github.com/ethw3/go-ethereuma@v0.0.0-20221013053120-c14602a4c23c/trie/proof.go (about)

     1  // Copyright 2015 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package trie
    18  
    19  import (
    20  	"bytes"
    21  	"errors"
    22  	"fmt"
    23  
    24  	"github.com/ethw3/go-ethereuma/common"
    25  	"github.com/ethw3/go-ethereuma/core/rawdb"
    26  	"github.com/ethw3/go-ethereuma/ethdb"
    27  	"github.com/ethw3/go-ethereuma/log"
    28  )
    29  
    30  // Prove constructs a merkle proof for key. The result contains all encoded nodes
    31  // on the path to the value at key. The value itself is also included in the last
    32  // node and can be retrieved by verifying the proof.
    33  //
    34  // If the trie does not contain a value for key, the returned proof contains all
    35  // nodes of the longest existing prefix of the key (at least the root node), ending
    36  // with the node that proves the absence of the key.
    37  func (t *Trie) Prove(key []byte, fromLevel uint, proofDb ethdb.KeyValueWriter) error {
    38  	// Collect all nodes on the path to key.
    39  	var (
    40  		prefix []byte
    41  		nodes  []node
    42  		tn     = t.root
    43  	)
    44  	key = keybytesToHex(key)
    45  	for len(key) > 0 && tn != nil {
    46  		switch n := tn.(type) {
    47  		case *shortNode:
    48  			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
    49  				// The trie doesn't contain the key.
    50  				tn = nil
    51  			} else {
    52  				tn = n.Val
    53  				prefix = append(prefix, n.Key...)
    54  				key = key[len(n.Key):]
    55  			}
    56  			nodes = append(nodes, n)
    57  		case *fullNode:
    58  			tn = n.Children[key[0]]
    59  			prefix = append(prefix, key[0])
    60  			key = key[1:]
    61  			nodes = append(nodes, n)
    62  		case hashNode:
    63  			var err error
    64  			tn, err = t.resolveHash(n, prefix)
    65  			if err != nil {
    66  				log.Error(fmt.Sprintf("Unhandled trie error: %v", err))
    67  				return err
    68  			}
    69  		default:
    70  			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
    71  		}
    72  	}
    73  	hasher := newHasher(false)
    74  	defer returnHasherToPool(hasher)
    75  
    76  	for i, n := range nodes {
    77  		if fromLevel > 0 {
    78  			fromLevel--
    79  			continue
    80  		}
    81  		var hn node
    82  		n, hn = hasher.proofHash(n)
    83  		if hash, ok := hn.(hashNode); ok || i == 0 {
    84  			// If the node's database encoding is a hash (or is the
    85  			// root node), it becomes a proof element.
    86  			enc := nodeToBytes(n)
    87  			if !ok {
    88  				hash = hasher.hashData(enc)
    89  			}
    90  			proofDb.Put(hash, enc)
    91  		}
    92  	}
    93  	return nil
    94  }
    95  
    96  // Prove constructs a merkle proof for key. The result contains all encoded nodes
    97  // on the path to the value at key. The value itself is also included in the last
    98  // node and can be retrieved by verifying the proof.
    99  //
   100  // If the trie does not contain a value for key, the returned proof contains all
   101  // nodes of the longest existing prefix of the key (at least the root node), ending
   102  // with the node that proves the absence of the key.
   103  func (t *StateTrie) Prove(key []byte, fromLevel uint, proofDb ethdb.KeyValueWriter) error {
   104  	return t.trie.Prove(key, fromLevel, proofDb)
   105  }
   106  
   107  // VerifyProof checks merkle proofs. The given proof must contain the value for
   108  // key in a trie with the given root hash. VerifyProof returns an error if the
   109  // proof contains invalid trie nodes or the wrong value.
   110  func VerifyProof(rootHash common.Hash, key []byte, proofDb ethdb.KeyValueReader) (value []byte, err error) {
   111  	key = keybytesToHex(key)
   112  	wantHash := rootHash
   113  	for i := 0; ; i++ {
   114  		buf, _ := proofDb.Get(wantHash[:])
   115  		if buf == nil {
   116  			return nil, fmt.Errorf("proof node %d (hash %064x) missing", i, wantHash)
   117  		}
   118  		n, err := decodeNode(wantHash[:], buf)
   119  		if err != nil {
   120  			return nil, fmt.Errorf("bad proof node %d: %v", i, err)
   121  		}
   122  		keyrest, cld := get(n, key, true)
   123  		switch cld := cld.(type) {
   124  		case nil:
   125  			// The trie doesn't contain the key.
   126  			return nil, nil
   127  		case hashNode:
   128  			key = keyrest
   129  			copy(wantHash[:], cld)
   130  		case valueNode:
   131  			return cld, nil
   132  		}
   133  	}
   134  }
   135  
   136  // proofToPath converts a merkle proof to trie node path. The main purpose of
   137  // this function is recovering a node path from the merkle proof stream. All
   138  // necessary nodes will be resolved and leave the remaining as hashnode.
   139  //
   140  // The given edge proof is allowed to be an existent or non-existent proof.
   141  func proofToPath(rootHash common.Hash, root node, key []byte, proofDb ethdb.KeyValueReader, allowNonExistent bool) (node, []byte, error) {
   142  	// resolveNode retrieves and resolves trie node from merkle proof stream
   143  	resolveNode := func(hash common.Hash) (node, error) {
   144  		buf, _ := proofDb.Get(hash[:])
   145  		if buf == nil {
   146  			return nil, fmt.Errorf("proof node (hash %064x) missing", hash)
   147  		}
   148  		n, err := decodeNode(hash[:], buf)
   149  		if err != nil {
   150  			return nil, fmt.Errorf("bad proof node %v", err)
   151  		}
   152  		return n, err
   153  	}
   154  	// If the root node is empty, resolve it first.
   155  	// Root node must be included in the proof.
   156  	if root == nil {
   157  		n, err := resolveNode(rootHash)
   158  		if err != nil {
   159  			return nil, nil, err
   160  		}
   161  		root = n
   162  	}
   163  	var (
   164  		err           error
   165  		child, parent node
   166  		keyrest       []byte
   167  		valnode       []byte
   168  	)
   169  	key, parent = keybytesToHex(key), root
   170  	for {
   171  		keyrest, child = get(parent, key, false)
   172  		switch cld := child.(type) {
   173  		case nil:
   174  			// The trie doesn't contain the key. It's possible
   175  			// the proof is a non-existing proof, but at least
   176  			// we can prove all resolved nodes are correct, it's
   177  			// enough for us to prove range.
   178  			if allowNonExistent {
   179  				return root, nil, nil
   180  			}
   181  			return nil, nil, errors.New("the node is not contained in trie")
   182  		case *shortNode:
   183  			key, parent = keyrest, child // Already resolved
   184  			continue
   185  		case *fullNode:
   186  			key, parent = keyrest, child // Already resolved
   187  			continue
   188  		case hashNode:
   189  			child, err = resolveNode(common.BytesToHash(cld))
   190  			if err != nil {
   191  				return nil, nil, err
   192  			}
   193  		case valueNode:
   194  			valnode = cld
   195  		}
   196  		// Link the parent and child.
   197  		switch pnode := parent.(type) {
   198  		case *shortNode:
   199  			pnode.Val = child
   200  		case *fullNode:
   201  			pnode.Children[key[0]] = child
   202  		default:
   203  			panic(fmt.Sprintf("%T: invalid node: %v", pnode, pnode))
   204  		}
   205  		if len(valnode) > 0 {
   206  			return root, valnode, nil // The whole path is resolved
   207  		}
   208  		key, parent = keyrest, child
   209  	}
   210  }
   211  
   212  // unsetInternal removes all internal node references(hashnode, embedded node).
   213  // It should be called after a trie is constructed with two edge paths. Also
   214  // the given boundary keys must be the one used to construct the edge paths.
   215  //
   216  // It's the key step for range proof. All visited nodes should be marked dirty
   217  // since the node content might be modified. Besides it can happen that some
   218  // fullnodes only have one child which is disallowed. But if the proof is valid,
   219  // the missing children will be filled, otherwise it will be thrown anyway.
   220  //
   221  // Note we have the assumption here the given boundary keys are different
   222  // and right is larger than left.
   223  func unsetInternal(n node, left []byte, right []byte) (bool, error) {
   224  	left, right = keybytesToHex(left), keybytesToHex(right)
   225  
   226  	// Step down to the fork point. There are two scenarios can happen:
   227  	// - the fork point is a shortnode: either the key of left proof or
   228  	//   right proof doesn't match with shortnode's key.
   229  	// - the fork point is a fullnode: both two edge proofs are allowed
   230  	//   to point to a non-existent key.
   231  	var (
   232  		pos    = 0
   233  		parent node
   234  
   235  		// fork indicator, 0 means no fork, -1 means proof is less, 1 means proof is greater
   236  		shortForkLeft, shortForkRight int
   237  	)
   238  findFork:
   239  	for {
   240  		switch rn := (n).(type) {
   241  		case *shortNode:
   242  			rn.flags = nodeFlag{dirty: true}
   243  
   244  			// If either the key of left proof or right proof doesn't match with
   245  			// shortnode, stop here and the forkpoint is the shortnode.
   246  			if len(left)-pos < len(rn.Key) {
   247  				shortForkLeft = bytes.Compare(left[pos:], rn.Key)
   248  			} else {
   249  				shortForkLeft = bytes.Compare(left[pos:pos+len(rn.Key)], rn.Key)
   250  			}
   251  			if len(right)-pos < len(rn.Key) {
   252  				shortForkRight = bytes.Compare(right[pos:], rn.Key)
   253  			} else {
   254  				shortForkRight = bytes.Compare(right[pos:pos+len(rn.Key)], rn.Key)
   255  			}
   256  			if shortForkLeft != 0 || shortForkRight != 0 {
   257  				break findFork
   258  			}
   259  			parent = n
   260  			n, pos = rn.Val, pos+len(rn.Key)
   261  		case *fullNode:
   262  			rn.flags = nodeFlag{dirty: true}
   263  
   264  			// If either the node pointed by left proof or right proof is nil,
   265  			// stop here and the forkpoint is the fullnode.
   266  			leftnode, rightnode := rn.Children[left[pos]], rn.Children[right[pos]]
   267  			if leftnode == nil || rightnode == nil || leftnode != rightnode {
   268  				break findFork
   269  			}
   270  			parent = n
   271  			n, pos = rn.Children[left[pos]], pos+1
   272  		default:
   273  			panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   274  		}
   275  	}
   276  	switch rn := n.(type) {
   277  	case *shortNode:
   278  		// There can have these five scenarios:
   279  		// - both proofs are less than the trie path => no valid range
   280  		// - both proofs are greater than the trie path => no valid range
   281  		// - left proof is less and right proof is greater => valid range, unset the shortnode entirely
   282  		// - left proof points to the shortnode, but right proof is greater
   283  		// - right proof points to the shortnode, but left proof is less
   284  		if shortForkLeft == -1 && shortForkRight == -1 {
   285  			return false, errors.New("empty range")
   286  		}
   287  		if shortForkLeft == 1 && shortForkRight == 1 {
   288  			return false, errors.New("empty range")
   289  		}
   290  		if shortForkLeft != 0 && shortForkRight != 0 {
   291  			// The fork point is root node, unset the entire trie
   292  			if parent == nil {
   293  				return true, nil
   294  			}
   295  			parent.(*fullNode).Children[left[pos-1]] = nil
   296  			return false, nil
   297  		}
   298  		// Only one proof points to non-existent key.
   299  		if shortForkRight != 0 {
   300  			if _, ok := rn.Val.(valueNode); ok {
   301  				// The fork point is root node, unset the entire trie
   302  				if parent == nil {
   303  					return true, nil
   304  				}
   305  				parent.(*fullNode).Children[left[pos-1]] = nil
   306  				return false, nil
   307  			}
   308  			return false, unset(rn, rn.Val, left[pos:], len(rn.Key), false)
   309  		}
   310  		if shortForkLeft != 0 {
   311  			if _, ok := rn.Val.(valueNode); ok {
   312  				// The fork point is root node, unset the entire trie
   313  				if parent == nil {
   314  					return true, nil
   315  				}
   316  				parent.(*fullNode).Children[right[pos-1]] = nil
   317  				return false, nil
   318  			}
   319  			return false, unset(rn, rn.Val, right[pos:], len(rn.Key), true)
   320  		}
   321  		return false, nil
   322  	case *fullNode:
   323  		// unset all internal nodes in the forkpoint
   324  		for i := left[pos] + 1; i < right[pos]; i++ {
   325  			rn.Children[i] = nil
   326  		}
   327  		if err := unset(rn, rn.Children[left[pos]], left[pos:], 1, false); err != nil {
   328  			return false, err
   329  		}
   330  		if err := unset(rn, rn.Children[right[pos]], right[pos:], 1, true); err != nil {
   331  			return false, err
   332  		}
   333  		return false, nil
   334  	default:
   335  		panic(fmt.Sprintf("%T: invalid node: %v", n, n))
   336  	}
   337  }
   338  
   339  // unset removes all internal node references either the left most or right most.
   340  // It can meet these scenarios:
   341  //
   342  // - The given path is existent in the trie, unset the associated nodes with the
   343  //   specific direction
   344  // - The given path is non-existent in the trie
   345  //   - the fork point is a fullnode, the corresponding child pointed by path
   346  //     is nil, return
   347  //   - the fork point is a shortnode, the shortnode is included in the range,
   348  //     keep the entire branch and return.
   349  //   - the fork point is a shortnode, the shortnode is excluded in the range,
   350  //     unset the entire branch.
   351  func unset(parent node, child node, key []byte, pos int, removeLeft bool) error {
   352  	switch cld := child.(type) {
   353  	case *fullNode:
   354  		if removeLeft {
   355  			for i := 0; i < int(key[pos]); i++ {
   356  				cld.Children[i] = nil
   357  			}
   358  			cld.flags = nodeFlag{dirty: true}
   359  		} else {
   360  			for i := key[pos] + 1; i < 16; i++ {
   361  				cld.Children[i] = nil
   362  			}
   363  			cld.flags = nodeFlag{dirty: true}
   364  		}
   365  		return unset(cld, cld.Children[key[pos]], key, pos+1, removeLeft)
   366  	case *shortNode:
   367  		if len(key[pos:]) < len(cld.Key) || !bytes.Equal(cld.Key, key[pos:pos+len(cld.Key)]) {
   368  			// Find the fork point, it's an non-existent branch.
   369  			if removeLeft {
   370  				if bytes.Compare(cld.Key, key[pos:]) < 0 {
   371  					// The key of fork shortnode is less than the path
   372  					// (it belongs to the range), unset the entrie
   373  					// branch. The parent must be a fullnode.
   374  					fn := parent.(*fullNode)
   375  					fn.Children[key[pos-1]] = nil
   376  				}
   377  				//else {
   378  				// The key of fork shortnode is greater than the
   379  				// path(it doesn't belong to the range), keep
   380  				// it with the cached hash available.
   381  				//}
   382  			} else {
   383  				if bytes.Compare(cld.Key, key[pos:]) > 0 {
   384  					// The key of fork shortnode is greater than the
   385  					// path(it belongs to the range), unset the entrie
   386  					// branch. The parent must be a fullnode.
   387  					fn := parent.(*fullNode)
   388  					fn.Children[key[pos-1]] = nil
   389  				}
   390  				//else {
   391  				// The key of fork shortnode is less than the
   392  				// path(it doesn't belong to the range), keep
   393  				// it with the cached hash available.
   394  				//}
   395  			}
   396  			return nil
   397  		}
   398  		if _, ok := cld.Val.(valueNode); ok {
   399  			fn := parent.(*fullNode)
   400  			fn.Children[key[pos-1]] = nil
   401  			return nil
   402  		}
   403  		cld.flags = nodeFlag{dirty: true}
   404  		return unset(cld, cld.Val, key, pos+len(cld.Key), removeLeft)
   405  	case nil:
   406  		// If the node is nil, then it's a child of the fork point
   407  		// fullnode(it's a non-existent branch).
   408  		return nil
   409  	default:
   410  		panic("it shouldn't happen") // hashNode, valueNode
   411  	}
   412  }
   413  
   414  // hasRightElement returns the indicator whether there exists more elements
   415  // on the right side of the given path. The given path can point to an existent
   416  // key or a non-existent one. This function has the assumption that the whole
   417  // path should already be resolved.
   418  func hasRightElement(node node, key []byte) bool {
   419  	pos, key := 0, keybytesToHex(key)
   420  	for node != nil {
   421  		switch rn := node.(type) {
   422  		case *fullNode:
   423  			for i := key[pos] + 1; i < 16; i++ {
   424  				if rn.Children[i] != nil {
   425  					return true
   426  				}
   427  			}
   428  			node, pos = rn.Children[key[pos]], pos+1
   429  		case *shortNode:
   430  			if len(key)-pos < len(rn.Key) || !bytes.Equal(rn.Key, key[pos:pos+len(rn.Key)]) {
   431  				return bytes.Compare(rn.Key, key[pos:]) > 0
   432  			}
   433  			node, pos = rn.Val, pos+len(rn.Key)
   434  		case valueNode:
   435  			return false // We have resolved the whole path
   436  		default:
   437  			panic(fmt.Sprintf("%T: invalid node: %v", node, node)) // hashnode
   438  		}
   439  	}
   440  	return false
   441  }
   442  
   443  // VerifyRangeProof checks whether the given leaf nodes and edge proof
   444  // can prove the given trie leaves range is matched with the specific root.
   445  // Besides, the range should be consecutive (no gap inside) and monotonic
   446  // increasing.
   447  //
   448  // Note the given proof actually contains two edge proofs. Both of them can
   449  // be non-existent proofs. For example the first proof is for a non-existent
   450  // key 0x03, the last proof is for a non-existent key 0x10. The given batch
   451  // leaves are [0x04, 0x05, .. 0x09]. It's still feasible to prove the given
   452  // batch is valid.
   453  //
   454  // The firstKey is paired with firstProof, not necessarily the same as keys[0]
   455  // (unless firstProof is an existent proof). Similarly, lastKey and lastProof
   456  // are paired.
   457  //
   458  // Expect the normal case, this function can also be used to verify the following
   459  // range proofs:
   460  //
   461  // - All elements proof. In this case the proof can be nil, but the range should
   462  //   be all the leaves in the trie.
   463  //
   464  // - One element proof. In this case no matter the edge proof is a non-existent
   465  //   proof or not, we can always verify the correctness of the proof.
   466  //
   467  // - Zero element proof. In this case a single non-existent proof is enough to prove.
   468  //   Besides, if there are still some other leaves available on the right side, then
   469  //   an error will be returned.
   470  //
   471  // Except returning the error to indicate the proof is valid or not, the function will
   472  // also return a flag to indicate whether there exists more accounts/slots in the trie.
   473  //
   474  // Note: This method does not verify that the proof is of minimal form. If the input
   475  // proofs are 'bloated' with neighbour leaves or random data, aside from the 'useful'
   476  // data, then the proof will still be accepted.
   477  func VerifyRangeProof(rootHash common.Hash, firstKey []byte, lastKey []byte, keys [][]byte, values [][]byte, proof ethdb.KeyValueReader) (bool, error) {
   478  	if len(keys) != len(values) {
   479  		return false, fmt.Errorf("inconsistent proof data, keys: %d, values: %d", len(keys), len(values))
   480  	}
   481  	// Ensure the received batch is monotonic increasing and contains no deletions
   482  	for i := 0; i < len(keys)-1; i++ {
   483  		if bytes.Compare(keys[i], keys[i+1]) >= 0 {
   484  			return false, errors.New("range is not monotonically increasing")
   485  		}
   486  	}
   487  	for _, value := range values {
   488  		if len(value) == 0 {
   489  			return false, errors.New("range contains deletion")
   490  		}
   491  	}
   492  	// Special case, there is no edge proof at all. The given range is expected
   493  	// to be the whole leaf-set in the trie.
   494  	if proof == nil {
   495  		tr := NewStackTrie(nil)
   496  		for index, key := range keys {
   497  			tr.TryUpdate(key, values[index])
   498  		}
   499  		if have, want := tr.Hash(), rootHash; have != want {
   500  			return false, fmt.Errorf("invalid proof, want hash %x, got %x", want, have)
   501  		}
   502  		return false, nil // No more elements
   503  	}
   504  	// Special case, there is a provided edge proof but zero key/value
   505  	// pairs, ensure there are no more accounts / slots in the trie.
   506  	if len(keys) == 0 {
   507  		root, val, err := proofToPath(rootHash, nil, firstKey, proof, true)
   508  		if err != nil {
   509  			return false, err
   510  		}
   511  		if val != nil || hasRightElement(root, firstKey) {
   512  			return false, errors.New("more entries available")
   513  		}
   514  		return false, nil
   515  	}
   516  	// Special case, there is only one element and two edge keys are same.
   517  	// In this case, we can't construct two edge paths. So handle it here.
   518  	if len(keys) == 1 && bytes.Equal(firstKey, lastKey) {
   519  		root, val, err := proofToPath(rootHash, nil, firstKey, proof, false)
   520  		if err != nil {
   521  			return false, err
   522  		}
   523  		if !bytes.Equal(firstKey, keys[0]) {
   524  			return false, errors.New("correct proof but invalid key")
   525  		}
   526  		if !bytes.Equal(val, values[0]) {
   527  			return false, errors.New("correct proof but invalid data")
   528  		}
   529  		return hasRightElement(root, firstKey), nil
   530  	}
   531  	// Ok, in all other cases, we require two edge paths available.
   532  	// First check the validity of edge keys.
   533  	if bytes.Compare(firstKey, lastKey) >= 0 {
   534  		return false, errors.New("invalid edge keys")
   535  	}
   536  	// todo(rjl493456442) different length edge keys should be supported
   537  	if len(firstKey) != len(lastKey) {
   538  		return false, errors.New("inconsistent edge keys")
   539  	}
   540  	// Convert the edge proofs to edge trie paths. Then we can
   541  	// have the same tree architecture with the original one.
   542  	// For the first edge proof, non-existent proof is allowed.
   543  	root, _, err := proofToPath(rootHash, nil, firstKey, proof, true)
   544  	if err != nil {
   545  		return false, err
   546  	}
   547  	// Pass the root node here, the second path will be merged
   548  	// with the first one. For the last edge proof, non-existent
   549  	// proof is also allowed.
   550  	root, _, err = proofToPath(rootHash, root, lastKey, proof, true)
   551  	if err != nil {
   552  		return false, err
   553  	}
   554  	// Remove all internal references. All the removed parts should
   555  	// be re-filled(or re-constructed) by the given leaves range.
   556  	empty, err := unsetInternal(root, firstKey, lastKey)
   557  	if err != nil {
   558  		return false, err
   559  	}
   560  	// Rebuild the trie with the leaf stream, the shape of trie
   561  	// should be same with the original one.
   562  	tr := &Trie{root: root, db: NewDatabase(rawdb.NewMemoryDatabase())}
   563  	if empty {
   564  		tr.root = nil
   565  	}
   566  	for index, key := range keys {
   567  		tr.TryUpdate(key, values[index])
   568  	}
   569  	if tr.Hash() != rootHash {
   570  		return false, fmt.Errorf("invalid proof, want hash %x, got %x", rootHash, tr.Hash())
   571  	}
   572  	return hasRightElement(tr.root, keys[len(keys)-1]), nil
   573  }
   574  
   575  // get returns the child of the given node. Return nil if the
   576  // node with specified key doesn't exist at all.
   577  //
   578  // There is an additional flag `skipResolved`. If it's set then
   579  // all resolved nodes won't be returned.
   580  func get(tn node, key []byte, skipResolved bool) ([]byte, node) {
   581  	for {
   582  		switch n := tn.(type) {
   583  		case *shortNode:
   584  			if len(key) < len(n.Key) || !bytes.Equal(n.Key, key[:len(n.Key)]) {
   585  				return nil, nil
   586  			}
   587  			tn = n.Val
   588  			key = key[len(n.Key):]
   589  			if !skipResolved {
   590  				return key, tn
   591  			}
   592  		case *fullNode:
   593  			tn = n.Children[key[0]]
   594  			key = key[1:]
   595  			if !skipResolved {
   596  				return key, tn
   597  			}
   598  		case hashNode:
   599  			return key, n
   600  		case nil:
   601  			return key, nil
   602  		case valueNode:
   603  			return nil, n
   604  		default:
   605  			panic(fmt.Sprintf("%T: invalid node: %v", tn, tn))
   606  		}
   607  	}
   608  }