github.com/euank/go@v0.0.0-20160829210321-495514729181/src/cmd/compile/internal/gc/pgen.go (about)

     1  // Copyright 2011 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gc
     6  
     7  import (
     8  	"cmd/compile/internal/ssa"
     9  	"cmd/internal/obj"
    10  	"cmd/internal/sys"
    11  	"fmt"
    12  	"sort"
    13  	"strings"
    14  )
    15  
    16  // "Portable" code generation.
    17  
    18  var makefuncdatasym_nsym int
    19  
    20  func makefuncdatasym(nameprefix string, funcdatakind int64) *Sym {
    21  	var nod Node
    22  
    23  	sym := LookupN(nameprefix, makefuncdatasym_nsym)
    24  	makefuncdatasym_nsym++
    25  	pnod := newname(sym)
    26  	pnod.Class = PEXTERN
    27  	Nodconst(&nod, Types[TINT32], funcdatakind)
    28  	Thearch.Gins(obj.AFUNCDATA, &nod, pnod)
    29  	return sym
    30  }
    31  
    32  // gvardef inserts a VARDEF for n into the instruction stream.
    33  // VARDEF is an annotation for the liveness analysis, marking a place
    34  // where a complete initialization (definition) of a variable begins.
    35  // Since the liveness analysis can see initialization of single-word
    36  // variables quite easy, gvardef is usually only called for multi-word
    37  // or 'fat' variables, those satisfying isfat(n->type).
    38  // However, gvardef is also called when a non-fat variable is initialized
    39  // via a block move; the only time this happens is when you have
    40  //	return f()
    41  // for a function with multiple return values exactly matching the return
    42  // types of the current function.
    43  //
    44  // A 'VARDEF x' annotation in the instruction stream tells the liveness
    45  // analysis to behave as though the variable x is being initialized at that
    46  // point in the instruction stream. The VARDEF must appear before the
    47  // actual (multi-instruction) initialization, and it must also appear after
    48  // any uses of the previous value, if any. For example, if compiling:
    49  //
    50  //	x = x[1:]
    51  //
    52  // it is important to generate code like:
    53  //
    54  //	base, len, cap = pieces of x[1:]
    55  //	VARDEF x
    56  //	x = {base, len, cap}
    57  //
    58  // If instead the generated code looked like:
    59  //
    60  //	VARDEF x
    61  //	base, len, cap = pieces of x[1:]
    62  //	x = {base, len, cap}
    63  //
    64  // then the liveness analysis would decide the previous value of x was
    65  // unnecessary even though it is about to be used by the x[1:] computation.
    66  // Similarly, if the generated code looked like:
    67  //
    68  //	base, len, cap = pieces of x[1:]
    69  //	x = {base, len, cap}
    70  //	VARDEF x
    71  //
    72  // then the liveness analysis will not preserve the new value of x, because
    73  // the VARDEF appears to have "overwritten" it.
    74  //
    75  // VARDEF is a bit of a kludge to work around the fact that the instruction
    76  // stream is working on single-word values but the liveness analysis
    77  // wants to work on individual variables, which might be multi-word
    78  // aggregates. It might make sense at some point to look into letting
    79  // the liveness analysis work on single-word values as well, although
    80  // there are complications around interface values, slices, and strings,
    81  // all of which cannot be treated as individual words.
    82  //
    83  // VARKILL is the opposite of VARDEF: it marks a value as no longer needed,
    84  // even if its address has been taken. That is, a VARKILL annotation asserts
    85  // that its argument is certainly dead, for use when the liveness analysis
    86  // would not otherwise be able to deduce that fact.
    87  
    88  func gvardefx(n *Node, as obj.As) {
    89  	if n == nil {
    90  		Fatalf("gvardef nil")
    91  	}
    92  	if n.Op != ONAME {
    93  		Yyerror("gvardef %#v; %v", n.Op, n)
    94  		return
    95  	}
    96  
    97  	switch n.Class {
    98  	case PAUTO, PPARAM, PPARAMOUT:
    99  		if as == obj.AVARLIVE {
   100  			Thearch.Gins(as, n, nil)
   101  		} else {
   102  			Thearch.Gins(as, nil, n)
   103  		}
   104  	}
   105  }
   106  
   107  func Gvardef(n *Node) {
   108  	gvardefx(n, obj.AVARDEF)
   109  }
   110  
   111  func Gvarkill(n *Node) {
   112  	gvardefx(n, obj.AVARKILL)
   113  }
   114  
   115  func Gvarlive(n *Node) {
   116  	gvardefx(n, obj.AVARLIVE)
   117  }
   118  
   119  func removevardef(firstp *obj.Prog) {
   120  	for p := firstp; p != nil; p = p.Link {
   121  		for p.Link != nil && (p.Link.As == obj.AVARDEF || p.Link.As == obj.AVARKILL || p.Link.As == obj.AVARLIVE) {
   122  			p.Link = p.Link.Link
   123  		}
   124  		if p.To.Type == obj.TYPE_BRANCH {
   125  			for p.To.Val.(*obj.Prog) != nil && (p.To.Val.(*obj.Prog).As == obj.AVARDEF || p.To.Val.(*obj.Prog).As == obj.AVARKILL || p.To.Val.(*obj.Prog).As == obj.AVARLIVE) {
   126  				p.To.Val = p.To.Val.(*obj.Prog).Link
   127  			}
   128  		}
   129  	}
   130  }
   131  
   132  func emitptrargsmap() {
   133  	if Curfn.Func.Nname.Sym.Name == "_" {
   134  		return
   135  	}
   136  	sym := Lookup(fmt.Sprintf("%s.args_stackmap", Curfn.Func.Nname.Sym.Name))
   137  
   138  	nptr := int(Curfn.Type.ArgWidth() / int64(Widthptr))
   139  	bv := bvalloc(int32(nptr) * 2)
   140  	nbitmap := 1
   141  	if Curfn.Type.Results().NumFields() > 0 {
   142  		nbitmap = 2
   143  	}
   144  	off := duint32(sym, 0, uint32(nbitmap))
   145  	off = duint32(sym, off, uint32(bv.n))
   146  	var xoffset int64
   147  	if Curfn.Type.Recv() != nil {
   148  		xoffset = 0
   149  		onebitwalktype1(Curfn.Type.Recvs(), &xoffset, bv)
   150  	}
   151  
   152  	if Curfn.Type.Params().NumFields() > 0 {
   153  		xoffset = 0
   154  		onebitwalktype1(Curfn.Type.Params(), &xoffset, bv)
   155  	}
   156  
   157  	for j := 0; int32(j) < bv.n; j += 32 {
   158  		off = duint32(sym, off, bv.b[j/32])
   159  	}
   160  	if Curfn.Type.Results().NumFields() > 0 {
   161  		xoffset = 0
   162  		onebitwalktype1(Curfn.Type.Results(), &xoffset, bv)
   163  		for j := 0; int32(j) < bv.n; j += 32 {
   164  			off = duint32(sym, off, bv.b[j/32])
   165  		}
   166  	}
   167  
   168  	ggloblsym(sym, int32(off), obj.RODATA|obj.LOCAL)
   169  }
   170  
   171  // cmpstackvarlt reports whether the stack variable a sorts before b.
   172  //
   173  // Sort the list of stack variables. Autos after anything else,
   174  // within autos, unused after used, within used, things with
   175  // pointers first, zeroed things first, and then decreasing size.
   176  // Because autos are laid out in decreasing addresses
   177  // on the stack, pointers first, zeroed things first and decreasing size
   178  // really means, in memory, things with pointers needing zeroing at
   179  // the top of the stack and increasing in size.
   180  // Non-autos sort on offset.
   181  func cmpstackvarlt(a, b *Node) bool {
   182  	if (a.Class == PAUTO) != (b.Class == PAUTO) {
   183  		return b.Class == PAUTO
   184  	}
   185  
   186  	if a.Class != PAUTO {
   187  		return a.Xoffset < b.Xoffset
   188  	}
   189  
   190  	if a.Used != b.Used {
   191  		return a.Used
   192  	}
   193  
   194  	ap := haspointers(a.Type)
   195  	bp := haspointers(b.Type)
   196  	if ap != bp {
   197  		return ap
   198  	}
   199  
   200  	ap = a.Name.Needzero
   201  	bp = b.Name.Needzero
   202  	if ap != bp {
   203  		return ap
   204  	}
   205  
   206  	if a.Type.Width != b.Type.Width {
   207  		return a.Type.Width > b.Type.Width
   208  	}
   209  
   210  	return a.Sym.Name < b.Sym.Name
   211  }
   212  
   213  // byStackvar implements sort.Interface for []*Node using cmpstackvarlt.
   214  type byStackVar []*Node
   215  
   216  func (s byStackVar) Len() int           { return len(s) }
   217  func (s byStackVar) Less(i, j int) bool { return cmpstackvarlt(s[i], s[j]) }
   218  func (s byStackVar) Swap(i, j int)      { s[i], s[j] = s[j], s[i] }
   219  
   220  // stkdelta records the stack offset delta for a node
   221  // during the compaction of the stack frame to remove
   222  // unused stack slots.
   223  var stkdelta = map[*Node]int64{}
   224  
   225  // TODO(lvd) find out where the PAUTO/OLITERAL nodes come from.
   226  func allocauto(ptxt *obj.Prog) {
   227  	Stksize = 0
   228  	stkptrsize = 0
   229  
   230  	if len(Curfn.Func.Dcl) == 0 {
   231  		return
   232  	}
   233  
   234  	// Mark the PAUTO's unused.
   235  	for _, ln := range Curfn.Func.Dcl {
   236  		if ln.Class == PAUTO {
   237  			ln.Used = false
   238  		}
   239  	}
   240  
   241  	markautoused(ptxt)
   242  
   243  	sort.Sort(byStackVar(Curfn.Func.Dcl))
   244  
   245  	// Unused autos are at the end, chop 'em off.
   246  	n := Curfn.Func.Dcl[0]
   247  	if n.Class == PAUTO && n.Op == ONAME && !n.Used {
   248  		// No locals used at all
   249  		Curfn.Func.Dcl = nil
   250  
   251  		fixautoused(ptxt)
   252  		return
   253  	}
   254  
   255  	for i := 1; i < len(Curfn.Func.Dcl); i++ {
   256  		n = Curfn.Func.Dcl[i]
   257  		if n.Class == PAUTO && n.Op == ONAME && !n.Used {
   258  			Curfn.Func.Dcl = Curfn.Func.Dcl[:i]
   259  			break
   260  		}
   261  	}
   262  
   263  	// Reassign stack offsets of the locals that are still there.
   264  	var w int64
   265  	for _, n := range Curfn.Func.Dcl {
   266  		if n.Class != PAUTO || n.Op != ONAME {
   267  			continue
   268  		}
   269  
   270  		dowidth(n.Type)
   271  		w = n.Type.Width
   272  		if w >= Thearch.MAXWIDTH || w < 0 {
   273  			Fatalf("bad width")
   274  		}
   275  		Stksize += w
   276  		Stksize = Rnd(Stksize, int64(n.Type.Align))
   277  		if haspointers(n.Type) {
   278  			stkptrsize = Stksize
   279  		}
   280  		if Thearch.LinkArch.InFamily(sys.MIPS64, sys.ARM, sys.ARM64, sys.PPC64, sys.S390X) {
   281  			Stksize = Rnd(Stksize, int64(Widthptr))
   282  		}
   283  		if Stksize >= 1<<31 {
   284  			setlineno(Curfn)
   285  			Yyerror("stack frame too large (>2GB)")
   286  		}
   287  
   288  		stkdelta[n] = -Stksize - n.Xoffset
   289  	}
   290  
   291  	Stksize = Rnd(Stksize, int64(Widthreg))
   292  	stkptrsize = Rnd(stkptrsize, int64(Widthreg))
   293  
   294  	fixautoused(ptxt)
   295  
   296  	// The debug information needs accurate offsets on the symbols.
   297  	for _, ln := range Curfn.Func.Dcl {
   298  		if ln.Class != PAUTO || ln.Op != ONAME {
   299  			continue
   300  		}
   301  		ln.Xoffset += stkdelta[ln]
   302  		delete(stkdelta, ln)
   303  	}
   304  }
   305  
   306  func Cgen_checknil(n *Node) {
   307  	if Disable_checknil != 0 {
   308  		return
   309  	}
   310  
   311  	// Ideally we wouldn't see any integer types here, but we do.
   312  	if n.Type == nil || (!n.Type.IsPtr() && !n.Type.IsInteger() && n.Type.Etype != TUNSAFEPTR) {
   313  		Dump("checknil", n)
   314  		Fatalf("bad checknil")
   315  	}
   316  
   317  	// Most architectures require that the address to be checked is
   318  	// in a register (it could be in memory).
   319  	needsReg := !Thearch.LinkArch.InFamily(sys.AMD64, sys.I386)
   320  
   321  	// Move the address to be checked into a register if necessary.
   322  	if (needsReg && n.Op != OREGISTER) || !n.Addable || n.Op == OLITERAL {
   323  		var reg Node
   324  		Regalloc(&reg, Types[Tptr], n)
   325  		Cgen(n, &reg)
   326  		Thearch.Gins(obj.ACHECKNIL, &reg, nil)
   327  		Regfree(&reg)
   328  		return
   329  	}
   330  
   331  	Thearch.Gins(obj.ACHECKNIL, n, nil)
   332  }
   333  
   334  func compile(fn *Node) {
   335  	if Newproc == nil {
   336  		Newproc = Sysfunc("newproc")
   337  		Deferproc = Sysfunc("deferproc")
   338  		Deferreturn = Sysfunc("deferreturn")
   339  		Panicindex = Sysfunc("panicindex")
   340  		panicslice = Sysfunc("panicslice")
   341  		panicdivide = Sysfunc("panicdivide")
   342  		throwreturn = Sysfunc("throwreturn")
   343  		growslice = Sysfunc("growslice")
   344  		writebarrierptr = Sysfunc("writebarrierptr")
   345  		typedmemmove = Sysfunc("typedmemmove")
   346  		panicdottype = Sysfunc("panicdottype")
   347  	}
   348  
   349  	defer func(lno int32) {
   350  		lineno = lno
   351  	}(setlineno(fn))
   352  
   353  	Curfn = fn
   354  	dowidth(Curfn.Type)
   355  
   356  	if fn.Nbody.Len() == 0 {
   357  		if pure_go || strings.HasPrefix(fn.Func.Nname.Sym.Name, "init.") {
   358  			Yyerror("missing function body for %q", fn.Func.Nname.Sym.Name)
   359  			return
   360  		}
   361  
   362  		if Debug['A'] != 0 {
   363  			return
   364  		}
   365  		emitptrargsmap()
   366  		return
   367  	}
   368  
   369  	saveerrors()
   370  
   371  	// set up domain for labels
   372  	clearlabels()
   373  
   374  	if Curfn.Type.FuncType().Outnamed {
   375  		// add clearing of the output parameters
   376  		for _, t := range Curfn.Type.Results().Fields().Slice() {
   377  			if t.Nname != nil {
   378  				n := Nod(OAS, t.Nname, nil)
   379  				n = typecheck(n, Etop)
   380  				Curfn.Nbody.Set(append([]*Node{n}, Curfn.Nbody.Slice()...))
   381  			}
   382  		}
   383  	}
   384  
   385  	order(Curfn)
   386  	if nerrors != 0 {
   387  		return
   388  	}
   389  
   390  	hasdefer = false
   391  	walk(Curfn)
   392  	if nerrors != 0 {
   393  		return
   394  	}
   395  	if instrumenting {
   396  		instrument(Curfn)
   397  	}
   398  	if nerrors != 0 {
   399  		return
   400  	}
   401  
   402  	// Build an SSA backend function.
   403  	var ssafn *ssa.Func
   404  	if shouldssa(Curfn) {
   405  		ssafn = buildssa(Curfn)
   406  	}
   407  
   408  	continpc = nil
   409  	breakpc = nil
   410  
   411  	pl := newplist()
   412  	pl.Name = Linksym(Curfn.Func.Nname.Sym)
   413  
   414  	setlineno(Curfn)
   415  
   416  	var nod1 Node
   417  	Nodconst(&nod1, Types[TINT32], 0)
   418  	nam := Curfn.Func.Nname
   419  	if isblank(nam) {
   420  		nam = nil
   421  	}
   422  	ptxt := Thearch.Gins(obj.ATEXT, nam, &nod1)
   423  	Afunclit(&ptxt.From, Curfn.Func.Nname)
   424  	ptxt.From3 = new(obj.Addr)
   425  	if fn.Func.Dupok {
   426  		ptxt.From3.Offset |= obj.DUPOK
   427  	}
   428  	if fn.Func.Wrapper {
   429  		ptxt.From3.Offset |= obj.WRAPPER
   430  	}
   431  	if fn.Func.Needctxt {
   432  		ptxt.From3.Offset |= obj.NEEDCTXT
   433  	}
   434  	if fn.Func.Pragma&Nosplit != 0 {
   435  		ptxt.From3.Offset |= obj.NOSPLIT
   436  	}
   437  	if fn.Func.ReflectMethod {
   438  		ptxt.From3.Offset |= obj.REFLECTMETHOD
   439  	}
   440  	if fn.Func.Pragma&Systemstack != 0 {
   441  		ptxt.From.Sym.Cfunc = true
   442  	}
   443  
   444  	// Clumsy but important.
   445  	// See test/recover.go for test cases and src/reflect/value.go
   446  	// for the actual functions being considered.
   447  	if myimportpath == "reflect" {
   448  		if Curfn.Func.Nname.Sym.Name == "callReflect" || Curfn.Func.Nname.Sym.Name == "callMethod" {
   449  			ptxt.From3.Offset |= obj.WRAPPER
   450  		}
   451  	}
   452  
   453  	ginit()
   454  
   455  	gcargs := makefuncdatasym("gcargs·", obj.FUNCDATA_ArgsPointerMaps)
   456  	gclocals := makefuncdatasym("gclocals·", obj.FUNCDATA_LocalsPointerMaps)
   457  
   458  	if obj.Fieldtrack_enabled != 0 && len(Curfn.Func.FieldTrack) > 0 {
   459  		trackSyms := make([]*Sym, 0, len(Curfn.Func.FieldTrack))
   460  		for sym := range Curfn.Func.FieldTrack {
   461  			trackSyms = append(trackSyms, sym)
   462  		}
   463  		sort.Sort(symByName(trackSyms))
   464  		for _, sym := range trackSyms {
   465  			gtrack(sym)
   466  		}
   467  	}
   468  
   469  	for _, n := range fn.Func.Dcl {
   470  		if n.Op != ONAME { // might be OTYPE or OLITERAL
   471  			continue
   472  		}
   473  		switch n.Class {
   474  		case PAUTO, PPARAM, PPARAMOUT:
   475  			Nodconst(&nod1, Types[TUINTPTR], n.Type.Width)
   476  			p := Thearch.Gins(obj.ATYPE, n, &nod1)
   477  			p.From.Gotype = Linksym(ngotype(n))
   478  		}
   479  	}
   480  
   481  	if ssafn != nil {
   482  		genssa(ssafn, ptxt, gcargs, gclocals)
   483  		ssafn.Free()
   484  	} else {
   485  		genlegacy(ptxt, gcargs, gclocals)
   486  	}
   487  }
   488  
   489  type symByName []*Sym
   490  
   491  func (a symByName) Len() int           { return len(a) }
   492  func (a symByName) Less(i, j int) bool { return a[i].Name < a[j].Name }
   493  func (a symByName) Swap(i, j int)      { a[i], a[j] = a[j], a[i] }
   494  
   495  // genlegacy compiles Curfn using the legacy non-SSA code generator.
   496  func genlegacy(ptxt *obj.Prog, gcargs, gclocals *Sym) {
   497  	Genlist(Curfn.Func.Enter)
   498  	Genlist(Curfn.Nbody)
   499  	gclean()
   500  	checklabels()
   501  	if nerrors != 0 {
   502  		return
   503  	}
   504  	if Curfn.Func.Endlineno != 0 {
   505  		lineno = Curfn.Func.Endlineno
   506  	}
   507  
   508  	if Curfn.Type.Results().NumFields() != 0 {
   509  		Ginscall(throwreturn, 0)
   510  	}
   511  
   512  	ginit()
   513  
   514  	// TODO: Determine when the final cgen_ret can be omitted. Perhaps always?
   515  	cgen_ret(nil)
   516  
   517  	if hasdefer {
   518  		// deferreturn pretends to have one uintptr argument.
   519  		// Reserve space for it so stack scanner is happy.
   520  		if Maxarg < int64(Widthptr) {
   521  			Maxarg = int64(Widthptr)
   522  		}
   523  	}
   524  
   525  	gclean()
   526  	if nerrors != 0 {
   527  		return
   528  	}
   529  
   530  	Pc.As = obj.ARET // overwrite AEND
   531  	Pc.Lineno = lineno
   532  
   533  	fixjmp(ptxt)
   534  	if Debug['N'] == 0 || Debug['R'] != 0 || Debug['P'] != 0 {
   535  		regopt(ptxt)
   536  		nilopt(ptxt)
   537  	}
   538  
   539  	Thearch.Expandchecks(ptxt)
   540  
   541  	allocauto(ptxt)
   542  
   543  	setlineno(Curfn)
   544  	if Stksize+Maxarg > 1<<31 {
   545  		Yyerror("stack frame too large (>2GB)")
   546  		return
   547  	}
   548  
   549  	// Emit garbage collection symbols.
   550  	liveness(Curfn, ptxt, gcargs, gclocals)
   551  
   552  	Thearch.Defframe(ptxt)
   553  
   554  	if Debug['f'] != 0 {
   555  		frame(0)
   556  	}
   557  
   558  	// Remove leftover instrumentation from the instruction stream.
   559  	removevardef(ptxt)
   560  }