github.com/euank/go@v0.0.0-20160829210321-495514729181/doc/go_spec.html (about) 1 <!--{ 2 "Title": "The Go Programming Language Specification", 3 "Subtitle": "Version of August 26, 2016", 4 "Path": "/ref/spec" 5 }--> 6 7 <h2 id="Introduction">Introduction</h2> 8 9 <p> 10 This is a reference manual for the Go programming language. For 11 more information and other documents, see <a href="/">golang.org</a>. 12 </p> 13 14 <p> 15 Go is a general-purpose language designed with systems programming 16 in mind. It is strongly typed and garbage-collected and has explicit 17 support for concurrent programming. Programs are constructed from 18 <i>packages</i>, whose properties allow efficient management of 19 dependencies. The existing implementations use a traditional 20 compile/link model to generate executable binaries. 21 </p> 22 23 <p> 24 The grammar is compact and regular, allowing for easy analysis by 25 automatic tools such as integrated development environments. 26 </p> 27 28 <h2 id="Notation">Notation</h2> 29 <p> 30 The syntax is specified using Extended Backus-Naur Form (EBNF): 31 </p> 32 33 <pre class="grammar"> 34 Production = production_name "=" [ Expression ] "." . 35 Expression = Alternative { "|" Alternative } . 36 Alternative = Term { Term } . 37 Term = production_name | token [ "…" token ] | Group | Option | Repetition . 38 Group = "(" Expression ")" . 39 Option = "[" Expression "]" . 40 Repetition = "{" Expression "}" . 41 </pre> 42 43 <p> 44 Productions are expressions constructed from terms and the following 45 operators, in increasing precedence: 46 </p> 47 <pre class="grammar"> 48 | alternation 49 () grouping 50 [] option (0 or 1 times) 51 {} repetition (0 to n times) 52 </pre> 53 54 <p> 55 Lower-case production names are used to identify lexical tokens. 56 Non-terminals are in CamelCase. Lexical tokens are enclosed in 57 double quotes <code>""</code> or back quotes <code>``</code>. 58 </p> 59 60 <p> 61 The form <code>a … b</code> represents the set of characters from 62 <code>a</code> through <code>b</code> as alternatives. The horizontal 63 ellipsis <code>…</code> is also used elsewhere in the spec to informally denote various 64 enumerations or code snippets that are not further specified. The character <code>…</code> 65 (as opposed to the three characters <code>...</code>) is not a token of the Go 66 language. 67 </p> 68 69 <h2 id="Source_code_representation">Source code representation</h2> 70 71 <p> 72 Source code is Unicode text encoded in 73 <a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not 74 canonicalized, so a single accented code point is distinct from the 75 same character constructed from combining an accent and a letter; 76 those are treated as two code points. For simplicity, this document 77 will use the unqualified term <i>character</i> to refer to a Unicode code point 78 in the source text. 79 </p> 80 <p> 81 Each code point is distinct; for instance, upper and lower case letters 82 are different characters. 83 </p> 84 <p> 85 Implementation restriction: For compatibility with other tools, a 86 compiler may disallow the NUL character (U+0000) in the source text. 87 </p> 88 <p> 89 Implementation restriction: For compatibility with other tools, a 90 compiler may ignore a UTF-8-encoded byte order mark 91 (U+FEFF) if it is the first Unicode code point in the source text. 92 A byte order mark may be disallowed anywhere else in the source. 93 </p> 94 95 <h3 id="Characters">Characters</h3> 96 97 <p> 98 The following terms are used to denote specific Unicode character classes: 99 </p> 100 <pre class="ebnf"> 101 newline = /* the Unicode code point U+000A */ . 102 unicode_char = /* an arbitrary Unicode code point except newline */ . 103 unicode_letter = /* a Unicode code point classified as "Letter" */ . 104 unicode_digit = /* a Unicode code point classified as "Number, decimal digit" */ . 105 </pre> 106 107 <p> 108 In <a href="http://www.unicode.org/versions/Unicode8.0.0/">The Unicode Standard 8.0</a>, 109 Section 4.5 "General Category" defines a set of character categories. 110 Go treats all characters in any of the Letter categories Lu, Ll, Lt, Lm, or Lo 111 as Unicode letters, and those in the Number category Nd as Unicode digits. 112 </p> 113 114 <h3 id="Letters_and_digits">Letters and digits</h3> 115 116 <p> 117 The underscore character <code>_</code> (U+005F) is considered a letter. 118 </p> 119 <pre class="ebnf"> 120 letter = unicode_letter | "_" . 121 decimal_digit = "0" … "9" . 122 octal_digit = "0" … "7" . 123 hex_digit = "0" … "9" | "A" … "F" | "a" … "f" . 124 </pre> 125 126 <h2 id="Lexical_elements">Lexical elements</h2> 127 128 <h3 id="Comments">Comments</h3> 129 130 <p> 131 Comments serve as program documentation. There are two forms: 132 </p> 133 134 <ol> 135 <li> 136 <i>Line comments</i> start with the character sequence <code>//</code> 137 and stop at the end of the line. 138 </li> 139 <li> 140 <i>General comments</i> start with the character sequence <code>/*</code> 141 and stop with the first subsequent character sequence <code>*/</code>. 142 </li> 143 </ol> 144 145 <p> 146 A comment cannot start inside a <a href="#Rune_literals">rune</a> or 147 <a href="#String_literals">string literal</a>, or inside a comment. 148 A general comment containing no newlines acts like a space. 149 Any other comment acts like a newline. 150 </p> 151 152 <h3 id="Tokens">Tokens</h3> 153 154 <p> 155 Tokens form the vocabulary of the Go language. 156 There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators 157 and delimiters</i>, and <i>literals</i>. <i>White space</i>, formed from 158 spaces (U+0020), horizontal tabs (U+0009), 159 carriage returns (U+000D), and newlines (U+000A), 160 is ignored except as it separates tokens 161 that would otherwise combine into a single token. Also, a newline or end of file 162 may trigger the insertion of a <a href="#Semicolons">semicolon</a>. 163 While breaking the input into tokens, 164 the next token is the longest sequence of characters that form a 165 valid token. 166 </p> 167 168 <h3 id="Semicolons">Semicolons</h3> 169 170 <p> 171 The formal grammar uses semicolons <code>";"</code> as terminators in 172 a number of productions. Go programs may omit most of these semicolons 173 using the following two rules: 174 </p> 175 176 <ol> 177 <li> 178 When the input is broken into tokens, a semicolon is automatically inserted 179 into the token stream immediately after a line's final token if that token is 180 <ul> 181 <li>an 182 <a href="#Identifiers">identifier</a> 183 </li> 184 185 <li>an 186 <a href="#Integer_literals">integer</a>, 187 <a href="#Floating-point_literals">floating-point</a>, 188 <a href="#Imaginary_literals">imaginary</a>, 189 <a href="#Rune_literals">rune</a>, or 190 <a href="#String_literals">string</a> literal 191 </li> 192 193 <li>one of the <a href="#Keywords">keywords</a> 194 <code>break</code>, 195 <code>continue</code>, 196 <code>fallthrough</code>, or 197 <code>return</code> 198 </li> 199 200 <li>one of the <a href="#Operators_and_Delimiters">operators and delimiters</a> 201 <code>++</code>, 202 <code>--</code>, 203 <code>)</code>, 204 <code>]</code>, or 205 <code>}</code> 206 </li> 207 </ul> 208 </li> 209 210 <li> 211 To allow complex statements to occupy a single line, a semicolon 212 may be omitted before a closing <code>")"</code> or <code>"}"</code>. 213 </li> 214 </ol> 215 216 <p> 217 To reflect idiomatic use, code examples in this document elide semicolons 218 using these rules. 219 </p> 220 221 222 <h3 id="Identifiers">Identifiers</h3> 223 224 <p> 225 Identifiers name program entities such as variables and types. 226 An identifier is a sequence of one or more letters and digits. 227 The first character in an identifier must be a letter. 228 </p> 229 <pre class="ebnf"> 230 identifier = letter { letter | unicode_digit } . 231 </pre> 232 <pre> 233 a 234 _x9 235 ThisVariableIsExported 236 αβ 237 </pre> 238 239 <p> 240 Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>. 241 </p> 242 243 244 <h3 id="Keywords">Keywords</h3> 245 246 <p> 247 The following keywords are reserved and may not be used as identifiers. 248 </p> 249 <pre class="grammar"> 250 break default func interface select 251 case defer go map struct 252 chan else goto package switch 253 const fallthrough if range type 254 continue for import return var 255 </pre> 256 257 <h3 id="Operators_and_Delimiters">Operators and Delimiters</h3> 258 259 <p> 260 The following character sequences represent <a href="#Operators">operators</a>, delimiters, and other special tokens: 261 </p> 262 <pre class="grammar"> 263 + & += &= && == != ( ) 264 - | -= |= || < <= [ ] 265 * ^ *= ^= <- > >= { } 266 / << /= <<= ++ = := , ; 267 % >> %= >>= -- ! ... . : 268 &^ &^= 269 </pre> 270 271 <h3 id="Integer_literals">Integer literals</h3> 272 273 <p> 274 An integer literal is a sequence of digits representing an 275 <a href="#Constants">integer constant</a>. 276 An optional prefix sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or 277 <code>0X</code> for hexadecimal. In hexadecimal literals, letters 278 <code>a-f</code> and <code>A-F</code> represent values 10 through 15. 279 </p> 280 <pre class="ebnf"> 281 int_lit = decimal_lit | octal_lit | hex_lit . 282 decimal_lit = ( "1" … "9" ) { decimal_digit } . 283 octal_lit = "0" { octal_digit } . 284 hex_lit = "0" ( "x" | "X" ) hex_digit { hex_digit } . 285 </pre> 286 287 <pre> 288 42 289 0600 290 0xBadFace 291 170141183460469231731687303715884105727 292 </pre> 293 294 <h3 id="Floating-point_literals">Floating-point literals</h3> 295 <p> 296 A floating-point literal is a decimal representation of a 297 <a href="#Constants">floating-point constant</a>. 298 It has an integer part, a decimal point, a fractional part, 299 and an exponent part. The integer and fractional part comprise 300 decimal digits; the exponent part is an <code>e</code> or <code>E</code> 301 followed by an optionally signed decimal exponent. One of the 302 integer part or the fractional part may be elided; one of the decimal 303 point or the exponent may be elided. 304 </p> 305 <pre class="ebnf"> 306 float_lit = decimals "." [ decimals ] [ exponent ] | 307 decimals exponent | 308 "." decimals [ exponent ] . 309 decimals = decimal_digit { decimal_digit } . 310 exponent = ( "e" | "E" ) [ "+" | "-" ] decimals . 311 </pre> 312 313 <pre> 314 0. 315 72.40 316 072.40 // == 72.40 317 2.71828 318 1.e+0 319 6.67428e-11 320 1E6 321 .25 322 .12345E+5 323 </pre> 324 325 <h3 id="Imaginary_literals">Imaginary literals</h3> 326 <p> 327 An imaginary literal is a decimal representation of the imaginary part of a 328 <a href="#Constants">complex constant</a>. 329 It consists of a 330 <a href="#Floating-point_literals">floating-point literal</a> 331 or decimal integer followed 332 by the lower-case letter <code>i</code>. 333 </p> 334 <pre class="ebnf"> 335 imaginary_lit = (decimals | float_lit) "i" . 336 </pre> 337 338 <pre> 339 0i 340 011i // == 11i 341 0.i 342 2.71828i 343 1.e+0i 344 6.67428e-11i 345 1E6i 346 .25i 347 .12345E+5i 348 </pre> 349 350 351 <h3 id="Rune_literals">Rune literals</h3> 352 353 <p> 354 A rune literal represents a <a href="#Constants">rune constant</a>, 355 an integer value identifying a Unicode code point. 356 A rune literal is expressed as one or more characters enclosed in single quotes, 357 as in <code>'x'</code> or <code>'\n'</code>. 358 Within the quotes, any character may appear except newline and unescaped single 359 quote. A single quoted character represents the Unicode value 360 of the character itself, 361 while multi-character sequences beginning with a backslash encode 362 values in various formats. 363 </p> 364 <p> 365 The simplest form represents the single character within the quotes; 366 since Go source text is Unicode characters encoded in UTF-8, multiple 367 UTF-8-encoded bytes may represent a single integer value. For 368 instance, the literal <code>'a'</code> holds a single byte representing 369 a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while 370 <code>'ä'</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing 371 a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>. 372 </p> 373 <p> 374 Several backslash escapes allow arbitrary values to be encoded as 375 ASCII text. There are four ways to represent the integer value 376 as a numeric constant: <code>\x</code> followed by exactly two hexadecimal 377 digits; <code>\u</code> followed by exactly four hexadecimal digits; 378 <code>\U</code> followed by exactly eight hexadecimal digits, and a 379 plain backslash <code>\</code> followed by exactly three octal digits. 380 In each case the value of the literal is the value represented by 381 the digits in the corresponding base. 382 </p> 383 <p> 384 Although these representations all result in an integer, they have 385 different valid ranges. Octal escapes must represent a value between 386 0 and 255 inclusive. Hexadecimal escapes satisfy this condition 387 by construction. The escapes <code>\u</code> and <code>\U</code> 388 represent Unicode code points so within them some values are illegal, 389 in particular those above <code>0x10FFFF</code> and surrogate halves. 390 </p> 391 <p> 392 After a backslash, certain single-character escapes represent special values: 393 </p> 394 <pre class="grammar"> 395 \a U+0007 alert or bell 396 \b U+0008 backspace 397 \f U+000C form feed 398 \n U+000A line feed or newline 399 \r U+000D carriage return 400 \t U+0009 horizontal tab 401 \v U+000b vertical tab 402 \\ U+005c backslash 403 \' U+0027 single quote (valid escape only within rune literals) 404 \" U+0022 double quote (valid escape only within string literals) 405 </pre> 406 <p> 407 All other sequences starting with a backslash are illegal inside rune literals. 408 </p> 409 <pre class="ebnf"> 410 rune_lit = "'" ( unicode_value | byte_value ) "'" . 411 unicode_value = unicode_char | little_u_value | big_u_value | escaped_char . 412 byte_value = octal_byte_value | hex_byte_value . 413 octal_byte_value = `\` octal_digit octal_digit octal_digit . 414 hex_byte_value = `\` "x" hex_digit hex_digit . 415 little_u_value = `\` "u" hex_digit hex_digit hex_digit hex_digit . 416 big_u_value = `\` "U" hex_digit hex_digit hex_digit hex_digit 417 hex_digit hex_digit hex_digit hex_digit . 418 escaped_char = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) . 419 </pre> 420 421 <pre> 422 'a' 423 'ä' 424 '本' 425 '\t' 426 '\000' 427 '\007' 428 '\377' 429 '\x07' 430 '\xff' 431 '\u12e4' 432 '\U00101234' 433 '\'' // rune literal containing single quote character 434 'aa' // illegal: too many characters 435 '\xa' // illegal: too few hexadecimal digits 436 '\0' // illegal: too few octal digits 437 '\uDFFF' // illegal: surrogate half 438 '\U00110000' // illegal: invalid Unicode code point 439 </pre> 440 441 442 <h3 id="String_literals">String literals</h3> 443 444 <p> 445 A string literal represents a <a href="#Constants">string constant</a> 446 obtained from concatenating a sequence of characters. There are two forms: 447 raw string literals and interpreted string literals. 448 </p> 449 <p> 450 Raw string literals are character sequences between back quotes, as in 451 <code>`foo`</code>. Within the quotes, any character may appear except 452 back quote. The value of a raw string literal is the 453 string composed of the uninterpreted (implicitly UTF-8-encoded) characters 454 between the quotes; 455 in particular, backslashes have no special meaning and the string may 456 contain newlines. 457 Carriage return characters ('\r') inside raw string literals 458 are discarded from the raw string value. 459 </p> 460 <p> 461 Interpreted string literals are character sequences between double 462 quotes, as in <code>"bar"</code>. 463 Within the quotes, any character may appear except newline and unescaped double quote. 464 The text between the quotes forms the 465 value of the literal, with backslash escapes interpreted as they 466 are in <a href="#Rune_literals">rune literals</a> (except that <code>\'</code> is illegal and 467 <code>\"</code> is legal), with the same restrictions. 468 The three-digit octal (<code>\</code><i>nnn</i>) 469 and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual 470 <i>bytes</i> of the resulting string; all other escapes represent 471 the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>. 472 Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent 473 a single byte of value <code>0xFF</code>=255, while <code>ÿ</code>, 474 <code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent 475 the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character 476 U+00FF. 477 </p> 478 479 <pre class="ebnf"> 480 string_lit = raw_string_lit | interpreted_string_lit . 481 raw_string_lit = "`" { unicode_char | newline } "`" . 482 interpreted_string_lit = `"` { unicode_value | byte_value } `"` . 483 </pre> 484 485 <pre> 486 `abc` // same as "abc" 487 `\n 488 \n` // same as "\\n\n\\n" 489 "\n" 490 "\"" // same as `"` 491 "Hello, world!\n" 492 "日本語" 493 "\u65e5本\U00008a9e" 494 "\xff\u00FF" 495 "\uD800" // illegal: surrogate half 496 "\U00110000" // illegal: invalid Unicode code point 497 </pre> 498 499 <p> 500 These examples all represent the same string: 501 </p> 502 503 <pre> 504 "日本語" // UTF-8 input text 505 `日本語` // UTF-8 input text as a raw literal 506 "\u65e5\u672c\u8a9e" // the explicit Unicode code points 507 "\U000065e5\U0000672c\U00008a9e" // the explicit Unicode code points 508 "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e" // the explicit UTF-8 bytes 509 </pre> 510 511 <p> 512 If the source code represents a character as two code points, such as 513 a combining form involving an accent and a letter, the result will be 514 an error if placed in a rune literal (it is not a single code 515 point), and will appear as two code points if placed in a string 516 literal. 517 </p> 518 519 520 <h2 id="Constants">Constants</h2> 521 522 <p>There are <i>boolean constants</i>, 523 <i>rune constants</i>, 524 <i>integer constants</i>, 525 <i>floating-point constants</i>, <i>complex constants</i>, 526 and <i>string constants</i>. Rune, integer, floating-point, 527 and complex constants are 528 collectively called <i>numeric constants</i>. 529 </p> 530 531 <p> 532 A constant value is represented by a 533 <a href="#Rune_literals">rune</a>, 534 <a href="#Integer_literals">integer</a>, 535 <a href="#Floating-point_literals">floating-point</a>, 536 <a href="#Imaginary_literals">imaginary</a>, 537 or 538 <a href="#String_literals">string</a> literal, 539 an identifier denoting a constant, 540 a <a href="#Constant_expressions">constant expression</a>, 541 a <a href="#Conversions">conversion</a> with a result that is a constant, or 542 the result value of some built-in functions such as 543 <code>unsafe.Sizeof</code> applied to any value, 544 <code>cap</code> or <code>len</code> applied to 545 <a href="#Length_and_capacity">some expressions</a>, 546 <code>real</code> and <code>imag</code> applied to a complex constant 547 and <code>complex</code> applied to numeric constants. 548 The boolean truth values are represented by the predeclared constants 549 <code>true</code> and <code>false</code>. The predeclared identifier 550 <a href="#Iota">iota</a> denotes an integer constant. 551 </p> 552 553 <p> 554 In general, complex constants are a form of 555 <a href="#Constant_expressions">constant expression</a> 556 and are discussed in that section. 557 </p> 558 559 <p> 560 Numeric constants represent exact values of arbitrary precision and do not overflow. 561 Consequently, there are no constants denoting the IEEE-754 negative zero, infinity, 562 and not-a-number values. 563 </p> 564 565 <p> 566 Constants may be <a href="#Types">typed</a> or <i>untyped</i>. 567 Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>, 568 and certain <a href="#Constant_expressions">constant expressions</a> 569 containing only untyped constant operands are untyped. 570 </p> 571 572 <p> 573 A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a> 574 or <a href="#Conversions">conversion</a>, or implicitly when used in a 575 <a href="#Variable_declarations">variable declaration</a> or an 576 <a href="#Assignments">assignment</a> or as an 577 operand in an <a href="#Expressions">expression</a>. 578 It is an error if the constant value 579 cannot be represented as a value of the respective type. 580 For instance, <code>3.0</code> can be given any integer or any 581 floating-point type, while <code>2147483648.0</code> (equal to <code>1<<31</code>) 582 can be given the types <code>float32</code>, <code>float64</code>, or <code>uint32</code> but 583 not <code>int32</code> or <code>string</code>. 584 </p> 585 586 <p> 587 An untyped constant has a <i>default type</i> which is the type to which the 588 constant is implicitly converted in contexts where a typed value is required, 589 for instance, in a <a href="#Short_variable_declarations">short variable declaration</a> 590 such as <code>i := 0</code> where there is no explicit type. 591 The default type of an untyped constant is <code>bool</code>, <code>rune</code>, 592 <code>int</code>, <code>float64</code>, <code>complex128</code> or <code>string</code> 593 respectively, depending on whether it is a boolean, rune, integer, floating-point, 594 complex, or string constant. 595 </p> 596 597 <p> 598 Implementation restriction: Although numeric constants have arbitrary 599 precision in the language, a compiler may implement them using an 600 internal representation with limited precision. That said, every 601 implementation must: 602 </p> 603 <ul> 604 <li>Represent integer constants with at least 256 bits.</li> 605 606 <li>Represent floating-point constants, including the parts of 607 a complex constant, with a mantissa of at least 256 bits 608 and a signed exponent of at least 32 bits.</li> 609 610 <li>Give an error if unable to represent an integer constant 611 precisely.</li> 612 613 <li>Give an error if unable to represent a floating-point or 614 complex constant due to overflow.</li> 615 616 <li>Round to the nearest representable constant if unable to 617 represent a floating-point or complex constant due to limits 618 on precision.</li> 619 </ul> 620 <p> 621 These requirements apply both to literal constants and to the result 622 of evaluating <a href="#Constant_expressions">constant 623 expressions</a>. 624 </p> 625 626 <h2 id="Variables">Variables</h2> 627 628 <p> 629 A variable is a storage location for holding a <i>value</i>. 630 The set of permissible values is determined by the 631 variable's <i><a href="#Types">type</a></i>. 632 </p> 633 634 <p> 635 A <a href="#Variable_declarations">variable declaration</a> 636 or, for function parameters and results, the signature 637 of a <a href="#Function_declarations">function declaration</a> 638 or <a href="#Function_literals">function literal</a> reserves 639 storage for a named variable. 640 641 Calling the built-in function <a href="#Allocation"><code>new</code></a> 642 or taking the address of a <a href="#Composite_literals">composite literal</a> 643 allocates storage for a variable at run time. 644 Such an anonymous variable is referred to via a (possibly implicit) 645 <a href="#Address_operators">pointer indirection</a>. 646 </p> 647 648 <p> 649 <i>Structured</i> variables of <a href="#Array_types">array</a>, <a href="#Slice_types">slice</a>, 650 and <a href="#Struct_types">struct</a> types have elements and fields that may 651 be <a href="#Address_operators">addressed</a> individually. Each such element 652 acts like a variable. 653 </p> 654 655 <p> 656 The <i>static type</i> (or just <i>type</i>) of a variable is the 657 type given in its declaration, the type provided in the 658 <code>new</code> call or composite literal, or the type of 659 an element of a structured variable. 660 Variables of interface type also have a distinct <i>dynamic type</i>, 661 which is the concrete type of the value assigned to the variable at run time 662 (unless the value is the predeclared identifier <code>nil</code>, 663 which has no type). 664 The dynamic type may vary during execution but values stored in interface 665 variables are always <a href="#Assignability">assignable</a> 666 to the static type of the variable. 667 </p> 668 669 <pre> 670 var x interface{} // x is nil and has static type interface{} 671 var v *T // v has value nil, static type *T 672 x = 42 // x has value 42 and dynamic type int 673 x = v // x has value (*T)(nil) and dynamic type *T 674 </pre> 675 676 <p> 677 A variable's value is retrieved by referring to the variable in an 678 <a href="#Expressions">expression</a>; it is the most recent value 679 <a href="#Assignments">assigned</a> to the variable. 680 If a variable has not yet been assigned a value, its value is the 681 <a href="#The_zero_value">zero value</a> for its type. 682 </p> 683 684 685 <h2 id="Types">Types</h2> 686 687 <p> 688 A type determines the set of values and operations specific to values of that 689 type. Types may be <i>named</i> or <i>unnamed</i>. Named types are specified 690 by a (possibly <a href="#Qualified_identifiers">qualified</a>) 691 <a href="#Type_declarations"><i>type name</i></a>; unnamed types are specified 692 using a <i>type literal</i>, which composes a new type from existing types. 693 </p> 694 695 <pre class="ebnf"> 696 Type = TypeName | TypeLit | "(" Type ")" . 697 TypeName = identifier | QualifiedIdent . 698 TypeLit = ArrayType | StructType | PointerType | FunctionType | InterfaceType | 699 SliceType | MapType | ChannelType . 700 </pre> 701 702 <p> 703 Named instances of the boolean, numeric, and string types are 704 <a href="#Predeclared_identifiers">predeclared</a>. 705 <i>Composite types</i>—array, struct, pointer, function, 706 interface, slice, map, and channel types—may be constructed using 707 type literals. 708 </p> 709 710 <p> 711 Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code> 712 is one of the predeclared boolean, numeric, or string types, or a type literal, 713 the corresponding underlying 714 type is <code>T</code> itself. Otherwise, <code>T</code>'s underlying type 715 is the underlying type of the type to which <code>T</code> refers in its 716 <a href="#Type_declarations">type declaration</a>. 717 </p> 718 719 <pre> 720 type T1 string 721 type T2 T1 722 type T3 []T1 723 type T4 T3 724 </pre> 725 726 <p> 727 The underlying type of <code>string</code>, <code>T1</code>, and <code>T2</code> 728 is <code>string</code>. The underlying type of <code>[]T1</code>, <code>T3</code>, 729 and <code>T4</code> is <code>[]T1</code>. 730 </p> 731 732 <h3 id="Method_sets">Method sets</h3> 733 <p> 734 A type may have a <i>method set</i> associated with it. 735 The method set of an <a href="#Interface_types">interface type</a> is its interface. 736 The method set of any other type <code>T</code> consists of all 737 <a href="#Method_declarations">methods</a> declared with receiver type <code>T</code>. 738 The method set of the corresponding <a href="#Pointer_types">pointer type</a> <code>*T</code> 739 is the set of all methods declared with receiver <code>*T</code> or <code>T</code> 740 (that is, it also contains the method set of <code>T</code>). 741 Further rules apply to structs containing anonymous fields, as described 742 in the section on <a href="#Struct_types">struct types</a>. 743 Any other type has an empty method set. 744 In a method set, each method must have a 745 <a href="#Uniqueness_of_identifiers">unique</a> 746 non-<a href="#Blank_identifier">blank</a> <a href="#MethodName">method name</a>. 747 </p> 748 749 <p> 750 The method set of a type determines the interfaces that the 751 type <a href="#Interface_types">implements</a> 752 and the methods that can be <a href="#Calls">called</a> 753 using a receiver of that type. 754 </p> 755 756 <h3 id="Boolean_types">Boolean types</h3> 757 758 <p> 759 A <i>boolean type</i> represents the set of Boolean truth values 760 denoted by the predeclared constants <code>true</code> 761 and <code>false</code>. The predeclared boolean type is <code>bool</code>. 762 </p> 763 764 <h3 id="Numeric_types">Numeric types</h3> 765 766 <p> 767 A <i>numeric type</i> represents sets of integer or floating-point values. 768 The predeclared architecture-independent numeric types are: 769 </p> 770 771 <pre class="grammar"> 772 uint8 the set of all unsigned 8-bit integers (0 to 255) 773 uint16 the set of all unsigned 16-bit integers (0 to 65535) 774 uint32 the set of all unsigned 32-bit integers (0 to 4294967295) 775 uint64 the set of all unsigned 64-bit integers (0 to 18446744073709551615) 776 777 int8 the set of all signed 8-bit integers (-128 to 127) 778 int16 the set of all signed 16-bit integers (-32768 to 32767) 779 int32 the set of all signed 32-bit integers (-2147483648 to 2147483647) 780 int64 the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807) 781 782 float32 the set of all IEEE-754 32-bit floating-point numbers 783 float64 the set of all IEEE-754 64-bit floating-point numbers 784 785 complex64 the set of all complex numbers with float32 real and imaginary parts 786 complex128 the set of all complex numbers with float64 real and imaginary parts 787 788 byte alias for uint8 789 rune alias for int32 790 </pre> 791 792 <p> 793 The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using 794 <a href="http://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>. 795 </p> 796 797 <p> 798 There is also a set of predeclared numeric types with implementation-specific sizes: 799 </p> 800 801 <pre class="grammar"> 802 uint either 32 or 64 bits 803 int same size as uint 804 uintptr an unsigned integer large enough to store the uninterpreted bits of a pointer value 805 </pre> 806 807 <p> 808 To avoid portability issues all numeric types are distinct except 809 <code>byte</code>, which is an alias for <code>uint8</code>, and 810 <code>rune</code>, which is an alias for <code>int32</code>. 811 Conversions 812 are required when different numeric types are mixed in an expression 813 or assignment. For instance, <code>int32</code> and <code>int</code> 814 are not the same type even though they may have the same size on a 815 particular architecture. 816 817 818 <h3 id="String_types">String types</h3> 819 820 <p> 821 A <i>string type</i> represents the set of string values. 822 A string value is a (possibly empty) sequence of bytes. 823 Strings are immutable: once created, 824 it is impossible to change the contents of a string. 825 The predeclared string type is <code>string</code>. 826 </p> 827 828 <p> 829 The length of a string <code>s</code> (its size in bytes) can be discovered using 830 the built-in function <a href="#Length_and_capacity"><code>len</code></a>. 831 The length is a compile-time constant if the string is a constant. 832 A string's bytes can be accessed by integer <a href="#Index_expressions">indices</a> 833 0 through <code>len(s)-1</code>. 834 It is illegal to take the address of such an element; if 835 <code>s[i]</code> is the <code>i</code>'th byte of a 836 string, <code>&s[i]</code> is invalid. 837 </p> 838 839 840 <h3 id="Array_types">Array types</h3> 841 842 <p> 843 An array is a numbered sequence of elements of a single 844 type, called the element type. 845 The number of elements is called the length and is never 846 negative. 847 </p> 848 849 <pre class="ebnf"> 850 ArrayType = "[" ArrayLength "]" ElementType . 851 ArrayLength = Expression . 852 ElementType = Type . 853 </pre> 854 855 <p> 856 The length is part of the array's type; it must evaluate to a 857 non-negative <a href="#Constants">constant</a> representable by a value 858 of type <code>int</code>. 859 The length of array <code>a</code> can be discovered 860 using the built-in function <a href="#Length_and_capacity"><code>len</code></a>. 861 The elements can be addressed by integer <a href="#Index_expressions">indices</a> 862 0 through <code>len(a)-1</code>. 863 Array types are always one-dimensional but may be composed to form 864 multi-dimensional types. 865 </p> 866 867 <pre> 868 [32]byte 869 [2*N] struct { x, y int32 } 870 [1000]*float64 871 [3][5]int 872 [2][2][2]float64 // same as [2]([2]([2]float64)) 873 </pre> 874 875 <h3 id="Slice_types">Slice types</h3> 876 877 <p> 878 A slice is a descriptor for a contiguous segment of an <i>underlying array</i> and 879 provides access to a numbered sequence of elements from that array. 880 A slice type denotes the set of all slices of arrays of its element type. 881 The value of an uninitialized slice is <code>nil</code>. 882 </p> 883 884 <pre class="ebnf"> 885 SliceType = "[" "]" ElementType . 886 </pre> 887 888 <p> 889 Like arrays, slices are indexable and have a length. The length of a 890 slice <code>s</code> can be discovered by the built-in function 891 <a href="#Length_and_capacity"><code>len</code></a>; unlike with arrays it may change during 892 execution. The elements can be addressed by integer <a href="#Index_expressions">indices</a> 893 0 through <code>len(s)-1</code>. The slice index of a 894 given element may be less than the index of the same element in the 895 underlying array. 896 </p> 897 <p> 898 A slice, once initialized, is always associated with an underlying 899 array that holds its elements. A slice therefore shares storage 900 with its array and with other slices of the same array; by contrast, 901 distinct arrays always represent distinct storage. 902 </p> 903 <p> 904 The array underlying a slice may extend past the end of the slice. 905 The <i>capacity</i> is a measure of that extent: it is the sum of 906 the length of the slice and the length of the array beyond the slice; 907 a slice of length up to that capacity can be created by 908 <a href="#Slice_expressions"><i>slicing</i></a> a new one from the original slice. 909 The capacity of a slice <code>a</code> can be discovered using the 910 built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>. 911 </p> 912 913 <p> 914 A new, initialized slice value for a given element type <code>T</code> is 915 made using the built-in function 916 <a href="#Making_slices_maps_and_channels"><code>make</code></a>, 917 which takes a slice type 918 and parameters specifying the length and optionally the capacity. 919 A slice created with <code>make</code> always allocates a new, hidden array 920 to which the returned slice value refers. That is, executing 921 </p> 922 923 <pre> 924 make([]T, length, capacity) 925 </pre> 926 927 <p> 928 produces the same slice as allocating an array and <a href="#Slice_expressions">slicing</a> 929 it, so these two expressions are equivalent: 930 </p> 931 932 <pre> 933 make([]int, 50, 100) 934 new([100]int)[0:50] 935 </pre> 936 937 <p> 938 Like arrays, slices are always one-dimensional but may be composed to construct 939 higher-dimensional objects. 940 With arrays of arrays, the inner arrays are, by construction, always the same length; 941 however with slices of slices (or arrays of slices), the inner lengths may vary dynamically. 942 Moreover, the inner slices must be initialized individually. 943 </p> 944 945 <h3 id="Struct_types">Struct types</h3> 946 947 <p> 948 A struct is a sequence of named elements, called fields, each of which has a 949 name and a type. Field names may be specified explicitly (IdentifierList) or 950 implicitly (AnonymousField). 951 Within a struct, non-<a href="#Blank_identifier">blank</a> field names must 952 be <a href="#Uniqueness_of_identifiers">unique</a>. 953 </p> 954 955 <pre class="ebnf"> 956 StructType = "struct" "{" { FieldDecl ";" } "}" . 957 FieldDecl = (IdentifierList Type | AnonymousField) [ Tag ] . 958 AnonymousField = [ "*" ] TypeName . 959 Tag = string_lit . 960 </pre> 961 962 <pre> 963 // An empty struct. 964 struct {} 965 966 // A struct with 6 fields. 967 struct { 968 x, y int 969 u float32 970 _ float32 // padding 971 A *[]int 972 F func() 973 } 974 </pre> 975 976 <p> 977 A field declared with a type but no explicit field name is an <i>anonymous field</i>, 978 also called an <i>embedded</i> field or an embedding of the type in the struct. 979 An embedded type must be specified as 980 a type name <code>T</code> or as a pointer to a non-interface type name <code>*T</code>, 981 and <code>T</code> itself may not be 982 a pointer type. The unqualified type name acts as the field name. 983 </p> 984 985 <pre> 986 // A struct with four anonymous fields of type T1, *T2, P.T3 and *P.T4 987 struct { 988 T1 // field name is T1 989 *T2 // field name is T2 990 P.T3 // field name is T3 991 *P.T4 // field name is T4 992 x, y int // field names are x and y 993 } 994 </pre> 995 996 <p> 997 The following declaration is illegal because field names must be unique 998 in a struct type: 999 </p> 1000 1001 <pre> 1002 struct { 1003 T // conflicts with anonymous field *T and *P.T 1004 *T // conflicts with anonymous field T and *P.T 1005 *P.T // conflicts with anonymous field T and *T 1006 } 1007 </pre> 1008 1009 <p> 1010 A field or <a href="#Method_declarations">method</a> <code>f</code> of an 1011 anonymous field in a struct <code>x</code> is called <i>promoted</i> if 1012 <code>x.f</code> is a legal <a href="#Selectors">selector</a> that denotes 1013 that field or method <code>f</code>. 1014 </p> 1015 1016 <p> 1017 Promoted fields act like ordinary fields 1018 of a struct except that they cannot be used as field names in 1019 <a href="#Composite_literals">composite literals</a> of the struct. 1020 </p> 1021 1022 <p> 1023 Given a struct type <code>S</code> and a type named <code>T</code>, 1024 promoted methods are included in the method set of the struct as follows: 1025 </p> 1026 <ul> 1027 <li> 1028 If <code>S</code> contains an anonymous field <code>T</code>, 1029 the <a href="#Method_sets">method sets</a> of <code>S</code> 1030 and <code>*S</code> both include promoted methods with receiver 1031 <code>T</code>. The method set of <code>*S</code> also 1032 includes promoted methods with receiver <code>*T</code>. 1033 </li> 1034 1035 <li> 1036 If <code>S</code> contains an anonymous field <code>*T</code>, 1037 the method sets of <code>S</code> and <code>*S</code> both 1038 include promoted methods with receiver <code>T</code> or 1039 <code>*T</code>. 1040 </li> 1041 </ul> 1042 1043 <p> 1044 A field declaration may be followed by an optional string literal <i>tag</i>, 1045 which becomes an attribute for all the fields in the corresponding 1046 field declaration. An empty tag string is equivalent to an absent tag. 1047 The tags are made visible through a <a href="/pkg/reflect/#StructTag">reflection interface</a> 1048 and take part in <a href="#Type_identity">type identity</a> for structs 1049 but are otherwise ignored. 1050 </p> 1051 1052 <pre> 1053 struct { 1054 x, y float64 "" // an empty tag string is like an absent tag 1055 name string "any string is permitted as a tag" 1056 _ [4]byte "ceci n'est pas un champ de structure" 1057 } 1058 1059 // A struct corresponding to a TimeStamp protocol buffer. 1060 // The tag strings define the protocol buffer field numbers; 1061 // they follow the convention outlined by the reflect package. 1062 struct { 1063 microsec uint64 `protobuf:"1"` 1064 serverIP6 uint64 `protobuf:"2"` 1065 } 1066 </pre> 1067 1068 <h3 id="Pointer_types">Pointer types</h3> 1069 1070 <p> 1071 A pointer type denotes the set of all pointers to <a href="#Variables">variables</a> of a given 1072 type, called the <i>base type</i> of the pointer. 1073 The value of an uninitialized pointer is <code>nil</code>. 1074 </p> 1075 1076 <pre class="ebnf"> 1077 PointerType = "*" BaseType . 1078 BaseType = Type . 1079 </pre> 1080 1081 <pre> 1082 *Point 1083 *[4]int 1084 </pre> 1085 1086 <h3 id="Function_types">Function types</h3> 1087 1088 <p> 1089 A function type denotes the set of all functions with the same parameter 1090 and result types. The value of an uninitialized variable of function type 1091 is <code>nil</code>. 1092 </p> 1093 1094 <pre class="ebnf"> 1095 FunctionType = "func" Signature . 1096 Signature = Parameters [ Result ] . 1097 Result = Parameters | Type . 1098 Parameters = "(" [ ParameterList [ "," ] ] ")" . 1099 ParameterList = ParameterDecl { "," ParameterDecl } . 1100 ParameterDecl = [ IdentifierList ] [ "..." ] Type . 1101 </pre> 1102 1103 <p> 1104 Within a list of parameters or results, the names (IdentifierList) 1105 must either all be present or all be absent. If present, each name 1106 stands for one item (parameter or result) of the specified type and 1107 all non-<a href="#Blank_identifier">blank</a> names in the signature 1108 must be <a href="#Uniqueness_of_identifiers">unique</a>. 1109 If absent, each type stands for one item of that type. 1110 Parameter and result 1111 lists are always parenthesized except that if there is exactly 1112 one unnamed result it may be written as an unparenthesized type. 1113 </p> 1114 1115 <p> 1116 The final incoming parameter in a function signature may have 1117 a type prefixed with <code>...</code>. 1118 A function with such a parameter is called <i>variadic</i> and 1119 may be invoked with zero or more arguments for that parameter. 1120 </p> 1121 1122 <pre> 1123 func() 1124 func(x int) int 1125 func(a, _ int, z float32) bool 1126 func(a, b int, z float32) (bool) 1127 func(prefix string, values ...int) 1128 func(a, b int, z float64, opt ...interface{}) (success bool) 1129 func(int, int, float64) (float64, *[]int) 1130 func(n int) func(p *T) 1131 </pre> 1132 1133 1134 <h3 id="Interface_types">Interface types</h3> 1135 1136 <p> 1137 An interface type specifies a <a href="#Method_sets">method set</a> called its <i>interface</i>. 1138 A variable of interface type can store a value of any type with a method set 1139 that is any superset of the interface. Such a type is said to 1140 <i>implement the interface</i>. 1141 The value of an uninitialized variable of interface type is <code>nil</code>. 1142 </p> 1143 1144 <pre class="ebnf"> 1145 InterfaceType = "interface" "{" { MethodSpec ";" } "}" . 1146 MethodSpec = MethodName Signature | InterfaceTypeName . 1147 MethodName = identifier . 1148 InterfaceTypeName = TypeName . 1149 </pre> 1150 1151 <p> 1152 As with all method sets, in an interface type, each method must have a 1153 <a href="#Uniqueness_of_identifiers">unique</a> 1154 non-<a href="#Blank_identifier">blank</a> name. 1155 </p> 1156 1157 <pre> 1158 // A simple File interface 1159 interface { 1160 Read(b Buffer) bool 1161 Write(b Buffer) bool 1162 Close() 1163 } 1164 </pre> 1165 1166 <p> 1167 More than one type may implement an interface. 1168 For instance, if two types <code>S1</code> and <code>S2</code> 1169 have the method set 1170 </p> 1171 1172 <pre> 1173 func (p T) Read(b Buffer) bool { return … } 1174 func (p T) Write(b Buffer) bool { return … } 1175 func (p T) Close() { … } 1176 </pre> 1177 1178 <p> 1179 (where <code>T</code> stands for either <code>S1</code> or <code>S2</code>) 1180 then the <code>File</code> interface is implemented by both <code>S1</code> and 1181 <code>S2</code>, regardless of what other methods 1182 <code>S1</code> and <code>S2</code> may have or share. 1183 </p> 1184 1185 <p> 1186 A type implements any interface comprising any subset of its methods 1187 and may therefore implement several distinct interfaces. For 1188 instance, all types implement the <i>empty interface</i>: 1189 </p> 1190 1191 <pre> 1192 interface{} 1193 </pre> 1194 1195 <p> 1196 Similarly, consider this interface specification, 1197 which appears within a <a href="#Type_declarations">type declaration</a> 1198 to define an interface called <code>Locker</code>: 1199 </p> 1200 1201 <pre> 1202 type Locker interface { 1203 Lock() 1204 Unlock() 1205 } 1206 </pre> 1207 1208 <p> 1209 If <code>S1</code> and <code>S2</code> also implement 1210 </p> 1211 1212 <pre> 1213 func (p T) Lock() { … } 1214 func (p T) Unlock() { … } 1215 </pre> 1216 1217 <p> 1218 they implement the <code>Locker</code> interface as well 1219 as the <code>File</code> interface. 1220 </p> 1221 1222 <p> 1223 An interface <code>T</code> may use a (possibly qualified) interface type 1224 name <code>E</code> in place of a method specification. This is called 1225 <i>embedding</i> interface <code>E</code> in <code>T</code>; it adds 1226 all (exported and non-exported) methods of <code>E</code> to the interface 1227 <code>T</code>. 1228 </p> 1229 1230 <pre> 1231 type ReadWriter interface { 1232 Read(b Buffer) bool 1233 Write(b Buffer) bool 1234 } 1235 1236 type File interface { 1237 ReadWriter // same as adding the methods of ReadWriter 1238 Locker // same as adding the methods of Locker 1239 Close() 1240 } 1241 1242 type LockedFile interface { 1243 Locker 1244 File // illegal: Lock, Unlock not unique 1245 Lock() // illegal: Lock not unique 1246 } 1247 </pre> 1248 1249 <p> 1250 An interface type <code>T</code> may not embed itself 1251 or any interface type that embeds <code>T</code>, recursively. 1252 </p> 1253 1254 <pre> 1255 // illegal: Bad cannot embed itself 1256 type Bad interface { 1257 Bad 1258 } 1259 1260 // illegal: Bad1 cannot embed itself using Bad2 1261 type Bad1 interface { 1262 Bad2 1263 } 1264 type Bad2 interface { 1265 Bad1 1266 } 1267 </pre> 1268 1269 <h3 id="Map_types">Map types</h3> 1270 1271 <p> 1272 A map is an unordered group of elements of one type, called the 1273 element type, indexed by a set of unique <i>keys</i> of another type, 1274 called the key type. 1275 The value of an uninitialized map is <code>nil</code>. 1276 </p> 1277 1278 <pre class="ebnf"> 1279 MapType = "map" "[" KeyType "]" ElementType . 1280 KeyType = Type . 1281 </pre> 1282 1283 <p> 1284 The <a href="#Comparison_operators">comparison operators</a> 1285 <code>==</code> and <code>!=</code> must be fully defined 1286 for operands of the key type; thus the key type must not be a function, map, or 1287 slice. 1288 If the key type is an interface type, these 1289 comparison operators must be defined for the dynamic key values; 1290 failure will cause a <a href="#Run_time_panics">run-time panic</a>. 1291 1292 </p> 1293 1294 <pre> 1295 map[string]int 1296 map[*T]struct{ x, y float64 } 1297 map[string]interface{} 1298 </pre> 1299 1300 <p> 1301 The number of map elements is called its length. 1302 For a map <code>m</code>, it can be discovered using the 1303 built-in function <a href="#Length_and_capacity"><code>len</code></a> 1304 and may change during execution. Elements may be added during execution 1305 using <a href="#Assignments">assignments</a> and retrieved with 1306 <a href="#Index_expressions">index expressions</a>; they may be removed with the 1307 <a href="#Deletion_of_map_elements"><code>delete</code></a> built-in function. 1308 </p> 1309 <p> 1310 A new, empty map value is made using the built-in 1311 function <a href="#Making_slices_maps_and_channels"><code>make</code></a>, 1312 which takes the map type and an optional capacity hint as arguments: 1313 </p> 1314 1315 <pre> 1316 make(map[string]int) 1317 make(map[string]int, 100) 1318 </pre> 1319 1320 <p> 1321 The initial capacity does not bound its size: 1322 maps grow to accommodate the number of items 1323 stored in them, with the exception of <code>nil</code> maps. 1324 A <code>nil</code> map is equivalent to an empty map except that no elements 1325 may be added. 1326 1327 <h3 id="Channel_types">Channel types</h3> 1328 1329 <p> 1330 A channel provides a mechanism for 1331 <a href="#Go_statements">concurrently executing functions</a> 1332 to communicate by 1333 <a href="#Send_statements">sending</a> and 1334 <a href="#Receive_operator">receiving</a> 1335 values of a specified element type. 1336 The value of an uninitialized channel is <code>nil</code>. 1337 </p> 1338 1339 <pre class="ebnf"> 1340 ChannelType = ( "chan" | "chan" "<-" | "<-" "chan" ) ElementType . 1341 </pre> 1342 1343 <p> 1344 The optional <code><-</code> operator specifies the channel <i>direction</i>, 1345 <i>send</i> or <i>receive</i>. If no direction is given, the channel is 1346 <i>bidirectional</i>. 1347 A channel may be constrained only to send or only to receive by 1348 <a href="#Conversions">conversion</a> or <a href="#Assignments">assignment</a>. 1349 </p> 1350 1351 <pre> 1352 chan T // can be used to send and receive values of type T 1353 chan<- float64 // can only be used to send float64s 1354 <-chan int // can only be used to receive ints 1355 </pre> 1356 1357 <p> 1358 The <code><-</code> operator associates with the leftmost <code>chan</code> 1359 possible: 1360 </p> 1361 1362 <pre> 1363 chan<- chan int // same as chan<- (chan int) 1364 chan<- <-chan int // same as chan<- (<-chan int) 1365 <-chan <-chan int // same as <-chan (<-chan int) 1366 chan (<-chan int) 1367 </pre> 1368 1369 <p> 1370 A new, initialized channel 1371 value can be made using the built-in function 1372 <a href="#Making_slices_maps_and_channels"><code>make</code></a>, 1373 which takes the channel type and an optional <i>capacity</i> as arguments: 1374 </p> 1375 1376 <pre> 1377 make(chan int, 100) 1378 </pre> 1379 1380 <p> 1381 The capacity, in number of elements, sets the size of the buffer in the channel. 1382 If the capacity is zero or absent, the channel is unbuffered and communication 1383 succeeds only when both a sender and receiver are ready. Otherwise, the channel 1384 is buffered and communication succeeds without blocking if the buffer 1385 is not full (sends) or not empty (receives). 1386 A <code>nil</code> channel is never ready for communication. 1387 </p> 1388 1389 <p> 1390 A channel may be closed with the built-in function 1391 <a href="#Close"><code>close</code></a>. 1392 The multi-valued assignment form of the 1393 <a href="#Receive_operator">receive operator</a> 1394 reports whether a received value was sent before 1395 the channel was closed. 1396 </p> 1397 1398 <p> 1399 A single channel may be used in 1400 <a href="#Send_statements">send statements</a>, 1401 <a href="#Receive_operator">receive operations</a>, 1402 and calls to the built-in functions 1403 <a href="#Length_and_capacity"><code>cap</code></a> and 1404 <a href="#Length_and_capacity"><code>len</code></a> 1405 by any number of goroutines without further synchronization. 1406 Channels act as first-in-first-out queues. 1407 For example, if one goroutine sends values on a channel 1408 and a second goroutine receives them, the values are 1409 received in the order sent. 1410 </p> 1411 1412 <h2 id="Properties_of_types_and_values">Properties of types and values</h2> 1413 1414 <h3 id="Type_identity">Type identity</h3> 1415 1416 <p> 1417 Two types are either <i>identical</i> or <i>different</i>. 1418 </p> 1419 1420 <p> 1421 Two <a href="#Types">named types</a> are identical if their type names originate in the same 1422 <a href="#Type_declarations">TypeSpec</a>. 1423 A named and an <a href="#Types">unnamed type</a> are always different. Two unnamed types are identical 1424 if the corresponding type literals are identical, that is, if they have the same 1425 literal structure and corresponding components have identical types. In detail: 1426 </p> 1427 1428 <ul> 1429 <li>Two array types are identical if they have identical element types and 1430 the same array length.</li> 1431 1432 <li>Two slice types are identical if they have identical element types.</li> 1433 1434 <li>Two struct types are identical if they have the same sequence of fields, 1435 and if corresponding fields have the same names, and identical types, 1436 and identical tags. 1437 Two anonymous fields are considered to have the same name. Lower-case field 1438 names from different packages are always different.</li> 1439 1440 <li>Two pointer types are identical if they have identical base types.</li> 1441 1442 <li>Two function types are identical if they have the same number of parameters 1443 and result values, corresponding parameter and result types are 1444 identical, and either both functions are variadic or neither is. 1445 Parameter and result names are not required to match.</li> 1446 1447 <li>Two interface types are identical if they have the same set of methods 1448 with the same names and identical function types. Lower-case method names from 1449 different packages are always different. The order of the methods is irrelevant.</li> 1450 1451 <li>Two map types are identical if they have identical key and value types.</li> 1452 1453 <li>Two channel types are identical if they have identical value types and 1454 the same direction.</li> 1455 </ul> 1456 1457 <p> 1458 Given the declarations 1459 </p> 1460 1461 <pre> 1462 type ( 1463 T0 []string 1464 T1 []string 1465 T2 struct{ a, b int } 1466 T3 struct{ a, c int } 1467 T4 func(int, float64) *T0 1468 T5 func(x int, y float64) *[]string 1469 ) 1470 </pre> 1471 1472 <p> 1473 these types are identical: 1474 </p> 1475 1476 <pre> 1477 T0 and T0 1478 []int and []int 1479 struct{ a, b *T5 } and struct{ a, b *T5 } 1480 func(x int, y float64) *[]string and func(int, float64) (result *[]string) 1481 </pre> 1482 1483 <p> 1484 <code>T0</code> and <code>T1</code> are different because they are named types 1485 with distinct declarations; <code>func(int, float64) *T0</code> and 1486 <code>func(x int, y float64) *[]string</code> are different because <code>T0</code> 1487 is different from <code>[]string</code>. 1488 </p> 1489 1490 1491 <h3 id="Assignability">Assignability</h3> 1492 1493 <p> 1494 A value <code>x</code> is <i>assignable</i> to a <a href="#Variables">variable</a> of type <code>T</code> 1495 ("<code>x</code> is assignable to <code>T</code>") in any of these cases: 1496 </p> 1497 1498 <ul> 1499 <li> 1500 <code>x</code>'s type is identical to <code>T</code>. 1501 </li> 1502 <li> 1503 <code>x</code>'s type <code>V</code> and <code>T</code> have identical 1504 <a href="#Types">underlying types</a> and at least one of <code>V</code> 1505 or <code>T</code> is not a <a href="#Types">named type</a>. 1506 </li> 1507 <li> 1508 <code>T</code> is an interface type and 1509 <code>x</code> <a href="#Interface_types">implements</a> <code>T</code>. 1510 </li> 1511 <li> 1512 <code>x</code> is a bidirectional channel value, <code>T</code> is a channel type, 1513 <code>x</code>'s type <code>V</code> and <code>T</code> have identical element types, 1514 and at least one of <code>V</code> or <code>T</code> is not a named type. 1515 </li> 1516 <li> 1517 <code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code> 1518 is a pointer, function, slice, map, channel, or interface type. 1519 </li> 1520 <li> 1521 <code>x</code> is an untyped <a href="#Constants">constant</a> representable 1522 by a value of type <code>T</code>. 1523 </li> 1524 </ul> 1525 1526 1527 <h2 id="Blocks">Blocks</h2> 1528 1529 <p> 1530 A <i>block</i> is a possibly empty sequence of declarations and statements 1531 within matching brace brackets. 1532 </p> 1533 1534 <pre class="ebnf"> 1535 Block = "{" StatementList "}" . 1536 StatementList = { Statement ";" } . 1537 </pre> 1538 1539 <p> 1540 In addition to explicit blocks in the source code, there are implicit blocks: 1541 </p> 1542 1543 <ol> 1544 <li>The <i>universe block</i> encompasses all Go source text.</li> 1545 1546 <li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all 1547 Go source text for that package.</li> 1548 1549 <li>Each file has a <i>file block</i> containing all Go source text 1550 in that file.</li> 1551 1552 <li>Each <a href="#If_statements">"if"</a>, 1553 <a href="#For_statements">"for"</a>, and 1554 <a href="#Switch_statements">"switch"</a> 1555 statement is considered to be in its own implicit block.</li> 1556 1557 <li>Each clause in a <a href="#Switch_statements">"switch"</a> 1558 or <a href="#Select_statements">"select"</a> statement 1559 acts as an implicit block.</li> 1560 </ol> 1561 1562 <p> 1563 Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>. 1564 </p> 1565 1566 1567 <h2 id="Declarations_and_scope">Declarations and scope</h2> 1568 1569 <p> 1570 A <i>declaration</i> binds a non-<a href="#Blank_identifier">blank</a> identifier to a 1571 <a href="#Constant_declarations">constant</a>, 1572 <a href="#Type_declarations">type</a>, 1573 <a href="#Variable_declarations">variable</a>, 1574 <a href="#Function_declarations">function</a>, 1575 <a href="#Labeled_statements">label</a>, or 1576 <a href="#Import_declarations">package</a>. 1577 Every identifier in a program must be declared. 1578 No identifier may be declared twice in the same block, and 1579 no identifier may be declared in both the file and package block. 1580 </p> 1581 1582 <p> 1583 The <a href="#Blank_identifier">blank identifier</a> may be used like any other identifier 1584 in a declaration, but it does not introduce a binding and thus is not declared. 1585 In the package block, the identifier <code>init</code> may only be used for 1586 <a href="#Package_initialization"><code>init</code> function</a> declarations, 1587 and like the blank identifier it does not introduce a new binding. 1588 </p> 1589 1590 <pre class="ebnf"> 1591 Declaration = ConstDecl | TypeDecl | VarDecl . 1592 TopLevelDecl = Declaration | FunctionDecl | MethodDecl . 1593 </pre> 1594 1595 <p> 1596 The <i>scope</i> of a declared identifier is the extent of source text in which 1597 the identifier denotes the specified constant, type, variable, function, label, or package. 1598 </p> 1599 1600 <p> 1601 Go is lexically scoped using <a href="#Blocks">blocks</a>: 1602 </p> 1603 1604 <ol> 1605 <li>The scope of a <a href="#Predeclared_identifiers">predeclared identifier</a> is the universe block.</li> 1606 1607 <li>The scope of an identifier denoting a constant, type, variable, 1608 or function (but not method) declared at top level (outside any 1609 function) is the package block.</li> 1610 1611 <li>The scope of the package name of an imported package is the file block 1612 of the file containing the import declaration.</li> 1613 1614 <li>The scope of an identifier denoting a method receiver, function parameter, 1615 or result variable is the function body.</li> 1616 1617 <li>The scope of a constant or variable identifier declared 1618 inside a function begins at the end of the ConstSpec or VarSpec 1619 (ShortVarDecl for short variable declarations) 1620 and ends at the end of the innermost containing block.</li> 1621 1622 <li>The scope of a type identifier declared inside a function 1623 begins at the identifier in the TypeSpec 1624 and ends at the end of the innermost containing block.</li> 1625 </ol> 1626 1627 <p> 1628 An identifier declared in a block may be redeclared in an inner block. 1629 While the identifier of the inner declaration is in scope, it denotes 1630 the entity declared by the inner declaration. 1631 </p> 1632 1633 <p> 1634 The <a href="#Package_clause">package clause</a> is not a declaration; the package name 1635 does not appear in any scope. Its purpose is to identify the files belonging 1636 to the same <a href="#Packages">package</a> and to specify the default package name for import 1637 declarations. 1638 </p> 1639 1640 1641 <h3 id="Label_scopes">Label scopes</h3> 1642 1643 <p> 1644 Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are 1645 used in the <a href="#Break_statements">"break"</a>, 1646 <a href="#Continue_statements">"continue"</a>, and 1647 <a href="#Goto_statements">"goto"</a> statements. 1648 It is illegal to define a label that is never used. 1649 In contrast to other identifiers, labels are not block scoped and do 1650 not conflict with identifiers that are not labels. The scope of a label 1651 is the body of the function in which it is declared and excludes 1652 the body of any nested function. 1653 </p> 1654 1655 1656 <h3 id="Blank_identifier">Blank identifier</h3> 1657 1658 <p> 1659 The <i>blank identifier</i> is represented by the underscore character <code>_</code>. 1660 It serves as an anonymous placeholder instead of a regular (non-blank) 1661 identifier and has special meaning in <a href="#Declarations_and_scope">declarations</a>, 1662 as an <a href="#Operands">operand</a>, and in <a href="#Assignments">assignments</a>. 1663 </p> 1664 1665 1666 <h3 id="Predeclared_identifiers">Predeclared identifiers</h3> 1667 1668 <p> 1669 The following identifiers are implicitly declared in the 1670 <a href="#Blocks">universe block</a>: 1671 </p> 1672 <pre class="grammar"> 1673 Types: 1674 bool byte complex64 complex128 error float32 float64 1675 int int8 int16 int32 int64 rune string 1676 uint uint8 uint16 uint32 uint64 uintptr 1677 1678 Constants: 1679 true false iota 1680 1681 Zero value: 1682 nil 1683 1684 Functions: 1685 append cap close complex copy delete imag len 1686 make new panic print println real recover 1687 </pre> 1688 1689 1690 <h3 id="Exported_identifiers">Exported identifiers</h3> 1691 1692 <p> 1693 An identifier may be <i>exported</i> to permit access to it from another package. 1694 An identifier is exported if both: 1695 </p> 1696 <ol> 1697 <li>the first character of the identifier's name is a Unicode upper case 1698 letter (Unicode class "Lu"); and</li> 1699 <li>the identifier is declared in the <a href="#Blocks">package block</a> 1700 or it is a <a href="#Struct_types">field name</a> or 1701 <a href="#MethodName">method name</a>.</li> 1702 </ol> 1703 <p> 1704 All other identifiers are not exported. 1705 </p> 1706 1707 1708 <h3 id="Uniqueness_of_identifiers">Uniqueness of identifiers</h3> 1709 1710 <p> 1711 Given a set of identifiers, an identifier is called <i>unique</i> if it is 1712 <i>different</i> from every other in the set. 1713 Two identifiers are different if they are spelled differently, or if they 1714 appear in different <a href="#Packages">packages</a> and are not 1715 <a href="#Exported_identifiers">exported</a>. Otherwise, they are the same. 1716 </p> 1717 1718 <h3 id="Constant_declarations">Constant declarations</h3> 1719 1720 <p> 1721 A constant declaration binds a list of identifiers (the names of 1722 the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>. 1723 The number of identifiers must be equal 1724 to the number of expressions, and the <i>n</i>th identifier on 1725 the left is bound to the value of the <i>n</i>th expression on the 1726 right. 1727 </p> 1728 1729 <pre class="ebnf"> 1730 ConstDecl = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) . 1731 ConstSpec = IdentifierList [ [ Type ] "=" ExpressionList ] . 1732 1733 IdentifierList = identifier { "," identifier } . 1734 ExpressionList = Expression { "," Expression } . 1735 </pre> 1736 1737 <p> 1738 If the type is present, all constants take the type specified, and 1739 the expressions must be <a href="#Assignability">assignable</a> to that type. 1740 If the type is omitted, the constants take the 1741 individual types of the corresponding expressions. 1742 If the expression values are untyped <a href="#Constants">constants</a>, 1743 the declared constants remain untyped and the constant identifiers 1744 denote the constant values. For instance, if the expression is a 1745 floating-point literal, the constant identifier denotes a floating-point 1746 constant, even if the literal's fractional part is zero. 1747 </p> 1748 1749 <pre> 1750 const Pi float64 = 3.14159265358979323846 1751 const zero = 0.0 // untyped floating-point constant 1752 const ( 1753 size int64 = 1024 1754 eof = -1 // untyped integer constant 1755 ) 1756 const a, b, c = 3, 4, "foo" // a = 3, b = 4, c = "foo", untyped integer and string constants 1757 const u, v float32 = 0, 3 // u = 0.0, v = 3.0 1758 </pre> 1759 1760 <p> 1761 Within a parenthesized <code>const</code> declaration list the 1762 expression list may be omitted from any but the first declaration. 1763 Such an empty list is equivalent to the textual substitution of the 1764 first preceding non-empty expression list and its type if any. 1765 Omitting the list of expressions is therefore equivalent to 1766 repeating the previous list. The number of identifiers must be equal 1767 to the number of expressions in the previous list. 1768 Together with the <a href="#Iota"><code>iota</code> constant generator</a> 1769 this mechanism permits light-weight declaration of sequential values: 1770 </p> 1771 1772 <pre> 1773 const ( 1774 Sunday = iota 1775 Monday 1776 Tuesday 1777 Wednesday 1778 Thursday 1779 Friday 1780 Partyday 1781 numberOfDays // this constant is not exported 1782 ) 1783 </pre> 1784 1785 1786 <h3 id="Iota">Iota</h3> 1787 1788 <p> 1789 Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier 1790 <code>iota</code> represents successive untyped integer <a href="#Constants"> 1791 constants</a>. It is reset to 0 whenever the reserved word <code>const</code> 1792 appears in the source and increments after each <a href="#ConstSpec">ConstSpec</a>. 1793 It can be used to construct a set of related constants: 1794 </p> 1795 1796 <pre> 1797 const ( // iota is reset to 0 1798 c0 = iota // c0 == 0 1799 c1 = iota // c1 == 1 1800 c2 = iota // c2 == 2 1801 ) 1802 1803 const ( // iota is reset to 0 1804 a = 1 << iota // a == 1 1805 b = 1 << iota // b == 2 1806 c = 3 // c == 3 (iota is not used but still incremented) 1807 d = 1 << iota // d == 8 1808 ) 1809 1810 const ( // iota is reset to 0 1811 u = iota * 42 // u == 0 (untyped integer constant) 1812 v float64 = iota * 42 // v == 42.0 (float64 constant) 1813 w = iota * 42 // w == 84 (untyped integer constant) 1814 ) 1815 1816 const x = iota // x == 0 (iota has been reset) 1817 const y = iota // y == 0 (iota has been reset) 1818 </pre> 1819 1820 <p> 1821 Within an ExpressionList, the value of each <code>iota</code> is the same because 1822 it is only incremented after each ConstSpec: 1823 </p> 1824 1825 <pre> 1826 const ( 1827 bit0, mask0 = 1 << iota, 1<<iota - 1 // bit0 == 1, mask0 == 0 1828 bit1, mask1 // bit1 == 2, mask1 == 1 1829 _, _ // skips iota == 2 1830 bit3, mask3 // bit3 == 8, mask3 == 7 1831 ) 1832 </pre> 1833 1834 <p> 1835 This last example exploits the implicit repetition of the 1836 last non-empty expression list. 1837 </p> 1838 1839 1840 <h3 id="Type_declarations">Type declarations</h3> 1841 1842 <p> 1843 A type declaration binds an identifier, the <i>type name</i>, to a new type 1844 that has the same <a href="#Types">underlying type</a> as an existing type, 1845 and operations defined for the existing type are also defined for the new type. 1846 The new type is <a href="#Type_identity">different</a> from the existing type. 1847 </p> 1848 1849 <pre class="ebnf"> 1850 TypeDecl = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) . 1851 TypeSpec = identifier Type . 1852 </pre> 1853 1854 <pre> 1855 type IntArray [16]int 1856 1857 type ( 1858 Point struct{ x, y float64 } 1859 Polar Point 1860 ) 1861 1862 type TreeNode struct { 1863 left, right *TreeNode 1864 value *Comparable 1865 } 1866 1867 type Block interface { 1868 BlockSize() int 1869 Encrypt(src, dst []byte) 1870 Decrypt(src, dst []byte) 1871 } 1872 </pre> 1873 1874 <p> 1875 The declared type does not inherit any <a href="#Method_declarations">methods</a> 1876 bound to the existing type, but the <a href="#Method_sets">method set</a> 1877 of an interface type or of elements of a composite type remains unchanged: 1878 </p> 1879 1880 <pre> 1881 // A Mutex is a data type with two methods, Lock and Unlock. 1882 type Mutex struct { /* Mutex fields */ } 1883 func (m *Mutex) Lock() { /* Lock implementation */ } 1884 func (m *Mutex) Unlock() { /* Unlock implementation */ } 1885 1886 // NewMutex has the same composition as Mutex but its method set is empty. 1887 type NewMutex Mutex 1888 1889 // The method set of the <a href="#Pointer_types">base type</a> of PtrMutex remains unchanged, 1890 // but the method set of PtrMutex is empty. 1891 type PtrMutex *Mutex 1892 1893 // The method set of *PrintableMutex contains the methods 1894 // Lock and Unlock bound to its anonymous field Mutex. 1895 type PrintableMutex struct { 1896 Mutex 1897 } 1898 1899 // MyBlock is an interface type that has the same method set as Block. 1900 type MyBlock Block 1901 </pre> 1902 1903 <p> 1904 A type declaration may be used to define a different boolean, numeric, or string 1905 type and attach methods to it: 1906 </p> 1907 1908 <pre> 1909 type TimeZone int 1910 1911 const ( 1912 EST TimeZone = -(5 + iota) 1913 CST 1914 MST 1915 PST 1916 ) 1917 1918 func (tz TimeZone) String() string { 1919 return fmt.Sprintf("GMT%+dh", tz) 1920 } 1921 </pre> 1922 1923 1924 <h3 id="Variable_declarations">Variable declarations</h3> 1925 1926 <p> 1927 A variable declaration creates one or more variables, binds corresponding 1928 identifiers to them, and gives each a type and an initial value. 1929 </p> 1930 1931 <pre class="ebnf"> 1932 VarDecl = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) . 1933 VarSpec = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) . 1934 </pre> 1935 1936 <pre> 1937 var i int 1938 var U, V, W float64 1939 var k = 0 1940 var x, y float32 = -1, -2 1941 var ( 1942 i int 1943 u, v, s = 2.0, 3.0, "bar" 1944 ) 1945 var re, im = complexSqrt(-1) 1946 var _, found = entries[name] // map lookup; only interested in "found" 1947 </pre> 1948 1949 <p> 1950 If a list of expressions is given, the variables are initialized 1951 with the expressions following the rules for <a href="#Assignments">assignments</a>. 1952 Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>. 1953 </p> 1954 1955 <p> 1956 If a type is present, each variable is given that type. 1957 Otherwise, each variable is given the type of the corresponding 1958 initialization value in the assignment. 1959 If that value is an untyped constant, it is first 1960 <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>; 1961 if it is an untyped boolean value, it is first converted to type <code>bool</code>. 1962 The predeclared value <code>nil</code> cannot be used to initialize a variable 1963 with no explicit type. 1964 </p> 1965 1966 <pre> 1967 var d = math.Sin(0.5) // d is float64 1968 var i = 42 // i is int 1969 var t, ok = x.(T) // t is T, ok is bool 1970 var n = nil // illegal 1971 </pre> 1972 1973 <p> 1974 Implementation restriction: A compiler may make it illegal to declare a variable 1975 inside a <a href="#Function_declarations">function body</a> if the variable is 1976 never used. 1977 </p> 1978 1979 <h3 id="Short_variable_declarations">Short variable declarations</h3> 1980 1981 <p> 1982 A <i>short variable declaration</i> uses the syntax: 1983 </p> 1984 1985 <pre class="ebnf"> 1986 ShortVarDecl = IdentifierList ":=" ExpressionList . 1987 </pre> 1988 1989 <p> 1990 It is shorthand for a regular <a href="#Variable_declarations">variable declaration</a> 1991 with initializer expressions but no types: 1992 </p> 1993 1994 <pre class="grammar"> 1995 "var" IdentifierList = ExpressionList . 1996 </pre> 1997 1998 <pre> 1999 i, j := 0, 10 2000 f := func() int { return 7 } 2001 ch := make(chan int) 2002 r, w := os.Pipe(fd) // os.Pipe() returns two values 2003 _, y, _ := coord(p) // coord() returns three values; only interested in y coordinate 2004 </pre> 2005 2006 <p> 2007 Unlike regular variable declarations, a short variable declaration may <i>redeclare</i> 2008 variables provided they were originally declared earlier in the same block 2009 (or the parameter lists if the block is the function body) with the same type, 2010 and at least one of the non-<a href="#Blank_identifier">blank</a> variables is new. 2011 As a consequence, redeclaration can only appear in a multi-variable short declaration. 2012 Redeclaration does not introduce a new variable; it just assigns a new value to the original. 2013 </p> 2014 2015 <pre> 2016 field1, offset := nextField(str, 0) 2017 field2, offset := nextField(str, offset) // redeclares offset 2018 a, a := 1, 2 // illegal: double declaration of a or no new variable if a was declared elsewhere 2019 </pre> 2020 2021 <p> 2022 Short variable declarations may appear only inside functions. 2023 In some contexts such as the initializers for 2024 <a href="#If_statements">"if"</a>, 2025 <a href="#For_statements">"for"</a>, or 2026 <a href="#Switch_statements">"switch"</a> statements, 2027 they can be used to declare local temporary variables. 2028 </p> 2029 2030 <h3 id="Function_declarations">Function declarations</h3> 2031 2032 <p> 2033 A function declaration binds an identifier, the <i>function name</i>, 2034 to a function. 2035 </p> 2036 2037 <pre class="ebnf"> 2038 FunctionDecl = "func" FunctionName ( Function | Signature ) . 2039 FunctionName = identifier . 2040 Function = Signature FunctionBody . 2041 FunctionBody = Block . 2042 </pre> 2043 2044 <p> 2045 If the function's <a href="#Function_types">signature</a> declares 2046 result parameters, the function body's statement list must end in 2047 a <a href="#Terminating_statements">terminating statement</a>. 2048 </p> 2049 2050 <pre> 2051 func IndexRune(s string, r rune) int { 2052 for i, c := range s { 2053 if c == r { 2054 return i 2055 } 2056 } 2057 // invalid: missing return statement 2058 } 2059 </pre> 2060 2061 <p> 2062 A function declaration may omit the body. Such a declaration provides the 2063 signature for a function implemented outside Go, such as an assembly routine. 2064 </p> 2065 2066 <pre> 2067 func min(x int, y int) int { 2068 if x < y { 2069 return x 2070 } 2071 return y 2072 } 2073 2074 func flushICache(begin, end uintptr) // implemented externally 2075 </pre> 2076 2077 <h3 id="Method_declarations">Method declarations</h3> 2078 2079 <p> 2080 A method is a <a href="#Function_declarations">function</a> with a <i>receiver</i>. 2081 A method declaration binds an identifier, the <i>method name</i>, to a method, 2082 and associates the method with the receiver's <i>base type</i>. 2083 </p> 2084 2085 <pre class="ebnf"> 2086 MethodDecl = "func" Receiver MethodName ( Function | Signature ) . 2087 Receiver = Parameters . 2088 </pre> 2089 2090 <p> 2091 The receiver is specified via an extra parameter section preceding the method 2092 name. That parameter section must declare a single non-variadic parameter, the receiver. 2093 Its type must be of the form <code>T</code> or <code>*T</code> (possibly using 2094 parentheses) where <code>T</code> is a type name. The type denoted by <code>T</code> is called 2095 the receiver <i>base type</i>; it must not be a pointer or interface type and 2096 it must be declared in the same package as the method. 2097 The method is said to be <i>bound</i> to the base type and the method name 2098 is visible only within <a href="#Selectors">selectors</a> for type <code>T</code> 2099 or <code>*T</code>. 2100 </p> 2101 2102 <p> 2103 A non-<a href="#Blank_identifier">blank</a> receiver identifier must be 2104 <a href="#Uniqueness_of_identifiers">unique</a> in the method signature. 2105 If the receiver's value is not referenced inside the body of the method, 2106 its identifier may be omitted in the declaration. The same applies in 2107 general to parameters of functions and methods. 2108 </p> 2109 2110 <p> 2111 For a base type, the non-blank names of methods bound to it must be unique. 2112 If the base type is a <a href="#Struct_types">struct type</a>, 2113 the non-blank method and field names must be distinct. 2114 </p> 2115 2116 <p> 2117 Given type <code>Point</code>, the declarations 2118 </p> 2119 2120 <pre> 2121 func (p *Point) Length() float64 { 2122 return math.Sqrt(p.x * p.x + p.y * p.y) 2123 } 2124 2125 func (p *Point) Scale(factor float64) { 2126 p.x *= factor 2127 p.y *= factor 2128 } 2129 </pre> 2130 2131 <p> 2132 bind the methods <code>Length</code> and <code>Scale</code>, 2133 with receiver type <code>*Point</code>, 2134 to the base type <code>Point</code>. 2135 </p> 2136 2137 <p> 2138 The type of a method is the type of a function with the receiver as first 2139 argument. For instance, the method <code>Scale</code> has type 2140 </p> 2141 2142 <pre> 2143 func(p *Point, factor float64) 2144 </pre> 2145 2146 <p> 2147 However, a function declared this way is not a method. 2148 </p> 2149 2150 2151 <h2 id="Expressions">Expressions</h2> 2152 2153 <p> 2154 An expression specifies the computation of a value by applying 2155 operators and functions to operands. 2156 </p> 2157 2158 <h3 id="Operands">Operands</h3> 2159 2160 <p> 2161 Operands denote the elementary values in an expression. An operand may be a 2162 literal, a (possibly <a href="#Qualified_identifiers">qualified</a>) 2163 non-<a href="#Blank_identifier">blank</a> identifier denoting a 2164 <a href="#Constant_declarations">constant</a>, 2165 <a href="#Variable_declarations">variable</a>, or 2166 <a href="#Function_declarations">function</a>, 2167 a <a href="#Method_expressions">method expression</a> yielding a function, 2168 or a parenthesized expression. 2169 </p> 2170 2171 <p> 2172 The <a href="#Blank_identifier">blank identifier</a> may appear as an 2173 operand only on the left-hand side of an <a href="#Assignments">assignment</a>. 2174 </p> 2175 2176 <pre class="ebnf"> 2177 Operand = Literal | OperandName | MethodExpr | "(" Expression ")" . 2178 Literal = BasicLit | CompositeLit | FunctionLit . 2179 BasicLit = int_lit | float_lit | imaginary_lit | rune_lit | string_lit . 2180 OperandName = identifier | QualifiedIdent. 2181 </pre> 2182 2183 <h3 id="Qualified_identifiers">Qualified identifiers</h3> 2184 2185 <p> 2186 A qualified identifier is an identifier qualified with a package name prefix. 2187 Both the package name and the identifier must not be 2188 <a href="#Blank_identifier">blank</a>. 2189 </p> 2190 2191 <pre class="ebnf"> 2192 QualifiedIdent = PackageName "." identifier . 2193 </pre> 2194 2195 <p> 2196 A qualified identifier accesses an identifier in a different package, which 2197 must be <a href="#Import_declarations">imported</a>. 2198 The identifier must be <a href="#Exported_identifiers">exported</a> and 2199 declared in the <a href="#Blocks">package block</a> of that package. 2200 </p> 2201 2202 <pre> 2203 math.Sin // denotes the Sin function in package math 2204 </pre> 2205 2206 <h3 id="Composite_literals">Composite literals</h3> 2207 2208 <p> 2209 Composite literals construct values for structs, arrays, slices, and maps 2210 and create a new value each time they are evaluated. 2211 They consist of the type of the literal followed by a brace-bound list of elements. 2212 Each element may optionally be preceded by a corresponding key. 2213 </p> 2214 2215 <pre class="ebnf"> 2216 CompositeLit = LiteralType LiteralValue . 2217 LiteralType = StructType | ArrayType | "[" "..." "]" ElementType | 2218 SliceType | MapType | TypeName . 2219 LiteralValue = "{" [ ElementList [ "," ] ] "}" . 2220 ElementList = KeyedElement { "," KeyedElement } . 2221 KeyedElement = [ Key ":" ] Element . 2222 Key = FieldName | Expression | LiteralValue . 2223 FieldName = identifier . 2224 Element = Expression | LiteralValue . 2225 </pre> 2226 2227 <p> 2228 The LiteralType's underlying type must be a struct, array, slice, or map type 2229 (the grammar enforces this constraint except when the type is given 2230 as a TypeName). 2231 The types of the elements and keys must be <a href="#Assignability">assignable</a> 2232 to the respective field, element, and key types of the literal type; 2233 there is no additional conversion. 2234 The key is interpreted as a field name for struct literals, 2235 an index for array and slice literals, and a key for map literals. 2236 For map literals, all elements must have a key. It is an error 2237 to specify multiple elements with the same field name or 2238 constant key value. 2239 </p> 2240 2241 <p> 2242 For struct literals the following rules apply: 2243 </p> 2244 <ul> 2245 <li>A key must be a field name declared in the struct type. 2246 </li> 2247 <li>An element list that does not contain any keys must 2248 list an element for each struct field in the 2249 order in which the fields are declared. 2250 </li> 2251 <li>If any element has a key, every element must have a key. 2252 </li> 2253 <li>An element list that contains keys does not need to 2254 have an element for each struct field. Omitted fields 2255 get the zero value for that field. 2256 </li> 2257 <li>A literal may omit the element list; such a literal evaluates 2258 to the zero value for its type. 2259 </li> 2260 <li>It is an error to specify an element for a non-exported 2261 field of a struct belonging to a different package. 2262 </li> 2263 </ul> 2264 2265 <p> 2266 Given the declarations 2267 </p> 2268 <pre> 2269 type Point3D struct { x, y, z float64 } 2270 type Line struct { p, q Point3D } 2271 </pre> 2272 2273 <p> 2274 one may write 2275 </p> 2276 2277 <pre> 2278 origin := Point3D{} // zero value for Point3D 2279 line := Line{origin, Point3D{y: -4, z: 12.3}} // zero value for line.q.x 2280 </pre> 2281 2282 <p> 2283 For array and slice literals the following rules apply: 2284 </p> 2285 <ul> 2286 <li>Each element has an associated integer index marking 2287 its position in the array. 2288 </li> 2289 <li>An element with a key uses the key as its index; the 2290 key must be a constant integer expression. 2291 </li> 2292 <li>An element without a key uses the previous element's index plus one. 2293 If the first element has no key, its index is zero. 2294 </li> 2295 </ul> 2296 2297 <p> 2298 <a href="#Address_operators">Taking the address</a> of a composite literal 2299 generates a pointer to a unique <a href="#Variables">variable</a> initialized 2300 with the literal's value. 2301 </p> 2302 <pre> 2303 var pointer *Point3D = &Point3D{y: 1000} 2304 </pre> 2305 2306 <p> 2307 The length of an array literal is the length specified in the literal type. 2308 If fewer elements than the length are provided in the literal, the missing 2309 elements are set to the zero value for the array element type. 2310 It is an error to provide elements with index values outside the index range 2311 of the array. The notation <code>...</code> specifies an array length equal 2312 to the maximum element index plus one. 2313 </p> 2314 2315 <pre> 2316 buffer := [10]string{} // len(buffer) == 10 2317 intSet := [6]int{1, 2, 3, 5} // len(intSet) == 6 2318 days := [...]string{"Sat", "Sun"} // len(days) == 2 2319 </pre> 2320 2321 <p> 2322 A slice literal describes the entire underlying array literal. 2323 Thus the length and capacity of a slice literal are the maximum 2324 element index plus one. A slice literal has the form 2325 </p> 2326 2327 <pre> 2328 []T{x1, x2, … xn} 2329 </pre> 2330 2331 <p> 2332 and is shorthand for a slice operation applied to an array: 2333 </p> 2334 2335 <pre> 2336 tmp := [n]T{x1, x2, … xn} 2337 tmp[0 : n] 2338 </pre> 2339 2340 <p> 2341 Within a composite literal of array, slice, or map type <code>T</code>, 2342 elements or map keys that are themselves composite literals may elide the respective 2343 literal type if it is identical to the element or key type of <code>T</code>. 2344 Similarly, elements or keys that are addresses of composite literals may elide 2345 the <code>&T</code> when the element or key type is <code>*T</code>. 2346 </p> 2347 2348 <pre> 2349 [...]Point{{1.5, -3.5}, {0, 0}} // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}} 2350 [][]int{{1, 2, 3}, {4, 5}} // same as [][]int{[]int{1, 2, 3}, []int{4, 5}} 2351 [][]Point{{{0, 1}, {1, 2}}} // same as [][]Point{[]Point{Point{0, 1}, Point{1, 2}}} 2352 map[string]Point{"orig": {0, 0}} // same as map[string]Point{"orig": Point{0, 0}} 2353 2354 [...]*Point{{1.5, -3.5}, {0, 0}} // same as [...]*Point{&Point{1.5, -3.5}, &Point{0, 0}} 2355 2356 map[Point]string{{0, 0}: "orig"} // same as map[Point]string{Point{0, 0}: "orig"} 2357 </pre> 2358 2359 <p> 2360 A parsing ambiguity arises when a composite literal using the 2361 TypeName form of the LiteralType appears as an operand between the 2362 <a href="#Keywords">keyword</a> and the opening brace of the block 2363 of an "if", "for", or "switch" statement, and the composite literal 2364 is not enclosed in parentheses, square brackets, or curly braces. 2365 In this rare case, the opening brace of the literal is erroneously parsed 2366 as the one introducing the block of statements. To resolve the ambiguity, 2367 the composite literal must appear within parentheses. 2368 </p> 2369 2370 <pre> 2371 if x == (T{a,b,c}[i]) { … } 2372 if (x == T{a,b,c}[i]) { … } 2373 </pre> 2374 2375 <p> 2376 Examples of valid array, slice, and map literals: 2377 </p> 2378 2379 <pre> 2380 // list of prime numbers 2381 primes := []int{2, 3, 5, 7, 9, 2147483647} 2382 2383 // vowels[ch] is true if ch is a vowel 2384 vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true} 2385 2386 // the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1} 2387 filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1} 2388 2389 // frequencies in Hz for equal-tempered scale (A4 = 440Hz) 2390 noteFrequency := map[string]float32{ 2391 "C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83, 2392 "G0": 24.50, "A0": 27.50, "B0": 30.87, 2393 } 2394 </pre> 2395 2396 2397 <h3 id="Function_literals">Function literals</h3> 2398 2399 <p> 2400 A function literal represents an anonymous <a href="#Function_declarations">function</a>. 2401 </p> 2402 2403 <pre class="ebnf"> 2404 FunctionLit = "func" Function . 2405 </pre> 2406 2407 <pre> 2408 func(a, b int, z float64) bool { return a*b < int(z) } 2409 </pre> 2410 2411 <p> 2412 A function literal can be assigned to a variable or invoked directly. 2413 </p> 2414 2415 <pre> 2416 f := func(x, y int) int { return x + y } 2417 func(ch chan int) { ch <- ACK }(replyChan) 2418 </pre> 2419 2420 <p> 2421 Function literals are <i>closures</i>: they may refer to variables 2422 defined in a surrounding function. Those variables are then shared between 2423 the surrounding function and the function literal, and they survive as long 2424 as they are accessible. 2425 </p> 2426 2427 2428 <h3 id="Primary_expressions">Primary expressions</h3> 2429 2430 <p> 2431 Primary expressions are the operands for unary and binary expressions. 2432 </p> 2433 2434 <pre class="ebnf"> 2435 PrimaryExpr = 2436 Operand | 2437 Conversion | 2438 PrimaryExpr Selector | 2439 PrimaryExpr Index | 2440 PrimaryExpr Slice | 2441 PrimaryExpr TypeAssertion | 2442 PrimaryExpr Arguments . 2443 2444 Selector = "." identifier . 2445 Index = "[" Expression "]" . 2446 Slice = "[" [ Expression ] ":" [ Expression ] "]" | 2447 "[" [ Expression ] ":" Expression ":" Expression "]" . 2448 TypeAssertion = "." "(" Type ")" . 2449 Arguments = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" . 2450 </pre> 2451 2452 2453 <pre> 2454 x 2455 2 2456 (s + ".txt") 2457 f(3.1415, true) 2458 Point{1, 2} 2459 m["foo"] 2460 s[i : j + 1] 2461 obj.color 2462 f.p[i].x() 2463 </pre> 2464 2465 2466 <h3 id="Selectors">Selectors</h3> 2467 2468 <p> 2469 For a <a href="#Primary_expressions">primary expression</a> <code>x</code> 2470 that is not a <a href="#Package_clause">package name</a>, the 2471 <i>selector expression</i> 2472 </p> 2473 2474 <pre> 2475 x.f 2476 </pre> 2477 2478 <p> 2479 denotes the field or method <code>f</code> of the value <code>x</code> 2480 (or sometimes <code>*x</code>; see below). 2481 The identifier <code>f</code> is called the (field or method) <i>selector</i>; 2482 it must not be the <a href="#Blank_identifier">blank identifier</a>. 2483 The type of the selector expression is the type of <code>f</code>. 2484 If <code>x</code> is a package name, see the section on 2485 <a href="#Qualified_identifiers">qualified identifiers</a>. 2486 </p> 2487 2488 <p> 2489 A selector <code>f</code> may denote a field or method <code>f</code> of 2490 a type <code>T</code>, or it may refer 2491 to a field or method <code>f</code> of a nested 2492 <a href="#Struct_types">anonymous field</a> of <code>T</code>. 2493 The number of anonymous fields traversed 2494 to reach <code>f</code> is called its <i>depth</i> in <code>T</code>. 2495 The depth of a field or method <code>f</code> 2496 declared in <code>T</code> is zero. 2497 The depth of a field or method <code>f</code> declared in 2498 an anonymous field <code>A</code> in <code>T</code> is the 2499 depth of <code>f</code> in <code>A</code> plus one. 2500 </p> 2501 2502 <p> 2503 The following rules apply to selectors: 2504 </p> 2505 2506 <ol> 2507 <li> 2508 For a value <code>x</code> of type <code>T</code> or <code>*T</code> 2509 where <code>T</code> is not a pointer or interface type, 2510 <code>x.f</code> denotes the field or method at the shallowest depth 2511 in <code>T</code> where there 2512 is such an <code>f</code>. 2513 If there is not exactly <a href="#Uniqueness_of_identifiers">one <code>f</code></a> 2514 with shallowest depth, the selector expression is illegal. 2515 </li> 2516 2517 <li> 2518 For a value <code>x</code> of type <code>I</code> where <code>I</code> 2519 is an interface type, <code>x.f</code> denotes the actual method with name 2520 <code>f</code> of the dynamic value of <code>x</code>. 2521 If there is no method with name <code>f</code> in the 2522 <a href="#Method_sets">method set</a> of <code>I</code>, the selector 2523 expression is illegal. 2524 </li> 2525 2526 <li> 2527 As an exception, if the type of <code>x</code> is a named pointer type 2528 and <code>(*x).f</code> is a valid selector expression denoting a field 2529 (but not a method), <code>x.f</code> is shorthand for <code>(*x).f</code>. 2530 </li> 2531 2532 <li> 2533 In all other cases, <code>x.f</code> is illegal. 2534 </li> 2535 2536 <li> 2537 If <code>x</code> is of pointer type and has the value 2538 <code>nil</code> and <code>x.f</code> denotes a struct field, 2539 assigning to or evaluating <code>x.f</code> 2540 causes a <a href="#Run_time_panics">run-time panic</a>. 2541 </li> 2542 2543 <li> 2544 If <code>x</code> is of interface type and has the value 2545 <code>nil</code>, <a href="#Calls">calling</a> or 2546 <a href="#Method_values">evaluating</a> the method <code>x.f</code> 2547 causes a <a href="#Run_time_panics">run-time panic</a>. 2548 </li> 2549 </ol> 2550 2551 <p> 2552 For example, given the declarations: 2553 </p> 2554 2555 <pre> 2556 type T0 struct { 2557 x int 2558 } 2559 2560 func (*T0) M0() 2561 2562 type T1 struct { 2563 y int 2564 } 2565 2566 func (T1) M1() 2567 2568 type T2 struct { 2569 z int 2570 T1 2571 *T0 2572 } 2573 2574 func (*T2) M2() 2575 2576 type Q *T2 2577 2578 var t T2 // with t.T0 != nil 2579 var p *T2 // with p != nil and (*p).T0 != nil 2580 var q Q = p 2581 </pre> 2582 2583 <p> 2584 one may write: 2585 </p> 2586 2587 <pre> 2588 t.z // t.z 2589 t.y // t.T1.y 2590 t.x // (*t.T0).x 2591 2592 p.z // (*p).z 2593 p.y // (*p).T1.y 2594 p.x // (*(*p).T0).x 2595 2596 q.x // (*(*q).T0).x (*q).x is a valid field selector 2597 2598 p.M0() // ((*p).T0).M0() M0 expects *T0 receiver 2599 p.M1() // ((*p).T1).M1() M1 expects T1 receiver 2600 p.M2() // p.M2() M2 expects *T2 receiver 2601 t.M2() // (&t).M2() M2 expects *T2 receiver, see section on Calls 2602 </pre> 2603 2604 <p> 2605 but the following is invalid: 2606 </p> 2607 2608 <pre> 2609 q.M0() // (*q).M0 is valid but not a field selector 2610 </pre> 2611 2612 2613 <h3 id="Method_expressions">Method expressions</h3> 2614 2615 <p> 2616 If <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>, 2617 <code>T.M</code> is a function that is callable as a regular function 2618 with the same arguments as <code>M</code> prefixed by an additional 2619 argument that is the receiver of the method. 2620 </p> 2621 2622 <pre class="ebnf"> 2623 MethodExpr = ReceiverType "." MethodName . 2624 ReceiverType = TypeName | "(" "*" TypeName ")" | "(" ReceiverType ")" . 2625 </pre> 2626 2627 <p> 2628 Consider a struct type <code>T</code> with two methods, 2629 <code>Mv</code>, whose receiver is of type <code>T</code>, and 2630 <code>Mp</code>, whose receiver is of type <code>*T</code>. 2631 </p> 2632 2633 <pre> 2634 type T struct { 2635 a int 2636 } 2637 func (tv T) Mv(a int) int { return 0 } // value receiver 2638 func (tp *T) Mp(f float32) float32 { return 1 } // pointer receiver 2639 2640 var t T 2641 </pre> 2642 2643 <p> 2644 The expression 2645 </p> 2646 2647 <pre> 2648 T.Mv 2649 </pre> 2650 2651 <p> 2652 yields a function equivalent to <code>Mv</code> but 2653 with an explicit receiver as its first argument; it has signature 2654 </p> 2655 2656 <pre> 2657 func(tv T, a int) int 2658 </pre> 2659 2660 <p> 2661 That function may be called normally with an explicit receiver, so 2662 these five invocations are equivalent: 2663 </p> 2664 2665 <pre> 2666 t.Mv(7) 2667 T.Mv(t, 7) 2668 (T).Mv(t, 7) 2669 f1 := T.Mv; f1(t, 7) 2670 f2 := (T).Mv; f2(t, 7) 2671 </pre> 2672 2673 <p> 2674 Similarly, the expression 2675 </p> 2676 2677 <pre> 2678 (*T).Mp 2679 </pre> 2680 2681 <p> 2682 yields a function value representing <code>Mp</code> with signature 2683 </p> 2684 2685 <pre> 2686 func(tp *T, f float32) float32 2687 </pre> 2688 2689 <p> 2690 For a method with a value receiver, one can derive a function 2691 with an explicit pointer receiver, so 2692 </p> 2693 2694 <pre> 2695 (*T).Mv 2696 </pre> 2697 2698 <p> 2699 yields a function value representing <code>Mv</code> with signature 2700 </p> 2701 2702 <pre> 2703 func(tv *T, a int) int 2704 </pre> 2705 2706 <p> 2707 Such a function indirects through the receiver to create a value 2708 to pass as the receiver to the underlying method; 2709 the method does not overwrite the value whose address is passed in 2710 the function call. 2711 </p> 2712 2713 <p> 2714 The final case, a value-receiver function for a pointer-receiver method, 2715 is illegal because pointer-receiver methods are not in the method set 2716 of the value type. 2717 </p> 2718 2719 <p> 2720 Function values derived from methods are called with function call syntax; 2721 the receiver is provided as the first argument to the call. 2722 That is, given <code>f := T.Mv</code>, <code>f</code> is invoked 2723 as <code>f(t, 7)</code> not <code>t.f(7)</code>. 2724 To construct a function that binds the receiver, use a 2725 <a href="#Function_literals">function literal</a> or 2726 <a href="#Method_values">method value</a>. 2727 </p> 2728 2729 <p> 2730 It is legal to derive a function value from a method of an interface type. 2731 The resulting function takes an explicit receiver of that interface type. 2732 </p> 2733 2734 <h3 id="Method_values">Method values</h3> 2735 2736 <p> 2737 If the expression <code>x</code> has static type <code>T</code> and 2738 <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>, 2739 <code>x.M</code> is called a <i>method value</i>. 2740 The method value <code>x.M</code> is a function value that is callable 2741 with the same arguments as a method call of <code>x.M</code>. 2742 The expression <code>x</code> is evaluated and saved during the evaluation of the 2743 method value; the saved copy is then used as the receiver in any calls, 2744 which may be executed later. 2745 </p> 2746 2747 <p> 2748 The type <code>T</code> may be an interface or non-interface type. 2749 </p> 2750 2751 <p> 2752 As in the discussion of <a href="#Method_expressions">method expressions</a> above, 2753 consider a struct type <code>T</code> with two methods, 2754 <code>Mv</code>, whose receiver is of type <code>T</code>, and 2755 <code>Mp</code>, whose receiver is of type <code>*T</code>. 2756 </p> 2757 2758 <pre> 2759 type T struct { 2760 a int 2761 } 2762 func (tv T) Mv(a int) int { return 0 } // value receiver 2763 func (tp *T) Mp(f float32) float32 { return 1 } // pointer receiver 2764 2765 var t T 2766 var pt *T 2767 func makeT() T 2768 </pre> 2769 2770 <p> 2771 The expression 2772 </p> 2773 2774 <pre> 2775 t.Mv 2776 </pre> 2777 2778 <p> 2779 yields a function value of type 2780 </p> 2781 2782 <pre> 2783 func(int) int 2784 </pre> 2785 2786 <p> 2787 These two invocations are equivalent: 2788 </p> 2789 2790 <pre> 2791 t.Mv(7) 2792 f := t.Mv; f(7) 2793 </pre> 2794 2795 <p> 2796 Similarly, the expression 2797 </p> 2798 2799 <pre> 2800 pt.Mp 2801 </pre> 2802 2803 <p> 2804 yields a function value of type 2805 </p> 2806 2807 <pre> 2808 func(float32) float32 2809 </pre> 2810 2811 <p> 2812 As with <a href="#Selectors">selectors</a>, a reference to a non-interface method with a value receiver 2813 using a pointer will automatically dereference that pointer: <code>pt.Mv</code> is equivalent to <code>(*pt).Mv</code>. 2814 </p> 2815 2816 <p> 2817 As with <a href="#Calls">method calls</a>, a reference to a non-interface method with a pointer receiver 2818 using an addressable value will automatically take the address of that value: <code>t.Mp</code> is equivalent to <code>(&t).Mp</code>. 2819 </p> 2820 2821 <pre> 2822 f := t.Mv; f(7) // like t.Mv(7) 2823 f := pt.Mp; f(7) // like pt.Mp(7) 2824 f := pt.Mv; f(7) // like (*pt).Mv(7) 2825 f := t.Mp; f(7) // like (&t).Mp(7) 2826 f := makeT().Mp // invalid: result of makeT() is not addressable 2827 </pre> 2828 2829 <p> 2830 Although the examples above use non-interface types, it is also legal to create a method value 2831 from a value of interface type. 2832 </p> 2833 2834 <pre> 2835 var i interface { M(int) } = myVal 2836 f := i.M; f(7) // like i.M(7) 2837 </pre> 2838 2839 2840 <h3 id="Index_expressions">Index expressions</h3> 2841 2842 <p> 2843 A primary expression of the form 2844 </p> 2845 2846 <pre> 2847 a[x] 2848 </pre> 2849 2850 <p> 2851 denotes the element of the array, pointer to array, slice, string or map <code>a</code> indexed by <code>x</code>. 2852 The value <code>x</code> is called the <i>index</i> or <i>map key</i>, respectively. 2853 The following rules apply: 2854 </p> 2855 2856 <p> 2857 If <code>a</code> is not a map: 2858 </p> 2859 <ul> 2860 <li>the index <code>x</code> must be of integer type or untyped; 2861 it is <i>in range</i> if <code>0 <= x < len(a)</code>, 2862 otherwise it is <i>out of range</i></li> 2863 <li>a <a href="#Constants">constant</a> index must be non-negative 2864 and representable by a value of type <code>int</code> 2865 </ul> 2866 2867 <p> 2868 For <code>a</code> of <a href="#Array_types">array type</a> <code>A</code>: 2869 </p> 2870 <ul> 2871 <li>a <a href="#Constants">constant</a> index must be in range</li> 2872 <li>if <code>x</code> is out of range at run time, 2873 a <a href="#Run_time_panics">run-time panic</a> occurs</li> 2874 <li><code>a[x]</code> is the array element at index <code>x</code> and the type of 2875 <code>a[x]</code> is the element type of <code>A</code></li> 2876 </ul> 2877 2878 <p> 2879 For <code>a</code> of <a href="#Pointer_types">pointer</a> to array type: 2880 </p> 2881 <ul> 2882 <li><code>a[x]</code> is shorthand for <code>(*a)[x]</code></li> 2883 </ul> 2884 2885 <p> 2886 For <code>a</code> of <a href="#Slice_types">slice type</a> <code>S</code>: 2887 </p> 2888 <ul> 2889 <li>if <code>x</code> is out of range at run time, 2890 a <a href="#Run_time_panics">run-time panic</a> occurs</li> 2891 <li><code>a[x]</code> is the slice element at index <code>x</code> and the type of 2892 <code>a[x]</code> is the element type of <code>S</code></li> 2893 </ul> 2894 2895 <p> 2896 For <code>a</code> of <a href="#String_types">string type</a>: 2897 </p> 2898 <ul> 2899 <li>a <a href="#Constants">constant</a> index must be in range 2900 if the string <code>a</code> is also constant</li> 2901 <li>if <code>x</code> is out of range at run time, 2902 a <a href="#Run_time_panics">run-time panic</a> occurs</li> 2903 <li><code>a[x]</code> is the non-constant byte value at index <code>x</code> and the type of 2904 <code>a[x]</code> is <code>byte</code></li> 2905 <li><code>a[x]</code> may not be assigned to</li> 2906 </ul> 2907 2908 <p> 2909 For <code>a</code> of <a href="#Map_types">map type</a> <code>M</code>: 2910 </p> 2911 <ul> 2912 <li><code>x</code>'s type must be 2913 <a href="#Assignability">assignable</a> 2914 to the key type of <code>M</code></li> 2915 <li>if the map contains an entry with key <code>x</code>, 2916 <code>a[x]</code> is the map value with key <code>x</code> 2917 and the type of <code>a[x]</code> is the value type of <code>M</code></li> 2918 <li>if the map is <code>nil</code> or does not contain such an entry, 2919 <code>a[x]</code> is the <a href="#The_zero_value">zero value</a> 2920 for the value type of <code>M</code></li> 2921 </ul> 2922 2923 <p> 2924 Otherwise <code>a[x]</code> is illegal. 2925 </p> 2926 2927 <p> 2928 An index expression on a map <code>a</code> of type <code>map[K]V</code> 2929 used in an <a href="#Assignments">assignment</a> or initialization of the special form 2930 </p> 2931 2932 <pre> 2933 v, ok = a[x] 2934 v, ok := a[x] 2935 var v, ok = a[x] 2936 var v, ok T = a[x] 2937 </pre> 2938 2939 <p> 2940 yields an additional untyped boolean value. The value of <code>ok</code> is 2941 <code>true</code> if the key <code>x</code> is present in the map, and 2942 <code>false</code> otherwise. 2943 </p> 2944 2945 <p> 2946 Assigning to an element of a <code>nil</code> map causes a 2947 <a href="#Run_time_panics">run-time panic</a>. 2948 </p> 2949 2950 2951 <h3 id="Slice_expressions">Slice expressions</h3> 2952 2953 <p> 2954 Slice expressions construct a substring or slice from a string, array, pointer 2955 to array, or slice. There are two variants: a simple form that specifies a low 2956 and high bound, and a full form that also specifies a bound on the capacity. 2957 </p> 2958 2959 <h4>Simple slice expressions</h4> 2960 2961 <p> 2962 For a string, array, pointer to array, or slice <code>a</code>, the primary expression 2963 </p> 2964 2965 <pre> 2966 a[low : high] 2967 </pre> 2968 2969 <p> 2970 constructs a substring or slice. The <i>indices</i> <code>low</code> and 2971 <code>high</code> select which elements of operand <code>a</code> appear 2972 in the result. The result has indices starting at 0 and length equal to 2973 <code>high</code> - <code>low</code>. 2974 After slicing the array <code>a</code> 2975 </p> 2976 2977 <pre> 2978 a := [5]int{1, 2, 3, 4, 5} 2979 s := a[1:4] 2980 </pre> 2981 2982 <p> 2983 the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements 2984 </p> 2985 2986 <pre> 2987 s[0] == 2 2988 s[1] == 3 2989 s[2] == 4 2990 </pre> 2991 2992 <p> 2993 For convenience, any of the indices may be omitted. A missing <code>low</code> 2994 index defaults to zero; a missing <code>high</code> index defaults to the length of the 2995 sliced operand: 2996 </p> 2997 2998 <pre> 2999 a[2:] // same as a[2 : len(a)] 3000 a[:3] // same as a[0 : 3] 3001 a[:] // same as a[0 : len(a)] 3002 </pre> 3003 3004 <p> 3005 If <code>a</code> is a pointer to an array, <code>a[low : high]</code> is shorthand for 3006 <code>(*a)[low : high]</code>. 3007 </p> 3008 3009 <p> 3010 For arrays or strings, the indices are <i>in range</i> if 3011 <code>0</code> <= <code>low</code> <= <code>high</code> <= <code>len(a)</code>, 3012 otherwise they are <i>out of range</i>. 3013 For slices, the upper index bound is the slice capacity <code>cap(a)</code> rather than the length. 3014 A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type 3015 <code>int</code>; for arrays or constant strings, constant indices must also be in range. 3016 If both indices are constant, they must satisfy <code>low <= high</code>. 3017 If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs. 3018 </p> 3019 3020 <p> 3021 Except for <a href="#Constants">untyped strings</a>, if the sliced operand is a string or slice, 3022 the result of the slice operation is a non-constant value of the same type as the operand. 3023 For untyped string operands the result is a non-constant value of type <code>string</code>. 3024 If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a> 3025 and the result of the slice operation is a slice with the same element type as the array. 3026 </p> 3027 3028 <p> 3029 If the sliced operand of a valid slice expression is a <code>nil</code> slice, the result 3030 is a <code>nil</code> slice. Otherwise, the result shares its underlying array with the 3031 operand. 3032 </p> 3033 3034 <h4>Full slice expressions</h4> 3035 3036 <p> 3037 For an array, pointer to array, or slice <code>a</code> (but not a string), the primary expression 3038 </p> 3039 3040 <pre> 3041 a[low : high : max] 3042 </pre> 3043 3044 <p> 3045 constructs a slice of the same type, and with the same length and elements as the simple slice 3046 expression <code>a[low : high]</code>. Additionally, it controls the resulting slice's capacity 3047 by setting it to <code>max - low</code>. Only the first index may be omitted; it defaults to 0. 3048 After slicing the array <code>a</code> 3049 </p> 3050 3051 <pre> 3052 a := [5]int{1, 2, 3, 4, 5} 3053 t := a[1:3:5] 3054 </pre> 3055 3056 <p> 3057 the slice <code>t</code> has type <code>[]int</code>, length 2, capacity 4, and elements 3058 </p> 3059 3060 <pre> 3061 t[0] == 2 3062 t[1] == 3 3063 </pre> 3064 3065 <p> 3066 As for simple slice expressions, if <code>a</code> is a pointer to an array, 3067 <code>a[low : high : max]</code> is shorthand for <code>(*a)[low : high : max]</code>. 3068 If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>. 3069 </p> 3070 3071 <p> 3072 The indices are <i>in range</i> if <code>0 <= low <= high <= max <= cap(a)</code>, 3073 otherwise they are <i>out of range</i>. 3074 A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type 3075 <code>int</code>; for arrays, constant indices must also be in range. 3076 If multiple indices are constant, the constants that are present must be in range relative to each 3077 other. 3078 If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs. 3079 </p> 3080 3081 <h3 id="Type_assertions">Type assertions</h3> 3082 3083 <p> 3084 For an expression <code>x</code> of <a href="#Interface_types">interface type</a> 3085 and a type <code>T</code>, the primary expression 3086 </p> 3087 3088 <pre> 3089 x.(T) 3090 </pre> 3091 3092 <p> 3093 asserts that <code>x</code> is not <code>nil</code> 3094 and that the value stored in <code>x</code> is of type <code>T</code>. 3095 The notation <code>x.(T)</code> is called a <i>type assertion</i>. 3096 </p> 3097 <p> 3098 More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts 3099 that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a> 3100 to the type <code>T</code>. 3101 In this case, <code>T</code> must <a href="#Method_sets">implement</a> the (interface) type of <code>x</code>; 3102 otherwise the type assertion is invalid since it is not possible for <code>x</code> 3103 to store a value of type <code>T</code>. 3104 If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type 3105 of <code>x</code> implements the interface <code>T</code>. 3106 </p> 3107 <p> 3108 If the type assertion holds, the value of the expression is the value 3109 stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false, 3110 a <a href="#Run_time_panics">run-time panic</a> occurs. 3111 In other words, even though the dynamic type of <code>x</code> 3112 is known only at run time, the type of <code>x.(T)</code> is 3113 known to be <code>T</code> in a correct program. 3114 </p> 3115 3116 <pre> 3117 var x interface{} = 7 // x has dynamic type int and value 7 3118 i := x.(int) // i has type int and value 7 3119 3120 type I interface { m() } 3121 var y I 3122 s := y.(string) // illegal: string does not implement I (missing method m) 3123 r := y.(io.Reader) // r has type io.Reader and y must implement both I and io.Reader 3124 </pre> 3125 3126 <p> 3127 A type assertion used in an <a href="#Assignments">assignment</a> or initialization of the special form 3128 </p> 3129 3130 <pre> 3131 v, ok = x.(T) 3132 v, ok := x.(T) 3133 var v, ok = x.(T) 3134 var v, ok T1 = x.(T) 3135 </pre> 3136 3137 <p> 3138 yields an additional untyped boolean value. The value of <code>ok</code> is <code>true</code> 3139 if the assertion holds. Otherwise it is <code>false</code> and the value of <code>v</code> is 3140 the <a href="#The_zero_value">zero value</a> for type <code>T</code>. 3141 No run-time panic occurs in this case. 3142 </p> 3143 3144 3145 <h3 id="Calls">Calls</h3> 3146 3147 <p> 3148 Given an expression <code>f</code> of function type 3149 <code>F</code>, 3150 </p> 3151 3152 <pre> 3153 f(a1, a2, … an) 3154 </pre> 3155 3156 <p> 3157 calls <code>f</code> with arguments <code>a1, a2, … an</code>. 3158 Except for one special case, arguments must be single-valued expressions 3159 <a href="#Assignability">assignable</a> to the parameter types of 3160 <code>F</code> and are evaluated before the function is called. 3161 The type of the expression is the result type 3162 of <code>F</code>. 3163 A method invocation is similar but the method itself 3164 is specified as a selector upon a value of the receiver type for 3165 the method. 3166 </p> 3167 3168 <pre> 3169 math.Atan2(x, y) // function call 3170 var pt *Point 3171 pt.Scale(3.5) // method call with receiver pt 3172 </pre> 3173 3174 <p> 3175 In a function call, the function value and arguments are evaluated in 3176 <a href="#Order_of_evaluation">the usual order</a>. 3177 After they are evaluated, the parameters of the call are passed by value to the function 3178 and the called function begins execution. 3179 The return parameters of the function are passed by value 3180 back to the calling function when the function returns. 3181 </p> 3182 3183 <p> 3184 Calling a <code>nil</code> function value 3185 causes a <a href="#Run_time_panics">run-time panic</a>. 3186 </p> 3187 3188 <p> 3189 As a special case, if the return values of a function or method 3190 <code>g</code> are equal in number and individually 3191 assignable to the parameters of another function or method 3192 <code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code> 3193 will invoke <code>f</code> after binding the return values of 3194 <code>g</code> to the parameters of <code>f</code> in order. The call 3195 of <code>f</code> must contain no parameters other than the call of <code>g</code>, 3196 and <code>g</code> must have at least one return value. 3197 If <code>f</code> has a final <code>...</code> parameter, it is 3198 assigned the return values of <code>g</code> that remain after 3199 assignment of regular parameters. 3200 </p> 3201 3202 <pre> 3203 func Split(s string, pos int) (string, string) { 3204 return s[0:pos], s[pos:] 3205 } 3206 3207 func Join(s, t string) string { 3208 return s + t 3209 } 3210 3211 if Join(Split(value, len(value)/2)) != value { 3212 log.Panic("test fails") 3213 } 3214 </pre> 3215 3216 <p> 3217 A method call <code>x.m()</code> is valid if the <a href="#Method_sets">method set</a> 3218 of (the type of) <code>x</code> contains <code>m</code> and the 3219 argument list can be assigned to the parameter list of <code>m</code>. 3220 If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&x</code>'s method 3221 set contains <code>m</code>, <code>x.m()</code> is shorthand 3222 for <code>(&x).m()</code>: 3223 </p> 3224 3225 <pre> 3226 var p Point 3227 p.Scale(3.5) 3228 </pre> 3229 3230 <p> 3231 There is no distinct method type and there are no method literals. 3232 </p> 3233 3234 <h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3> 3235 3236 <p> 3237 If <code>f</code> is <a href="#Function_types">variadic</a> with a final 3238 parameter <code>p</code> of type <code>...T</code>, then within <code>f</code> 3239 the type of <code>p</code> is equivalent to type <code>[]T</code>. 3240 If <code>f</code> is invoked with no actual arguments for <code>p</code>, 3241 the value passed to <code>p</code> is <code>nil</code>. 3242 Otherwise, the value passed is a new slice 3243 of type <code>[]T</code> with a new underlying array whose successive elements 3244 are the actual arguments, which all must be <a href="#Assignability">assignable</a> 3245 to <code>T</code>. The length and capacity of the slice is therefore 3246 the number of arguments bound to <code>p</code> and may differ for each 3247 call site. 3248 </p> 3249 3250 <p> 3251 Given the function and calls 3252 </p> 3253 <pre> 3254 func Greeting(prefix string, who ...string) 3255 Greeting("nobody") 3256 Greeting("hello:", "Joe", "Anna", "Eileen") 3257 </pre> 3258 3259 <p> 3260 within <code>Greeting</code>, <code>who</code> will have the value 3261 <code>nil</code> in the first call, and 3262 <code>[]string{"Joe", "Anna", "Eileen"}</code> in the second. 3263 </p> 3264 3265 <p> 3266 If the final argument is assignable to a slice type <code>[]T</code>, it may be 3267 passed unchanged as the value for a <code>...T</code> parameter if the argument 3268 is followed by <code>...</code>. In this case no new slice is created. 3269 </p> 3270 3271 <p> 3272 Given the slice <code>s</code> and call 3273 </p> 3274 3275 <pre> 3276 s := []string{"James", "Jasmine"} 3277 Greeting("goodbye:", s...) 3278 </pre> 3279 3280 <p> 3281 within <code>Greeting</code>, <code>who</code> will have the same value as <code>s</code> 3282 with the same underlying array. 3283 </p> 3284 3285 3286 <h3 id="Operators">Operators</h3> 3287 3288 <p> 3289 Operators combine operands into expressions. 3290 </p> 3291 3292 <pre class="ebnf"> 3293 Expression = UnaryExpr | Expression binary_op Expression . 3294 UnaryExpr = PrimaryExpr | unary_op UnaryExpr . 3295 3296 binary_op = "||" | "&&" | rel_op | add_op | mul_op . 3297 rel_op = "==" | "!=" | "<" | "<=" | ">" | ">=" . 3298 add_op = "+" | "-" | "|" | "^" . 3299 mul_op = "*" | "/" | "%" | "<<" | ">>" | "&" | "&^" . 3300 3301 unary_op = "+" | "-" | "!" | "^" | "*" | "&" | "<-" . 3302 </pre> 3303 3304 <p> 3305 Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>. 3306 For other binary operators, the operand types must be <a href="#Type_identity">identical</a> 3307 unless the operation involves shifts or untyped <a href="#Constants">constants</a>. 3308 For operations involving constants only, see the section on 3309 <a href="#Constant_expressions">constant expressions</a>. 3310 </p> 3311 3312 <p> 3313 Except for shift operations, if one operand is an untyped <a href="#Constants">constant</a> 3314 and the other operand is not, the constant is <a href="#Conversions">converted</a> 3315 to the type of the other operand. 3316 </p> 3317 3318 <p> 3319 The right operand in a shift expression must have unsigned integer type 3320 or be an untyped constant that can be converted to unsigned integer type. 3321 If the left operand of a non-constant shift expression is an untyped constant, 3322 it is first converted to the type it would assume if the shift expression were 3323 replaced by its left operand alone. 3324 </p> 3325 3326 <pre> 3327 var s uint = 33 3328 var i = 1<<s // 1 has type int 3329 var j int32 = 1<<s // 1 has type int32; j == 0 3330 var k = uint64(1<<s) // 1 has type uint64; k == 1<<33 3331 var m int = 1.0<<s // 1.0 has type int; m == 0 if ints are 32bits in size 3332 var n = 1.0<<s == j // 1.0 has type int32; n == true 3333 var o = 1<<s == 2<<s // 1 and 2 have type int; o == true if ints are 32bits in size 3334 var p = 1<<s == 1<<33 // illegal if ints are 32bits in size: 1 has type int, but 1<<33 overflows int 3335 var u = 1.0<<s // illegal: 1.0 has type float64, cannot shift 3336 var u1 = 1.0<<s != 0 // illegal: 1.0 has type float64, cannot shift 3337 var u2 = 1<<s != 1.0 // illegal: 1 has type float64, cannot shift 3338 var v float32 = 1<<s // illegal: 1 has type float32, cannot shift 3339 var w int64 = 1.0<<33 // 1.0<<33 is a constant shift expression 3340 </pre> 3341 3342 3343 <h4 id="Operator_precedence">Operator precedence</h4> 3344 <p> 3345 Unary operators have the highest precedence. 3346 As the <code>++</code> and <code>--</code> operators form 3347 statements, not expressions, they fall 3348 outside the operator hierarchy. 3349 As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>. 3350 <p> 3351 There are five precedence levels for binary operators. 3352 Multiplication operators bind strongest, followed by addition 3353 operators, comparison operators, <code>&&</code> (logical AND), 3354 and finally <code>||</code> (logical OR): 3355 </p> 3356 3357 <pre class="grammar"> 3358 Precedence Operator 3359 5 * / % << >> & &^ 3360 4 + - | ^ 3361 3 == != < <= > >= 3362 2 && 3363 1 || 3364 </pre> 3365 3366 <p> 3367 Binary operators of the same precedence associate from left to right. 3368 For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>. 3369 </p> 3370 3371 <pre> 3372 +x 3373 23 + 3*x[i] 3374 x <= f() 3375 ^a >> b 3376 f() || g() 3377 x == y+1 && <-chanPtr > 0 3378 </pre> 3379 3380 3381 <h3 id="Arithmetic_operators">Arithmetic operators</h3> 3382 <p> 3383 Arithmetic operators apply to numeric values and yield a result of the same 3384 type as the first operand. The four standard arithmetic operators (<code>+</code>, 3385 <code>-</code>, <code>*</code>, <code>/</code>) apply to integer, 3386 floating-point, and complex types; <code>+</code> also applies to strings. 3387 The bitwise logical and shift operators apply to integers only. 3388 </p> 3389 3390 <pre class="grammar"> 3391 + sum integers, floats, complex values, strings 3392 - difference integers, floats, complex values 3393 * product integers, floats, complex values 3394 / quotient integers, floats, complex values 3395 % remainder integers 3396 3397 & bitwise AND integers 3398 | bitwise OR integers 3399 ^ bitwise XOR integers 3400 &^ bit clear (AND NOT) integers 3401 3402 << left shift integer << unsigned integer 3403 >> right shift integer >> unsigned integer 3404 </pre> 3405 3406 3407 <h4 id="Integer_operators">Integer operators</h4> 3408 3409 <p> 3410 For two integer values <code>x</code> and <code>y</code>, the integer quotient 3411 <code>q = x / y</code> and remainder <code>r = x % y</code> satisfy the following 3412 relationships: 3413 </p> 3414 3415 <pre> 3416 x = q*y + r and |r| < |y| 3417 </pre> 3418 3419 <p> 3420 with <code>x / y</code> truncated towards zero 3421 (<a href="http://en.wikipedia.org/wiki/Modulo_operation">"truncated division"</a>). 3422 </p> 3423 3424 <pre> 3425 x y x / y x % y 3426 5 3 1 2 3427 -5 3 -1 -2 3428 5 -3 -1 2 3429 -5 -3 1 -2 3430 </pre> 3431 3432 <p> 3433 As an exception to this rule, if the dividend <code>x</code> is the most 3434 negative value for the int type of <code>x</code>, the quotient 3435 <code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>). 3436 </p> 3437 3438 <pre> 3439 x, q 3440 int8 -128 3441 int16 -32768 3442 int32 -2147483648 3443 int64 -9223372036854775808 3444 </pre> 3445 3446 <p> 3447 If the divisor is a <a href="#Constants">constant</a>, it must not be zero. 3448 If the divisor is zero at run time, a <a href="#Run_time_panics">run-time panic</a> occurs. 3449 If the dividend is non-negative and the divisor is a constant power of 2, 3450 the division may be replaced by a right shift, and computing the remainder may 3451 be replaced by a bitwise AND operation: 3452 </p> 3453 3454 <pre> 3455 x x / 4 x % 4 x >> 2 x & 3 3456 11 2 3 2 3 3457 -11 -2 -3 -3 1 3458 </pre> 3459 3460 <p> 3461 The shift operators shift the left operand by the shift count specified by the 3462 right operand. They implement arithmetic shifts if the left operand is a signed 3463 integer and logical shifts if it is an unsigned integer. 3464 There is no upper limit on the shift count. Shifts behave 3465 as if the left operand is shifted <code>n</code> times by 1 for a shift 3466 count of <code>n</code>. 3467 As a result, <code>x << 1</code> is the same as <code>x*2</code> 3468 and <code>x >> 1</code> is the same as 3469 <code>x/2</code> but truncated towards negative infinity. 3470 </p> 3471 3472 <p> 3473 For integer operands, the unary operators 3474 <code>+</code>, <code>-</code>, and <code>^</code> are defined as 3475 follows: 3476 </p> 3477 3478 <pre class="grammar"> 3479 +x is 0 + x 3480 -x negation is 0 - x 3481 ^x bitwise complement is m ^ x with m = "all bits set to 1" for unsigned x 3482 and m = -1 for signed x 3483 </pre> 3484 3485 3486 <h4 id="Integer_overflow">Integer overflow</h4> 3487 3488 <p> 3489 For unsigned integer values, the operations <code>+</code>, 3490 <code>-</code>, <code>*</code>, and <code><<</code> are 3491 computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of 3492 the <a href="#Numeric_types">unsigned integer</a>'s type. 3493 Loosely speaking, these unsigned integer operations 3494 discard high bits upon overflow, and programs may rely on ``wrap around''. 3495 </p> 3496 <p> 3497 For signed integers, the operations <code>+</code>, 3498 <code>-</code>, <code>*</code>, and <code><<</code> may legally 3499 overflow and the resulting value exists and is deterministically defined 3500 by the signed integer representation, the operation, and its operands. 3501 No exception is raised as a result of overflow. A 3502 compiler may not optimize code under the assumption that overflow does 3503 not occur. For instance, it may not assume that <code>x < x + 1</code> is always true. 3504 </p> 3505 3506 3507 <h4 id="Floating_point_operators">Floating-point operators</h4> 3508 3509 <p> 3510 For floating-point and complex numbers, 3511 <code>+x</code> is the same as <code>x</code>, 3512 while <code>-x</code> is the negation of <code>x</code>. 3513 The result of a floating-point or complex division by zero is not specified beyond the 3514 IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a> 3515 occurs is implementation-specific. 3516 </p> 3517 3518 3519 <h4 id="String_concatenation">String concatenation</h4> 3520 3521 <p> 3522 Strings can be concatenated using the <code>+</code> operator 3523 or the <code>+=</code> assignment operator: 3524 </p> 3525 3526 <pre> 3527 s := "hi" + string(c) 3528 s += " and good bye" 3529 </pre> 3530 3531 <p> 3532 String addition creates a new string by concatenating the operands. 3533 </p> 3534 3535 3536 <h3 id="Comparison_operators">Comparison operators</h3> 3537 3538 <p> 3539 Comparison operators compare two operands and yield an untyped boolean value. 3540 </p> 3541 3542 <pre class="grammar"> 3543 == equal 3544 != not equal 3545 < less 3546 <= less or equal 3547 > greater 3548 >= greater or equal 3549 </pre> 3550 3551 <p> 3552 In any comparison, the first operand 3553 must be <a href="#Assignability">assignable</a> 3554 to the type of the second operand, or vice versa. 3555 </p> 3556 <p> 3557 The equality operators <code>==</code> and <code>!=</code> apply 3558 to operands that are <i>comparable</i>. 3559 The ordering operators <code><</code>, <code><=</code>, <code>></code>, and <code>>=</code> 3560 apply to operands that are <i>ordered</i>. 3561 These terms and the result of the comparisons are defined as follows: 3562 </p> 3563 3564 <ul> 3565 <li> 3566 Boolean values are comparable. 3567 Two boolean values are equal if they are either both 3568 <code>true</code> or both <code>false</code>. 3569 </li> 3570 3571 <li> 3572 Integer values are comparable and ordered, in the usual way. 3573 </li> 3574 3575 <li> 3576 Floating point values are comparable and ordered, 3577 as defined by the IEEE-754 standard. 3578 </li> 3579 3580 <li> 3581 Complex values are comparable. 3582 Two complex values <code>u</code> and <code>v</code> are 3583 equal if both <code>real(u) == real(v)</code> and 3584 <code>imag(u) == imag(v)</code>. 3585 </li> 3586 3587 <li> 3588 String values are comparable and ordered, lexically byte-wise. 3589 </li> 3590 3591 <li> 3592 Pointer values are comparable. 3593 Two pointer values are equal if they point to the same variable or if both have value <code>nil</code>. 3594 Pointers to distinct <a href="#Size_and_alignment_guarantees">zero-size</a> variables may or may not be equal. 3595 </li> 3596 3597 <li> 3598 Channel values are comparable. 3599 Two channel values are equal if they were created by the same call to 3600 <a href="#Making_slices_maps_and_channels"><code>make</code></a> 3601 or if both have value <code>nil</code>. 3602 </li> 3603 3604 <li> 3605 Interface values are comparable. 3606 Two interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types 3607 and equal dynamic values or if both have value <code>nil</code>. 3608 </li> 3609 3610 <li> 3611 A value <code>x</code> of non-interface type <code>X</code> and 3612 a value <code>t</code> of interface type <code>T</code> are comparable when values 3613 of type <code>X</code> are comparable and 3614 <code>X</code> implements <code>T</code>. 3615 They are equal if <code>t</code>'s dynamic type is identical to <code>X</code> 3616 and <code>t</code>'s dynamic value is equal to <code>x</code>. 3617 </li> 3618 3619 <li> 3620 Struct values are comparable if all their fields are comparable. 3621 Two struct values are equal if their corresponding 3622 non-<a href="#Blank_identifier">blank</a> fields are equal. 3623 </li> 3624 3625 <li> 3626 Array values are comparable if values of the array element type are comparable. 3627 Two array values are equal if their corresponding elements are equal. 3628 </li> 3629 </ul> 3630 3631 <p> 3632 A comparison of two interface values with identical dynamic types 3633 causes a <a href="#Run_time_panics">run-time panic</a> if values 3634 of that type are not comparable. This behavior applies not only to direct interface 3635 value comparisons but also when comparing arrays of interface values 3636 or structs with interface-valued fields. 3637 </p> 3638 3639 <p> 3640 Slice, map, and function values are not comparable. 3641 However, as a special case, a slice, map, or function value may 3642 be compared to the predeclared identifier <code>nil</code>. 3643 Comparison of pointer, channel, and interface values to <code>nil</code> 3644 is also allowed and follows from the general rules above. 3645 </p> 3646 3647 <pre> 3648 const c = 3 < 4 // c is the untyped boolean constant true 3649 3650 type MyBool bool 3651 var x, y int 3652 var ( 3653 // The result of a comparison is an untyped boolean. 3654 // The usual assignment rules apply. 3655 b3 = x == y // b3 has type bool 3656 b4 bool = x == y // b4 has type bool 3657 b5 MyBool = x == y // b5 has type MyBool 3658 ) 3659 </pre> 3660 3661 <h3 id="Logical_operators">Logical operators</h3> 3662 3663 <p> 3664 Logical operators apply to <a href="#Boolean_types">boolean</a> values 3665 and yield a result of the same type as the operands. 3666 The right operand is evaluated conditionally. 3667 </p> 3668 3669 <pre class="grammar"> 3670 && conditional AND p && q is "if p then q else false" 3671 || conditional OR p || q is "if p then true else q" 3672 ! NOT !p is "not p" 3673 </pre> 3674 3675 3676 <h3 id="Address_operators">Address operators</h3> 3677 3678 <p> 3679 For an operand <code>x</code> of type <code>T</code>, the address operation 3680 <code>&x</code> generates a pointer of type <code>*T</code> to <code>x</code>. 3681 The operand must be <i>addressable</i>, 3682 that is, either a variable, pointer indirection, or slice indexing 3683 operation; or a field selector of an addressable struct operand; 3684 or an array indexing operation of an addressable array. 3685 As an exception to the addressability requirement, <code>x</code> may also be a 3686 (possibly parenthesized) 3687 <a href="#Composite_literals">composite literal</a>. 3688 If the evaluation of <code>x</code> would cause a <a href="#Run_time_panics">run-time panic</a>, 3689 then the evaluation of <code>&x</code> does too. 3690 </p> 3691 3692 <p> 3693 For an operand <code>x</code> of pointer type <code>*T</code>, the pointer 3694 indirection <code>*x</code> denotes the <a href="#Variables">variable</a> of type <code>T</code> pointed 3695 to by <code>x</code>. 3696 If <code>x</code> is <code>nil</code>, an attempt to evaluate <code>*x</code> 3697 will cause a <a href="#Run_time_panics">run-time panic</a>. 3698 </p> 3699 3700 <pre> 3701 &x 3702 &a[f(2)] 3703 &Point{2, 3} 3704 *p 3705 *pf(x) 3706 3707 var x *int = nil 3708 *x // causes a run-time panic 3709 &*x // causes a run-time panic 3710 </pre> 3711 3712 3713 <h3 id="Receive_operator">Receive operator</h3> 3714 3715 <p> 3716 For an operand <code>ch</code> of <a href="#Channel_types">channel type</a>, 3717 the value of the receive operation <code><-ch</code> is the value received 3718 from the channel <code>ch</code>. The channel direction must permit receive operations, 3719 and the type of the receive operation is the element type of the channel. 3720 The expression blocks until a value is available. 3721 Receiving from a <code>nil</code> channel blocks forever. 3722 A receive operation on a <a href="#Close">closed</a> channel can always proceed 3723 immediately, yielding the element type's <a href="#The_zero_value">zero value</a> 3724 after any previously sent values have been received. 3725 </p> 3726 3727 <pre> 3728 v1 := <-ch 3729 v2 = <-ch 3730 f(<-ch) 3731 <-strobe // wait until clock pulse and discard received value 3732 </pre> 3733 3734 <p> 3735 A receive expression used in an <a href="#Assignments">assignment</a> or initialization of the special form 3736 </p> 3737 3738 <pre> 3739 x, ok = <-ch 3740 x, ok := <-ch 3741 var x, ok = <-ch 3742 var x, ok T = <-ch 3743 </pre> 3744 3745 <p> 3746 yields an additional untyped boolean result reporting whether the 3747 communication succeeded. The value of <code>ok</code> is <code>true</code> 3748 if the value received was delivered by a successful send operation to the 3749 channel, or <code>false</code> if it is a zero value generated because the 3750 channel is closed and empty. 3751 </p> 3752 3753 3754 <h3 id="Conversions">Conversions</h3> 3755 3756 <p> 3757 Conversions are expressions of the form <code>T(x)</code> 3758 where <code>T</code> is a type and <code>x</code> is an expression 3759 that can be converted to type <code>T</code>. 3760 </p> 3761 3762 <pre class="ebnf"> 3763 Conversion = Type "(" Expression [ "," ] ")" . 3764 </pre> 3765 3766 <p> 3767 If the type starts with the operator <code>*</code> or <code><-</code>, 3768 or if the type starts with the keyword <code>func</code> 3769 and has no result list, it must be parenthesized when 3770 necessary to avoid ambiguity: 3771 </p> 3772 3773 <pre> 3774 *Point(p) // same as *(Point(p)) 3775 (*Point)(p) // p is converted to *Point 3776 <-chan int(c) // same as <-(chan int(c)) 3777 (<-chan int)(c) // c is converted to <-chan int 3778 func()(x) // function signature func() x 3779 (func())(x) // x is converted to func() 3780 (func() int)(x) // x is converted to func() int 3781 func() int(x) // x is converted to func() int (unambiguous) 3782 </pre> 3783 3784 <p> 3785 A <a href="#Constants">constant</a> value <code>x</code> can be converted to 3786 type <code>T</code> in any of these cases: 3787 </p> 3788 3789 <ul> 3790 <li> 3791 <code>x</code> is representable by a value of type <code>T</code>. 3792 </li> 3793 <li> 3794 <code>x</code> is a floating-point constant, 3795 <code>T</code> is a floating-point type, 3796 and <code>x</code> is representable by a value 3797 of type <code>T</code> after rounding using 3798 IEEE 754 round-to-even rules, but with an IEEE <code>-0.0</code> 3799 further rounded to an unsigned <code>0.0</code>. 3800 The constant <code>T(x)</code> is the rounded value. 3801 </li> 3802 <li> 3803 <code>x</code> is an integer constant and <code>T</code> is a 3804 <a href="#String_types">string type</a>. 3805 The <a href="#Conversions_to_and_from_a_string_type">same rule</a> 3806 as for non-constant <code>x</code> applies in this case. 3807 </li> 3808 </ul> 3809 3810 <p> 3811 Converting a constant yields a typed constant as result. 3812 </p> 3813 3814 <pre> 3815 uint(iota) // iota value of type uint 3816 float32(2.718281828) // 2.718281828 of type float32 3817 complex128(1) // 1.0 + 0.0i of type complex128 3818 float32(0.49999999) // 0.5 of type float32 3819 float64(-1e-1000) // 0.0 of type float64 3820 string('x') // "x" of type string 3821 string(0x266c) // "♬" of type string 3822 MyString("foo" + "bar") // "foobar" of type MyString 3823 string([]byte{'a'}) // not a constant: []byte{'a'} is not a constant 3824 (*int)(nil) // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type 3825 int(1.2) // illegal: 1.2 cannot be represented as an int 3826 string(65.0) // illegal: 65.0 is not an integer constant 3827 </pre> 3828 3829 <p> 3830 A non-constant value <code>x</code> can be converted to type <code>T</code> 3831 in any of these cases: 3832 </p> 3833 3834 <ul> 3835 <li> 3836 <code>x</code> is <a href="#Assignability">assignable</a> 3837 to <code>T</code>. 3838 </li> 3839 <li> 3840 <code>x</code>'s type and <code>T</code> have identical 3841 <a href="#Types">underlying types</a>. 3842 </li> 3843 <li> 3844 <code>x</code>'s type and <code>T</code> are unnamed pointer types 3845 and their pointer base types have identical underlying types. 3846 </li> 3847 <li> 3848 <code>x</code>'s type and <code>T</code> are both integer or floating 3849 point types. 3850 </li> 3851 <li> 3852 <code>x</code>'s type and <code>T</code> are both complex types. 3853 </li> 3854 <li> 3855 <code>x</code> is an integer or a slice of bytes or runes 3856 and <code>T</code> is a string type. 3857 </li> 3858 <li> 3859 <code>x</code> is a string and <code>T</code> is a slice of bytes or runes. 3860 </li> 3861 </ul> 3862 3863 <p> 3864 Specific rules apply to (non-constant) conversions between numeric types or 3865 to and from a string type. 3866 These conversions may change the representation of <code>x</code> 3867 and incur a run-time cost. 3868 All other conversions only change the type but not the representation 3869 of <code>x</code>. 3870 </p> 3871 3872 <p> 3873 There is no linguistic mechanism to convert between pointers and integers. 3874 The package <a href="#Package_unsafe"><code>unsafe</code></a> 3875 implements this functionality under 3876 restricted circumstances. 3877 </p> 3878 3879 <h4>Conversions between numeric types</h4> 3880 3881 <p> 3882 For the conversion of non-constant numeric values, the following rules apply: 3883 </p> 3884 3885 <ol> 3886 <li> 3887 When converting between integer types, if the value is a signed integer, it is 3888 sign extended to implicit infinite precision; otherwise it is zero extended. 3889 It is then truncated to fit in the result type's size. 3890 For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>. 3891 The conversion always yields a valid value; there is no indication of overflow. 3892 </li> 3893 <li> 3894 When converting a floating-point number to an integer, the fraction is discarded 3895 (truncation towards zero). 3896 </li> 3897 <li> 3898 When converting an integer or floating-point number to a floating-point type, 3899 or a complex number to another complex type, the result value is rounded 3900 to the precision specified by the destination type. 3901 For instance, the value of a variable <code>x</code> of type <code>float32</code> 3902 may be stored using additional precision beyond that of an IEEE-754 32-bit number, 3903 but float32(x) represents the result of rounding <code>x</code>'s value to 3904 32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits 3905 of precision, but <code>float32(x + 0.1)</code> does not. 3906 </li> 3907 </ol> 3908 3909 <p> 3910 In all non-constant conversions involving floating-point or complex values, 3911 if the result type cannot represent the value the conversion 3912 succeeds but the result value is implementation-dependent. 3913 </p> 3914 3915 <h4 id="Conversions_to_and_from_a_string_type">Conversions to and from a string type</h4> 3916 3917 <ol> 3918 <li> 3919 Converting a signed or unsigned integer value to a string type yields a 3920 string containing the UTF-8 representation of the integer. Values outside 3921 the range of valid Unicode code points are converted to <code>"\uFFFD"</code>. 3922 3923 <pre> 3924 string('a') // "a" 3925 string(-1) // "\ufffd" == "\xef\xbf\xbd" 3926 string(0xf8) // "\u00f8" == "ø" == "\xc3\xb8" 3927 type MyString string 3928 MyString(0x65e5) // "\u65e5" == "日" == "\xe6\x97\xa5" 3929 </pre> 3930 </li> 3931 3932 <li> 3933 Converting a slice of bytes to a string type yields 3934 a string whose successive bytes are the elements of the slice. 3935 3936 <pre> 3937 string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}) // "hellø" 3938 string([]byte{}) // "" 3939 string([]byte(nil)) // "" 3940 3941 type MyBytes []byte 3942 string(MyBytes{'h', 'e', 'l', 'l', '\xc3', '\xb8'}) // "hellø" 3943 </pre> 3944 </li> 3945 3946 <li> 3947 Converting a slice of runes to a string type yields 3948 a string that is the concatenation of the individual rune values 3949 converted to strings. 3950 3951 <pre> 3952 string([]rune{0x767d, 0x9d6c, 0x7fd4}) // "\u767d\u9d6c\u7fd4" == "白鵬翔" 3953 string([]rune{}) // "" 3954 string([]rune(nil)) // "" 3955 3956 type MyRunes []rune 3957 string(MyRunes{0x767d, 0x9d6c, 0x7fd4}) // "\u767d\u9d6c\u7fd4" == "白鵬翔" 3958 </pre> 3959 </li> 3960 3961 <li> 3962 Converting a value of a string type to a slice of bytes type 3963 yields a slice whose successive elements are the bytes of the string. 3964 3965 <pre> 3966 []byte("hellø") // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'} 3967 []byte("") // []byte{} 3968 3969 MyBytes("hellø") // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'} 3970 </pre> 3971 </li> 3972 3973 <li> 3974 Converting a value of a string type to a slice of runes type 3975 yields a slice containing the individual Unicode code points of the string. 3976 3977 <pre> 3978 []rune(MyString("白鵬翔")) // []rune{0x767d, 0x9d6c, 0x7fd4} 3979 []rune("") // []rune{} 3980 3981 MyRunes("白鵬翔") // []rune{0x767d, 0x9d6c, 0x7fd4} 3982 </pre> 3983 </li> 3984 </ol> 3985 3986 3987 <h3 id="Constant_expressions">Constant expressions</h3> 3988 3989 <p> 3990 Constant expressions may contain only <a href="#Constants">constant</a> 3991 operands and are evaluated at compile time. 3992 </p> 3993 3994 <p> 3995 Untyped boolean, numeric, and string constants may be used as operands 3996 wherever it is legal to use an operand of boolean, numeric, or string type, 3997 respectively. 3998 Except for shift operations, if the operands of a binary operation are 3999 different kinds of untyped constants, the operation and, for non-boolean operations, the result use 4000 the kind that appears later in this list: integer, rune, floating-point, complex. 4001 For example, an untyped integer constant divided by an 4002 untyped complex constant yields an untyped complex constant. 4003 </p> 4004 4005 <p> 4006 A constant <a href="#Comparison_operators">comparison</a> always yields 4007 an untyped boolean constant. If the left operand of a constant 4008 <a href="#Operators">shift expression</a> is an untyped constant, the 4009 result is an integer constant; otherwise it is a constant of the same 4010 type as the left operand, which must be of 4011 <a href="#Numeric_types">integer type</a>. 4012 Applying all other operators to untyped constants results in an untyped 4013 constant of the same kind (that is, a boolean, integer, floating-point, 4014 complex, or string constant). 4015 </p> 4016 4017 <pre> 4018 const a = 2 + 3.0 // a == 5.0 (untyped floating-point constant) 4019 const b = 15 / 4 // b == 3 (untyped integer constant) 4020 const c = 15 / 4.0 // c == 3.75 (untyped floating-point constant) 4021 const Θ float64 = 3/2 // Θ == 1.0 (type float64, 3/2 is integer division) 4022 const Π float64 = 3/2. // Π == 1.5 (type float64, 3/2. is float division) 4023 const d = 1 << 3.0 // d == 8 (untyped integer constant) 4024 const e = 1.0 << 3 // e == 8 (untyped integer constant) 4025 const f = int32(1) << 33 // illegal (constant 8589934592 overflows int32) 4026 const g = float64(2) >> 1 // illegal (float64(2) is a typed floating-point constant) 4027 const h = "foo" > "bar" // h == true (untyped boolean constant) 4028 const j = true // j == true (untyped boolean constant) 4029 const k = 'w' + 1 // k == 'x' (untyped rune constant) 4030 const l = "hi" // l == "hi" (untyped string constant) 4031 const m = string(k) // m == "x" (type string) 4032 const Σ = 1 - 0.707i // (untyped complex constant) 4033 const Δ = Σ + 2.0e-4 // (untyped complex constant) 4034 const Φ = iota*1i - 1/1i // (untyped complex constant) 4035 </pre> 4036 4037 <p> 4038 Applying the built-in function <code>complex</code> to untyped 4039 integer, rune, or floating-point constants yields 4040 an untyped complex constant. 4041 </p> 4042 4043 <pre> 4044 const ic = complex(0, c) // ic == 3.75i (untyped complex constant) 4045 const iΘ = complex(0, Θ) // iΘ == 1i (type complex128) 4046 </pre> 4047 4048 <p> 4049 Constant expressions are always evaluated exactly; intermediate values and the 4050 constants themselves may require precision significantly larger than supported 4051 by any predeclared type in the language. The following are legal declarations: 4052 </p> 4053 4054 <pre> 4055 const Huge = 1 << 100 // Huge == 1267650600228229401496703205376 (untyped integer constant) 4056 const Four int8 = Huge >> 98 // Four == 4 (type int8) 4057 </pre> 4058 4059 <p> 4060 The divisor of a constant division or remainder operation must not be zero: 4061 </p> 4062 4063 <pre> 4064 3.14 / 0.0 // illegal: division by zero 4065 </pre> 4066 4067 <p> 4068 The values of <i>typed</i> constants must always be accurately representable as values 4069 of the constant type. The following constant expressions are illegal: 4070 </p> 4071 4072 <pre> 4073 uint(-1) // -1 cannot be represented as a uint 4074 int(3.14) // 3.14 cannot be represented as an int 4075 int64(Huge) // 1267650600228229401496703205376 cannot be represented as an int64 4076 Four * 300 // operand 300 cannot be represented as an int8 (type of Four) 4077 Four * 100 // product 400 cannot be represented as an int8 (type of Four) 4078 </pre> 4079 4080 <p> 4081 The mask used by the unary bitwise complement operator <code>^</code> matches 4082 the rule for non-constants: the mask is all 1s for unsigned constants 4083 and -1 for signed and untyped constants. 4084 </p> 4085 4086 <pre> 4087 ^1 // untyped integer constant, equal to -2 4088 uint8(^1) // illegal: same as uint8(-2), -2 cannot be represented as a uint8 4089 ^uint8(1) // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE) 4090 int8(^1) // same as int8(-2) 4091 ^int8(1) // same as -1 ^ int8(1) = -2 4092 </pre> 4093 4094 <p> 4095 Implementation restriction: A compiler may use rounding while 4096 computing untyped floating-point or complex constant expressions; see 4097 the implementation restriction in the section 4098 on <a href="#Constants">constants</a>. This rounding may cause a 4099 floating-point constant expression to be invalid in an integer 4100 context, even if it would be integral when calculated using infinite 4101 precision, and vice versa. 4102 </p> 4103 4104 4105 <h3 id="Order_of_evaluation">Order of evaluation</h3> 4106 4107 <p> 4108 At package level, <a href="#Package_initialization">initialization dependencies</a> 4109 determine the evaluation order of individual initialization expressions in 4110 <a href="#Variable_declarations">variable declarations</a>. 4111 Otherwise, when evaluating the <a href="#Operands">operands</a> of an 4112 expression, assignment, or 4113 <a href="#Return_statements">return statement</a>, 4114 all function calls, method calls, and 4115 communication operations are evaluated in lexical left-to-right 4116 order. 4117 </p> 4118 4119 <p> 4120 For example, in the (function-local) assignment 4121 </p> 4122 <pre> 4123 y[f()], ok = g(h(), i()+x[j()], <-c), k() 4124 </pre> 4125 <p> 4126 the function calls and communication happen in the order 4127 <code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>, 4128 <code><-c</code>, <code>g()</code>, and <code>k()</code>. 4129 However, the order of those events compared to the evaluation 4130 and indexing of <code>x</code> and the evaluation 4131 of <code>y</code> is not specified. 4132 </p> 4133 4134 <pre> 4135 a := 1 4136 f := func() int { a++; return a } 4137 x := []int{a, f()} // x may be [1, 2] or [2, 2]: evaluation order between a and f() is not specified 4138 m := map[int]int{a: 1, a: 2} // m may be {2: 1} or {2: 2}: evaluation order between the two map assignments is not specified 4139 n := map[int]int{a: f()} // n may be {2: 3} or {3: 3}: evaluation order between the key and the value is not specified 4140 </pre> 4141 4142 <p> 4143 At package level, initialization dependencies override the left-to-right rule 4144 for individual initialization expressions, but not for operands within each 4145 expression: 4146 </p> 4147 4148 <pre> 4149 var a, b, c = f() + v(), g(), sqr(u()) + v() 4150 4151 func f() int { return c } 4152 func g() int { return a } 4153 func sqr(x int) int { return x*x } 4154 4155 // functions u and v are independent of all other variables and functions 4156 </pre> 4157 4158 <p> 4159 The function calls happen in the order 4160 <code>u()</code>, <code>sqr()</code>, <code>v()</code>, 4161 <code>f()</code>, <code>v()</code>, and <code>g()</code>. 4162 </p> 4163 4164 <p> 4165 Floating-point operations within a single expression are evaluated according to 4166 the associativity of the operators. Explicit parentheses affect the evaluation 4167 by overriding the default associativity. 4168 In the expression <code>x + (y + z)</code> the addition <code>y + z</code> 4169 is performed before adding <code>x</code>. 4170 </p> 4171 4172 <h2 id="Statements">Statements</h2> 4173 4174 <p> 4175 Statements control execution. 4176 </p> 4177 4178 <pre class="ebnf"> 4179 Statement = 4180 Declaration | LabeledStmt | SimpleStmt | 4181 GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt | 4182 FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt | 4183 DeferStmt . 4184 4185 SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl . 4186 </pre> 4187 4188 <h3 id="Terminating_statements">Terminating statements</h3> 4189 4190 <p> 4191 A terminating statement is one of the following: 4192 </p> 4193 4194 <ol> 4195 <li> 4196 A <a href="#Return_statements">"return"</a> or 4197 <a href="#Goto_statements">"goto"</a> statement. 4198 <!-- ul below only for regular layout --> 4199 <ul> </ul> 4200 </li> 4201 4202 <li> 4203 A call to the built-in function 4204 <a href="#Handling_panics"><code>panic</code></a>. 4205 <!-- ul below only for regular layout --> 4206 <ul> </ul> 4207 </li> 4208 4209 <li> 4210 A <a href="#Blocks">block</a> in which the statement list ends in a terminating statement. 4211 <!-- ul below only for regular layout --> 4212 <ul> </ul> 4213 </li> 4214 4215 <li> 4216 An <a href="#If_statements">"if" statement</a> in which: 4217 <ul> 4218 <li>the "else" branch is present, and</li> 4219 <li>both branches are terminating statements.</li> 4220 </ul> 4221 </li> 4222 4223 <li> 4224 A <a href="#For_statements">"for" statement</a> in which: 4225 <ul> 4226 <li>there are no "break" statements referring to the "for" statement, and</li> 4227 <li>the loop condition is absent.</li> 4228 </ul> 4229 </li> 4230 4231 <li> 4232 A <a href="#Switch_statements">"switch" statement</a> in which: 4233 <ul> 4234 <li>there are no "break" statements referring to the "switch" statement,</li> 4235 <li>there is a default case, and</li> 4236 <li>the statement lists in each case, including the default, end in a terminating 4237 statement, or a possibly labeled <a href="#Fallthrough_statements">"fallthrough" 4238 statement</a>.</li> 4239 </ul> 4240 </li> 4241 4242 <li> 4243 A <a href="#Select_statements">"select" statement</a> in which: 4244 <ul> 4245 <li>there are no "break" statements referring to the "select" statement, and</li> 4246 <li>the statement lists in each case, including the default if present, 4247 end in a terminating statement.</li> 4248 </ul> 4249 </li> 4250 4251 <li> 4252 A <a href="#Labeled_statements">labeled statement</a> labeling 4253 a terminating statement. 4254 </li> 4255 </ol> 4256 4257 <p> 4258 All other statements are not terminating. 4259 </p> 4260 4261 <p> 4262 A <a href="#Blocks">statement list</a> ends in a terminating statement if the list 4263 is not empty and its final non-empty statement is terminating. 4264 </p> 4265 4266 4267 <h3 id="Empty_statements">Empty statements</h3> 4268 4269 <p> 4270 The empty statement does nothing. 4271 </p> 4272 4273 <pre class="ebnf"> 4274 EmptyStmt = . 4275 </pre> 4276 4277 4278 <h3 id="Labeled_statements">Labeled statements</h3> 4279 4280 <p> 4281 A labeled statement may be the target of a <code>goto</code>, 4282 <code>break</code> or <code>continue</code> statement. 4283 </p> 4284 4285 <pre class="ebnf"> 4286 LabeledStmt = Label ":" Statement . 4287 Label = identifier . 4288 </pre> 4289 4290 <pre> 4291 Error: log.Panic("error encountered") 4292 </pre> 4293 4294 4295 <h3 id="Expression_statements">Expression statements</h3> 4296 4297 <p> 4298 With the exception of specific built-in functions, 4299 function and method <a href="#Calls">calls</a> and 4300 <a href="#Receive_operator">receive operations</a> 4301 can appear in statement context. Such statements may be parenthesized. 4302 </p> 4303 4304 <pre class="ebnf"> 4305 ExpressionStmt = Expression . 4306 </pre> 4307 4308 <p> 4309 The following built-in functions are not permitted in statement context: 4310 </p> 4311 4312 <pre> 4313 append cap complex imag len make new real 4314 unsafe.Alignof unsafe.Offsetof unsafe.Sizeof 4315 </pre> 4316 4317 <pre> 4318 h(x+y) 4319 f.Close() 4320 <-ch 4321 (<-ch) 4322 len("foo") // illegal if len is the built-in function 4323 </pre> 4324 4325 4326 <h3 id="Send_statements">Send statements</h3> 4327 4328 <p> 4329 A send statement sends a value on a channel. 4330 The channel expression must be of <a href="#Channel_types">channel type</a>, 4331 the channel direction must permit send operations, 4332 and the type of the value to be sent must be <a href="#Assignability">assignable</a> 4333 to the channel's element type. 4334 </p> 4335 4336 <pre class="ebnf"> 4337 SendStmt = Channel "<-" Expression . 4338 Channel = Expression . 4339 </pre> 4340 4341 <p> 4342 Both the channel and the value expression are evaluated before communication 4343 begins. Communication blocks until the send can proceed. 4344 A send on an unbuffered channel can proceed if a receiver is ready. 4345 A send on a buffered channel can proceed if there is room in the buffer. 4346 A send on a closed channel proceeds by causing a <a href="#Run_time_panics">run-time panic</a>. 4347 A send on a <code>nil</code> channel blocks forever. 4348 </p> 4349 4350 <pre> 4351 ch <- 3 // send value 3 to channel ch 4352 </pre> 4353 4354 4355 <h3 id="IncDec_statements">IncDec statements</h3> 4356 4357 <p> 4358 The "++" and "--" statements increment or decrement their operands 4359 by the untyped <a href="#Constants">constant</a> <code>1</code>. 4360 As with an assignment, the operand must be <a href="#Address_operators">addressable</a> 4361 or a map index expression. 4362 </p> 4363 4364 <pre class="ebnf"> 4365 IncDecStmt = Expression ( "++" | "--" ) . 4366 </pre> 4367 4368 <p> 4369 The following <a href="#Assignments">assignment statements</a> are semantically 4370 equivalent: 4371 </p> 4372 4373 <pre class="grammar"> 4374 IncDec statement Assignment 4375 x++ x += 1 4376 x-- x -= 1 4377 </pre> 4378 4379 4380 <h3 id="Assignments">Assignments</h3> 4381 4382 <pre class="ebnf"> 4383 Assignment = ExpressionList assign_op ExpressionList . 4384 4385 assign_op = [ add_op | mul_op ] "=" . 4386 </pre> 4387 4388 <p> 4389 Each left-hand side operand must be <a href="#Address_operators">addressable</a>, 4390 a map index expression, or (for <code>=</code> assignments only) the 4391 <a href="#Blank_identifier">blank identifier</a>. 4392 Operands may be parenthesized. 4393 </p> 4394 4395 <pre> 4396 x = 1 4397 *p = f() 4398 a[i] = 23 4399 (k) = <-ch // same as: k = <-ch 4400 </pre> 4401 4402 <p> 4403 An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code> 4404 <code>y</code> where <i>op</i> is a binary arithmetic operation is equivalent 4405 to <code>x</code> <code>=</code> <code>x</code> <i>op</i> 4406 <code>(y)</code> but evaluates <code>x</code> 4407 only once. The <i>op</i><code>=</code> construct is a single token. 4408 In assignment operations, both the left- and right-hand expression lists 4409 must contain exactly one single-valued expression, and the left-hand 4410 expression must not be the blank identifier. 4411 </p> 4412 4413 <pre> 4414 a[i] <<= 2 4415 i &^= 1<<n 4416 </pre> 4417 4418 <p> 4419 A tuple assignment assigns the individual elements of a multi-valued 4420 operation to a list of variables. There are two forms. In the 4421 first, the right hand operand is a single multi-valued expression 4422 such as a function call, a <a href="#Channel_types">channel</a> or 4423 <a href="#Map_types">map</a> operation, or a <a href="#Type_assertions">type assertion</a>. 4424 The number of operands on the left 4425 hand side must match the number of values. For instance, if 4426 <code>f</code> is a function returning two values, 4427 </p> 4428 4429 <pre> 4430 x, y = f() 4431 </pre> 4432 4433 <p> 4434 assigns the first value to <code>x</code> and the second to <code>y</code>. 4435 In the second form, the number of operands on the left must equal the number 4436 of expressions on the right, each of which must be single-valued, and the 4437 <i>n</i>th expression on the right is assigned to the <i>n</i>th 4438 operand on the left: 4439 </p> 4440 4441 <pre> 4442 one, two, three = '一', '二', '三' 4443 </pre> 4444 4445 <p> 4446 The <a href="#Blank_identifier">blank identifier</a> provides a way to 4447 ignore right-hand side values in an assignment: 4448 </p> 4449 4450 <pre> 4451 _ = x // evaluate x but ignore it 4452 x, _ = f() // evaluate f() but ignore second result value 4453 </pre> 4454 4455 <p> 4456 The assignment proceeds in two phases. 4457 First, the operands of <a href="#Index_expressions">index expressions</a> 4458 and <a href="#Address_operators">pointer indirections</a> 4459 (including implicit pointer indirections in <a href="#Selectors">selectors</a>) 4460 on the left and the expressions on the right are all 4461 <a href="#Order_of_evaluation">evaluated in the usual order</a>. 4462 Second, the assignments are carried out in left-to-right order. 4463 </p> 4464 4465 <pre> 4466 a, b = b, a // exchange a and b 4467 4468 x := []int{1, 2, 3} 4469 i := 0 4470 i, x[i] = 1, 2 // set i = 1, x[0] = 2 4471 4472 i = 0 4473 x[i], i = 2, 1 // set x[0] = 2, i = 1 4474 4475 x[0], x[0] = 1, 2 // set x[0] = 1, then x[0] = 2 (so x[0] == 2 at end) 4476 4477 x[1], x[3] = 4, 5 // set x[1] = 4, then panic setting x[3] = 5. 4478 4479 type Point struct { x, y int } 4480 var p *Point 4481 x[2], p.x = 6, 7 // set x[2] = 6, then panic setting p.x = 7 4482 4483 i = 2 4484 x = []int{3, 5, 7} 4485 for i, x[i] = range x { // set i, x[2] = 0, x[0] 4486 break 4487 } 4488 // after this loop, i == 0 and x == []int{3, 5, 3} 4489 </pre> 4490 4491 <p> 4492 In assignments, each value must be <a href="#Assignability">assignable</a> 4493 to the type of the operand to which it is assigned, with the following special cases: 4494 </p> 4495 4496 <ol> 4497 <li> 4498 Any typed value may be assigned to the blank identifier. 4499 </li> 4500 4501 <li> 4502 If an untyped constant 4503 is assigned to a variable of interface type or the blank identifier, 4504 the constant is first <a href="#Conversions">converted</a> to its 4505 <a href="#Constants">default type</a>. 4506 </li> 4507 4508 <li> 4509 If an untyped boolean value is assigned to a variable of interface type or 4510 the blank identifier, it is first converted to type <code>bool</code>. 4511 </li> 4512 </ol> 4513 4514 <h3 id="If_statements">If statements</h3> 4515 4516 <p> 4517 "If" statements specify the conditional execution of two branches 4518 according to the value of a boolean expression. If the expression 4519 evaluates to true, the "if" branch is executed, otherwise, if 4520 present, the "else" branch is executed. 4521 </p> 4522 4523 <pre class="ebnf"> 4524 IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] . 4525 </pre> 4526 4527 <pre> 4528 if x > max { 4529 x = max 4530 } 4531 </pre> 4532 4533 <p> 4534 The expression may be preceded by a simple statement, which 4535 executes before the expression is evaluated. 4536 </p> 4537 4538 <pre> 4539 if x := f(); x < y { 4540 return x 4541 } else if x > z { 4542 return z 4543 } else { 4544 return y 4545 } 4546 </pre> 4547 4548 4549 <h3 id="Switch_statements">Switch statements</h3> 4550 4551 <p> 4552 "Switch" statements provide multi-way execution. 4553 An expression or type specifier is compared to the "cases" 4554 inside the "switch" to determine which branch 4555 to execute. 4556 </p> 4557 4558 <pre class="ebnf"> 4559 SwitchStmt = ExprSwitchStmt | TypeSwitchStmt . 4560 </pre> 4561 4562 <p> 4563 There are two forms: expression switches and type switches. 4564 In an expression switch, the cases contain expressions that are compared 4565 against the value of the switch expression. 4566 In a type switch, the cases contain types that are compared against the 4567 type of a specially annotated switch expression. 4568 The switch expression is evaluated exactly once in a switch statement. 4569 </p> 4570 4571 <h4 id="Expression_switches">Expression switches</h4> 4572 4573 <p> 4574 In an expression switch, 4575 the switch expression is evaluated and 4576 the case expressions, which need not be constants, 4577 are evaluated left-to-right and top-to-bottom; the first one that equals the 4578 switch expression 4579 triggers execution of the statements of the associated case; 4580 the other cases are skipped. 4581 If no case matches and there is a "default" case, 4582 its statements are executed. 4583 There can be at most one default case and it may appear anywhere in the 4584 "switch" statement. 4585 A missing switch expression is equivalent to the boolean value 4586 <code>true</code>. 4587 </p> 4588 4589 <pre class="ebnf"> 4590 ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" . 4591 ExprCaseClause = ExprSwitchCase ":" StatementList . 4592 ExprSwitchCase = "case" ExpressionList | "default" . 4593 </pre> 4594 4595 <p> 4596 If the switch expression evaluates to an untyped constant, it is first 4597 <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>; 4598 if it is an untyped boolean value, it is first converted to type <code>bool</code>. 4599 The predeclared untyped value <code>nil</code> cannot be used as a switch expression. 4600 </p> 4601 4602 <p> 4603 If a case expression is untyped, it is first <a href="#Conversions">converted</a> 4604 to the type of the switch expression. 4605 For each (possibly converted) case expression <code>x</code> and the value <code>t</code> 4606 of the switch expression, <code>x == t</code> must be a valid <a href="#Comparison_operators">comparison</a>. 4607 </p> 4608 4609 <p> 4610 In other words, the switch expression is treated as if it were used to declare and 4611 initialize a temporary variable <code>t</code> without explicit type; it is that 4612 value of <code>t</code> against which each case expression <code>x</code> is tested 4613 for equality. 4614 </p> 4615 4616 <p> 4617 In a case or default clause, the last non-empty statement 4618 may be a (possibly <a href="#Labeled_statements">labeled</a>) 4619 <a href="#Fallthrough_statements">"fallthrough" statement</a> to 4620 indicate that control should flow from the end of this clause to 4621 the first statement of the next clause. 4622 Otherwise control flows to the end of the "switch" statement. 4623 A "fallthrough" statement may appear as the last statement of all 4624 but the last clause of an expression switch. 4625 </p> 4626 4627 <p> 4628 The switch expression may be preceded by a simple statement, which 4629 executes before the expression is evaluated. 4630 </p> 4631 4632 <pre> 4633 switch tag { 4634 default: s3() 4635 case 0, 1, 2, 3: s1() 4636 case 4, 5, 6, 7: s2() 4637 } 4638 4639 switch x := f(); { // missing switch expression means "true" 4640 case x < 0: return -x 4641 default: return x 4642 } 4643 4644 switch { 4645 case x < y: f1() 4646 case x < z: f2() 4647 case x == 4: f3() 4648 } 4649 </pre> 4650 4651 <p> 4652 Implementation restriction: A compiler may disallow multiple case 4653 expressions evaluating to the same constant. 4654 For instance, the current compilers disallow duplicate integer, 4655 floating point, or string constants in case expressions. 4656 </p> 4657 4658 <h4 id="Type_switches">Type switches</h4> 4659 4660 <p> 4661 A type switch compares types rather than values. It is otherwise similar 4662 to an expression switch. It is marked by a special switch expression that 4663 has the form of a <a href="#Type_assertions">type assertion</a> 4664 using the reserved word <code>type</code> rather than an actual type: 4665 </p> 4666 4667 <pre> 4668 switch x.(type) { 4669 // cases 4670 } 4671 </pre> 4672 4673 <p> 4674 Cases then match actual types <code>T</code> against the dynamic type of the 4675 expression <code>x</code>. As with type assertions, <code>x</code> must be of 4676 <a href="#Interface_types">interface type</a>, and each non-interface type 4677 <code>T</code> listed in a case must implement the type of <code>x</code>. 4678 The types listed in the cases of a type switch must all be 4679 <a href="#Type_identity">different</a>. 4680 </p> 4681 4682 <pre class="ebnf"> 4683 TypeSwitchStmt = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" . 4684 TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" . 4685 TypeCaseClause = TypeSwitchCase ":" StatementList . 4686 TypeSwitchCase = "case" TypeList | "default" . 4687 TypeList = Type { "," Type } . 4688 </pre> 4689 4690 <p> 4691 The TypeSwitchGuard may include a 4692 <a href="#Short_variable_declarations">short variable declaration</a>. 4693 When that form is used, the variable is declared at the beginning of 4694 the <a href="#Blocks">implicit block</a> in each clause. 4695 In clauses with a case listing exactly one type, the variable 4696 has that type; otherwise, the variable has the type of the expression 4697 in the TypeSwitchGuard. 4698 </p> 4699 4700 <p> 4701 The type in a case may be <a href="#Predeclared_identifiers"><code>nil</code></a>; 4702 that case is used when the expression in the TypeSwitchGuard 4703 is a <code>nil</code> interface value. 4704 There may be at most one <code>nil</code> case. 4705 </p> 4706 4707 <p> 4708 Given an expression <code>x</code> of type <code>interface{}</code>, 4709 the following type switch: 4710 </p> 4711 4712 <pre> 4713 switch i := x.(type) { 4714 case nil: 4715 printString("x is nil") // type of i is type of x (interface{}) 4716 case int: 4717 printInt(i) // type of i is int 4718 case float64: 4719 printFloat64(i) // type of i is float64 4720 case func(int) float64: 4721 printFunction(i) // type of i is func(int) float64 4722 case bool, string: 4723 printString("type is bool or string") // type of i is type of x (interface{}) 4724 default: 4725 printString("don't know the type") // type of i is type of x (interface{}) 4726 } 4727 </pre> 4728 4729 <p> 4730 could be rewritten: 4731 </p> 4732 4733 <pre> 4734 v := x // x is evaluated exactly once 4735 if v == nil { 4736 i := v // type of i is type of x (interface{}) 4737 printString("x is nil") 4738 } else if i, isInt := v.(int); isInt { 4739 printInt(i) // type of i is int 4740 } else if i, isFloat64 := v.(float64); isFloat64 { 4741 printFloat64(i) // type of i is float64 4742 } else if i, isFunc := v.(func(int) float64); isFunc { 4743 printFunction(i) // type of i is func(int) float64 4744 } else { 4745 _, isBool := v.(bool) 4746 _, isString := v.(string) 4747 if isBool || isString { 4748 i := v // type of i is type of x (interface{}) 4749 printString("type is bool or string") 4750 } else { 4751 i := v // type of i is type of x (interface{}) 4752 printString("don't know the type") 4753 } 4754 } 4755 </pre> 4756 4757 <p> 4758 The type switch guard may be preceded by a simple statement, which 4759 executes before the guard is evaluated. 4760 </p> 4761 4762 <p> 4763 The "fallthrough" statement is not permitted in a type switch. 4764 </p> 4765 4766 <h3 id="For_statements">For statements</h3> 4767 4768 <p> 4769 A "for" statement specifies repeated execution of a block. The iteration is 4770 controlled by a condition, a "for" clause, or a "range" clause. 4771 </p> 4772 4773 <pre class="ebnf"> 4774 ForStmt = "for" [ Condition | ForClause | RangeClause ] Block . 4775 Condition = Expression . 4776 </pre> 4777 4778 <p> 4779 In its simplest form, a "for" statement specifies the repeated execution of 4780 a block as long as a boolean condition evaluates to true. 4781 The condition is evaluated before each iteration. 4782 If the condition is absent, it is equivalent to the boolean value 4783 <code>true</code>. 4784 </p> 4785 4786 <pre> 4787 for a < b { 4788 a *= 2 4789 } 4790 </pre> 4791 4792 <p> 4793 A "for" statement with a ForClause is also controlled by its condition, but 4794 additionally it may specify an <i>init</i> 4795 and a <i>post</i> statement, such as an assignment, 4796 an increment or decrement statement. The init statement may be a 4797 <a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not. 4798 Variables declared by the init statement are re-used in each iteration. 4799 </p> 4800 4801 <pre class="ebnf"> 4802 ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] . 4803 InitStmt = SimpleStmt . 4804 PostStmt = SimpleStmt . 4805 </pre> 4806 4807 <pre> 4808 for i := 0; i < 10; i++ { 4809 f(i) 4810 } 4811 </pre> 4812 4813 <p> 4814 If non-empty, the init statement is executed once before evaluating the 4815 condition for the first iteration; 4816 the post statement is executed after each execution of the block (and 4817 only if the block was executed). 4818 Any element of the ForClause may be empty but the 4819 <a href="#Semicolons">semicolons</a> are 4820 required unless there is only a condition. 4821 If the condition is absent, it is equivalent to the boolean value 4822 <code>true</code>. 4823 </p> 4824 4825 <pre> 4826 for cond { S() } is the same as for ; cond ; { S() } 4827 for { S() } is the same as for true { S() } 4828 </pre> 4829 4830 <p> 4831 A "for" statement with a "range" clause 4832 iterates through all entries of an array, slice, string or map, 4833 or values received on a channel. For each entry it assigns <i>iteration values</i> 4834 to corresponding <i>iteration variables</i> if present and then executes the block. 4835 </p> 4836 4837 <pre class="ebnf"> 4838 RangeClause = [ ExpressionList "=" | IdentifierList ":=" ] "range" Expression . 4839 </pre> 4840 4841 <p> 4842 The expression on the right in the "range" clause is called the <i>range expression</i>, 4843 which may be an array, pointer to an array, slice, string, map, or channel permitting 4844 <a href="#Receive_operator">receive operations</a>. 4845 As with an assignment, if present the operands on the left must be 4846 <a href="#Address_operators">addressable</a> or map index expressions; they 4847 denote the iteration variables. If the range expression is a channel, at most 4848 one iteration variable is permitted, otherwise there may be up to two. 4849 If the last iteration variable is the <a href="#Blank_identifier">blank identifier</a>, 4850 the range clause is equivalent to the same clause without that identifier. 4851 </p> 4852 4853 <p> 4854 The range expression is evaluated once before beginning the loop, 4855 with one exception: if the range expression is an array or a pointer to an array 4856 and at most one iteration variable is present, only the range expression's 4857 length is evaluated; if that length is constant, 4858 <a href="#Length_and_capacity">by definition</a> 4859 the range expression itself will not be evaluated. 4860 </p> 4861 4862 <p> 4863 Function calls on the left are evaluated once per iteration. 4864 For each iteration, iteration values are produced as follows 4865 if the respective iteration variables are present: 4866 </p> 4867 4868 <pre class="grammar"> 4869 Range expression 1st value 2nd value 4870 4871 array or slice a [n]E, *[n]E, or []E index i int a[i] E 4872 string s string type index i int see below rune 4873 map m map[K]V key k K m[k] V 4874 channel c chan E, <-chan E element e E 4875 </pre> 4876 4877 <ol> 4878 <li> 4879 For an array, pointer to array, or slice value <code>a</code>, the index iteration 4880 values are produced in increasing order, starting at element index 0. 4881 If at most one iteration variable is present, the range loop produces 4882 iteration values from 0 up to <code>len(a)-1</code> and does not index into the array 4883 or slice itself. For a <code>nil</code> slice, the number of iterations is 0. 4884 </li> 4885 4886 <li> 4887 For a string value, the "range" clause iterates over the Unicode code points 4888 in the string starting at byte index 0. On successive iterations, the index value will be the 4889 index of the first byte of successive UTF-8-encoded code points in the string, 4890 and the second value, of type <code>rune</code>, will be the value of 4891 the corresponding code point. If the iteration encounters an invalid 4892 UTF-8 sequence, the second value will be <code>0xFFFD</code>, 4893 the Unicode replacement character, and the next iteration will advance 4894 a single byte in the string. 4895 </li> 4896 4897 <li> 4898 The iteration order over maps is not specified 4899 and is not guaranteed to be the same from one iteration to the next. 4900 If map entries that have not yet been reached are removed during iteration, 4901 the corresponding iteration values will not be produced. If map entries are 4902 created during iteration, that entry may be produced during the iteration or 4903 may be skipped. The choice may vary for each entry created and from one 4904 iteration to the next. 4905 If the map is <code>nil</code>, the number of iterations is 0. 4906 </li> 4907 4908 <li> 4909 For channels, the iteration values produced are the successive values sent on 4910 the channel until the channel is <a href="#Close">closed</a>. If the channel 4911 is <code>nil</code>, the range expression blocks forever. 4912 </li> 4913 </ol> 4914 4915 <p> 4916 The iteration values are assigned to the respective 4917 iteration variables as in an <a href="#Assignments">assignment statement</a>. 4918 </p> 4919 4920 <p> 4921 The iteration variables may be declared by the "range" clause using a form of 4922 <a href="#Short_variable_declarations">short variable declaration</a> 4923 (<code>:=</code>). 4924 In this case their types are set to the types of the respective iteration values 4925 and their <a href="#Declarations_and_scope">scope</a> is the block of the "for" 4926 statement; they are re-used in each iteration. 4927 If the iteration variables are declared outside the "for" statement, 4928 after execution their values will be those of the last iteration. 4929 </p> 4930 4931 <pre> 4932 var testdata *struct { 4933 a *[7]int 4934 } 4935 for i, _ := range testdata.a { 4936 // testdata.a is never evaluated; len(testdata.a) is constant 4937 // i ranges from 0 to 6 4938 f(i) 4939 } 4940 4941 var a [10]string 4942 for i, s := range a { 4943 // type of i is int 4944 // type of s is string 4945 // s == a[i] 4946 g(i, s) 4947 } 4948 4949 var key string 4950 var val interface {} // value type of m is assignable to val 4951 m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6} 4952 for key, val = range m { 4953 h(key, val) 4954 } 4955 // key == last map key encountered in iteration 4956 // val == map[key] 4957 4958 var ch chan Work = producer() 4959 for w := range ch { 4960 doWork(w) 4961 } 4962 4963 // empty a channel 4964 for range ch {} 4965 </pre> 4966 4967 4968 <h3 id="Go_statements">Go statements</h3> 4969 4970 <p> 4971 A "go" statement starts the execution of a function call 4972 as an independent concurrent thread of control, or <i>goroutine</i>, 4973 within the same address space. 4974 </p> 4975 4976 <pre class="ebnf"> 4977 GoStmt = "go" Expression . 4978 </pre> 4979 4980 <p> 4981 The expression must be a function or method call; it cannot be parenthesized. 4982 Calls of built-in functions are restricted as for 4983 <a href="#Expression_statements">expression statements</a>. 4984 </p> 4985 4986 <p> 4987 The function value and parameters are 4988 <a href="#Calls">evaluated as usual</a> 4989 in the calling goroutine, but 4990 unlike with a regular call, program execution does not wait 4991 for the invoked function to complete. 4992 Instead, the function begins executing independently 4993 in a new goroutine. 4994 When the function terminates, its goroutine also terminates. 4995 If the function has any return values, they are discarded when the 4996 function completes. 4997 </p> 4998 4999 <pre> 5000 go Server() 5001 go func(ch chan<- bool) { for { sleep(10); ch <- true; }} (c) 5002 </pre> 5003 5004 5005 <h3 id="Select_statements">Select statements</h3> 5006 5007 <p> 5008 A "select" statement chooses which of a set of possible 5009 <a href="#Send_statements">send</a> or 5010 <a href="#Receive_operator">receive</a> 5011 operations will proceed. 5012 It looks similar to a 5013 <a href="#Switch_statements">"switch"</a> statement but with the 5014 cases all referring to communication operations. 5015 </p> 5016 5017 <pre class="ebnf"> 5018 SelectStmt = "select" "{" { CommClause } "}" . 5019 CommClause = CommCase ":" StatementList . 5020 CommCase = "case" ( SendStmt | RecvStmt ) | "default" . 5021 RecvStmt = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr . 5022 RecvExpr = Expression . 5023 </pre> 5024 5025 <p> 5026 A case with a RecvStmt may assign the result of a RecvExpr to one or 5027 two variables, which may be declared using a 5028 <a href="#Short_variable_declarations">short variable declaration</a>. 5029 The RecvExpr must be a (possibly parenthesized) receive operation. 5030 There can be at most one default case and it may appear anywhere 5031 in the list of cases. 5032 </p> 5033 5034 <p> 5035 Execution of a "select" statement proceeds in several steps: 5036 </p> 5037 5038 <ol> 5039 <li> 5040 For all the cases in the statement, the channel operands of receive operations 5041 and the channel and right-hand-side expressions of send statements are 5042 evaluated exactly once, in source order, upon entering the "select" statement. 5043 The result is a set of channels to receive from or send to, 5044 and the corresponding values to send. 5045 Any side effects in that evaluation will occur irrespective of which (if any) 5046 communication operation is selected to proceed. 5047 Expressions on the left-hand side of a RecvStmt with a short variable declaration 5048 or assignment are not yet evaluated. 5049 </li> 5050 5051 <li> 5052 If one or more of the communications can proceed, 5053 a single one that can proceed is chosen via a uniform pseudo-random selection. 5054 Otherwise, if there is a default case, that case is chosen. 5055 If there is no default case, the "select" statement blocks until 5056 at least one of the communications can proceed. 5057 </li> 5058 5059 <li> 5060 Unless the selected case is the default case, the respective communication 5061 operation is executed. 5062 </li> 5063 5064 <li> 5065 If the selected case is a RecvStmt with a short variable declaration or 5066 an assignment, the left-hand side expressions are evaluated and the 5067 received value (or values) are assigned. 5068 </li> 5069 5070 <li> 5071 The statement list of the selected case is executed. 5072 </li> 5073 </ol> 5074 5075 <p> 5076 Since communication on <code>nil</code> channels can never proceed, 5077 a select with only <code>nil</code> channels and no default case blocks forever. 5078 </p> 5079 5080 <pre> 5081 var a []int 5082 var c, c1, c2, c3, c4 chan int 5083 var i1, i2 int 5084 select { 5085 case i1 = <-c1: 5086 print("received ", i1, " from c1\n") 5087 case c2 <- i2: 5088 print("sent ", i2, " to c2\n") 5089 case i3, ok := (<-c3): // same as: i3, ok := <-c3 5090 if ok { 5091 print("received ", i3, " from c3\n") 5092 } else { 5093 print("c3 is closed\n") 5094 } 5095 case a[f()] = <-c4: 5096 // same as: 5097 // case t := <-c4 5098 // a[f()] = t 5099 default: 5100 print("no communication\n") 5101 } 5102 5103 for { // send random sequence of bits to c 5104 select { 5105 case c <- 0: // note: no statement, no fallthrough, no folding of cases 5106 case c <- 1: 5107 } 5108 } 5109 5110 select {} // block forever 5111 </pre> 5112 5113 5114 <h3 id="Return_statements">Return statements</h3> 5115 5116 <p> 5117 A "return" statement in a function <code>F</code> terminates the execution 5118 of <code>F</code>, and optionally provides one or more result values. 5119 Any functions <a href="#Defer_statements">deferred</a> by <code>F</code> 5120 are executed before <code>F</code> returns to its caller. 5121 </p> 5122 5123 <pre class="ebnf"> 5124 ReturnStmt = "return" [ ExpressionList ] . 5125 </pre> 5126 5127 <p> 5128 In a function without a result type, a "return" statement must not 5129 specify any result values. 5130 </p> 5131 <pre> 5132 func noResult() { 5133 return 5134 } 5135 </pre> 5136 5137 <p> 5138 There are three ways to return values from a function with a result 5139 type: 5140 </p> 5141 5142 <ol> 5143 <li>The return value or values may be explicitly listed 5144 in the "return" statement. Each expression must be single-valued 5145 and <a href="#Assignability">assignable</a> 5146 to the corresponding element of the function's result type. 5147 <pre> 5148 func simpleF() int { 5149 return 2 5150 } 5151 5152 func complexF1() (re float64, im float64) { 5153 return -7.0, -4.0 5154 } 5155 </pre> 5156 </li> 5157 <li>The expression list in the "return" statement may be a single 5158 call to a multi-valued function. The effect is as if each value 5159 returned from that function were assigned to a temporary 5160 variable with the type of the respective value, followed by a 5161 "return" statement listing these variables, at which point the 5162 rules of the previous case apply. 5163 <pre> 5164 func complexF2() (re float64, im float64) { 5165 return complexF1() 5166 } 5167 </pre> 5168 </li> 5169 <li>The expression list may be empty if the function's result 5170 type specifies names for its <a href="#Function_types">result parameters</a>. 5171 The result parameters act as ordinary local variables 5172 and the function may assign values to them as necessary. 5173 The "return" statement returns the values of these variables. 5174 <pre> 5175 func complexF3() (re float64, im float64) { 5176 re = 7.0 5177 im = 4.0 5178 return 5179 } 5180 5181 func (devnull) Write(p []byte) (n int, _ error) { 5182 n = len(p) 5183 return 5184 } 5185 </pre> 5186 </li> 5187 </ol> 5188 5189 <p> 5190 Regardless of how they are declared, all the result values are initialized to 5191 the <a href="#The_zero_value">zero values</a> for their type upon entry to the 5192 function. A "return" statement that specifies results sets the result parameters before 5193 any deferred functions are executed. 5194 </p> 5195 5196 <p> 5197 Implementation restriction: A compiler may disallow an empty expression list 5198 in a "return" statement if a different entity (constant, type, or variable) 5199 with the same name as a result parameter is in 5200 <a href="#Declarations_and_scope">scope</a> at the place of the return. 5201 </p> 5202 5203 <pre> 5204 func f(n int) (res int, err error) { 5205 if _, err := f(n-1); err != nil { 5206 return // invalid return statement: err is shadowed 5207 } 5208 return 5209 } 5210 </pre> 5211 5212 <h3 id="Break_statements">Break statements</h3> 5213 5214 <p> 5215 A "break" statement terminates execution of the innermost 5216 <a href="#For_statements">"for"</a>, 5217 <a href="#Switch_statements">"switch"</a>, or 5218 <a href="#Select_statements">"select"</a> statement 5219 within the same function. 5220 </p> 5221 5222 <pre class="ebnf"> 5223 BreakStmt = "break" [ Label ] . 5224 </pre> 5225 5226 <p> 5227 If there is a label, it must be that of an enclosing 5228 "for", "switch", or "select" statement, 5229 and that is the one whose execution terminates. 5230 </p> 5231 5232 <pre> 5233 OuterLoop: 5234 for i = 0; i < n; i++ { 5235 for j = 0; j < m; j++ { 5236 switch a[i][j] { 5237 case nil: 5238 state = Error 5239 break OuterLoop 5240 case item: 5241 state = Found 5242 break OuterLoop 5243 } 5244 } 5245 } 5246 </pre> 5247 5248 <h3 id="Continue_statements">Continue statements</h3> 5249 5250 <p> 5251 A "continue" statement begins the next iteration of the 5252 innermost <a href="#For_statements">"for" loop</a> at its post statement. 5253 The "for" loop must be within the same function. 5254 </p> 5255 5256 <pre class="ebnf"> 5257 ContinueStmt = "continue" [ Label ] . 5258 </pre> 5259 5260 <p> 5261 If there is a label, it must be that of an enclosing 5262 "for" statement, and that is the one whose execution 5263 advances. 5264 </p> 5265 5266 <pre> 5267 RowLoop: 5268 for y, row := range rows { 5269 for x, data := range row { 5270 if data == endOfRow { 5271 continue RowLoop 5272 } 5273 row[x] = data + bias(x, y) 5274 } 5275 } 5276 </pre> 5277 5278 <h3 id="Goto_statements">Goto statements</h3> 5279 5280 <p> 5281 A "goto" statement transfers control to the statement with the corresponding label 5282 within the same function. 5283 </p> 5284 5285 <pre class="ebnf"> 5286 GotoStmt = "goto" Label . 5287 </pre> 5288 5289 <pre> 5290 goto Error 5291 </pre> 5292 5293 <p> 5294 Executing the "goto" statement must not cause any variables to come into 5295 <a href="#Declarations_and_scope">scope</a> that were not already in scope at the point of the goto. 5296 For instance, this example: 5297 </p> 5298 5299 <pre> 5300 goto L // BAD 5301 v := 3 5302 L: 5303 </pre> 5304 5305 <p> 5306 is erroneous because the jump to label <code>L</code> skips 5307 the creation of <code>v</code>. 5308 </p> 5309 5310 <p> 5311 A "goto" statement outside a <a href="#Blocks">block</a> cannot jump to a label inside that block. 5312 For instance, this example: 5313 </p> 5314 5315 <pre> 5316 if n%2 == 1 { 5317 goto L1 5318 } 5319 for n > 0 { 5320 f() 5321 n-- 5322 L1: 5323 f() 5324 n-- 5325 } 5326 </pre> 5327 5328 <p> 5329 is erroneous because the label <code>L1</code> is inside 5330 the "for" statement's block but the <code>goto</code> is not. 5331 </p> 5332 5333 <h3 id="Fallthrough_statements">Fallthrough statements</h3> 5334 5335 <p> 5336 A "fallthrough" statement transfers control to the first statement of the 5337 next case clause in an <a href="#Expression_switches">expression "switch" statement</a>. 5338 It may be used only as the final non-empty statement in such a clause. 5339 </p> 5340 5341 <pre class="ebnf"> 5342 FallthroughStmt = "fallthrough" . 5343 </pre> 5344 5345 5346 <h3 id="Defer_statements">Defer statements</h3> 5347 5348 <p> 5349 A "defer" statement invokes a function whose execution is deferred 5350 to the moment the surrounding function returns, either because the 5351 surrounding function executed a <a href="#Return_statements">return statement</a>, 5352 reached the end of its <a href="#Function_declarations">function body</a>, 5353 or because the corresponding goroutine is <a href="#Handling_panics">panicking</a>. 5354 </p> 5355 5356 <pre class="ebnf"> 5357 DeferStmt = "defer" Expression . 5358 </pre> 5359 5360 <p> 5361 The expression must be a function or method call; it cannot be parenthesized. 5362 Calls of built-in functions are restricted as for 5363 <a href="#Expression_statements">expression statements</a>. 5364 </p> 5365 5366 <p> 5367 Each time a "defer" statement 5368 executes, the function value and parameters to the call are 5369 <a href="#Calls">evaluated as usual</a> 5370 and saved anew but the actual function is not invoked. 5371 Instead, deferred functions are invoked immediately before 5372 the surrounding function returns, in the reverse order 5373 they were deferred. 5374 If a deferred function value evaluates 5375 to <code>nil</code>, execution <a href="#Handling_panics">panics</a> 5376 when the function is invoked, not when the "defer" statement is executed. 5377 </p> 5378 5379 <p> 5380 For instance, if the deferred function is 5381 a <a href="#Function_literals">function literal</a> and the surrounding 5382 function has <a href="#Function_types">named result parameters</a> that 5383 are in scope within the literal, the deferred function may access and modify 5384 the result parameters before they are returned. 5385 If the deferred function has any return values, they are discarded when 5386 the function completes. 5387 (See also the section on <a href="#Handling_panics">handling panics</a>.) 5388 </p> 5389 5390 <pre> 5391 lock(l) 5392 defer unlock(l) // unlocking happens before surrounding function returns 5393 5394 // prints 3 2 1 0 before surrounding function returns 5395 for i := 0; i <= 3; i++ { 5396 defer fmt.Print(i) 5397 } 5398 5399 // f returns 1 5400 func f() (result int) { 5401 defer func() { 5402 result++ 5403 }() 5404 return 0 5405 } 5406 </pre> 5407 5408 <h2 id="Built-in_functions">Built-in functions</h2> 5409 5410 <p> 5411 Built-in functions are 5412 <a href="#Predeclared_identifiers">predeclared</a>. 5413 They are called like any other function but some of them 5414 accept a type instead of an expression as the first argument. 5415 </p> 5416 5417 <p> 5418 The built-in functions do not have standard Go types, 5419 so they can only appear in <a href="#Calls">call expressions</a>; 5420 they cannot be used as function values. 5421 </p> 5422 5423 <h3 id="Close">Close</h3> 5424 5425 <p> 5426 For a channel <code>c</code>, the built-in function <code>close(c)</code> 5427 records that no more values will be sent on the channel. 5428 It is an error if <code>c</code> is a receive-only channel. 5429 Sending to or closing a closed channel causes a <a href="#Run_time_panics">run-time panic</a>. 5430 Closing the nil channel also causes a <a href="#Run_time_panics">run-time panic</a>. 5431 After calling <code>close</code>, and after any previously 5432 sent values have been received, receive operations will return 5433 the zero value for the channel's type without blocking. 5434 The multi-valued <a href="#Receive_operator">receive operation</a> 5435 returns a received value along with an indication of whether the channel is closed. 5436 </p> 5437 5438 5439 <h3 id="Length_and_capacity">Length and capacity</h3> 5440 5441 <p> 5442 The built-in functions <code>len</code> and <code>cap</code> take arguments 5443 of various types and return a result of type <code>int</code>. 5444 The implementation guarantees that the result always fits into an <code>int</code>. 5445 </p> 5446 5447 <pre class="grammar"> 5448 Call Argument type Result 5449 5450 len(s) string type string length in bytes 5451 [n]T, *[n]T array length (== n) 5452 []T slice length 5453 map[K]T map length (number of defined keys) 5454 chan T number of elements queued in channel buffer 5455 5456 cap(s) [n]T, *[n]T array length (== n) 5457 []T slice capacity 5458 chan T channel buffer capacity 5459 </pre> 5460 5461 <p> 5462 The capacity of a slice is the number of elements for which there is 5463 space allocated in the underlying array. 5464 At any time the following relationship holds: 5465 </p> 5466 5467 <pre> 5468 0 <= len(s) <= cap(s) 5469 </pre> 5470 5471 <p> 5472 The length of a <code>nil</code> slice, map or channel is 0. 5473 The capacity of a <code>nil</code> slice or channel is 0. 5474 </p> 5475 5476 <p> 5477 The expression <code>len(s)</code> is <a href="#Constants">constant</a> if 5478 <code>s</code> is a string constant. The expressions <code>len(s)</code> and 5479 <code>cap(s)</code> are constants if the type of <code>s</code> is an array 5480 or pointer to an array and the expression <code>s</code> does not contain 5481 <a href="#Receive_operator">channel receives</a> or (non-constant) 5482 <a href="#Calls">function calls</a>; in this case <code>s</code> is not evaluated. 5483 Otherwise, invocations of <code>len</code> and <code>cap</code> are not 5484 constant and <code>s</code> is evaluated. 5485 </p> 5486 5487 <pre> 5488 const ( 5489 c1 = imag(2i) // imag(2i) = 2.0 is a constant 5490 c2 = len([10]float64{2}) // [10]float64{2} contains no function calls 5491 c3 = len([10]float64{c1}) // [10]float64{c1} contains no function calls 5492 c4 = len([10]float64{imag(2i)}) // imag(2i) is a constant and no function call is issued 5493 c5 = len([10]float64{imag(z)}) // invalid: imag(z) is a (non-constant) function call 5494 ) 5495 var z complex128 5496 </pre> 5497 5498 <h3 id="Allocation">Allocation</h3> 5499 5500 <p> 5501 The built-in function <code>new</code> takes a type <code>T</code>, 5502 allocates storage for a <a href="#Variables">variable</a> of that type 5503 at run time, and returns a value of type <code>*T</code> 5504 <a href="#Pointer_types">pointing</a> to it. 5505 The variable is initialized as described in the section on 5506 <a href="#The_zero_value">initial values</a>. 5507 </p> 5508 5509 <pre class="grammar"> 5510 new(T) 5511 </pre> 5512 5513 <p> 5514 For instance 5515 </p> 5516 5517 <pre> 5518 type S struct { a int; b float64 } 5519 new(S) 5520 </pre> 5521 5522 <p> 5523 allocates storage for a variable of type <code>S</code>, 5524 initializes it (<code>a=0</code>, <code>b=0.0</code>), 5525 and returns a value of type <code>*S</code> containing the address 5526 of the location. 5527 </p> 5528 5529 <h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3> 5530 5531 <p> 5532 The built-in function <code>make</code> takes a type <code>T</code>, 5533 which must be a slice, map or channel type, 5534 optionally followed by a type-specific list of expressions. 5535 It returns a value of type <code>T</code> (not <code>*T</code>). 5536 The memory is initialized as described in the section on 5537 <a href="#The_zero_value">initial values</a>. 5538 </p> 5539 5540 <pre class="grammar"> 5541 Call Type T Result 5542 5543 make(T, n) slice slice of type T with length n and capacity n 5544 make(T, n, m) slice slice of type T with length n and capacity m 5545 5546 make(T) map map of type T 5547 make(T, n) map map of type T with initial space for n elements 5548 5549 make(T) channel unbuffered channel of type T 5550 make(T, n) channel buffered channel of type T, buffer size n 5551 </pre> 5552 5553 5554 <p> 5555 The size arguments <code>n</code> and <code>m</code> must be of integer type or untyped. 5556 A <a href="#Constants">constant</a> size argument must be non-negative and 5557 representable by a value of type <code>int</code>. 5558 If both <code>n</code> and <code>m</code> are provided and are constant, then 5559 <code>n</code> must be no larger than <code>m</code>. 5560 If <code>n</code> is negative or larger than <code>m</code> at run time, 5561 a <a href="#Run_time_panics">run-time panic</a> occurs. 5562 </p> 5563 5564 <pre> 5565 s := make([]int, 10, 100) // slice with len(s) == 10, cap(s) == 100 5566 s := make([]int, 1e3) // slice with len(s) == cap(s) == 1000 5567 s := make([]int, 1<<63) // illegal: len(s) is not representable by a value of type int 5568 s := make([]int, 10, 0) // illegal: len(s) > cap(s) 5569 c := make(chan int, 10) // channel with a buffer size of 10 5570 m := make(map[string]int, 100) // map with initial space for 100 elements 5571 </pre> 5572 5573 5574 <h3 id="Appending_and_copying_slices">Appending to and copying slices</h3> 5575 5576 <p> 5577 The built-in functions <code>append</code> and <code>copy</code> assist in 5578 common slice operations. 5579 For both functions, the result is independent of whether the memory referenced 5580 by the arguments overlaps. 5581 </p> 5582 5583 <p> 5584 The <a href="#Function_types">variadic</a> function <code>append</code> 5585 appends zero or more values <code>x</code> 5586 to <code>s</code> of type <code>S</code>, which must be a slice type, and 5587 returns the resulting slice, also of type <code>S</code>. 5588 The values <code>x</code> are passed to a parameter of type <code>...T</code> 5589 where <code>T</code> is the <a href="#Slice_types">element type</a> of 5590 <code>S</code> and the respective 5591 <a href="#Passing_arguments_to_..._parameters">parameter passing rules</a> apply. 5592 As a special case, <code>append</code> also accepts a first argument 5593 assignable to type <code>[]byte</code> with a second argument of 5594 string type followed by <code>...</code>. This form appends the 5595 bytes of the string. 5596 </p> 5597 5598 <pre class="grammar"> 5599 append(s S, x ...T) S // T is the element type of S 5600 </pre> 5601 5602 <p> 5603 If the capacity of <code>s</code> is not large enough to fit the additional 5604 values, <code>append</code> allocates a new, sufficiently large underlying 5605 array that fits both the existing slice elements and the additional values. 5606 Otherwise, <code>append</code> re-uses the underlying array. 5607 </p> 5608 5609 <pre> 5610 s0 := []int{0, 0} 5611 s1 := append(s0, 2) // append a single element s1 == []int{0, 0, 2} 5612 s2 := append(s1, 3, 5, 7) // append multiple elements s2 == []int{0, 0, 2, 3, 5, 7} 5613 s3 := append(s2, s0...) // append a slice s3 == []int{0, 0, 2, 3, 5, 7, 0, 0} 5614 s4 := append(s3[3:6], s3[2:]...) // append overlapping slice s4 == []int{3, 5, 7, 2, 3, 5, 7, 0, 0} 5615 5616 var t []interface{} 5617 t = append(t, 42, 3.1415, "foo") // t == []interface{}{42, 3.1415, "foo"} 5618 5619 var b []byte 5620 b = append(b, "bar"...) // append string contents b == []byte{'b', 'a', 'r' } 5621 </pre> 5622 5623 <p> 5624 The function <code>copy</code> copies slice elements from 5625 a source <code>src</code> to a destination <code>dst</code> and returns the 5626 number of elements copied. 5627 Both arguments must have <a href="#Type_identity">identical</a> element type <code>T</code> and must be 5628 <a href="#Assignability">assignable</a> to a slice of type <code>[]T</code>. 5629 The number of elements copied is the minimum of 5630 <code>len(src)</code> and <code>len(dst)</code>. 5631 As a special case, <code>copy</code> also accepts a destination argument assignable 5632 to type <code>[]byte</code> with a source argument of a string type. 5633 This form copies the bytes from the string into the byte slice. 5634 </p> 5635 5636 <pre class="grammar"> 5637 copy(dst, src []T) int 5638 copy(dst []byte, src string) int 5639 </pre> 5640 5641 <p> 5642 Examples: 5643 </p> 5644 5645 <pre> 5646 var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7} 5647 var s = make([]int, 6) 5648 var b = make([]byte, 5) 5649 n1 := copy(s, a[0:]) // n1 == 6, s == []int{0, 1, 2, 3, 4, 5} 5650 n2 := copy(s, s[2:]) // n2 == 4, s == []int{2, 3, 4, 5, 4, 5} 5651 n3 := copy(b, "Hello, World!") // n3 == 5, b == []byte("Hello") 5652 </pre> 5653 5654 5655 <h3 id="Deletion_of_map_elements">Deletion of map elements</h3> 5656 5657 <p> 5658 The built-in function <code>delete</code> removes the element with key 5659 <code>k</code> from a <a href="#Map_types">map</a> <code>m</code>. The 5660 type of <code>k</code> must be <a href="#Assignability">assignable</a> 5661 to the key type of <code>m</code>. 5662 </p> 5663 5664 <pre class="grammar"> 5665 delete(m, k) // remove element m[k] from map m 5666 </pre> 5667 5668 <p> 5669 If the map <code>m</code> is <code>nil</code> or the element <code>m[k]</code> 5670 does not exist, <code>delete</code> is a no-op. 5671 </p> 5672 5673 5674 <h3 id="Complex_numbers">Manipulating complex numbers</h3> 5675 5676 <p> 5677 Three functions assemble and disassemble complex numbers. 5678 The built-in function <code>complex</code> constructs a complex 5679 value from a floating-point real and imaginary part, while 5680 <code>real</code> and <code>imag</code> 5681 extract the real and imaginary parts of a complex value. 5682 </p> 5683 5684 <pre class="grammar"> 5685 complex(realPart, imaginaryPart floatT) complexT 5686 real(complexT) floatT 5687 imag(complexT) floatT 5688 </pre> 5689 5690 <p> 5691 The type of the arguments and return value correspond. 5692 For <code>complex</code>, the two arguments must be of the same 5693 floating-point type and the return type is the complex type 5694 with the corresponding floating-point constituents: 5695 <code>complex64</code> for <code>float32</code> arguments, and 5696 <code>complex128</code> for <code>float64</code> arguments. 5697 If one of the arguments evaluates to an untyped constant, it is first 5698 <a href="#Conversions">converted</a> to the type of the other argument. 5699 If both arguments evaluate to untyped constants, they must be non-complex 5700 numbers or their imaginary parts must be zero, and the return value of 5701 the function is an untyped complex constant. 5702 </p> 5703 5704 <p> 5705 For <code>real</code> and <code>imag</code>, the argument must be 5706 of complex type, and the return type is the corresponding floating-point 5707 type: <code>float32</code> for a <code>complex64</code> argument, and 5708 <code>float64</code> for a <code>complex128</code> argument. 5709 If the argument evaluates to an untyped constant, it must be a number, 5710 and the return value of the function is an untyped floating-point constant. 5711 </p> 5712 5713 <p> 5714 The <code>real</code> and <code>imag</code> functions together form the inverse of 5715 <code>complex</code>, so for a value <code>z</code> of a complex type <code>Z</code>, 5716 <code>z == Z(complex(real(z), imag(z)))</code>. 5717 </p> 5718 5719 <p> 5720 If the operands of these functions are all constants, the return 5721 value is a constant. 5722 </p> 5723 5724 <pre> 5725 var a = complex(2, -2) // complex128 5726 const b = complex(1.0, -1.4) // untyped complex constant 1 - 1.4i 5727 x := float32(math.Cos(math.Pi/2)) // float32 5728 var c64 = complex(5, -x) // complex64 5729 const s uint = complex(1, 0) // untyped complex constant 1 + 0i can be converted to uint 5730 _ = complex(1, 2<<s) // illegal: 2 has floating-point type, cannot shift 5731 var rl = real(c64) // float32 5732 var im = imag(a) // float64 5733 const c = imag(b) // untyped constant -1.4 5734 _ = imag(3 << s) // illegal: 3 has complex type, cannot shift 5735 </pre> 5736 5737 <h3 id="Handling_panics">Handling panics</h3> 5738 5739 <p> Two built-in functions, <code>panic</code> and <code>recover</code>, 5740 assist in reporting and handling <a href="#Run_time_panics">run-time panics</a> 5741 and program-defined error conditions. 5742 </p> 5743 5744 <pre class="grammar"> 5745 func panic(interface{}) 5746 func recover() interface{} 5747 </pre> 5748 5749 <p> 5750 While executing a function <code>F</code>, 5751 an explicit call to <code>panic</code> or a <a href="#Run_time_panics">run-time panic</a> 5752 terminates the execution of <code>F</code>. 5753 Any functions <a href="#Defer_statements">deferred</a> by <code>F</code> 5754 are then executed as usual. 5755 Next, any deferred functions run by <code>F's</code> caller are run, 5756 and so on up to any deferred by the top-level function in the executing goroutine. 5757 At that point, the program is terminated and the error 5758 condition is reported, including the value of the argument to <code>panic</code>. 5759 This termination sequence is called <i>panicking</i>. 5760 </p> 5761 5762 <pre> 5763 panic(42) 5764 panic("unreachable") 5765 panic(Error("cannot parse")) 5766 </pre> 5767 5768 <p> 5769 The <code>recover</code> function allows a program to manage behavior 5770 of a panicking goroutine. 5771 Suppose a function <code>G</code> defers a function <code>D</code> that calls 5772 <code>recover</code> and a panic occurs in a function on the same goroutine in which <code>G</code> 5773 is executing. 5774 When the running of deferred functions reaches <code>D</code>, 5775 the return value of <code>D</code>'s call to <code>recover</code> will be the value passed to the call of <code>panic</code>. 5776 If <code>D</code> returns normally, without starting a new 5777 <code>panic</code>, the panicking sequence stops. In that case, 5778 the state of functions called between <code>G</code> and the call to <code>panic</code> 5779 is discarded, and normal execution resumes. 5780 Any functions deferred by <code>G</code> before <code>D</code> are then run and <code>G</code>'s 5781 execution terminates by returning to its caller. 5782 </p> 5783 5784 <p> 5785 The return value of <code>recover</code> is <code>nil</code> if any of the following conditions holds: 5786 </p> 5787 <ul> 5788 <li> 5789 <code>panic</code>'s argument was <code>nil</code>; 5790 </li> 5791 <li> 5792 the goroutine is not panicking; 5793 </li> 5794 <li> 5795 <code>recover</code> was not called directly by a deferred function. 5796 </li> 5797 </ul> 5798 5799 <p> 5800 The <code>protect</code> function in the example below invokes 5801 the function argument <code>g</code> and protects callers from 5802 run-time panics raised by <code>g</code>. 5803 </p> 5804 5805 <pre> 5806 func protect(g func()) { 5807 defer func() { 5808 log.Println("done") // Println executes normally even if there is a panic 5809 if x := recover(); x != nil { 5810 log.Printf("run time panic: %v", x) 5811 } 5812 }() 5813 log.Println("start") 5814 g() 5815 } 5816 </pre> 5817 5818 5819 <h3 id="Bootstrapping">Bootstrapping</h3> 5820 5821 <p> 5822 Current implementations provide several built-in functions useful during 5823 bootstrapping. These functions are documented for completeness but are not 5824 guaranteed to stay in the language. They do not return a result. 5825 </p> 5826 5827 <pre class="grammar"> 5828 Function Behavior 5829 5830 print prints all arguments; formatting of arguments is implementation-specific 5831 println like print but prints spaces between arguments and a newline at the end 5832 </pre> 5833 5834 5835 <h2 id="Packages">Packages</h2> 5836 5837 <p> 5838 Go programs are constructed by linking together <i>packages</i>. 5839 A package in turn is constructed from one or more source files 5840 that together declare constants, types, variables and functions 5841 belonging to the package and which are accessible in all files 5842 of the same package. Those elements may be 5843 <a href="#Exported_identifiers">exported</a> and used in another package. 5844 </p> 5845 5846 <h3 id="Source_file_organization">Source file organization</h3> 5847 5848 <p> 5849 Each source file consists of a package clause defining the package 5850 to which it belongs, followed by a possibly empty set of import 5851 declarations that declare packages whose contents it wishes to use, 5852 followed by a possibly empty set of declarations of functions, 5853 types, variables, and constants. 5854 </p> 5855 5856 <pre class="ebnf"> 5857 SourceFile = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } . 5858 </pre> 5859 5860 <h3 id="Package_clause">Package clause</h3> 5861 5862 <p> 5863 A package clause begins each source file and defines the package 5864 to which the file belongs. 5865 </p> 5866 5867 <pre class="ebnf"> 5868 PackageClause = "package" PackageName . 5869 PackageName = identifier . 5870 </pre> 5871 5872 <p> 5873 The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>. 5874 </p> 5875 5876 <pre> 5877 package math 5878 </pre> 5879 5880 <p> 5881 A set of files sharing the same PackageName form the implementation of a package. 5882 An implementation may require that all source files for a package inhabit the same directory. 5883 </p> 5884 5885 <h3 id="Import_declarations">Import declarations</h3> 5886 5887 <p> 5888 An import declaration states that the source file containing the declaration 5889 depends on functionality of the <i>imported</i> package 5890 (<a href="#Program_initialization_and_execution">§Program initialization and execution</a>) 5891 and enables access to <a href="#Exported_identifiers">exported</a> identifiers 5892 of that package. 5893 The import names an identifier (PackageName) to be used for access and an ImportPath 5894 that specifies the package to be imported. 5895 </p> 5896 5897 <pre class="ebnf"> 5898 ImportDecl = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) . 5899 ImportSpec = [ "." | PackageName ] ImportPath . 5900 ImportPath = string_lit . 5901 </pre> 5902 5903 <p> 5904 The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a> 5905 to access exported identifiers of the package within the importing source file. 5906 It is declared in the <a href="#Blocks">file block</a>. 5907 If the PackageName is omitted, it defaults to the identifier specified in the 5908 <a href="#Package_clause">package clause</a> of the imported package. 5909 If an explicit period (<code>.</code>) appears instead of a name, all the 5910 package's exported identifiers declared in that package's 5911 <a href="#Blocks">package block</a> will be declared in the importing source 5912 file's file block and must be accessed without a qualifier. 5913 </p> 5914 5915 <p> 5916 The interpretation of the ImportPath is implementation-dependent but 5917 it is typically a substring of the full file name of the compiled 5918 package and may be relative to a repository of installed packages. 5919 </p> 5920 5921 <p> 5922 Implementation restriction: A compiler may restrict ImportPaths to 5923 non-empty strings using only characters belonging to 5924 <a href="http://www.unicode.org/versions/Unicode6.3.0/">Unicode's</a> 5925 L, M, N, P, and S general categories (the Graphic characters without 5926 spaces) and may also exclude the characters 5927 <code>!"#$%&'()*,:;<=>?[\]^`{|}</code> 5928 and the Unicode replacement character U+FFFD. 5929 </p> 5930 5931 <p> 5932 Assume we have compiled a package containing the package clause 5933 <code>package math</code>, which exports function <code>Sin</code>, and 5934 installed the compiled package in the file identified by 5935 <code>"lib/math"</code>. 5936 This table illustrates how <code>Sin</code> is accessed in files 5937 that import the package after the 5938 various types of import declaration. 5939 </p> 5940 5941 <pre class="grammar"> 5942 Import declaration Local name of Sin 5943 5944 import "lib/math" math.Sin 5945 import m "lib/math" m.Sin 5946 import . "lib/math" Sin 5947 </pre> 5948 5949 <p> 5950 An import declaration declares a dependency relation between 5951 the importing and imported package. 5952 It is illegal for a package to import itself, directly or indirectly, 5953 or to directly import a package without 5954 referring to any of its exported identifiers. To import a package solely for 5955 its side-effects (initialization), use the <a href="#Blank_identifier">blank</a> 5956 identifier as explicit package name: 5957 </p> 5958 5959 <pre> 5960 import _ "lib/math" 5961 </pre> 5962 5963 5964 <h3 id="An_example_package">An example package</h3> 5965 5966 <p> 5967 Here is a complete Go package that implements a concurrent prime sieve. 5968 </p> 5969 5970 <pre> 5971 package main 5972 5973 import "fmt" 5974 5975 // Send the sequence 2, 3, 4, … to channel 'ch'. 5976 func generate(ch chan<- int) { 5977 for i := 2; ; i++ { 5978 ch <- i // Send 'i' to channel 'ch'. 5979 } 5980 } 5981 5982 // Copy the values from channel 'src' to channel 'dst', 5983 // removing those divisible by 'prime'. 5984 func filter(src <-chan int, dst chan<- int, prime int) { 5985 for i := range src { // Loop over values received from 'src'. 5986 if i%prime != 0 { 5987 dst <- i // Send 'i' to channel 'dst'. 5988 } 5989 } 5990 } 5991 5992 // The prime sieve: Daisy-chain filter processes together. 5993 func sieve() { 5994 ch := make(chan int) // Create a new channel. 5995 go generate(ch) // Start generate() as a subprocess. 5996 for { 5997 prime := <-ch 5998 fmt.Print(prime, "\n") 5999 ch1 := make(chan int) 6000 go filter(ch, ch1, prime) 6001 ch = ch1 6002 } 6003 } 6004 6005 func main() { 6006 sieve() 6007 } 6008 </pre> 6009 6010 <h2 id="Program_initialization_and_execution">Program initialization and execution</h2> 6011 6012 <h3 id="The_zero_value">The zero value</h3> 6013 <p> 6014 When storage is allocated for a <a href="#Variables">variable</a>, 6015 either through a declaration or a call of <code>new</code>, or when 6016 a new value is created, either through a composite literal or a call 6017 of <code>make</code>, 6018 and no explicit initialization is provided, the variable or value is 6019 given a default value. Each element of such a variable or value is 6020 set to the <i>zero value</i> for its type: <code>false</code> for booleans, 6021 <code>0</code> for integers, <code>0.0</code> for floats, <code>""</code> 6022 for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps. 6023 This initialization is done recursively, so for instance each element of an 6024 array of structs will have its fields zeroed if no value is specified. 6025 </p> 6026 <p> 6027 These two simple declarations are equivalent: 6028 </p> 6029 6030 <pre> 6031 var i int 6032 var i int = 0 6033 </pre> 6034 6035 <p> 6036 After 6037 </p> 6038 6039 <pre> 6040 type T struct { i int; f float64; next *T } 6041 t := new(T) 6042 </pre> 6043 6044 <p> 6045 the following holds: 6046 </p> 6047 6048 <pre> 6049 t.i == 0 6050 t.f == 0.0 6051 t.next == nil 6052 </pre> 6053 6054 <p> 6055 The same would also be true after 6056 </p> 6057 6058 <pre> 6059 var t T 6060 </pre> 6061 6062 <h3 id="Package_initialization">Package initialization</h3> 6063 6064 <p> 6065 Within a package, package-level variables are initialized in 6066 <i>declaration order</i> but after any of the variables 6067 they <i>depend</i> on. 6068 </p> 6069 6070 <p> 6071 More precisely, a package-level variable is considered <i>ready for 6072 initialization</i> if it is not yet initialized and either has 6073 no <a href="#Variable_declarations">initialization expression</a> or 6074 its initialization expression has no dependencies on uninitialized variables. 6075 Initialization proceeds by repeatedly initializing the next package-level 6076 variable that is earliest in declaration order and ready for initialization, 6077 until there are no variables ready for initialization. 6078 </p> 6079 6080 <p> 6081 If any variables are still uninitialized when this 6082 process ends, those variables are part of one or more initialization cycles, 6083 and the program is not valid. 6084 </p> 6085 6086 <p> 6087 The declaration order of variables declared in multiple files is determined 6088 by the order in which the files are presented to the compiler: Variables 6089 declared in the first file are declared before any of the variables declared 6090 in the second file, and so on. 6091 </p> 6092 6093 <p> 6094 Dependency analysis does not rely on the actual values of the 6095 variables, only on lexical <i>references</i> to them in the source, 6096 analyzed transitively. For instance, if a variable <code>x</code>'s 6097 initialization expression refers to a function whose body refers to 6098 variable <code>y</code> then <code>x</code> depends on <code>y</code>. 6099 Specifically: 6100 </p> 6101 6102 <ul> 6103 <li> 6104 A reference to a variable or function is an identifier denoting that 6105 variable or function. 6106 </li> 6107 6108 <li> 6109 A reference to a method <code>m</code> is a 6110 <a href="#Method_values">method value</a> or 6111 <a href="#Method_expressions">method expression</a> of the form 6112 <code>t.m</code>, where the (static) type of <code>t</code> is 6113 not an interface type, and the method <code>m</code> is in the 6114 <a href="#Method_sets">method set</a> of <code>t</code>. 6115 It is immaterial whether the resulting function value 6116 <code>t.m</code> is invoked. 6117 </li> 6118 6119 <li> 6120 A variable, function, or method <code>x</code> depends on a variable 6121 <code>y</code> if <code>x</code>'s initialization expression or body 6122 (for functions and methods) contains a reference to <code>y</code> 6123 or to a function or method that depends on <code>y</code>. 6124 </li> 6125 </ul> 6126 6127 <p> 6128 Dependency analysis is performed per package; only references referring 6129 to variables, functions, and methods declared in the current package 6130 are considered. 6131 </p> 6132 6133 <p> 6134 For example, given the declarations 6135 </p> 6136 6137 <pre> 6138 var ( 6139 a = c + b 6140 b = f() 6141 c = f() 6142 d = 3 6143 ) 6144 6145 func f() int { 6146 d++ 6147 return d 6148 } 6149 </pre> 6150 6151 <p> 6152 the initialization order is <code>d</code>, <code>b</code>, <code>c</code>, <code>a</code>. 6153 </p> 6154 6155 <p> 6156 Variables may also be initialized using functions named <code>init</code> 6157 declared in the package block, with no arguments and no result parameters. 6158 </p> 6159 6160 <pre> 6161 func init() { … } 6162 </pre> 6163 6164 <p> 6165 Multiple such functions may be defined per package, even within a single 6166 source file. In the package block, the <code>init</code> identifier can 6167 be used only to declare <code>init</code> functions, yet the identifier 6168 itself is not <a href="#Declarations_and_scope">declared</a>. Thus 6169 <code>init</code> functions cannot be referred to from anywhere 6170 in a program. 6171 </p> 6172 6173 <p> 6174 A package with no imports is initialized by assigning initial values 6175 to all its package-level variables followed by calling all <code>init</code> 6176 functions in the order they appear in the source, possibly in multiple files, 6177 as presented to the compiler. 6178 If a package has imports, the imported packages are initialized 6179 before initializing the package itself. If multiple packages import 6180 a package, the imported package will be initialized only once. 6181 The importing of packages, by construction, guarantees that there 6182 can be no cyclic initialization dependencies. 6183 </p> 6184 6185 <p> 6186 Package initialization—variable initialization and the invocation of 6187 <code>init</code> functions—happens in a single goroutine, 6188 sequentially, one package at a time. 6189 An <code>init</code> function may launch other goroutines, which can run 6190 concurrently with the initialization code. However, initialization 6191 always sequences 6192 the <code>init</code> functions: it will not invoke the next one 6193 until the previous one has returned. 6194 </p> 6195 6196 <p> 6197 To ensure reproducible initialization behavior, build systems are encouraged 6198 to present multiple files belonging to the same package in lexical file name 6199 order to a compiler. 6200 </p> 6201 6202 6203 <h3 id="Program_execution">Program execution</h3> 6204 <p> 6205 A complete program is created by linking a single, unimported package 6206 called the <i>main package</i> with all the packages it imports, transitively. 6207 The main package must 6208 have package name <code>main</code> and 6209 declare a function <code>main</code> that takes no 6210 arguments and returns no value. 6211 </p> 6212 6213 <pre> 6214 func main() { … } 6215 </pre> 6216 6217 <p> 6218 Program execution begins by initializing the main package and then 6219 invoking the function <code>main</code>. 6220 When that function invocation returns, the program exits. 6221 It does not wait for other (non-<code>main</code>) goroutines to complete. 6222 </p> 6223 6224 <h2 id="Errors">Errors</h2> 6225 6226 <p> 6227 The predeclared type <code>error</code> is defined as 6228 </p> 6229 6230 <pre> 6231 type error interface { 6232 Error() string 6233 } 6234 </pre> 6235 6236 <p> 6237 It is the conventional interface for representing an error condition, 6238 with the nil value representing no error. 6239 For instance, a function to read data from a file might be defined: 6240 </p> 6241 6242 <pre> 6243 func Read(f *File, b []byte) (n int, err error) 6244 </pre> 6245 6246 <h2 id="Run_time_panics">Run-time panics</h2> 6247 6248 <p> 6249 Execution errors such as attempting to index an array out 6250 of bounds trigger a <i>run-time panic</i> equivalent to a call of 6251 the built-in function <a href="#Handling_panics"><code>panic</code></a> 6252 with a value of the implementation-defined interface type <code>runtime.Error</code>. 6253 That type satisfies the predeclared interface type 6254 <a href="#Errors"><code>error</code></a>. 6255 The exact error values that 6256 represent distinct run-time error conditions are unspecified. 6257 </p> 6258 6259 <pre> 6260 package runtime 6261 6262 type Error interface { 6263 error 6264 // and perhaps other methods 6265 } 6266 </pre> 6267 6268 <h2 id="System_considerations">System considerations</h2> 6269 6270 <h3 id="Package_unsafe">Package <code>unsafe</code></h3> 6271 6272 <p> 6273 The built-in package <code>unsafe</code>, known to the compiler, 6274 provides facilities for low-level programming including operations 6275 that violate the type system. A package using <code>unsafe</code> 6276 must be vetted manually for type safety and may not be portable. 6277 The package provides the following interface: 6278 </p> 6279 6280 <pre class="grammar"> 6281 package unsafe 6282 6283 type ArbitraryType int // shorthand for an arbitrary Go type; it is not a real type 6284 type Pointer *ArbitraryType 6285 6286 func Alignof(variable ArbitraryType) uintptr 6287 func Offsetof(selector ArbitraryType) uintptr 6288 func Sizeof(variable ArbitraryType) uintptr 6289 </pre> 6290 6291 <p> 6292 A <code>Pointer</code> is a <a href="#Pointer_types">pointer type</a> but a <code>Pointer</code> 6293 value may not be <a href="#Address_operators">dereferenced</a>. 6294 Any pointer or value of <a href="#Types">underlying type</a> <code>uintptr</code> can be converted to 6295 a <code>Pointer</code> type and vice versa. 6296 The effect of converting between <code>Pointer</code> and <code>uintptr</code> is implementation-defined. 6297 </p> 6298 6299 <pre> 6300 var f float64 6301 bits = *(*uint64)(unsafe.Pointer(&f)) 6302 6303 type ptr unsafe.Pointer 6304 bits = *(*uint64)(ptr(&f)) 6305 6306 var p ptr = nil 6307 </pre> 6308 6309 <p> 6310 The functions <code>Alignof</code> and <code>Sizeof</code> take an expression <code>x</code> 6311 of any type and return the alignment or size, respectively, of a hypothetical variable <code>v</code> 6312 as if <code>v</code> was declared via <code>var v = x</code>. 6313 </p> 6314 <p> 6315 The function <code>Offsetof</code> takes a (possibly parenthesized) <a href="#Selectors">selector</a> 6316 <code>s.f</code>, denoting a field <code>f</code> of the struct denoted by <code>s</code> 6317 or <code>*s</code>, and returns the field offset in bytes relative to the struct's address. 6318 If <code>f</code> is an <a href="#Struct_types">embedded field</a>, it must be reachable 6319 without pointer indirections through fields of the struct. 6320 For a struct <code>s</code> with field <code>f</code>: 6321 </p> 6322 6323 <pre> 6324 uintptr(unsafe.Pointer(&s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&s.f)) 6325 </pre> 6326 6327 <p> 6328 Computer architectures may require memory addresses to be <i>aligned</i>; 6329 that is, for addresses of a variable to be a multiple of a factor, 6330 the variable's type's <i>alignment</i>. The function <code>Alignof</code> 6331 takes an expression denoting a variable of any type and returns the 6332 alignment of the (type of the) variable in bytes. For a variable 6333 <code>x</code>: 6334 </p> 6335 6336 <pre> 6337 uintptr(unsafe.Pointer(&x)) % unsafe.Alignof(x) == 0 6338 </pre> 6339 6340 <p> 6341 Calls to <code>Alignof</code>, <code>Offsetof</code>, and 6342 <code>Sizeof</code> are compile-time constant expressions of type <code>uintptr</code>. 6343 </p> 6344 6345 <h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3> 6346 6347 <p> 6348 For the <a href="#Numeric_types">numeric types</a>, the following sizes are guaranteed: 6349 </p> 6350 6351 <pre class="grammar"> 6352 type size in bytes 6353 6354 byte, uint8, int8 1 6355 uint16, int16 2 6356 uint32, int32, float32 4 6357 uint64, int64, float64, complex64 8 6358 complex128 16 6359 </pre> 6360 6361 <p> 6362 The following minimal alignment properties are guaranteed: 6363 </p> 6364 <ol> 6365 <li>For a variable <code>x</code> of any type: <code>unsafe.Alignof(x)</code> is at least 1. 6366 </li> 6367 6368 <li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of 6369 all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of <code>x</code>, but at least 1. 6370 </li> 6371 6372 <li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as 6373 <code>unsafe.Alignof(x[0])</code>, but at least 1. 6374 </li> 6375 </ol> 6376 6377 <p> 6378 A struct or array type has size zero if it contains no fields (or elements, respectively) that have a size greater than zero. Two distinct zero-size variables may have the same address in memory. 6379 </p>