github.com/ethereumproject/go-ethereum@v5.5.2+incompatible/trie/trie.go (about) 1 // Copyright 2014 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 // Package trie implements Merkle Patricia Tries. 18 package trie 19 20 import ( 21 "bytes" 22 "fmt" 23 24 "github.com/ethereumproject/go-ethereum/common" 25 "github.com/ethereumproject/go-ethereum/crypto" 26 "github.com/ethereumproject/go-ethereum/logger/glog" 27 "github.com/rcrowley/go-metrics" 28 ) 29 30 var ( 31 // emptyRoot is the known root hash of an empty trie. 32 emptyRoot = common.HexToHash("56e81f171bcc55a6ff8345e692c0f86e5b48e01b996cadc001622fb5e363b421") 33 34 // emptyState is the known hash of an empty state trie entry. 35 emptyState = crypto.Keccak256Hash(nil) 36 ) 37 38 var ( 39 cacheMissCounter = metrics.NewRegisteredCounter("trie/cachemiss", nil) 40 cacheUnloadCounter = metrics.NewRegisteredCounter("trie/cacheunload", nil) 41 ) 42 43 // CacheMisses retrieves a global counter measuring the number of cache misses 44 // the trie had since process startup. This isn't useful for anything apart from 45 // trie debugging purposes. 46 func CacheMisses() int64 { 47 return cacheMissCounter.Count() 48 } 49 50 // CacheUnloads retrieves a global counter measuring the number of cache unloads 51 // the trie did since process startup. This isn't useful for anything apart from 52 // trie debugging purposes. 53 func CacheUnloads() int64 { 54 return cacheUnloadCounter.Count() 55 } 56 57 // LeafCallback is a callback type invoked when a trie sync reaches a 58 // leaf node. It's used by state syncing to check if the leaf node requires some 59 // further data syncing. 60 type LeafCallback func(leaf []byte, parent common.Hash) error 61 62 // Database must be implemented by backing stores for the trie. 63 type Database interface { 64 DatabaseReader 65 DatabaseWriter 66 } 67 68 // DatabaseReader wraps the Get method of a backing store for the trie. 69 type DatabaseReader interface { 70 Get(key []byte) (value []byte, err error) 71 Has(key []byte) (bool, error) 72 } 73 74 // DatabaseWriter wraps the Put method of a backing store for the trie. 75 type DatabaseWriter interface { 76 // Put stores the mapping key->value in the database. 77 // Implementations must not hold onto the value bytes, the trie 78 // will reuse the slice across calls to Put. 79 Put(key, value []byte) error 80 } 81 82 // Trie is a Merkle Patricia Trie. 83 // The zero value is an empty trie with no database. 84 // Use New to create a trie that sits on top of a database. 85 // 86 // Trie is not safe for concurrent use. 87 type Trie struct { 88 root node 89 db Database 90 originalRoot common.Hash 91 92 // Cache generation values. 93 // cachegen increases by one with each commit operation. 94 // new nodes are tagged with the current generation and unloaded 95 // when their generation is older than than cachegen-cachelimit. 96 cachegen, cachelimit uint16 97 } 98 99 // SetCacheLimit sets the number of 'cache generations' to keep. 100 // A cache generation is created by a call to Commit. 101 func (t *Trie) SetCacheLimit(l uint16) { 102 t.cachelimit = l 103 } 104 105 // newFlag returns the cache flag value for a newly created node. 106 func (t *Trie) newFlag() nodeFlag { 107 return nodeFlag{dirty: true, gen: t.cachegen} 108 } 109 110 // New creates a trie with an existing root node from db. 111 // 112 // If root is the zero hash or the sha3 hash of an empty string, the 113 // trie is initially empty and does not require a database. Otherwise, 114 // New will panic if db is nil and returns a MissingNodeError if root does 115 // not exist in the database. Accessing the trie loads nodes from db on demand. 116 func New(root common.Hash, db Database) (*Trie, error) { 117 trie := &Trie{db: db, originalRoot: root} 118 if (root != common.Hash{}) && root != emptyRoot { 119 if db == nil { 120 panic("trie.New: cannot use existing root without a database") 121 } 122 rootnode, err := trie.resolveHash(root[:], nil) 123 if err != nil { 124 return nil, err 125 } 126 trie.root = rootnode 127 } 128 return trie, nil 129 } 130 131 // NodeIterator returns an iterator that returns nodes of the trie. Iteration starts at 132 // the key after the given start key. 133 func (t *Trie) NodeIterator(start []byte) NodeIterator { 134 return newNodeIterator(t, start) 135 } 136 137 // Get returns the value for key stored in the trie. 138 // The value bytes must not be modified by the caller. 139 func (t *Trie) Get(key []byte) []byte { 140 res, err := t.TryGet(key) 141 if err != nil { 142 glog.Errorln(fmt.Sprintf("Unhandled trie error: %v", err)) 143 } 144 return res 145 } 146 147 // TryGet returns the value for key stored in the trie. 148 // The value bytes must not be modified by the caller. 149 // If a node was not found in the database, a MissingNodeError is returned. 150 func (t *Trie) TryGet(key []byte) ([]byte, error) { 151 key = keybytesToHex(key) 152 value, newroot, didResolve, err := t.tryGet(t.root, key, 0) 153 if err == nil && didResolve { 154 t.root = newroot 155 } 156 return value, err 157 } 158 159 func (t *Trie) tryGet(origNode node, key []byte, pos int) (value []byte, newnode node, didResolve bool, err error) { 160 switch n := (origNode).(type) { 161 case nil: 162 return nil, nil, false, nil 163 case valueNode: 164 return n, n, false, nil 165 case *shortNode: 166 if len(key)-pos < len(n.Key) || !bytes.Equal(n.Key, key[pos:pos+len(n.Key)]) { 167 // key not found in trie 168 return nil, n, false, nil 169 } 170 value, newnode, didResolve, err = t.tryGet(n.Val, key, pos+len(n.Key)) 171 if err == nil && didResolve { 172 n = n.copy() 173 n.Val = newnode 174 n.flags.gen = t.cachegen 175 } 176 return value, n, didResolve, err 177 case *fullNode: 178 value, newnode, didResolve, err = t.tryGet(n.Children[key[pos]], key, pos+1) 179 if err == nil && didResolve { 180 n = n.copy() 181 n.flags.gen = t.cachegen 182 n.Children[key[pos]] = newnode 183 } 184 return value, n, didResolve, err 185 case hashNode: 186 child, err := t.resolveHash(n, key[:pos]) 187 if err != nil { 188 return nil, n, true, err 189 } 190 value, newnode, _, err := t.tryGet(child, key, pos) 191 return value, newnode, true, err 192 default: 193 panic(fmt.Sprintf("%T: invalid node: %v", origNode, origNode)) 194 } 195 } 196 197 // Update associates key with value in the trie. Subsequent calls to 198 // Get will return value. If value has length zero, any existing value 199 // is deleted from the trie and calls to Get will return nil. 200 // 201 // The value bytes must not be modified by the caller while they are 202 // stored in the trie. 203 func (t *Trie) Update(key, value []byte) { 204 if err := t.TryUpdate(key, value); err != nil { 205 glog.Errorln(fmt.Sprintf("Unhandled trie error: %v", err)) 206 } 207 } 208 209 // TryUpdate associates key with value in the trie. Subsequent calls to 210 // Get will return value. If value has length zero, any existing value 211 // is deleted from the trie and calls to Get will return nil. 212 // 213 // The value bytes must not be modified by the caller while they are 214 // stored in the trie. 215 // 216 // If a node was not found in the database, a MissingNodeError is returned. 217 func (t *Trie) TryUpdate(key, value []byte) error { 218 k := keybytesToHex(key) 219 if len(value) != 0 { 220 _, n, err := t.insert(t.root, nil, k, valueNode(value)) 221 if err != nil { 222 return err 223 } 224 t.root = n 225 } else { 226 _, n, err := t.delete(t.root, nil, k) 227 if err != nil { 228 return err 229 } 230 t.root = n 231 } 232 return nil 233 } 234 235 func (t *Trie) insert(n node, prefix, key []byte, value node) (bool, node, error) { 236 if len(key) == 0 { 237 if v, ok := n.(valueNode); ok { 238 return !bytes.Equal(v, value.(valueNode)), value, nil 239 } 240 return true, value, nil 241 } 242 switch n := n.(type) { 243 case *shortNode: 244 matchlen := prefixLen(key, n.Key) 245 // If the whole key matches, keep this short node as is 246 // and only update the value. 247 if matchlen == len(n.Key) { 248 dirty, nn, err := t.insert(n.Val, append(prefix, key[:matchlen]...), key[matchlen:], value) 249 if !dirty || err != nil { 250 return false, n, err 251 } 252 return true, &shortNode{n.Key, nn, t.newFlag()}, nil 253 } 254 // Otherwise branch out at the index where they differ. 255 branch := &fullNode{flags: t.newFlag()} 256 var err error 257 _, branch.Children[n.Key[matchlen]], err = t.insert(nil, append(prefix, n.Key[:matchlen+1]...), n.Key[matchlen+1:], n.Val) 258 if err != nil { 259 return false, nil, err 260 } 261 _, branch.Children[key[matchlen]], err = t.insert(nil, append(prefix, key[:matchlen+1]...), key[matchlen+1:], value) 262 if err != nil { 263 return false, nil, err 264 } 265 // Replace this shortNode with the branch if it occurs at index 0. 266 if matchlen == 0 { 267 return true, branch, nil 268 } 269 // Otherwise, replace it with a short node leading up to the branch. 270 return true, &shortNode{key[:matchlen], branch, t.newFlag()}, nil 271 272 case *fullNode: 273 dirty, nn, err := t.insert(n.Children[key[0]], append(prefix, key[0]), key[1:], value) 274 if !dirty || err != nil { 275 return false, n, err 276 } 277 n = n.copy() 278 n.flags = t.newFlag() 279 n.Children[key[0]] = nn 280 return true, n, nil 281 282 case nil: 283 return true, &shortNode{key, value, t.newFlag()}, nil 284 285 case hashNode: 286 // We've hit a part of the trie that isn't loaded yet. Load 287 // the node and insert into it. This leaves all child nodes on 288 // the path to the value in the trie. 289 rn, err := t.resolveHash(n, prefix) 290 if err != nil { 291 return false, nil, err 292 } 293 dirty, nn, err := t.insert(rn, prefix, key, value) 294 if !dirty || err != nil { 295 return false, rn, err 296 } 297 return true, nn, nil 298 299 default: 300 panic(fmt.Sprintf("%T: invalid node: %v", n, n)) 301 } 302 } 303 304 // Delete removes any existing value for key from the trie. 305 func (t *Trie) Delete(key []byte) { 306 if err := t.TryDelete(key); err != nil { 307 glog.Errorln(fmt.Sprintf("Unhandled trie error: %v", err)) 308 } 309 } 310 311 // TryDelete removes any existing value for key from the trie. 312 // If a node was not found in the database, a MissingNodeError is returned. 313 func (t *Trie) TryDelete(key []byte) error { 314 k := keybytesToHex(key) 315 _, n, err := t.delete(t.root, nil, k) 316 if err != nil { 317 return err 318 } 319 t.root = n 320 return nil 321 } 322 323 // delete returns the new root of the trie with key deleted. 324 // It reduces the trie to minimal form by simplifying 325 // nodes on the way up after deleting recursively. 326 func (t *Trie) delete(n node, prefix, key []byte) (bool, node, error) { 327 switch n := n.(type) { 328 case *shortNode: 329 matchlen := prefixLen(key, n.Key) 330 if matchlen < len(n.Key) { 331 return false, n, nil // don't replace n on mismatch 332 } 333 if matchlen == len(key) { 334 return true, nil, nil // remove n entirely for whole matches 335 } 336 // The key is longer than n.Key. Remove the remaining suffix 337 // from the subtrie. Child can never be nil here since the 338 // subtrie must contain at least two other values with keys 339 // longer than n.Key. 340 dirty, child, err := t.delete(n.Val, append(prefix, key[:len(n.Key)]...), key[len(n.Key):]) 341 if !dirty || err != nil { 342 return false, n, err 343 } 344 switch child := child.(type) { 345 case *shortNode: 346 // Deleting from the subtrie reduced it to another 347 // short node. Merge the nodes to avoid creating a 348 // shortNode{..., shortNode{...}}. Use concat (which 349 // always creates a new slice) instead of append to 350 // avoid modifying n.Key since it might be shared with 351 // other nodes. 352 return true, &shortNode{concat(n.Key, child.Key...), child.Val, t.newFlag()}, nil 353 default: 354 return true, &shortNode{n.Key, child, t.newFlag()}, nil 355 } 356 357 case *fullNode: 358 dirty, nn, err := t.delete(n.Children[key[0]], append(prefix, key[0]), key[1:]) 359 if !dirty || err != nil { 360 return false, n, err 361 } 362 n = n.copy() 363 n.flags = t.newFlag() 364 n.Children[key[0]] = nn 365 366 // Check how many non-nil entries are left after deleting and 367 // reduce the full node to a short node if only one entry is 368 // left. Since n must've contained at least two children 369 // before deletion (otherwise it would not be a full node) n 370 // can never be reduced to nil. 371 // 372 // When the loop is done, pos contains the index of the single 373 // value that is left in n or -2 if n contains at least two 374 // values. 375 pos := -1 376 for i, cld := range n.Children { 377 if cld != nil { 378 if pos == -1 { 379 pos = i 380 } else { 381 pos = -2 382 break 383 } 384 } 385 } 386 if pos >= 0 { 387 if pos != 16 { 388 // If the remaining entry is a short node, it replaces 389 // n and its key gets the missing nibble tacked to the 390 // front. This avoids creating an invalid 391 // shortNode{..., shortNode{...}}. Since the entry 392 // might not be loaded yet, resolve it just for this 393 // check. 394 cnode, err := t.resolve(n.Children[pos], prefix) 395 if err != nil { 396 return false, nil, err 397 } 398 if cnode, ok := cnode.(*shortNode); ok { 399 k := append([]byte{byte(pos)}, cnode.Key...) 400 return true, &shortNode{k, cnode.Val, t.newFlag()}, nil 401 } 402 } 403 // Otherwise, n is replaced by a one-nibble short node 404 // containing the child. 405 return true, &shortNode{[]byte{byte(pos)}, n.Children[pos], t.newFlag()}, nil 406 } 407 // n still contains at least two values and cannot be reduced. 408 return true, n, nil 409 410 case valueNode: 411 return true, nil, nil 412 413 case nil: 414 return false, nil, nil 415 416 case hashNode: 417 // We've hit a part of the trie that isn't loaded yet. Load 418 // the node and delete from it. This leaves all child nodes on 419 // the path to the value in the trie. 420 rn, err := t.resolveHash(n, prefix) 421 if err != nil { 422 return false, nil, err 423 } 424 dirty, nn, err := t.delete(rn, prefix, key) 425 if !dirty || err != nil { 426 return false, rn, err 427 } 428 return true, nn, nil 429 430 default: 431 panic(fmt.Sprintf("%T: invalid node: %v (%v)", n, n, key)) 432 } 433 } 434 435 func concat(s1 []byte, s2 ...byte) []byte { 436 r := make([]byte, len(s1)+len(s2)) 437 copy(r, s1) 438 copy(r[len(s1):], s2) 439 return r 440 } 441 442 func (t *Trie) resolve(n node, prefix []byte) (node, error) { 443 if n, ok := n.(hashNode); ok { 444 return t.resolveHash(n, prefix) 445 } 446 return n, nil 447 } 448 449 func (t *Trie) resolveHash(n hashNode, prefix []byte) (node, error) { 450 cacheMissCounter.Inc(1) 451 452 enc, err := t.db.Get(n) 453 if err != nil || enc == nil { 454 return nil, &MissingNodeError{NodeHash: common.BytesToHash(n), Path: prefix} 455 } 456 return mustDecodeNode(n, enc, t.cachegen), nil 457 } 458 459 // Root returns the root hash of the trie. 460 // Deprecated: use Hash instead. 461 func (t *Trie) Root() []byte { return t.Hash().Bytes() } 462 463 // Hash returns the root hash of the trie. It does not write to the 464 // database and can be used even if the trie doesn't have one. 465 func (t *Trie) Hash() common.Hash { 466 hash, cached, _ := t.hashRoot(nil) 467 t.root = cached 468 return common.BytesToHash(hash.(hashNode)) 469 } 470 471 // Commit writes all nodes to the trie's database. 472 // Nodes are stored with their sha3 hash as the key. 473 // 474 // Committing flushes nodes from memory. 475 // Subsequent Get calls will load nodes from the database. 476 func (t *Trie) Commit() (root common.Hash, err error) { 477 if t.db == nil { 478 panic("Commit called on trie with nil database") 479 } 480 return t.CommitTo(t.db) 481 } 482 483 // CommitTo writes all nodes to the given database. 484 // Nodes are stored with their sha3 hash as the key. 485 // 486 // Committing flushes nodes from memory. Subsequent Get calls will 487 // load nodes from the trie's database. Calling code must ensure that 488 // the changes made to db are written back to the trie's attached 489 // database before using the trie. 490 func (t *Trie) CommitTo(db DatabaseWriter) (root common.Hash, err error) { 491 hash, cached, err := t.hashRoot(db) 492 if err != nil { 493 return (common.Hash{}), err 494 } 495 t.root = cached 496 t.cachegen++ 497 return common.BytesToHash(hash.(hashNode)), nil 498 } 499 500 func (t *Trie) hashRoot(db DatabaseWriter) (node, node, error) { 501 if t.root == nil { 502 return hashNode(emptyRoot.Bytes()), nil, nil 503 } 504 h := newHasher(t.cachegen, t.cachelimit) 505 return h.hash(t.root, db, true) 506 }