remote identity. 376 h.initNonce = msg.Nonce[:] 377 h.remoteID = msg.InitiatorPubkey 378 rpub, err := h.remoteID.Pubkey() 379 if err != nil { 380 return fmt.Errorf("bad remoteID: %#v", err) 381 } 382 h.remotePub = ecies.ImportECDSAPublic(rpub) 383 384 // Generate random keypair for ECDH. 385 // If a private key is already set, use it instead of generating one (for testing). 386 if h.randomPrivKey == nil { 387 h.randomPrivKey, err = ecies.GenerateKey(rand.Reader, secp256k1.S256(), nil) 388 if err != nil { 389 return err 390 } 391 } 392 393 // Check the signature. 394 token, err := h.staticSharedSecret(prv) 395 if err != nil { 396 return err 397 } 398 signedMsg := xor(token, h.initNonce) 399 remoteRandomPub, err := secp256k1.RecoverPubkey(signedMsg, msg.Signature[:]) 400 if err != nil { 401 return err 402 } 403 h.remoteRandomPub, _ = importPublicKey(remoteRandomPub) 404 return nil 405 } 406 407 func (h *encHandshake) makeAuthResp() (msg *authRespV4, err error) { 408 // Generate random nonce. 409 h.respNonce = make([]byte, shaLen) 410 if _, err = rand.Read(h.respNonce); err != nil { 411 return nil, err 412 } 413 414 msg = new(authRespV4) 415 copy(msg.Nonce[:], h.respNonce) 416 copy(msg.RandomPubkey[:], exportPubkey(&h.randomPrivKey.PublicKey)) 417 msg.Version = 4 418 return msg, nil 419 } 420 421 func (msg *authMsgV4) decodePlain(input []byte) { 422 n := copy(msg.Signature[:], input) 423 n += shaLen // skip sha3(initiator-ephemeral-pubk) 424 n += copy(msg.InitiatorPubkey[:], input[n:]) 425 n += copy(msg.Nonce[:], input[n:]) 426 msg.Version = 4 427 msg.gotPlain = true 428 } 429 430 func (msg *authRespV4) sealPlain(hs *encHandshake) ([]byte, error) { 431 buf := make([]byte, authRespLen) 432 n := copy(buf, msg.RandomPubkey[:]) 433 n += copy(buf[n:], msg.Nonce[:]) 434 return ecies.Encrypt(rand.Reader, hs.remotePub, buf, nil, nil) 435 } 436 437 func (msg *authRespV4) decodePlain(input []byte) { 438 n := copy(msg.RandomPubkey[:], input) 439 n += copy(msg.Nonce[:], input[n:]) 440 msg.Version = 4 441 } 442 443 var padSpace = make([]byte, 300) 444 445 func sealEIP8(msg interface{}, h *encHandshake) ([]byte, error) { 446 buf := new(bytes.Buffer) 447 if err := rlp.Encode(buf, msg); err != nil { 448 return nil, err 449 } 450 // pad with random amount of data. the amount needs to be at least 100 bytes to make 451 // the message distinguishable from pre-EIP-8 handshakes. 452 pad := padSpace[:mrand.Intn(len(padSpace)-100)+100] 453 buf.Write(pad) 454 prefix := make([]byte, 2) 455 binary.BigEndian.PutUint16(prefix, uint16(buf.Len()+eciesOverhead)) 456 457 enc, err := ecies.Encrypt(rand.Reader, h.remotePub, buf.Bytes(), nil, prefix) 458 return append(prefix, enc...), err 459 } 460 461 type plainDecoder interface { 462 decodePlain([]byte) 463 } 464 465 func readHandshakeMsg(msg plainDecoder, plainSize int, prv *ecdsa.PrivateKey, r io.Reader) ([]byte, error) { 466 buf := make([]byte, plainSize) 467 if _, err := io.ReadFull(r, buf); err != nil { 468 return buf, err 469 } 470 // Attempt decoding pre-EIP-8 "plain" format. 471 key := ecies.ImportECDSA(prv) 472 if dec, err := key.Decrypt(rand.Reader, buf, nil, nil); err == nil { 473 msg.decodePlain(dec) 474 return buf, nil 475 } 476 // Could be EIP-8 format, try that. 477 prefix := buf[:2] 478 size := binary.BigEndian.Uint16(prefix) 479 if size < uint16(plainSize) { 480 return buf, fmt.Errorf("size underflow, need at least %d bytes", plainSize) 481 } 482 buf = append(buf, make([]byte, size-uint16(plainSize)+2)...) 483 if _, err := io.ReadFull(r, buf[plainSize:]); err != nil { 484 return buf, err 485 } 486 dec, err := key.Decrypt(rand.Reader, buf[2:], nil, prefix) 487 if err != nil { 488 return buf, err 489 } 490 // Can't use rlp.DecodeBytes here because it rejects 491 // trailing data (forward-compatibility). 492 s := rlp.NewStream(bytes.NewReader(dec), 0) 493 return buf, s.Decode(msg) 494 } 495 496 // importPublicKey unmarshals 512 bit public keys. 497 func importPublicKey(pubKey []byte) (*ecies.PublicKey, error) { 498 var pubKey65 []byte 499 switch len(pubKey) { 500 case 64: 501 // add 'uncompressed key' flag 502 pubKey65 = append([]byte{0x04}, pubKey...) 503 case 65: 504 pubKey65 = pubKey 505 default: 506 return nil, fmt.Errorf("invalid public key length %v (expect 64/65)", len(pubKey)) 507 } 508 // TODO: fewer pointless conversions 509 pub := crypto.ToECDSAPub(pubKey65) 510 if pub.X == nil { 511 return nil, fmt.Errorf("invalid public key") 512 } 513 return ecies.ImportECDSAPublic(pub), nil 514 } 515 516 func exportPubkey(pub *ecies.PublicKey) []byte { 517 if pub == nil { 518 panic("nil pubkey") 519 } 520 return elliptic.Marshal(pub.Curve, pub.X, pub.Y)[1:] 521 } 522 523 func xor(one, other []byte) (xor []byte) { 524 xor = make([]byte, len(one)) 525 for i := 0; i < len(one); i++ { 526 xor[i] = one[i] ^ other[i] 527 } 528 return xor 529 } 530 531 var ( 532 // this is used in place of actual frame header data. 533 // TODO: replace this when Msg contains the protocol type code. 534 zeroHeader = []byte{0xC2, 0x80, 0x80} 535 // sixteen zero bytes 536 zero16 = make([]byte, 16) 537 ) 538 539 // rlpxFrameRW implements a simplified version of RLPx framing. 540 // chunked messages are not supported and all headers are equal to 541 // zeroHeader. 542 // 543 // rlpxFrameRW is not safe for concurrent use from multiple goroutines. 544 type rlpxFrameRW struct { 545 conn io.ReadWriter 546 enc cipher.Stream 547 dec cipher.Stream 548 549 macCipher cipher.Block 550 egressMAC hash.Hash 551 ingressMAC hash.Hash 552 } 553 554 func newRLPXFrameRW(conn io.ReadWriter, s secrets) *rlpxFrameRW { 555 macc, err := aes.NewCipher(s.MAC) 556 if err != nil { 557 panic("invalid MAC secret: " + err.Error()) 558 } 559 encc, err := aes.NewCipher(s.AES) 560 if err != nil { 561 panic("invalid AES secret: " + err.Error()) 562 } 563 // we use an all-zeroes IV for AES because the key used 564 // for encryption is ephemeral. 565 iv := make([]byte, encc.BlockSize()) 566 return &rlpxFrameRW{ 567 conn: conn, 568 enc: cipher.NewCTR(encc, iv), 569 dec: cipher.NewCTR(encc, iv), 570 macCipher: macc, 571 egressMAC: s.EgressMAC, 572 ingressMAC: s.IngressMAC, 573 } 574 } 575 576 func (rw *rlpxFrameRW) WriteMsg(msg Msg) error { 577 ptype, _ := rlp.EncodeToBytes(msg.Code) 578 579 // write header 580 headbuf := make([]byte, 32) 581 fsize := uint32(len(ptype)) + msg.Size 582 if fsize > maxUint24 { 583 return errors.New("message size overflows uint24") 584 } 585 putInt24(fsize, headbuf) // TODO: check overflow 586 copy(headbuf[3:], zeroHeader) 587 rw.enc.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now encrypted 588 589 // write header MAC 590 copy(headbuf[16:], updateMAC(rw.egressMAC, rw.macCipher, headbuf[:16])) 591 if _, err := rw.conn.Write(headbuf); err != nil { 592 return err 593 } 594 595 // write encrypted frame, updating the egress MAC hash with 596 // the data written to conn. 597 tee := cipher.StreamWriter{S: rw.enc, W: io.MultiWriter(rw.conn, rw.egressMAC)} 598 if _, err := tee.Write(ptype); err != nil { 599 return err 600 } 601 if _, err := io.Copy(tee, msg.Payload); err != nil { 602 return err 603 } 604 if padding := fsize % 16; padding > 0 { 605 if _, err := tee.Write(zero16[:16-padding]); err != nil { 606 return err 607 } 608 } 609 610 // write frame MAC. egress MAC hash is up to date because 611 // frame content was written to it as well. 612 fmacseed := rw.egressMAC.Sum(nil) 613 mac := updateMAC(rw.egressMAC, rw.macCipher, fmacseed) 614 _, err := rw.conn.Write(mac) 615 return err 616 } 617 618 func (rw *rlpxFrameRW) ReadMsg() (msg Msg, err error) { 619 // read the header 620 headbuf := make([]byte, 32) 621 if _, err := io.ReadFull(rw.conn, headbuf); err != nil { 622 return msg, err 623 } 624 // verify header mac 625 shouldMAC := updateMAC(rw.ingressMAC, rw.macCipher, headbuf[:16]) 626 if !hmac.Equal(shouldMAC, headbuf[16:]) { 627 return msg, errors.New("bad header MAC") 628 } 629 rw.dec.XORKeyStream(headbuf[:16], headbuf[:16]) // first half is now decrypted 630 fsize := readInt24(headbuf) 631 // ignore protocol type for now 632 633 // read the frame content 634 var rsize = fsize // frame size rounded up to 16 byte boundary 635 if padding := fsize % 16; padding > 0 { 636 rsize += 16 - padding 637 } 638 framebuf := make([]byte, rsize) 639 if _, err := io.ReadFull(rw.conn, framebuf); err != nil { 640 return msg, err 641 } 642 643 // read and validate frame MAC. we can re-use headbuf for that. 644 rw.ingressMAC.Write(framebuf) 645 fmacseed := rw.ingressMAC.Sum(nil) 646 if _, err := io.ReadFull(rw.conn, headbuf[:16]); err != nil { 647 return msg, err 648 } 649 shouldMAC = updateMAC(rw.ingressMAC, rw.macCipher, fmacseed) 650 if !hmac.Equal(shouldMAC, headbuf[:16]) { 651 return msg, errors.New("bad frame MAC") 652 } 653 654 // decrypt frame content 655 rw.dec.XORKeyStream(framebuf, framebuf) 656 657 // decode message code 658 content := bytes.NewReader(framebuf[:fsize]) 659 if err := rlp.Decode(content, &msg.Code); err != nil { 660 return msg, err 661 } 662 msg.Size = uint32(content.Len()) 663 msg.Payload = content 664 return msg, nil 665 } 666 667 // updateMAC reseeds the given hash with encrypted seed. 668 // it returns the first 16 bytes of the hash sum after seeding. 669 func updateMAC(mac hash.Hash, block cipher.Block, seed []byte) []byte { 670 aesbuf := make([]byte, aes.BlockSize) 671 block.Encrypt(aesbuf, mac.Sum(nil)) 672 for i := range aesbuf { 673 aesbuf[i] ^= seed[i] 674 } 675 mac.Write(aesbuf) 676 return mac.Sum(nil)[:16] 677 } 678 679 func readInt24(b []byte) uint32 { 680 return uint32(b[2]) | uint32(b[1])<<8 | uint32(b[0])<<16 681 } 682 683 func putInt24(v uint32, b []byte) { 684 b[0] = byte(v >> 16) 685 b[1] = byte(v >> 8) 686 b[2] = byte(v) 687 }