github.com/euank/go@v0.0.0-20160829210321-495514729181/src/cmd/compile/internal/gc/ssa.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gc
     6  
     7  import (
     8  	"bytes"
     9  	"fmt"
    10  	"html"
    11  	"os"
    12  	"strings"
    13  
    14  	"cmd/compile/internal/ssa"
    15  	"cmd/internal/obj"
    16  	"cmd/internal/sys"
    17  )
    18  
    19  var ssaEnabled = true
    20  
    21  var ssaConfig *ssa.Config
    22  var ssaExp ssaExport
    23  
    24  func initssa() *ssa.Config {
    25  	ssaExp.unimplemented = false
    26  	ssaExp.mustImplement = true
    27  	if ssaConfig == nil {
    28  		ssaConfig = ssa.NewConfig(Thearch.LinkArch.Name, &ssaExp, Ctxt, Debug['N'] == 0)
    29  		if Thearch.LinkArch.Name == "386" {
    30  			ssaConfig.Set387(Thearch.Use387)
    31  		}
    32  	}
    33  	return ssaConfig
    34  }
    35  
    36  func shouldssa(fn *Node) bool {
    37  	switch Thearch.LinkArch.Name {
    38  	default:
    39  		// Only available for testing.
    40  		if os.Getenv("SSATEST") == "" {
    41  			return false
    42  		}
    43  	case "amd64", "amd64p32", "arm", "386", "arm64", "ppc64le", "mips64", "mips64le":
    44  		// Generally available.
    45  	}
    46  	if !ssaEnabled {
    47  		return false
    48  	}
    49  
    50  	// Environment variable control of SSA CG
    51  	// 1. IF GOSSAFUNC == current function name THEN
    52  	//       compile this function with SSA and log output to ssa.html
    53  
    54  	// 2. IF GOSSAHASH == "" THEN
    55  	//       compile this function (and everything else) with SSA
    56  
    57  	// 3. IF GOSSAHASH == "n" or "N"
    58  	//       IF GOSSAPKG == current package name THEN
    59  	//          compile this function (and everything in this package) with SSA
    60  	//       ELSE
    61  	//          use the old back end for this function.
    62  	//       This is for compatibility with existing test harness and should go away.
    63  
    64  	// 4. IF GOSSAHASH is a suffix of the binary-rendered SHA1 hash of the function name THEN
    65  	//          compile this function with SSA
    66  	//       ELSE
    67  	//          compile this function with the old back end.
    68  
    69  	// Plan is for 3 to be removed when the tests are revised.
    70  	// SSA is now default, and is disabled by setting
    71  	// GOSSAHASH to n or N, or selectively with strings of
    72  	// 0 and 1.
    73  
    74  	name := fn.Func.Nname.Sym.Name
    75  
    76  	funcname := os.Getenv("GOSSAFUNC")
    77  	if funcname != "" {
    78  		// If GOSSAFUNC is set, compile only that function.
    79  		return name == funcname
    80  	}
    81  
    82  	pkg := os.Getenv("GOSSAPKG")
    83  	if pkg != "" {
    84  		// If GOSSAPKG is set, compile only that package.
    85  		return localpkg.Name == pkg
    86  	}
    87  
    88  	return initssa().DebugHashMatch("GOSSAHASH", name)
    89  }
    90  
    91  // buildssa builds an SSA function.
    92  func buildssa(fn *Node) *ssa.Func {
    93  	name := fn.Func.Nname.Sym.Name
    94  	printssa := name == os.Getenv("GOSSAFUNC")
    95  	if printssa {
    96  		fmt.Println("generating SSA for", name)
    97  		dumplist("buildssa-enter", fn.Func.Enter)
    98  		dumplist("buildssa-body", fn.Nbody)
    99  		dumplist("buildssa-exit", fn.Func.Exit)
   100  	}
   101  
   102  	var s state
   103  	s.pushLine(fn.Lineno)
   104  	defer s.popLine()
   105  
   106  	if fn.Func.Pragma&CgoUnsafeArgs != 0 {
   107  		s.cgoUnsafeArgs = true
   108  	}
   109  	if fn.Func.Pragma&Nowritebarrier != 0 {
   110  		s.noWB = true
   111  	}
   112  	defer func() {
   113  		if s.WBLineno != 0 {
   114  			fn.Func.WBLineno = s.WBLineno
   115  		}
   116  	}()
   117  	// TODO(khr): build config just once at the start of the compiler binary
   118  
   119  	ssaExp.log = printssa
   120  
   121  	s.config = initssa()
   122  	s.f = s.config.NewFunc()
   123  	s.f.Name = name
   124  	s.exitCode = fn.Func.Exit
   125  	s.panics = map[funcLine]*ssa.Block{}
   126  
   127  	if name == os.Getenv("GOSSAFUNC") {
   128  		// TODO: tempfile? it is handy to have the location
   129  		// of this file be stable, so you can just reload in the browser.
   130  		s.config.HTML = ssa.NewHTMLWriter("ssa.html", s.config, name)
   131  		// TODO: generate and print a mapping from nodes to values and blocks
   132  	}
   133  	defer func() {
   134  		if !printssa {
   135  			s.config.HTML.Close()
   136  		}
   137  	}()
   138  
   139  	// Allocate starting block
   140  	s.f.Entry = s.f.NewBlock(ssa.BlockPlain)
   141  
   142  	// Allocate starting values
   143  	s.labels = map[string]*ssaLabel{}
   144  	s.labeledNodes = map[*Node]*ssaLabel{}
   145  	s.startmem = s.entryNewValue0(ssa.OpInitMem, ssa.TypeMem)
   146  	s.sp = s.entryNewValue0(ssa.OpSP, Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead
   147  	s.sb = s.entryNewValue0(ssa.OpSB, Types[TUINTPTR])
   148  
   149  	s.startBlock(s.f.Entry)
   150  	s.vars[&memVar] = s.startmem
   151  
   152  	s.varsyms = map[*Node]interface{}{}
   153  
   154  	// Generate addresses of local declarations
   155  	s.decladdrs = map[*Node]*ssa.Value{}
   156  	for _, n := range fn.Func.Dcl {
   157  		switch n.Class {
   158  		case PPARAM, PPARAMOUT:
   159  			aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
   160  			s.decladdrs[n] = s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sp)
   161  			if n.Class == PPARAMOUT && s.canSSA(n) {
   162  				// Save ssa-able PPARAMOUT variables so we can
   163  				// store them back to the stack at the end of
   164  				// the function.
   165  				s.returns = append(s.returns, n)
   166  			}
   167  			if n.Class == PPARAM && s.canSSA(n) && n.Type.IsPtrShaped() {
   168  				s.ptrargs = append(s.ptrargs, n)
   169  				n.SetNotLiveAtEnd(true) // SSA takes care of this explicitly
   170  			}
   171  		case PAUTO:
   172  			// processed at each use, to prevent Addr coming
   173  			// before the decl.
   174  		case PAUTOHEAP:
   175  			// moved to heap - already handled by frontend
   176  		case PFUNC:
   177  			// local function - already handled by frontend
   178  		default:
   179  			s.Unimplementedf("local variable with class %s unimplemented", classnames[n.Class])
   180  		}
   181  	}
   182  
   183  	// Convert the AST-based IR to the SSA-based IR
   184  	s.stmts(fn.Func.Enter)
   185  	s.stmts(fn.Nbody)
   186  
   187  	// fallthrough to exit
   188  	if s.curBlock != nil {
   189  		s.pushLine(fn.Func.Endlineno)
   190  		s.exit()
   191  		s.popLine()
   192  	}
   193  
   194  	// Check that we used all labels
   195  	for name, lab := range s.labels {
   196  		if !lab.used() && !lab.reported && !lab.defNode.Used {
   197  			yyerrorl(lab.defNode.Lineno, "label %v defined and not used", name)
   198  			lab.reported = true
   199  		}
   200  		if lab.used() && !lab.defined() && !lab.reported {
   201  			yyerrorl(lab.useNode.Lineno, "label %v not defined", name)
   202  			lab.reported = true
   203  		}
   204  	}
   205  
   206  	// Check any forward gotos. Non-forward gotos have already been checked.
   207  	for _, n := range s.fwdGotos {
   208  		lab := s.labels[n.Left.Sym.Name]
   209  		// If the label is undefined, we have already have printed an error.
   210  		if lab.defined() {
   211  			s.checkgoto(n, lab.defNode)
   212  		}
   213  	}
   214  
   215  	if nerrors > 0 {
   216  		s.f.Free()
   217  		return nil
   218  	}
   219  
   220  	prelinkNumvars := s.f.NumValues()
   221  	sparseDefState := s.locatePotentialPhiFunctions(fn)
   222  
   223  	// Link up variable uses to variable definitions
   224  	s.linkForwardReferences(sparseDefState)
   225  
   226  	if ssa.BuildStats > 0 {
   227  		s.f.LogStat("build", s.f.NumBlocks(), "blocks", prelinkNumvars, "vars_before",
   228  			s.f.NumValues(), "vars_after", prelinkNumvars*s.f.NumBlocks(), "ssa_phi_loc_cutoff_score")
   229  	}
   230  
   231  	// Don't carry reference this around longer than necessary
   232  	s.exitCode = Nodes{}
   233  
   234  	// Main call to ssa package to compile function
   235  	ssa.Compile(s.f)
   236  
   237  	return s.f
   238  }
   239  
   240  type state struct {
   241  	// configuration (arch) information
   242  	config *ssa.Config
   243  
   244  	// function we're building
   245  	f *ssa.Func
   246  
   247  	// labels and labeled control flow nodes (OFOR, OSWITCH, OSELECT) in f
   248  	labels       map[string]*ssaLabel
   249  	labeledNodes map[*Node]*ssaLabel
   250  
   251  	// gotos that jump forward; required for deferred checkgoto calls
   252  	fwdGotos []*Node
   253  	// Code that must precede any return
   254  	// (e.g., copying value of heap-escaped paramout back to true paramout)
   255  	exitCode Nodes
   256  
   257  	// unlabeled break and continue statement tracking
   258  	breakTo    *ssa.Block // current target for plain break statement
   259  	continueTo *ssa.Block // current target for plain continue statement
   260  
   261  	// current location where we're interpreting the AST
   262  	curBlock *ssa.Block
   263  
   264  	// variable assignments in the current block (map from variable symbol to ssa value)
   265  	// *Node is the unique identifier (an ONAME Node) for the variable.
   266  	vars map[*Node]*ssa.Value
   267  
   268  	// all defined variables at the end of each block. Indexed by block ID.
   269  	defvars []map[*Node]*ssa.Value
   270  
   271  	// addresses of PPARAM and PPARAMOUT variables.
   272  	decladdrs map[*Node]*ssa.Value
   273  
   274  	// symbols for PEXTERN, PAUTO and PPARAMOUT variables so they can be reused.
   275  	varsyms map[*Node]interface{}
   276  
   277  	// starting values. Memory, stack pointer, and globals pointer
   278  	startmem *ssa.Value
   279  	sp       *ssa.Value
   280  	sb       *ssa.Value
   281  
   282  	// line number stack. The current line number is top of stack
   283  	line []int32
   284  
   285  	// list of panic calls by function name and line number.
   286  	// Used to deduplicate panic calls.
   287  	panics map[funcLine]*ssa.Block
   288  
   289  	// list of FwdRef values.
   290  	fwdRefs []*ssa.Value
   291  
   292  	// list of PPARAMOUT (return) variables.
   293  	returns []*Node
   294  
   295  	// list of PPARAM SSA-able pointer-shaped args. We ensure these are live
   296  	// throughout the function to help users avoid premature finalizers.
   297  	ptrargs []*Node
   298  
   299  	cgoUnsafeArgs bool
   300  	noWB          bool
   301  	WBLineno      int32 // line number of first write barrier. 0=no write barriers
   302  }
   303  
   304  type funcLine struct {
   305  	f    *Node
   306  	line int32
   307  }
   308  
   309  type ssaLabel struct {
   310  	target         *ssa.Block // block identified by this label
   311  	breakTarget    *ssa.Block // block to break to in control flow node identified by this label
   312  	continueTarget *ssa.Block // block to continue to in control flow node identified by this label
   313  	defNode        *Node      // label definition Node (OLABEL)
   314  	// Label use Node (OGOTO, OBREAK, OCONTINUE).
   315  	// Used only for error detection and reporting.
   316  	// There might be multiple uses, but we only need to track one.
   317  	useNode  *Node
   318  	reported bool // reported indicates whether an error has already been reported for this label
   319  }
   320  
   321  // defined reports whether the label has a definition (OLABEL node).
   322  func (l *ssaLabel) defined() bool { return l.defNode != nil }
   323  
   324  // used reports whether the label has a use (OGOTO, OBREAK, or OCONTINUE node).
   325  func (l *ssaLabel) used() bool { return l.useNode != nil }
   326  
   327  // label returns the label associated with sym, creating it if necessary.
   328  func (s *state) label(sym *Sym) *ssaLabel {
   329  	lab := s.labels[sym.Name]
   330  	if lab == nil {
   331  		lab = new(ssaLabel)
   332  		s.labels[sym.Name] = lab
   333  	}
   334  	return lab
   335  }
   336  
   337  func (s *state) Logf(msg string, args ...interface{})   { s.config.Logf(msg, args...) }
   338  func (s *state) Log() bool                              { return s.config.Log() }
   339  func (s *state) Fatalf(msg string, args ...interface{}) { s.config.Fatalf(s.peekLine(), msg, args...) }
   340  func (s *state) Unimplementedf(msg string, args ...interface{}) {
   341  	s.config.Unimplementedf(s.peekLine(), msg, args...)
   342  }
   343  func (s *state) Warnl(line int32, msg string, args ...interface{}) { s.config.Warnl(line, msg, args...) }
   344  func (s *state) Debug_checknil() bool                              { return s.config.Debug_checknil() }
   345  
   346  var (
   347  	// dummy node for the memory variable
   348  	memVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "mem"}}
   349  
   350  	// dummy nodes for temporary variables
   351  	ptrVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ptr"}}
   352  	lenVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "len"}}
   353  	newlenVar = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "newlen"}}
   354  	capVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "cap"}}
   355  	typVar    = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "typ"}}
   356  	idataVar  = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "idata"}}
   357  	okVar     = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "ok"}}
   358  	deltaVar  = Node{Op: ONAME, Class: Pxxx, Sym: &Sym{Name: "delta"}}
   359  )
   360  
   361  // startBlock sets the current block we're generating code in to b.
   362  func (s *state) startBlock(b *ssa.Block) {
   363  	if s.curBlock != nil {
   364  		s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock)
   365  	}
   366  	s.curBlock = b
   367  	s.vars = map[*Node]*ssa.Value{}
   368  }
   369  
   370  // endBlock marks the end of generating code for the current block.
   371  // Returns the (former) current block. Returns nil if there is no current
   372  // block, i.e. if no code flows to the current execution point.
   373  func (s *state) endBlock() *ssa.Block {
   374  	b := s.curBlock
   375  	if b == nil {
   376  		return nil
   377  	}
   378  	for len(s.defvars) <= int(b.ID) {
   379  		s.defvars = append(s.defvars, nil)
   380  	}
   381  	s.defvars[b.ID] = s.vars
   382  	s.curBlock = nil
   383  	s.vars = nil
   384  	b.Line = s.peekLine()
   385  	return b
   386  }
   387  
   388  // pushLine pushes a line number on the line number stack.
   389  func (s *state) pushLine(line int32) {
   390  	if line == 0 {
   391  		// the frontend may emit node with line number missing,
   392  		// use the parent line number in this case.
   393  		line = s.peekLine()
   394  		if Debug['K'] != 0 {
   395  			Warn("buildssa: line 0")
   396  		}
   397  	}
   398  	s.line = append(s.line, line)
   399  }
   400  
   401  // popLine pops the top of the line number stack.
   402  func (s *state) popLine() {
   403  	s.line = s.line[:len(s.line)-1]
   404  }
   405  
   406  // peekLine peek the top of the line number stack.
   407  func (s *state) peekLine() int32 {
   408  	return s.line[len(s.line)-1]
   409  }
   410  
   411  func (s *state) Error(msg string, args ...interface{}) {
   412  	yyerrorl(s.peekLine(), msg, args...)
   413  }
   414  
   415  // newValue0 adds a new value with no arguments to the current block.
   416  func (s *state) newValue0(op ssa.Op, t ssa.Type) *ssa.Value {
   417  	return s.curBlock.NewValue0(s.peekLine(), op, t)
   418  }
   419  
   420  // newValue0A adds a new value with no arguments and an aux value to the current block.
   421  func (s *state) newValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
   422  	return s.curBlock.NewValue0A(s.peekLine(), op, t, aux)
   423  }
   424  
   425  // newValue0I adds a new value with no arguments and an auxint value to the current block.
   426  func (s *state) newValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value {
   427  	return s.curBlock.NewValue0I(s.peekLine(), op, t, auxint)
   428  }
   429  
   430  // newValue1 adds a new value with one argument to the current block.
   431  func (s *state) newValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
   432  	return s.curBlock.NewValue1(s.peekLine(), op, t, arg)
   433  }
   434  
   435  // newValue1A adds a new value with one argument and an aux value to the current block.
   436  func (s *state) newValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   437  	return s.curBlock.NewValue1A(s.peekLine(), op, t, aux, arg)
   438  }
   439  
   440  // newValue1I adds a new value with one argument and an auxint value to the current block.
   441  func (s *state) newValue1I(op ssa.Op, t ssa.Type, aux int64, arg *ssa.Value) *ssa.Value {
   442  	return s.curBlock.NewValue1I(s.peekLine(), op, t, aux, arg)
   443  }
   444  
   445  // newValue2 adds a new value with two arguments to the current block.
   446  func (s *state) newValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   447  	return s.curBlock.NewValue2(s.peekLine(), op, t, arg0, arg1)
   448  }
   449  
   450  // newValue2I adds a new value with two arguments and an auxint value to the current block.
   451  func (s *state) newValue2I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value {
   452  	return s.curBlock.NewValue2I(s.peekLine(), op, t, aux, arg0, arg1)
   453  }
   454  
   455  // newValue3 adds a new value with three arguments to the current block.
   456  func (s *state) newValue3(op ssa.Op, t ssa.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   457  	return s.curBlock.NewValue3(s.peekLine(), op, t, arg0, arg1, arg2)
   458  }
   459  
   460  // newValue3I adds a new value with three arguments and an auxint value to the current block.
   461  func (s *state) newValue3I(op ssa.Op, t ssa.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value {
   462  	return s.curBlock.NewValue3I(s.peekLine(), op, t, aux, arg0, arg1, arg2)
   463  }
   464  
   465  // newValue4 adds a new value with four arguments to the current block.
   466  func (s *state) newValue4(op ssa.Op, t ssa.Type, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value {
   467  	return s.curBlock.NewValue4(s.peekLine(), op, t, arg0, arg1, arg2, arg3)
   468  }
   469  
   470  // entryNewValue0 adds a new value with no arguments to the entry block.
   471  func (s *state) entryNewValue0(op ssa.Op, t ssa.Type) *ssa.Value {
   472  	return s.f.Entry.NewValue0(s.peekLine(), op, t)
   473  }
   474  
   475  // entryNewValue0A adds a new value with no arguments and an aux value to the entry block.
   476  func (s *state) entryNewValue0A(op ssa.Op, t ssa.Type, aux interface{}) *ssa.Value {
   477  	return s.f.Entry.NewValue0A(s.peekLine(), op, t, aux)
   478  }
   479  
   480  // entryNewValue0I adds a new value with no arguments and an auxint value to the entry block.
   481  func (s *state) entryNewValue0I(op ssa.Op, t ssa.Type, auxint int64) *ssa.Value {
   482  	return s.f.Entry.NewValue0I(s.peekLine(), op, t, auxint)
   483  }
   484  
   485  // entryNewValue1 adds a new value with one argument to the entry block.
   486  func (s *state) entryNewValue1(op ssa.Op, t ssa.Type, arg *ssa.Value) *ssa.Value {
   487  	return s.f.Entry.NewValue1(s.peekLine(), op, t, arg)
   488  }
   489  
   490  // entryNewValue1 adds a new value with one argument and an auxint value to the entry block.
   491  func (s *state) entryNewValue1I(op ssa.Op, t ssa.Type, auxint int64, arg *ssa.Value) *ssa.Value {
   492  	return s.f.Entry.NewValue1I(s.peekLine(), op, t, auxint, arg)
   493  }
   494  
   495  // entryNewValue1A adds a new value with one argument and an aux value to the entry block.
   496  func (s *state) entryNewValue1A(op ssa.Op, t ssa.Type, aux interface{}, arg *ssa.Value) *ssa.Value {
   497  	return s.f.Entry.NewValue1A(s.peekLine(), op, t, aux, arg)
   498  }
   499  
   500  // entryNewValue2 adds a new value with two arguments to the entry block.
   501  func (s *state) entryNewValue2(op ssa.Op, t ssa.Type, arg0, arg1 *ssa.Value) *ssa.Value {
   502  	return s.f.Entry.NewValue2(s.peekLine(), op, t, arg0, arg1)
   503  }
   504  
   505  // const* routines add a new const value to the entry block.
   506  func (s *state) constSlice(t ssa.Type) *ssa.Value       { return s.f.ConstSlice(s.peekLine(), t) }
   507  func (s *state) constInterface(t ssa.Type) *ssa.Value   { return s.f.ConstInterface(s.peekLine(), t) }
   508  func (s *state) constNil(t ssa.Type) *ssa.Value         { return s.f.ConstNil(s.peekLine(), t) }
   509  func (s *state) constEmptyString(t ssa.Type) *ssa.Value { return s.f.ConstEmptyString(s.peekLine(), t) }
   510  func (s *state) constBool(c bool) *ssa.Value {
   511  	return s.f.ConstBool(s.peekLine(), Types[TBOOL], c)
   512  }
   513  func (s *state) constInt8(t ssa.Type, c int8) *ssa.Value {
   514  	return s.f.ConstInt8(s.peekLine(), t, c)
   515  }
   516  func (s *state) constInt16(t ssa.Type, c int16) *ssa.Value {
   517  	return s.f.ConstInt16(s.peekLine(), t, c)
   518  }
   519  func (s *state) constInt32(t ssa.Type, c int32) *ssa.Value {
   520  	return s.f.ConstInt32(s.peekLine(), t, c)
   521  }
   522  func (s *state) constInt64(t ssa.Type, c int64) *ssa.Value {
   523  	return s.f.ConstInt64(s.peekLine(), t, c)
   524  }
   525  func (s *state) constFloat32(t ssa.Type, c float64) *ssa.Value {
   526  	return s.f.ConstFloat32(s.peekLine(), t, c)
   527  }
   528  func (s *state) constFloat64(t ssa.Type, c float64) *ssa.Value {
   529  	return s.f.ConstFloat64(s.peekLine(), t, c)
   530  }
   531  func (s *state) constInt(t ssa.Type, c int64) *ssa.Value {
   532  	if s.config.IntSize == 8 {
   533  		return s.constInt64(t, c)
   534  	}
   535  	if int64(int32(c)) != c {
   536  		s.Fatalf("integer constant too big %d", c)
   537  	}
   538  	return s.constInt32(t, int32(c))
   539  }
   540  
   541  func (s *state) stmts(a Nodes) {
   542  	for _, x := range a.Slice() {
   543  		s.stmt(x)
   544  	}
   545  }
   546  
   547  // ssaStmtList converts the statement n to SSA and adds it to s.
   548  func (s *state) stmtList(l Nodes) {
   549  	for _, n := range l.Slice() {
   550  		s.stmt(n)
   551  	}
   552  }
   553  
   554  // ssaStmt converts the statement n to SSA and adds it to s.
   555  func (s *state) stmt(n *Node) {
   556  	s.pushLine(n.Lineno)
   557  	defer s.popLine()
   558  
   559  	// If s.curBlock is nil, then we're about to generate dead code.
   560  	// We can't just short-circuit here, though,
   561  	// because we check labels and gotos as part of SSA generation.
   562  	// Provide a block for the dead code so that we don't have
   563  	// to add special cases everywhere else.
   564  	if s.curBlock == nil {
   565  		dead := s.f.NewBlock(ssa.BlockPlain)
   566  		s.startBlock(dead)
   567  	}
   568  
   569  	s.stmtList(n.Ninit)
   570  	switch n.Op {
   571  
   572  	case OBLOCK:
   573  		s.stmtList(n.List)
   574  
   575  	// No-ops
   576  	case OEMPTY, ODCLCONST, ODCLTYPE, OFALL:
   577  
   578  	// Expression statements
   579  	case OCALLFUNC:
   580  		if isIntrinsicCall(n) {
   581  			s.intrinsicCall(n)
   582  			return
   583  		}
   584  		fallthrough
   585  
   586  	case OCALLMETH, OCALLINTER:
   587  		s.call(n, callNormal)
   588  		if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class == PFUNC &&
   589  			(compiling_runtime && n.Left.Sym.Name == "throw" ||
   590  				n.Left.Sym.Pkg == Runtimepkg && (n.Left.Sym.Name == "gopanic" || n.Left.Sym.Name == "selectgo" || n.Left.Sym.Name == "block")) {
   591  			m := s.mem()
   592  			b := s.endBlock()
   593  			b.Kind = ssa.BlockExit
   594  			b.SetControl(m)
   595  			// TODO: never rewrite OPANIC to OCALLFUNC in the
   596  			// first place. Need to wait until all backends
   597  			// go through SSA.
   598  		}
   599  	case ODEFER:
   600  		s.call(n.Left, callDefer)
   601  	case OPROC:
   602  		s.call(n.Left, callGo)
   603  
   604  	case OAS2DOTTYPE:
   605  		res, resok := s.dottype(n.Rlist.First(), true)
   606  		s.assign(n.List.First(), res, needwritebarrier(n.List.First(), n.Rlist.First()), false, n.Lineno, 0, false)
   607  		s.assign(n.List.Second(), resok, false, false, n.Lineno, 0, false)
   608  		return
   609  
   610  	case ODCL:
   611  		if n.Left.Class == PAUTOHEAP {
   612  			Fatalf("DCL %v", n)
   613  		}
   614  
   615  	case OLABEL:
   616  		sym := n.Left.Sym
   617  
   618  		if isblanksym(sym) {
   619  			// Empty identifier is valid but useless.
   620  			// See issues 11589, 11593.
   621  			return
   622  		}
   623  
   624  		lab := s.label(sym)
   625  
   626  		// Associate label with its control flow node, if any
   627  		if ctl := n.Name.Defn; ctl != nil {
   628  			switch ctl.Op {
   629  			case OFOR, OSWITCH, OSELECT:
   630  				s.labeledNodes[ctl] = lab
   631  			}
   632  		}
   633  
   634  		if !lab.defined() {
   635  			lab.defNode = n
   636  		} else {
   637  			s.Error("label %v already defined at %v", sym, linestr(lab.defNode.Lineno))
   638  			lab.reported = true
   639  		}
   640  		// The label might already have a target block via a goto.
   641  		if lab.target == nil {
   642  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   643  		}
   644  
   645  		// go to that label (we pretend "label:" is preceded by "goto label")
   646  		b := s.endBlock()
   647  		b.AddEdgeTo(lab.target)
   648  		s.startBlock(lab.target)
   649  
   650  	case OGOTO:
   651  		sym := n.Left.Sym
   652  
   653  		lab := s.label(sym)
   654  		if lab.target == nil {
   655  			lab.target = s.f.NewBlock(ssa.BlockPlain)
   656  		}
   657  		if !lab.used() {
   658  			lab.useNode = n
   659  		}
   660  
   661  		if lab.defined() {
   662  			s.checkgoto(n, lab.defNode)
   663  		} else {
   664  			s.fwdGotos = append(s.fwdGotos, n)
   665  		}
   666  
   667  		b := s.endBlock()
   668  		b.AddEdgeTo(lab.target)
   669  
   670  	case OAS, OASWB:
   671  		// Check whether we can generate static data rather than code.
   672  		// If so, ignore n and defer data generation until codegen.
   673  		// Failure to do this causes writes to readonly symbols.
   674  		if gen_as_init(n, true) {
   675  			var data []*Node
   676  			if s.f.StaticData != nil {
   677  				data = s.f.StaticData.([]*Node)
   678  			}
   679  			s.f.StaticData = append(data, n)
   680  			return
   681  		}
   682  
   683  		if n.Left == n.Right && n.Left.Op == ONAME {
   684  			// An x=x assignment. No point in doing anything
   685  			// here. In addition, skipping this assignment
   686  			// prevents generating:
   687  			//   VARDEF x
   688  			//   COPY x -> x
   689  			// which is bad because x is incorrectly considered
   690  			// dead before the vardef. See issue #14904.
   691  			return
   692  		}
   693  
   694  		var t *Type
   695  		if n.Right != nil {
   696  			t = n.Right.Type
   697  		} else {
   698  			t = n.Left.Type
   699  		}
   700  
   701  		// Evaluate RHS.
   702  		rhs := n.Right
   703  		if rhs != nil {
   704  			switch rhs.Op {
   705  			case OSTRUCTLIT, OARRAYLIT:
   706  				// All literals with nonzero fields have already been
   707  				// rewritten during walk. Any that remain are just T{}
   708  				// or equivalents. Use the zero value.
   709  				if !iszero(rhs) {
   710  					Fatalf("literal with nonzero value in SSA: %v", rhs)
   711  				}
   712  				rhs = nil
   713  			case OAPPEND:
   714  				// If we're writing the result of an append back to the same slice,
   715  				// handle it specially to avoid write barriers on the fast (non-growth) path.
   716  				// If the slice can be SSA'd, it'll be on the stack,
   717  				// so there will be no write barriers,
   718  				// so there's no need to attempt to prevent them.
   719  				if samesafeexpr(n.Left, rhs.List.First()) && !s.canSSA(n.Left) {
   720  					s.append(rhs, true)
   721  					return
   722  				}
   723  			}
   724  		}
   725  		var r *ssa.Value
   726  		var isVolatile bool
   727  		needwb := n.Op == OASWB && rhs != nil
   728  		deref := !canSSAType(t)
   729  		if deref {
   730  			if rhs == nil {
   731  				r = nil // Signal assign to use OpZero.
   732  			} else {
   733  				r, isVolatile = s.addr(rhs, false)
   734  			}
   735  		} else {
   736  			if rhs == nil {
   737  				r = s.zeroVal(t)
   738  			} else {
   739  				r = s.expr(rhs)
   740  			}
   741  		}
   742  		if rhs != nil && rhs.Op == OAPPEND {
   743  			// The frontend gets rid of the write barrier to enable the special OAPPEND
   744  			// handling above, but since this is not a special case, we need it.
   745  			// TODO: just add a ptr graying to the end of growslice?
   746  			// TODO: check whether we need to provide special handling and a write barrier
   747  			// for ODOTTYPE and ORECV also.
   748  			// They get similar wb-removal treatment in walk.go:OAS.
   749  			needwb = true
   750  		}
   751  
   752  		var skip skipMask
   753  		if rhs != nil && (rhs.Op == OSLICE || rhs.Op == OSLICE3 || rhs.Op == OSLICESTR) && samesafeexpr(rhs.Left, n.Left) {
   754  			// We're assigning a slicing operation back to its source.
   755  			// Don't write back fields we aren't changing. See issue #14855.
   756  			i, j, k := rhs.SliceBounds()
   757  			if i != nil && (i.Op == OLITERAL && i.Val().Ctype() == CTINT && i.Int64() == 0) {
   758  				// [0:...] is the same as [:...]
   759  				i = nil
   760  			}
   761  			// TODO: detect defaults for len/cap also.
   762  			// Currently doesn't really work because (*p)[:len(*p)] appears here as:
   763  			//    tmp = len(*p)
   764  			//    (*p)[:tmp]
   765  			//if j != nil && (j.Op == OLEN && samesafeexpr(j.Left, n.Left)) {
   766  			//      j = nil
   767  			//}
   768  			//if k != nil && (k.Op == OCAP && samesafeexpr(k.Left, n.Left)) {
   769  			//      k = nil
   770  			//}
   771  			if i == nil {
   772  				skip |= skipPtr
   773  				if j == nil {
   774  					skip |= skipLen
   775  				}
   776  				if k == nil {
   777  					skip |= skipCap
   778  				}
   779  			}
   780  		}
   781  
   782  		s.assign(n.Left, r, needwb, deref, n.Lineno, skip, isVolatile)
   783  
   784  	case OIF:
   785  		bThen := s.f.NewBlock(ssa.BlockPlain)
   786  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   787  		var bElse *ssa.Block
   788  		if n.Rlist.Len() != 0 {
   789  			bElse = s.f.NewBlock(ssa.BlockPlain)
   790  			s.condBranch(n.Left, bThen, bElse, n.Likely)
   791  		} else {
   792  			s.condBranch(n.Left, bThen, bEnd, n.Likely)
   793  		}
   794  
   795  		s.startBlock(bThen)
   796  		s.stmts(n.Nbody)
   797  		if b := s.endBlock(); b != nil {
   798  			b.AddEdgeTo(bEnd)
   799  		}
   800  
   801  		if n.Rlist.Len() != 0 {
   802  			s.startBlock(bElse)
   803  			s.stmtList(n.Rlist)
   804  			if b := s.endBlock(); b != nil {
   805  				b.AddEdgeTo(bEnd)
   806  			}
   807  		}
   808  		s.startBlock(bEnd)
   809  
   810  	case ORETURN:
   811  		s.stmtList(n.List)
   812  		s.exit()
   813  	case ORETJMP:
   814  		s.stmtList(n.List)
   815  		b := s.exit()
   816  		b.Kind = ssa.BlockRetJmp // override BlockRet
   817  		b.Aux = n.Left.Sym
   818  
   819  	case OCONTINUE, OBREAK:
   820  		var op string
   821  		var to *ssa.Block
   822  		switch n.Op {
   823  		case OCONTINUE:
   824  			op = "continue"
   825  			to = s.continueTo
   826  		case OBREAK:
   827  			op = "break"
   828  			to = s.breakTo
   829  		}
   830  		if n.Left == nil {
   831  			// plain break/continue
   832  			if to == nil {
   833  				s.Error("%s is not in a loop", op)
   834  				return
   835  			}
   836  			// nothing to do; "to" is already the correct target
   837  		} else {
   838  			// labeled break/continue; look up the target
   839  			sym := n.Left.Sym
   840  			lab := s.label(sym)
   841  			if !lab.used() {
   842  				lab.useNode = n.Left
   843  			}
   844  			if !lab.defined() {
   845  				s.Error("%s label not defined: %v", op, sym)
   846  				lab.reported = true
   847  				return
   848  			}
   849  			switch n.Op {
   850  			case OCONTINUE:
   851  				to = lab.continueTarget
   852  			case OBREAK:
   853  				to = lab.breakTarget
   854  			}
   855  			if to == nil {
   856  				// Valid label but not usable with a break/continue here, e.g.:
   857  				// for {
   858  				// 	continue abc
   859  				// }
   860  				// abc:
   861  				// for {}
   862  				s.Error("invalid %s label %v", op, sym)
   863  				lab.reported = true
   864  				return
   865  			}
   866  		}
   867  
   868  		b := s.endBlock()
   869  		b.AddEdgeTo(to)
   870  
   871  	case OFOR:
   872  		// OFOR: for Ninit; Left; Right { Nbody }
   873  		bCond := s.f.NewBlock(ssa.BlockPlain)
   874  		bBody := s.f.NewBlock(ssa.BlockPlain)
   875  		bIncr := s.f.NewBlock(ssa.BlockPlain)
   876  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   877  
   878  		// first, jump to condition test
   879  		b := s.endBlock()
   880  		b.AddEdgeTo(bCond)
   881  
   882  		// generate code to test condition
   883  		s.startBlock(bCond)
   884  		if n.Left != nil {
   885  			s.condBranch(n.Left, bBody, bEnd, 1)
   886  		} else {
   887  			b := s.endBlock()
   888  			b.Kind = ssa.BlockPlain
   889  			b.AddEdgeTo(bBody)
   890  		}
   891  
   892  		// set up for continue/break in body
   893  		prevContinue := s.continueTo
   894  		prevBreak := s.breakTo
   895  		s.continueTo = bIncr
   896  		s.breakTo = bEnd
   897  		lab := s.labeledNodes[n]
   898  		if lab != nil {
   899  			// labeled for loop
   900  			lab.continueTarget = bIncr
   901  			lab.breakTarget = bEnd
   902  		}
   903  
   904  		// generate body
   905  		s.startBlock(bBody)
   906  		s.stmts(n.Nbody)
   907  
   908  		// tear down continue/break
   909  		s.continueTo = prevContinue
   910  		s.breakTo = prevBreak
   911  		if lab != nil {
   912  			lab.continueTarget = nil
   913  			lab.breakTarget = nil
   914  		}
   915  
   916  		// done with body, goto incr
   917  		if b := s.endBlock(); b != nil {
   918  			b.AddEdgeTo(bIncr)
   919  		}
   920  
   921  		// generate incr
   922  		s.startBlock(bIncr)
   923  		if n.Right != nil {
   924  			s.stmt(n.Right)
   925  		}
   926  		if b := s.endBlock(); b != nil {
   927  			b.AddEdgeTo(bCond)
   928  		}
   929  		s.startBlock(bEnd)
   930  
   931  	case OSWITCH, OSELECT:
   932  		// These have been mostly rewritten by the front end into their Nbody fields.
   933  		// Our main task is to correctly hook up any break statements.
   934  		bEnd := s.f.NewBlock(ssa.BlockPlain)
   935  
   936  		prevBreak := s.breakTo
   937  		s.breakTo = bEnd
   938  		lab := s.labeledNodes[n]
   939  		if lab != nil {
   940  			// labeled
   941  			lab.breakTarget = bEnd
   942  		}
   943  
   944  		// generate body code
   945  		s.stmts(n.Nbody)
   946  
   947  		s.breakTo = prevBreak
   948  		if lab != nil {
   949  			lab.breakTarget = nil
   950  		}
   951  
   952  		// OSWITCH never falls through (s.curBlock == nil here).
   953  		// OSELECT does not fall through if we're calling selectgo.
   954  		// OSELECT does fall through if we're calling selectnb{send,recv}[2].
   955  		// In those latter cases, go to the code after the select.
   956  		if b := s.endBlock(); b != nil {
   957  			b.AddEdgeTo(bEnd)
   958  		}
   959  		s.startBlock(bEnd)
   960  
   961  	case OVARKILL:
   962  		// Insert a varkill op to record that a variable is no longer live.
   963  		// We only care about liveness info at call sites, so putting the
   964  		// varkill in the store chain is enough to keep it correctly ordered
   965  		// with respect to call ops.
   966  		if !s.canSSA(n.Left) {
   967  			s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, n.Left, s.mem())
   968  		}
   969  
   970  	case OVARLIVE:
   971  		// Insert a varlive op to record that a variable is still live.
   972  		if !n.Left.Addrtaken {
   973  			s.Fatalf("VARLIVE variable %s must have Addrtaken set", n.Left)
   974  		}
   975  		s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, ssa.TypeMem, n.Left, s.mem())
   976  
   977  	case OCHECKNIL:
   978  		p := s.expr(n.Left)
   979  		s.nilCheck(p)
   980  
   981  	case OSQRT:
   982  		s.expr(n.Left)
   983  
   984  	default:
   985  		s.Unimplementedf("unhandled stmt %s", n.Op)
   986  	}
   987  }
   988  
   989  // exit processes any code that needs to be generated just before returning.
   990  // It returns a BlockRet block that ends the control flow. Its control value
   991  // will be set to the final memory state.
   992  func (s *state) exit() *ssa.Block {
   993  	if hasdefer {
   994  		s.rtcall(Deferreturn, true, nil)
   995  	}
   996  
   997  	// Run exit code. Typically, this code copies heap-allocated PPARAMOUT
   998  	// variables back to the stack.
   999  	s.stmts(s.exitCode)
  1000  
  1001  	// Store SSAable PPARAMOUT variables back to stack locations.
  1002  	for _, n := range s.returns {
  1003  		addr := s.decladdrs[n]
  1004  		val := s.variable(n, n.Type)
  1005  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, n, s.mem())
  1006  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, n.Type.Size(), addr, val, s.mem())
  1007  		// TODO: if val is ever spilled, we'd like to use the
  1008  		// PPARAMOUT slot for spilling it. That won't happen
  1009  		// currently.
  1010  	}
  1011  
  1012  	// Keep input pointer args live until the return. This is a bandaid
  1013  	// fix for 1.7 for what will become in 1.8 explicit runtime.KeepAlive calls.
  1014  	// For <= 1.7 we guarantee that pointer input arguments live to the end of
  1015  	// the function to prevent premature (from the user's point of view)
  1016  	// execution of finalizers. See issue 15277.
  1017  	// TODO: remove for 1.8?
  1018  	for _, n := range s.ptrargs {
  1019  		s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, ssa.TypeMem, s.variable(n, n.Type), s.mem())
  1020  	}
  1021  
  1022  	// Do actual return.
  1023  	m := s.mem()
  1024  	b := s.endBlock()
  1025  	b.Kind = ssa.BlockRet
  1026  	b.SetControl(m)
  1027  	return b
  1028  }
  1029  
  1030  type opAndType struct {
  1031  	op    Op
  1032  	etype EType
  1033  }
  1034  
  1035  var opToSSA = map[opAndType]ssa.Op{
  1036  	opAndType{OADD, TINT8}:    ssa.OpAdd8,
  1037  	opAndType{OADD, TUINT8}:   ssa.OpAdd8,
  1038  	opAndType{OADD, TINT16}:   ssa.OpAdd16,
  1039  	opAndType{OADD, TUINT16}:  ssa.OpAdd16,
  1040  	opAndType{OADD, TINT32}:   ssa.OpAdd32,
  1041  	opAndType{OADD, TUINT32}:  ssa.OpAdd32,
  1042  	opAndType{OADD, TPTR32}:   ssa.OpAdd32,
  1043  	opAndType{OADD, TINT64}:   ssa.OpAdd64,
  1044  	opAndType{OADD, TUINT64}:  ssa.OpAdd64,
  1045  	opAndType{OADD, TPTR64}:   ssa.OpAdd64,
  1046  	opAndType{OADD, TFLOAT32}: ssa.OpAdd32F,
  1047  	opAndType{OADD, TFLOAT64}: ssa.OpAdd64F,
  1048  
  1049  	opAndType{OSUB, TINT8}:    ssa.OpSub8,
  1050  	opAndType{OSUB, TUINT8}:   ssa.OpSub8,
  1051  	opAndType{OSUB, TINT16}:   ssa.OpSub16,
  1052  	opAndType{OSUB, TUINT16}:  ssa.OpSub16,
  1053  	opAndType{OSUB, TINT32}:   ssa.OpSub32,
  1054  	opAndType{OSUB, TUINT32}:  ssa.OpSub32,
  1055  	opAndType{OSUB, TINT64}:   ssa.OpSub64,
  1056  	opAndType{OSUB, TUINT64}:  ssa.OpSub64,
  1057  	opAndType{OSUB, TFLOAT32}: ssa.OpSub32F,
  1058  	opAndType{OSUB, TFLOAT64}: ssa.OpSub64F,
  1059  
  1060  	opAndType{ONOT, TBOOL}: ssa.OpNot,
  1061  
  1062  	opAndType{OMINUS, TINT8}:    ssa.OpNeg8,
  1063  	opAndType{OMINUS, TUINT8}:   ssa.OpNeg8,
  1064  	opAndType{OMINUS, TINT16}:   ssa.OpNeg16,
  1065  	opAndType{OMINUS, TUINT16}:  ssa.OpNeg16,
  1066  	opAndType{OMINUS, TINT32}:   ssa.OpNeg32,
  1067  	opAndType{OMINUS, TUINT32}:  ssa.OpNeg32,
  1068  	opAndType{OMINUS, TINT64}:   ssa.OpNeg64,
  1069  	opAndType{OMINUS, TUINT64}:  ssa.OpNeg64,
  1070  	opAndType{OMINUS, TFLOAT32}: ssa.OpNeg32F,
  1071  	opAndType{OMINUS, TFLOAT64}: ssa.OpNeg64F,
  1072  
  1073  	opAndType{OCOM, TINT8}:   ssa.OpCom8,
  1074  	opAndType{OCOM, TUINT8}:  ssa.OpCom8,
  1075  	opAndType{OCOM, TINT16}:  ssa.OpCom16,
  1076  	opAndType{OCOM, TUINT16}: ssa.OpCom16,
  1077  	opAndType{OCOM, TINT32}:  ssa.OpCom32,
  1078  	opAndType{OCOM, TUINT32}: ssa.OpCom32,
  1079  	opAndType{OCOM, TINT64}:  ssa.OpCom64,
  1080  	opAndType{OCOM, TUINT64}: ssa.OpCom64,
  1081  
  1082  	opAndType{OIMAG, TCOMPLEX64}:  ssa.OpComplexImag,
  1083  	opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag,
  1084  	opAndType{OREAL, TCOMPLEX64}:  ssa.OpComplexReal,
  1085  	opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal,
  1086  
  1087  	opAndType{OMUL, TINT8}:    ssa.OpMul8,
  1088  	opAndType{OMUL, TUINT8}:   ssa.OpMul8,
  1089  	opAndType{OMUL, TINT16}:   ssa.OpMul16,
  1090  	opAndType{OMUL, TUINT16}:  ssa.OpMul16,
  1091  	opAndType{OMUL, TINT32}:   ssa.OpMul32,
  1092  	opAndType{OMUL, TUINT32}:  ssa.OpMul32,
  1093  	opAndType{OMUL, TINT64}:   ssa.OpMul64,
  1094  	opAndType{OMUL, TUINT64}:  ssa.OpMul64,
  1095  	opAndType{OMUL, TFLOAT32}: ssa.OpMul32F,
  1096  	opAndType{OMUL, TFLOAT64}: ssa.OpMul64F,
  1097  
  1098  	opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F,
  1099  	opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F,
  1100  
  1101  	opAndType{OHMUL, TINT8}:   ssa.OpHmul8,
  1102  	opAndType{OHMUL, TUINT8}:  ssa.OpHmul8u,
  1103  	opAndType{OHMUL, TINT16}:  ssa.OpHmul16,
  1104  	opAndType{OHMUL, TUINT16}: ssa.OpHmul16u,
  1105  	opAndType{OHMUL, TINT32}:  ssa.OpHmul32,
  1106  	opAndType{OHMUL, TUINT32}: ssa.OpHmul32u,
  1107  
  1108  	opAndType{ODIV, TINT8}:   ssa.OpDiv8,
  1109  	opAndType{ODIV, TUINT8}:  ssa.OpDiv8u,
  1110  	opAndType{ODIV, TINT16}:  ssa.OpDiv16,
  1111  	opAndType{ODIV, TUINT16}: ssa.OpDiv16u,
  1112  	opAndType{ODIV, TINT32}:  ssa.OpDiv32,
  1113  	opAndType{ODIV, TUINT32}: ssa.OpDiv32u,
  1114  	opAndType{ODIV, TINT64}:  ssa.OpDiv64,
  1115  	opAndType{ODIV, TUINT64}: ssa.OpDiv64u,
  1116  
  1117  	opAndType{OMOD, TINT8}:   ssa.OpMod8,
  1118  	opAndType{OMOD, TUINT8}:  ssa.OpMod8u,
  1119  	opAndType{OMOD, TINT16}:  ssa.OpMod16,
  1120  	opAndType{OMOD, TUINT16}: ssa.OpMod16u,
  1121  	opAndType{OMOD, TINT32}:  ssa.OpMod32,
  1122  	opAndType{OMOD, TUINT32}: ssa.OpMod32u,
  1123  	opAndType{OMOD, TINT64}:  ssa.OpMod64,
  1124  	opAndType{OMOD, TUINT64}: ssa.OpMod64u,
  1125  
  1126  	opAndType{OAND, TINT8}:   ssa.OpAnd8,
  1127  	opAndType{OAND, TUINT8}:  ssa.OpAnd8,
  1128  	opAndType{OAND, TINT16}:  ssa.OpAnd16,
  1129  	opAndType{OAND, TUINT16}: ssa.OpAnd16,
  1130  	opAndType{OAND, TINT32}:  ssa.OpAnd32,
  1131  	opAndType{OAND, TUINT32}: ssa.OpAnd32,
  1132  	opAndType{OAND, TINT64}:  ssa.OpAnd64,
  1133  	opAndType{OAND, TUINT64}: ssa.OpAnd64,
  1134  
  1135  	opAndType{OOR, TINT8}:   ssa.OpOr8,
  1136  	opAndType{OOR, TUINT8}:  ssa.OpOr8,
  1137  	opAndType{OOR, TINT16}:  ssa.OpOr16,
  1138  	opAndType{OOR, TUINT16}: ssa.OpOr16,
  1139  	opAndType{OOR, TINT32}:  ssa.OpOr32,
  1140  	opAndType{OOR, TUINT32}: ssa.OpOr32,
  1141  	opAndType{OOR, TINT64}:  ssa.OpOr64,
  1142  	opAndType{OOR, TUINT64}: ssa.OpOr64,
  1143  
  1144  	opAndType{OXOR, TINT8}:   ssa.OpXor8,
  1145  	opAndType{OXOR, TUINT8}:  ssa.OpXor8,
  1146  	opAndType{OXOR, TINT16}:  ssa.OpXor16,
  1147  	opAndType{OXOR, TUINT16}: ssa.OpXor16,
  1148  	opAndType{OXOR, TINT32}:  ssa.OpXor32,
  1149  	opAndType{OXOR, TUINT32}: ssa.OpXor32,
  1150  	opAndType{OXOR, TINT64}:  ssa.OpXor64,
  1151  	opAndType{OXOR, TUINT64}: ssa.OpXor64,
  1152  
  1153  	opAndType{OEQ, TBOOL}:      ssa.OpEqB,
  1154  	opAndType{OEQ, TINT8}:      ssa.OpEq8,
  1155  	opAndType{OEQ, TUINT8}:     ssa.OpEq8,
  1156  	opAndType{OEQ, TINT16}:     ssa.OpEq16,
  1157  	opAndType{OEQ, TUINT16}:    ssa.OpEq16,
  1158  	opAndType{OEQ, TINT32}:     ssa.OpEq32,
  1159  	opAndType{OEQ, TUINT32}:    ssa.OpEq32,
  1160  	opAndType{OEQ, TINT64}:     ssa.OpEq64,
  1161  	opAndType{OEQ, TUINT64}:    ssa.OpEq64,
  1162  	opAndType{OEQ, TINTER}:     ssa.OpEqInter,
  1163  	opAndType{OEQ, TSLICE}:     ssa.OpEqSlice,
  1164  	opAndType{OEQ, TFUNC}:      ssa.OpEqPtr,
  1165  	opAndType{OEQ, TMAP}:       ssa.OpEqPtr,
  1166  	opAndType{OEQ, TCHAN}:      ssa.OpEqPtr,
  1167  	opAndType{OEQ, TPTR32}:     ssa.OpEqPtr,
  1168  	opAndType{OEQ, TPTR64}:     ssa.OpEqPtr,
  1169  	opAndType{OEQ, TUINTPTR}:   ssa.OpEqPtr,
  1170  	opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr,
  1171  	opAndType{OEQ, TFLOAT64}:   ssa.OpEq64F,
  1172  	opAndType{OEQ, TFLOAT32}:   ssa.OpEq32F,
  1173  
  1174  	opAndType{ONE, TBOOL}:      ssa.OpNeqB,
  1175  	opAndType{ONE, TINT8}:      ssa.OpNeq8,
  1176  	opAndType{ONE, TUINT8}:     ssa.OpNeq8,
  1177  	opAndType{ONE, TINT16}:     ssa.OpNeq16,
  1178  	opAndType{ONE, TUINT16}:    ssa.OpNeq16,
  1179  	opAndType{ONE, TINT32}:     ssa.OpNeq32,
  1180  	opAndType{ONE, TUINT32}:    ssa.OpNeq32,
  1181  	opAndType{ONE, TINT64}:     ssa.OpNeq64,
  1182  	opAndType{ONE, TUINT64}:    ssa.OpNeq64,
  1183  	opAndType{ONE, TINTER}:     ssa.OpNeqInter,
  1184  	opAndType{ONE, TSLICE}:     ssa.OpNeqSlice,
  1185  	opAndType{ONE, TFUNC}:      ssa.OpNeqPtr,
  1186  	opAndType{ONE, TMAP}:       ssa.OpNeqPtr,
  1187  	opAndType{ONE, TCHAN}:      ssa.OpNeqPtr,
  1188  	opAndType{ONE, TPTR32}:     ssa.OpNeqPtr,
  1189  	opAndType{ONE, TPTR64}:     ssa.OpNeqPtr,
  1190  	opAndType{ONE, TUINTPTR}:   ssa.OpNeqPtr,
  1191  	opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr,
  1192  	opAndType{ONE, TFLOAT64}:   ssa.OpNeq64F,
  1193  	opAndType{ONE, TFLOAT32}:   ssa.OpNeq32F,
  1194  
  1195  	opAndType{OLT, TINT8}:    ssa.OpLess8,
  1196  	opAndType{OLT, TUINT8}:   ssa.OpLess8U,
  1197  	opAndType{OLT, TINT16}:   ssa.OpLess16,
  1198  	opAndType{OLT, TUINT16}:  ssa.OpLess16U,
  1199  	opAndType{OLT, TINT32}:   ssa.OpLess32,
  1200  	opAndType{OLT, TUINT32}:  ssa.OpLess32U,
  1201  	opAndType{OLT, TINT64}:   ssa.OpLess64,
  1202  	opAndType{OLT, TUINT64}:  ssa.OpLess64U,
  1203  	opAndType{OLT, TFLOAT64}: ssa.OpLess64F,
  1204  	opAndType{OLT, TFLOAT32}: ssa.OpLess32F,
  1205  
  1206  	opAndType{OGT, TINT8}:    ssa.OpGreater8,
  1207  	opAndType{OGT, TUINT8}:   ssa.OpGreater8U,
  1208  	opAndType{OGT, TINT16}:   ssa.OpGreater16,
  1209  	opAndType{OGT, TUINT16}:  ssa.OpGreater16U,
  1210  	opAndType{OGT, TINT32}:   ssa.OpGreater32,
  1211  	opAndType{OGT, TUINT32}:  ssa.OpGreater32U,
  1212  	opAndType{OGT, TINT64}:   ssa.OpGreater64,
  1213  	opAndType{OGT, TUINT64}:  ssa.OpGreater64U,
  1214  	opAndType{OGT, TFLOAT64}: ssa.OpGreater64F,
  1215  	opAndType{OGT, TFLOAT32}: ssa.OpGreater32F,
  1216  
  1217  	opAndType{OLE, TINT8}:    ssa.OpLeq8,
  1218  	opAndType{OLE, TUINT8}:   ssa.OpLeq8U,
  1219  	opAndType{OLE, TINT16}:   ssa.OpLeq16,
  1220  	opAndType{OLE, TUINT16}:  ssa.OpLeq16U,
  1221  	opAndType{OLE, TINT32}:   ssa.OpLeq32,
  1222  	opAndType{OLE, TUINT32}:  ssa.OpLeq32U,
  1223  	opAndType{OLE, TINT64}:   ssa.OpLeq64,
  1224  	opAndType{OLE, TUINT64}:  ssa.OpLeq64U,
  1225  	opAndType{OLE, TFLOAT64}: ssa.OpLeq64F,
  1226  	opAndType{OLE, TFLOAT32}: ssa.OpLeq32F,
  1227  
  1228  	opAndType{OGE, TINT8}:    ssa.OpGeq8,
  1229  	opAndType{OGE, TUINT8}:   ssa.OpGeq8U,
  1230  	opAndType{OGE, TINT16}:   ssa.OpGeq16,
  1231  	opAndType{OGE, TUINT16}:  ssa.OpGeq16U,
  1232  	opAndType{OGE, TINT32}:   ssa.OpGeq32,
  1233  	opAndType{OGE, TUINT32}:  ssa.OpGeq32U,
  1234  	opAndType{OGE, TINT64}:   ssa.OpGeq64,
  1235  	opAndType{OGE, TUINT64}:  ssa.OpGeq64U,
  1236  	opAndType{OGE, TFLOAT64}: ssa.OpGeq64F,
  1237  	opAndType{OGE, TFLOAT32}: ssa.OpGeq32F,
  1238  
  1239  	opAndType{OLROT, TUINT8}:  ssa.OpLrot8,
  1240  	opAndType{OLROT, TUINT16}: ssa.OpLrot16,
  1241  	opAndType{OLROT, TUINT32}: ssa.OpLrot32,
  1242  	opAndType{OLROT, TUINT64}: ssa.OpLrot64,
  1243  
  1244  	opAndType{OSQRT, TFLOAT64}: ssa.OpSqrt,
  1245  }
  1246  
  1247  func (s *state) concreteEtype(t *Type) EType {
  1248  	e := t.Etype
  1249  	switch e {
  1250  	default:
  1251  		return e
  1252  	case TINT:
  1253  		if s.config.IntSize == 8 {
  1254  			return TINT64
  1255  		}
  1256  		return TINT32
  1257  	case TUINT:
  1258  		if s.config.IntSize == 8 {
  1259  			return TUINT64
  1260  		}
  1261  		return TUINT32
  1262  	case TUINTPTR:
  1263  		if s.config.PtrSize == 8 {
  1264  			return TUINT64
  1265  		}
  1266  		return TUINT32
  1267  	}
  1268  }
  1269  
  1270  func (s *state) ssaOp(op Op, t *Type) ssa.Op {
  1271  	etype := s.concreteEtype(t)
  1272  	x, ok := opToSSA[opAndType{op, etype}]
  1273  	if !ok {
  1274  		s.Unimplementedf("unhandled binary op %s %s", op, etype)
  1275  	}
  1276  	return x
  1277  }
  1278  
  1279  func floatForComplex(t *Type) *Type {
  1280  	if t.Size() == 8 {
  1281  		return Types[TFLOAT32]
  1282  	} else {
  1283  		return Types[TFLOAT64]
  1284  	}
  1285  }
  1286  
  1287  type opAndTwoTypes struct {
  1288  	op     Op
  1289  	etype1 EType
  1290  	etype2 EType
  1291  }
  1292  
  1293  type twoTypes struct {
  1294  	etype1 EType
  1295  	etype2 EType
  1296  }
  1297  
  1298  type twoOpsAndType struct {
  1299  	op1              ssa.Op
  1300  	op2              ssa.Op
  1301  	intermediateType EType
  1302  }
  1303  
  1304  var fpConvOpToSSA = map[twoTypes]twoOpsAndType{
  1305  
  1306  	twoTypes{TINT8, TFLOAT32}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32},
  1307  	twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32},
  1308  	twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32},
  1309  	twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64},
  1310  
  1311  	twoTypes{TINT8, TFLOAT64}:  twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32},
  1312  	twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32},
  1313  	twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32},
  1314  	twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64},
  1315  
  1316  	twoTypes{TFLOAT32, TINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1317  	twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1318  	twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32},
  1319  	twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64},
  1320  
  1321  	twoTypes{TFLOAT64, TINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1322  	twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1323  	twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32},
  1324  	twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64},
  1325  	// unsigned
  1326  	twoTypes{TUINT8, TFLOAT32}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32},
  1327  	twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32},
  1328  	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned
  1329  	twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto32F, branchy code expansion instead
  1330  
  1331  	twoTypes{TUINT8, TFLOAT64}:  twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32},
  1332  	twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32},
  1333  	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned
  1334  	twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64},            // Cvt64Uto64F, branchy code expansion instead
  1335  
  1336  	twoTypes{TFLOAT32, TUINT8}:  twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32},
  1337  	twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32},
  1338  	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1339  	twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt32Fto64U, branchy code expansion instead
  1340  
  1341  	twoTypes{TFLOAT64, TUINT8}:  twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32},
  1342  	twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32},
  1343  	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned
  1344  	twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64},          // Cvt64Fto64U, branchy code expansion instead
  1345  
  1346  	// float
  1347  	twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32},
  1348  	twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT64},
  1349  	twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCopy, TFLOAT32},
  1350  	twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64},
  1351  }
  1352  
  1353  // this map is used only for 32-bit arch, and only includes the difference
  1354  // on 32-bit arch, don't use int64<->float conversion for uint32
  1355  var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{
  1356  	twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto32F, TUINT32},
  1357  	twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto64F, TUINT32},
  1358  	twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto32U, ssa.OpCopy, TUINT32},
  1359  	twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto32U, ssa.OpCopy, TUINT32},
  1360  }
  1361  
  1362  // uint64<->float conversions, only on machines that have intructions for that
  1363  var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{
  1364  	twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto32F, TUINT64},
  1365  	twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto64F, TUINT64},
  1366  	twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpCvt32Fto64U, ssa.OpCopy, TUINT64},
  1367  	twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpCvt64Fto64U, ssa.OpCopy, TUINT64},
  1368  }
  1369  
  1370  var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{
  1371  	opAndTwoTypes{OLSH, TINT8, TUINT8}:   ssa.OpLsh8x8,
  1372  	opAndTwoTypes{OLSH, TUINT8, TUINT8}:  ssa.OpLsh8x8,
  1373  	opAndTwoTypes{OLSH, TINT8, TUINT16}:  ssa.OpLsh8x16,
  1374  	opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16,
  1375  	opAndTwoTypes{OLSH, TINT8, TUINT32}:  ssa.OpLsh8x32,
  1376  	opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32,
  1377  	opAndTwoTypes{OLSH, TINT8, TUINT64}:  ssa.OpLsh8x64,
  1378  	opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64,
  1379  
  1380  	opAndTwoTypes{OLSH, TINT16, TUINT8}:   ssa.OpLsh16x8,
  1381  	opAndTwoTypes{OLSH, TUINT16, TUINT8}:  ssa.OpLsh16x8,
  1382  	opAndTwoTypes{OLSH, TINT16, TUINT16}:  ssa.OpLsh16x16,
  1383  	opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16,
  1384  	opAndTwoTypes{OLSH, TINT16, TUINT32}:  ssa.OpLsh16x32,
  1385  	opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32,
  1386  	opAndTwoTypes{OLSH, TINT16, TUINT64}:  ssa.OpLsh16x64,
  1387  	opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64,
  1388  
  1389  	opAndTwoTypes{OLSH, TINT32, TUINT8}:   ssa.OpLsh32x8,
  1390  	opAndTwoTypes{OLSH, TUINT32, TUINT8}:  ssa.OpLsh32x8,
  1391  	opAndTwoTypes{OLSH, TINT32, TUINT16}:  ssa.OpLsh32x16,
  1392  	opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16,
  1393  	opAndTwoTypes{OLSH, TINT32, TUINT32}:  ssa.OpLsh32x32,
  1394  	opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32,
  1395  	opAndTwoTypes{OLSH, TINT32, TUINT64}:  ssa.OpLsh32x64,
  1396  	opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64,
  1397  
  1398  	opAndTwoTypes{OLSH, TINT64, TUINT8}:   ssa.OpLsh64x8,
  1399  	opAndTwoTypes{OLSH, TUINT64, TUINT8}:  ssa.OpLsh64x8,
  1400  	opAndTwoTypes{OLSH, TINT64, TUINT16}:  ssa.OpLsh64x16,
  1401  	opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16,
  1402  	opAndTwoTypes{OLSH, TINT64, TUINT32}:  ssa.OpLsh64x32,
  1403  	opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32,
  1404  	opAndTwoTypes{OLSH, TINT64, TUINT64}:  ssa.OpLsh64x64,
  1405  	opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64,
  1406  
  1407  	opAndTwoTypes{ORSH, TINT8, TUINT8}:   ssa.OpRsh8x8,
  1408  	opAndTwoTypes{ORSH, TUINT8, TUINT8}:  ssa.OpRsh8Ux8,
  1409  	opAndTwoTypes{ORSH, TINT8, TUINT16}:  ssa.OpRsh8x16,
  1410  	opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16,
  1411  	opAndTwoTypes{ORSH, TINT8, TUINT32}:  ssa.OpRsh8x32,
  1412  	opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32,
  1413  	opAndTwoTypes{ORSH, TINT8, TUINT64}:  ssa.OpRsh8x64,
  1414  	opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64,
  1415  
  1416  	opAndTwoTypes{ORSH, TINT16, TUINT8}:   ssa.OpRsh16x8,
  1417  	opAndTwoTypes{ORSH, TUINT16, TUINT8}:  ssa.OpRsh16Ux8,
  1418  	opAndTwoTypes{ORSH, TINT16, TUINT16}:  ssa.OpRsh16x16,
  1419  	opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16,
  1420  	opAndTwoTypes{ORSH, TINT16, TUINT32}:  ssa.OpRsh16x32,
  1421  	opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32,
  1422  	opAndTwoTypes{ORSH, TINT16, TUINT64}:  ssa.OpRsh16x64,
  1423  	opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64,
  1424  
  1425  	opAndTwoTypes{ORSH, TINT32, TUINT8}:   ssa.OpRsh32x8,
  1426  	opAndTwoTypes{ORSH, TUINT32, TUINT8}:  ssa.OpRsh32Ux8,
  1427  	opAndTwoTypes{ORSH, TINT32, TUINT16}:  ssa.OpRsh32x16,
  1428  	opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16,
  1429  	opAndTwoTypes{ORSH, TINT32, TUINT32}:  ssa.OpRsh32x32,
  1430  	opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32,
  1431  	opAndTwoTypes{ORSH, TINT32, TUINT64}:  ssa.OpRsh32x64,
  1432  	opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64,
  1433  
  1434  	opAndTwoTypes{ORSH, TINT64, TUINT8}:   ssa.OpRsh64x8,
  1435  	opAndTwoTypes{ORSH, TUINT64, TUINT8}:  ssa.OpRsh64Ux8,
  1436  	opAndTwoTypes{ORSH, TINT64, TUINT16}:  ssa.OpRsh64x16,
  1437  	opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16,
  1438  	opAndTwoTypes{ORSH, TINT64, TUINT32}:  ssa.OpRsh64x32,
  1439  	opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32,
  1440  	opAndTwoTypes{ORSH, TINT64, TUINT64}:  ssa.OpRsh64x64,
  1441  	opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64,
  1442  }
  1443  
  1444  func (s *state) ssaShiftOp(op Op, t *Type, u *Type) ssa.Op {
  1445  	etype1 := s.concreteEtype(t)
  1446  	etype2 := s.concreteEtype(u)
  1447  	x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}]
  1448  	if !ok {
  1449  		s.Unimplementedf("unhandled shift op %s etype=%s/%s", op, etype1, etype2)
  1450  	}
  1451  	return x
  1452  }
  1453  
  1454  func (s *state) ssaRotateOp(op Op, t *Type) ssa.Op {
  1455  	etype1 := s.concreteEtype(t)
  1456  	x, ok := opToSSA[opAndType{op, etype1}]
  1457  	if !ok {
  1458  		s.Unimplementedf("unhandled rotate op %s etype=%s", op, etype1)
  1459  	}
  1460  	return x
  1461  }
  1462  
  1463  // expr converts the expression n to ssa, adds it to s and returns the ssa result.
  1464  func (s *state) expr(n *Node) *ssa.Value {
  1465  	if !(n.Op == ONAME || n.Op == OLITERAL && n.Sym != nil) {
  1466  		// ONAMEs and named OLITERALs have the line number
  1467  		// of the decl, not the use. See issue 14742.
  1468  		s.pushLine(n.Lineno)
  1469  		defer s.popLine()
  1470  	}
  1471  
  1472  	s.stmtList(n.Ninit)
  1473  	switch n.Op {
  1474  	case OCFUNC:
  1475  		aux := s.lookupSymbol(n, &ssa.ExternSymbol{Typ: n.Type, Sym: n.Left.Sym})
  1476  		return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb)
  1477  	case ONAME:
  1478  		if n.Class == PFUNC {
  1479  			// "value" of a function is the address of the function's closure
  1480  			sym := funcsym(n.Sym)
  1481  			aux := &ssa.ExternSymbol{Typ: n.Type, Sym: sym}
  1482  			return s.entryNewValue1A(ssa.OpAddr, Ptrto(n.Type), aux, s.sb)
  1483  		}
  1484  		if s.canSSA(n) {
  1485  			return s.variable(n, n.Type)
  1486  		}
  1487  		addr, _ := s.addr(n, false)
  1488  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1489  	case OCLOSUREVAR:
  1490  		addr, _ := s.addr(n, false)
  1491  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1492  	case OLITERAL:
  1493  		switch u := n.Val().U.(type) {
  1494  		case *Mpint:
  1495  			i := u.Int64()
  1496  			switch n.Type.Size() {
  1497  			case 1:
  1498  				return s.constInt8(n.Type, int8(i))
  1499  			case 2:
  1500  				return s.constInt16(n.Type, int16(i))
  1501  			case 4:
  1502  				return s.constInt32(n.Type, int32(i))
  1503  			case 8:
  1504  				return s.constInt64(n.Type, i)
  1505  			default:
  1506  				s.Fatalf("bad integer size %d", n.Type.Size())
  1507  				return nil
  1508  			}
  1509  		case string:
  1510  			if u == "" {
  1511  				return s.constEmptyString(n.Type)
  1512  			}
  1513  			return s.entryNewValue0A(ssa.OpConstString, n.Type, u)
  1514  		case bool:
  1515  			return s.constBool(u)
  1516  		case *NilVal:
  1517  			t := n.Type
  1518  			switch {
  1519  			case t.IsSlice():
  1520  				return s.constSlice(t)
  1521  			case t.IsInterface():
  1522  				return s.constInterface(t)
  1523  			default:
  1524  				return s.constNil(t)
  1525  			}
  1526  		case *Mpflt:
  1527  			switch n.Type.Size() {
  1528  			case 4:
  1529  				return s.constFloat32(n.Type, u.Float32())
  1530  			case 8:
  1531  				return s.constFloat64(n.Type, u.Float64())
  1532  			default:
  1533  				s.Fatalf("bad float size %d", n.Type.Size())
  1534  				return nil
  1535  			}
  1536  		case *Mpcplx:
  1537  			r := &u.Real
  1538  			i := &u.Imag
  1539  			switch n.Type.Size() {
  1540  			case 8:
  1541  				pt := Types[TFLOAT32]
  1542  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1543  					s.constFloat32(pt, r.Float32()),
  1544  					s.constFloat32(pt, i.Float32()))
  1545  			case 16:
  1546  				pt := Types[TFLOAT64]
  1547  				return s.newValue2(ssa.OpComplexMake, n.Type,
  1548  					s.constFloat64(pt, r.Float64()),
  1549  					s.constFloat64(pt, i.Float64()))
  1550  			default:
  1551  				s.Fatalf("bad float size %d", n.Type.Size())
  1552  				return nil
  1553  			}
  1554  
  1555  		default:
  1556  			s.Unimplementedf("unhandled OLITERAL %v", n.Val().Ctype())
  1557  			return nil
  1558  		}
  1559  	case OCONVNOP:
  1560  		to := n.Type
  1561  		from := n.Left.Type
  1562  
  1563  		// Assume everything will work out, so set up our return value.
  1564  		// Anything interesting that happens from here is a fatal.
  1565  		x := s.expr(n.Left)
  1566  
  1567  		// Special case for not confusing GC and liveness.
  1568  		// We don't want pointers accidentally classified
  1569  		// as not-pointers or vice-versa because of copy
  1570  		// elision.
  1571  		if to.IsPtrShaped() != from.IsPtrShaped() {
  1572  			return s.newValue2(ssa.OpConvert, to, x, s.mem())
  1573  		}
  1574  
  1575  		v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type
  1576  
  1577  		// CONVNOP closure
  1578  		if to.Etype == TFUNC && from.IsPtrShaped() {
  1579  			return v
  1580  		}
  1581  
  1582  		// named <--> unnamed type or typed <--> untyped const
  1583  		if from.Etype == to.Etype {
  1584  			return v
  1585  		}
  1586  
  1587  		// unsafe.Pointer <--> *T
  1588  		if to.Etype == TUNSAFEPTR && from.IsPtr() || from.Etype == TUNSAFEPTR && to.IsPtr() {
  1589  			return v
  1590  		}
  1591  
  1592  		dowidth(from)
  1593  		dowidth(to)
  1594  		if from.Width != to.Width {
  1595  			s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width)
  1596  			return nil
  1597  		}
  1598  		if etypesign(from.Etype) != etypesign(to.Etype) {
  1599  			s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Etype, to, to.Etype)
  1600  			return nil
  1601  		}
  1602  
  1603  		if instrumenting {
  1604  			// These appear to be fine, but they fail the
  1605  			// integer constraint below, so okay them here.
  1606  			// Sample non-integer conversion: map[string]string -> *uint8
  1607  			return v
  1608  		}
  1609  
  1610  		if etypesign(from.Etype) == 0 {
  1611  			s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to)
  1612  			return nil
  1613  		}
  1614  
  1615  		// integer, same width, same sign
  1616  		return v
  1617  
  1618  	case OCONV:
  1619  		x := s.expr(n.Left)
  1620  		ft := n.Left.Type // from type
  1621  		tt := n.Type      // to type
  1622  		if ft.IsInteger() && tt.IsInteger() {
  1623  			var op ssa.Op
  1624  			if tt.Size() == ft.Size() {
  1625  				op = ssa.OpCopy
  1626  			} else if tt.Size() < ft.Size() {
  1627  				// truncation
  1628  				switch 10*ft.Size() + tt.Size() {
  1629  				case 21:
  1630  					op = ssa.OpTrunc16to8
  1631  				case 41:
  1632  					op = ssa.OpTrunc32to8
  1633  				case 42:
  1634  					op = ssa.OpTrunc32to16
  1635  				case 81:
  1636  					op = ssa.OpTrunc64to8
  1637  				case 82:
  1638  					op = ssa.OpTrunc64to16
  1639  				case 84:
  1640  					op = ssa.OpTrunc64to32
  1641  				default:
  1642  					s.Fatalf("weird integer truncation %s -> %s", ft, tt)
  1643  				}
  1644  			} else if ft.IsSigned() {
  1645  				// sign extension
  1646  				switch 10*ft.Size() + tt.Size() {
  1647  				case 12:
  1648  					op = ssa.OpSignExt8to16
  1649  				case 14:
  1650  					op = ssa.OpSignExt8to32
  1651  				case 18:
  1652  					op = ssa.OpSignExt8to64
  1653  				case 24:
  1654  					op = ssa.OpSignExt16to32
  1655  				case 28:
  1656  					op = ssa.OpSignExt16to64
  1657  				case 48:
  1658  					op = ssa.OpSignExt32to64
  1659  				default:
  1660  					s.Fatalf("bad integer sign extension %s -> %s", ft, tt)
  1661  				}
  1662  			} else {
  1663  				// zero extension
  1664  				switch 10*ft.Size() + tt.Size() {
  1665  				case 12:
  1666  					op = ssa.OpZeroExt8to16
  1667  				case 14:
  1668  					op = ssa.OpZeroExt8to32
  1669  				case 18:
  1670  					op = ssa.OpZeroExt8to64
  1671  				case 24:
  1672  					op = ssa.OpZeroExt16to32
  1673  				case 28:
  1674  					op = ssa.OpZeroExt16to64
  1675  				case 48:
  1676  					op = ssa.OpZeroExt32to64
  1677  				default:
  1678  					s.Fatalf("weird integer sign extension %s -> %s", ft, tt)
  1679  				}
  1680  			}
  1681  			return s.newValue1(op, n.Type, x)
  1682  		}
  1683  
  1684  		if ft.IsFloat() || tt.IsFloat() {
  1685  			conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]
  1686  			if s.config.IntSize == 4 && Thearch.LinkArch.Name != "amd64p32" {
  1687  				if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
  1688  					conv = conv1
  1689  				}
  1690  			}
  1691  			if Thearch.LinkArch.Name == "arm64" {
  1692  				if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 {
  1693  					conv = conv1
  1694  				}
  1695  			}
  1696  			if !ok {
  1697  				s.Fatalf("weird float conversion %s -> %s", ft, tt)
  1698  			}
  1699  			op1, op2, it := conv.op1, conv.op2, conv.intermediateType
  1700  
  1701  			if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid {
  1702  				// normal case, not tripping over unsigned 64
  1703  				if op1 == ssa.OpCopy {
  1704  					if op2 == ssa.OpCopy {
  1705  						return x
  1706  					}
  1707  					return s.newValue1(op2, n.Type, x)
  1708  				}
  1709  				if op2 == ssa.OpCopy {
  1710  					return s.newValue1(op1, n.Type, x)
  1711  				}
  1712  				return s.newValue1(op2, n.Type, s.newValue1(op1, Types[it], x))
  1713  			}
  1714  			// Tricky 64-bit unsigned cases.
  1715  			if ft.IsInteger() {
  1716  				// therefore tt is float32 or float64, and ft is also unsigned
  1717  				if tt.Size() == 4 {
  1718  					return s.uint64Tofloat32(n, x, ft, tt)
  1719  				}
  1720  				if tt.Size() == 8 {
  1721  					return s.uint64Tofloat64(n, x, ft, tt)
  1722  				}
  1723  				s.Fatalf("weird unsigned integer to float conversion %s -> %s", ft, tt)
  1724  			}
  1725  			// therefore ft is float32 or float64, and tt is unsigned integer
  1726  			if ft.Size() == 4 {
  1727  				return s.float32ToUint64(n, x, ft, tt)
  1728  			}
  1729  			if ft.Size() == 8 {
  1730  				return s.float64ToUint64(n, x, ft, tt)
  1731  			}
  1732  			s.Fatalf("weird float to unsigned integer conversion %s -> %s", ft, tt)
  1733  			return nil
  1734  		}
  1735  
  1736  		if ft.IsComplex() && tt.IsComplex() {
  1737  			var op ssa.Op
  1738  			if ft.Size() == tt.Size() {
  1739  				op = ssa.OpCopy
  1740  			} else if ft.Size() == 8 && tt.Size() == 16 {
  1741  				op = ssa.OpCvt32Fto64F
  1742  			} else if ft.Size() == 16 && tt.Size() == 8 {
  1743  				op = ssa.OpCvt64Fto32F
  1744  			} else {
  1745  				s.Fatalf("weird complex conversion %s -> %s", ft, tt)
  1746  			}
  1747  			ftp := floatForComplex(ft)
  1748  			ttp := floatForComplex(tt)
  1749  			return s.newValue2(ssa.OpComplexMake, tt,
  1750  				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)),
  1751  				s.newValue1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x)))
  1752  		}
  1753  
  1754  		s.Unimplementedf("unhandled OCONV %s -> %s", n.Left.Type.Etype, n.Type.Etype)
  1755  		return nil
  1756  
  1757  	case ODOTTYPE:
  1758  		res, _ := s.dottype(n, false)
  1759  		return res
  1760  
  1761  	// binary ops
  1762  	case OLT, OEQ, ONE, OLE, OGE, OGT:
  1763  		a := s.expr(n.Left)
  1764  		b := s.expr(n.Right)
  1765  		if n.Left.Type.IsComplex() {
  1766  			pt := floatForComplex(n.Left.Type)
  1767  			op := s.ssaOp(OEQ, pt)
  1768  			r := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b))
  1769  			i := s.newValue2(op, Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))
  1770  			c := s.newValue2(ssa.OpAnd8, Types[TBOOL], r, i)
  1771  			switch n.Op {
  1772  			case OEQ:
  1773  				return c
  1774  			case ONE:
  1775  				return s.newValue1(ssa.OpNot, Types[TBOOL], c)
  1776  			default:
  1777  				s.Fatalf("ordered complex compare %s", n.Op)
  1778  			}
  1779  		}
  1780  		return s.newValue2(s.ssaOp(n.Op, n.Left.Type), Types[TBOOL], a, b)
  1781  	case OMUL:
  1782  		a := s.expr(n.Left)
  1783  		b := s.expr(n.Right)
  1784  		if n.Type.IsComplex() {
  1785  			mulop := ssa.OpMul64F
  1786  			addop := ssa.OpAdd64F
  1787  			subop := ssa.OpSub64F
  1788  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  1789  			wt := Types[TFLOAT64]         // Compute in Float64 to minimize cancelation error
  1790  
  1791  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  1792  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  1793  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  1794  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  1795  
  1796  			if pt != wt { // Widen for calculation
  1797  				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
  1798  				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
  1799  				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
  1800  				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
  1801  			}
  1802  
  1803  			xreal := s.newValue2(subop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
  1804  			ximag := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, bimag), s.newValue2(mulop, wt, aimag, breal))
  1805  
  1806  			if pt != wt { // Narrow to store back
  1807  				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
  1808  				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
  1809  			}
  1810  
  1811  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  1812  		}
  1813  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1814  
  1815  	case ODIV:
  1816  		a := s.expr(n.Left)
  1817  		b := s.expr(n.Right)
  1818  		if n.Type.IsComplex() {
  1819  			// TODO this is not executed because the front-end substitutes a runtime call.
  1820  			// That probably ought to change; with modest optimization the widen/narrow
  1821  			// conversions could all be elided in larger expression trees.
  1822  			mulop := ssa.OpMul64F
  1823  			addop := ssa.OpAdd64F
  1824  			subop := ssa.OpSub64F
  1825  			divop := ssa.OpDiv64F
  1826  			pt := floatForComplex(n.Type) // Could be Float32 or Float64
  1827  			wt := Types[TFLOAT64]         // Compute in Float64 to minimize cancelation error
  1828  
  1829  			areal := s.newValue1(ssa.OpComplexReal, pt, a)
  1830  			breal := s.newValue1(ssa.OpComplexReal, pt, b)
  1831  			aimag := s.newValue1(ssa.OpComplexImag, pt, a)
  1832  			bimag := s.newValue1(ssa.OpComplexImag, pt, b)
  1833  
  1834  			if pt != wt { // Widen for calculation
  1835  				areal = s.newValue1(ssa.OpCvt32Fto64F, wt, areal)
  1836  				breal = s.newValue1(ssa.OpCvt32Fto64F, wt, breal)
  1837  				aimag = s.newValue1(ssa.OpCvt32Fto64F, wt, aimag)
  1838  				bimag = s.newValue1(ssa.OpCvt32Fto64F, wt, bimag)
  1839  			}
  1840  
  1841  			denom := s.newValue2(addop, wt, s.newValue2(mulop, wt, breal, breal), s.newValue2(mulop, wt, bimag, bimag))
  1842  			xreal := s.newValue2(addop, wt, s.newValue2(mulop, wt, areal, breal), s.newValue2(mulop, wt, aimag, bimag))
  1843  			ximag := s.newValue2(subop, wt, s.newValue2(mulop, wt, aimag, breal), s.newValue2(mulop, wt, areal, bimag))
  1844  
  1845  			// TODO not sure if this is best done in wide precision or narrow
  1846  			// Double-rounding might be an issue.
  1847  			// Note that the pre-SSA implementation does the entire calculation
  1848  			// in wide format, so wide is compatible.
  1849  			xreal = s.newValue2(divop, wt, xreal, denom)
  1850  			ximag = s.newValue2(divop, wt, ximag, denom)
  1851  
  1852  			if pt != wt { // Narrow to store back
  1853  				xreal = s.newValue1(ssa.OpCvt64Fto32F, pt, xreal)
  1854  				ximag = s.newValue1(ssa.OpCvt64Fto32F, pt, ximag)
  1855  			}
  1856  			return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag)
  1857  		}
  1858  		if n.Type.IsFloat() {
  1859  			return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1860  		} else {
  1861  			// do a size-appropriate check for zero
  1862  			cmp := s.newValue2(s.ssaOp(ONE, n.Type), Types[TBOOL], b, s.zeroVal(n.Type))
  1863  			s.check(cmp, panicdivide)
  1864  			return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1865  		}
  1866  	case OMOD:
  1867  		a := s.expr(n.Left)
  1868  		b := s.expr(n.Right)
  1869  		// do a size-appropriate check for zero
  1870  		cmp := s.newValue2(s.ssaOp(ONE, n.Type), Types[TBOOL], b, s.zeroVal(n.Type))
  1871  		s.check(cmp, panicdivide)
  1872  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1873  	case OADD, OSUB:
  1874  		a := s.expr(n.Left)
  1875  		b := s.expr(n.Right)
  1876  		if n.Type.IsComplex() {
  1877  			pt := floatForComplex(n.Type)
  1878  			op := s.ssaOp(n.Op, pt)
  1879  			return s.newValue2(ssa.OpComplexMake, n.Type,
  1880  				s.newValue2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)),
  1881  				s.newValue2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)))
  1882  		}
  1883  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1884  	case OAND, OOR, OHMUL, OXOR:
  1885  		a := s.expr(n.Left)
  1886  		b := s.expr(n.Right)
  1887  		return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b)
  1888  	case OLSH, ORSH:
  1889  		a := s.expr(n.Left)
  1890  		b := s.expr(n.Right)
  1891  		return s.newValue2(s.ssaShiftOp(n.Op, n.Type, n.Right.Type), a.Type, a, b)
  1892  	case OLROT:
  1893  		a := s.expr(n.Left)
  1894  		i := n.Right.Int64()
  1895  		if i <= 0 || i >= n.Type.Size()*8 {
  1896  			s.Fatalf("Wrong rotate distance for LROT, expected 1 through %d, saw %d", n.Type.Size()*8-1, i)
  1897  		}
  1898  		return s.newValue1I(s.ssaRotateOp(n.Op, n.Type), a.Type, i, a)
  1899  	case OANDAND, OOROR:
  1900  		// To implement OANDAND (and OOROR), we introduce a
  1901  		// new temporary variable to hold the result. The
  1902  		// variable is associated with the OANDAND node in the
  1903  		// s.vars table (normally variables are only
  1904  		// associated with ONAME nodes). We convert
  1905  		//     A && B
  1906  		// to
  1907  		//     var = A
  1908  		//     if var {
  1909  		//         var = B
  1910  		//     }
  1911  		// Using var in the subsequent block introduces the
  1912  		// necessary phi variable.
  1913  		el := s.expr(n.Left)
  1914  		s.vars[n] = el
  1915  
  1916  		b := s.endBlock()
  1917  		b.Kind = ssa.BlockIf
  1918  		b.SetControl(el)
  1919  		// In theory, we should set b.Likely here based on context.
  1920  		// However, gc only gives us likeliness hints
  1921  		// in a single place, for plain OIF statements,
  1922  		// and passing around context is finnicky, so don't bother for now.
  1923  
  1924  		bRight := s.f.NewBlock(ssa.BlockPlain)
  1925  		bResult := s.f.NewBlock(ssa.BlockPlain)
  1926  		if n.Op == OANDAND {
  1927  			b.AddEdgeTo(bRight)
  1928  			b.AddEdgeTo(bResult)
  1929  		} else if n.Op == OOROR {
  1930  			b.AddEdgeTo(bResult)
  1931  			b.AddEdgeTo(bRight)
  1932  		}
  1933  
  1934  		s.startBlock(bRight)
  1935  		er := s.expr(n.Right)
  1936  		s.vars[n] = er
  1937  
  1938  		b = s.endBlock()
  1939  		b.AddEdgeTo(bResult)
  1940  
  1941  		s.startBlock(bResult)
  1942  		return s.variable(n, Types[TBOOL])
  1943  	case OCOMPLEX:
  1944  		r := s.expr(n.Left)
  1945  		i := s.expr(n.Right)
  1946  		return s.newValue2(ssa.OpComplexMake, n.Type, r, i)
  1947  
  1948  	// unary ops
  1949  	case OMINUS:
  1950  		a := s.expr(n.Left)
  1951  		if n.Type.IsComplex() {
  1952  			tp := floatForComplex(n.Type)
  1953  			negop := s.ssaOp(n.Op, tp)
  1954  			return s.newValue2(ssa.OpComplexMake, n.Type,
  1955  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)),
  1956  				s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a)))
  1957  		}
  1958  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  1959  	case ONOT, OCOM, OSQRT:
  1960  		a := s.expr(n.Left)
  1961  		return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a)
  1962  	case OIMAG, OREAL:
  1963  		a := s.expr(n.Left)
  1964  		return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a)
  1965  	case OPLUS:
  1966  		return s.expr(n.Left)
  1967  
  1968  	case OADDR:
  1969  		a, _ := s.addr(n.Left, n.Bounded)
  1970  		// Note we know the volatile result is false because you can't write &f() in Go.
  1971  		return a
  1972  
  1973  	case OINDREG:
  1974  		if int(n.Reg) != Thearch.REGSP {
  1975  			s.Unimplementedf("OINDREG of non-SP register %s in expr: %v", obj.Rconv(int(n.Reg)), n)
  1976  			return nil
  1977  		}
  1978  		addr := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(n.Type), n.Xoffset, s.sp)
  1979  		return s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  1980  
  1981  	case OIND:
  1982  		p := s.exprPtr(n.Left, false, n.Lineno)
  1983  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1984  
  1985  	case ODOT:
  1986  		t := n.Left.Type
  1987  		if canSSAType(t) {
  1988  			v := s.expr(n.Left)
  1989  			return s.newValue1I(ssa.OpStructSelect, n.Type, int64(fieldIdx(n)), v)
  1990  		}
  1991  		p, _ := s.addr(n, false)
  1992  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1993  
  1994  	case ODOTPTR:
  1995  		p := s.exprPtr(n.Left, false, n.Lineno)
  1996  		p = s.newValue1I(ssa.OpOffPtr, p.Type, n.Xoffset, p)
  1997  		return s.newValue2(ssa.OpLoad, n.Type, p, s.mem())
  1998  
  1999  	case OINDEX:
  2000  		switch {
  2001  		case n.Left.Type.IsString():
  2002  			a := s.expr(n.Left)
  2003  			i := s.expr(n.Right)
  2004  			i = s.extendIndex(i, Panicindex)
  2005  			if !n.Bounded {
  2006  				len := s.newValue1(ssa.OpStringLen, Types[TINT], a)
  2007  				s.boundsCheck(i, len)
  2008  			}
  2009  			ptrtyp := Ptrto(Types[TUINT8])
  2010  			ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a)
  2011  			if Isconst(n.Right, CTINT) {
  2012  				ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, n.Right.Int64(), ptr)
  2013  			} else {
  2014  				ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i)
  2015  			}
  2016  			return s.newValue2(ssa.OpLoad, Types[TUINT8], ptr, s.mem())
  2017  		case n.Left.Type.IsSlice():
  2018  			p, _ := s.addr(n, false)
  2019  			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
  2020  		case n.Left.Type.IsArray():
  2021  			// TODO: fix when we can SSA arrays of length 1.
  2022  			p, _ := s.addr(n, false)
  2023  			return s.newValue2(ssa.OpLoad, n.Left.Type.Elem(), p, s.mem())
  2024  		default:
  2025  			s.Fatalf("bad type for index %v", n.Left.Type)
  2026  			return nil
  2027  		}
  2028  
  2029  	case OLEN, OCAP:
  2030  		switch {
  2031  		case n.Left.Type.IsSlice():
  2032  			op := ssa.OpSliceLen
  2033  			if n.Op == OCAP {
  2034  				op = ssa.OpSliceCap
  2035  			}
  2036  			return s.newValue1(op, Types[TINT], s.expr(n.Left))
  2037  		case n.Left.Type.IsString(): // string; not reachable for OCAP
  2038  			return s.newValue1(ssa.OpStringLen, Types[TINT], s.expr(n.Left))
  2039  		case n.Left.Type.IsMap(), n.Left.Type.IsChan():
  2040  			return s.referenceTypeBuiltin(n, s.expr(n.Left))
  2041  		default: // array
  2042  			return s.constInt(Types[TINT], n.Left.Type.NumElem())
  2043  		}
  2044  
  2045  	case OSPTR:
  2046  		a := s.expr(n.Left)
  2047  		if n.Left.Type.IsSlice() {
  2048  			return s.newValue1(ssa.OpSlicePtr, n.Type, a)
  2049  		} else {
  2050  			return s.newValue1(ssa.OpStringPtr, n.Type, a)
  2051  		}
  2052  
  2053  	case OITAB:
  2054  		a := s.expr(n.Left)
  2055  		return s.newValue1(ssa.OpITab, n.Type, a)
  2056  
  2057  	case OIDATA:
  2058  		a := s.expr(n.Left)
  2059  		return s.newValue1(ssa.OpIData, n.Type, a)
  2060  
  2061  	case OEFACE:
  2062  		tab := s.expr(n.Left)
  2063  		data := s.expr(n.Right)
  2064  		// The frontend allows putting things like struct{*byte} in
  2065  		// the data portion of an eface. But we don't want struct{*byte}
  2066  		// as a register type because (among other reasons) the liveness
  2067  		// analysis is confused by the "fat" variables that result from
  2068  		// such types being spilled.
  2069  		// So here we ensure that we are selecting the underlying pointer
  2070  		// when we build an eface.
  2071  		// TODO: get rid of this now that structs can be SSA'd?
  2072  		for !data.Type.IsPtrShaped() {
  2073  			switch {
  2074  			case data.Type.IsArray():
  2075  				data = s.newValue1I(ssa.OpArrayIndex, data.Type.ElemType(), 0, data)
  2076  			case data.Type.IsStruct():
  2077  				for i := data.Type.NumFields() - 1; i >= 0; i-- {
  2078  					f := data.Type.FieldType(i)
  2079  					if f.Size() == 0 {
  2080  						// eface type could also be struct{p *byte; q [0]int}
  2081  						continue
  2082  					}
  2083  					data = s.newValue1I(ssa.OpStructSelect, f, int64(i), data)
  2084  					break
  2085  				}
  2086  			default:
  2087  				s.Fatalf("type being put into an eface isn't a pointer")
  2088  			}
  2089  		}
  2090  		return s.newValue2(ssa.OpIMake, n.Type, tab, data)
  2091  
  2092  	case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR:
  2093  		v := s.expr(n.Left)
  2094  		var i, j, k *ssa.Value
  2095  		low, high, max := n.SliceBounds()
  2096  		if low != nil {
  2097  			i = s.extendIndex(s.expr(low), panicslice)
  2098  		}
  2099  		if high != nil {
  2100  			j = s.extendIndex(s.expr(high), panicslice)
  2101  		}
  2102  		if max != nil {
  2103  			k = s.extendIndex(s.expr(max), panicslice)
  2104  		}
  2105  		p, l, c := s.slice(n.Left.Type, v, i, j, k)
  2106  		return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c)
  2107  
  2108  	case OSLICESTR:
  2109  		v := s.expr(n.Left)
  2110  		var i, j *ssa.Value
  2111  		low, high, _ := n.SliceBounds()
  2112  		if low != nil {
  2113  			i = s.extendIndex(s.expr(low), panicslice)
  2114  		}
  2115  		if high != nil {
  2116  			j = s.extendIndex(s.expr(high), panicslice)
  2117  		}
  2118  		p, l, _ := s.slice(n.Left.Type, v, i, j, nil)
  2119  		return s.newValue2(ssa.OpStringMake, n.Type, p, l)
  2120  
  2121  	case OCALLFUNC:
  2122  		if isIntrinsicCall(n) {
  2123  			return s.intrinsicCall(n)
  2124  		}
  2125  		fallthrough
  2126  
  2127  	case OCALLINTER, OCALLMETH:
  2128  		a := s.call(n, callNormal)
  2129  		return s.newValue2(ssa.OpLoad, n.Type, a, s.mem())
  2130  
  2131  	case OGETG:
  2132  		return s.newValue1(ssa.OpGetG, n.Type, s.mem())
  2133  
  2134  	case OAPPEND:
  2135  		return s.append(n, false)
  2136  
  2137  	default:
  2138  		s.Unimplementedf("unhandled expr %s", n.Op)
  2139  		return nil
  2140  	}
  2141  }
  2142  
  2143  // append converts an OAPPEND node to SSA.
  2144  // If inplace is false, it converts the OAPPEND expression n to an ssa.Value,
  2145  // adds it to s, and returns the Value.
  2146  // If inplace is true, it writes the result of the OAPPEND expression n
  2147  // back to the slice being appended to, and returns nil.
  2148  // inplace MUST be set to false if the slice can be SSA'd.
  2149  func (s *state) append(n *Node, inplace bool) *ssa.Value {
  2150  	// If inplace is false, process as expression "append(s, e1, e2, e3)":
  2151  	//
  2152  	// ptr, len, cap := s
  2153  	// newlen := len + 3
  2154  	// if newlen > cap {
  2155  	//     ptr, len, cap = growslice(s, newlen)
  2156  	//     newlen = len + 3 // recalculate to avoid a spill
  2157  	// }
  2158  	// // with write barriers, if needed:
  2159  	// *(ptr+len) = e1
  2160  	// *(ptr+len+1) = e2
  2161  	// *(ptr+len+2) = e3
  2162  	// return makeslice(ptr, newlen, cap)
  2163  	//
  2164  	//
  2165  	// If inplace is true, process as statement "s = append(s, e1, e2, e3)":
  2166  	//
  2167  	// a := &s
  2168  	// ptr, len, cap := s
  2169  	// newlen := len + 3
  2170  	// if newlen > cap {
  2171  	//    newptr, len, newcap = growslice(ptr, len, cap, newlen)
  2172  	//    vardef(a)       // if necessary, advise liveness we are writing a new a
  2173  	//    *a.cap = newcap // write before ptr to avoid a spill
  2174  	//    *a.ptr = newptr // with write barrier
  2175  	// }
  2176  	// newlen = len + 3 // recalculate to avoid a spill
  2177  	// *a.len = newlen
  2178  	// // with write barriers, if needed:
  2179  	// *(ptr+len) = e1
  2180  	// *(ptr+len+1) = e2
  2181  	// *(ptr+len+2) = e3
  2182  
  2183  	et := n.Type.Elem()
  2184  	pt := Ptrto(et)
  2185  
  2186  	// Evaluate slice
  2187  	sn := n.List.First() // the slice node is the first in the list
  2188  
  2189  	var slice, addr *ssa.Value
  2190  	if inplace {
  2191  		addr, _ = s.addr(sn, false)
  2192  		slice = s.newValue2(ssa.OpLoad, n.Type, addr, s.mem())
  2193  	} else {
  2194  		slice = s.expr(sn)
  2195  	}
  2196  
  2197  	// Allocate new blocks
  2198  	grow := s.f.NewBlock(ssa.BlockPlain)
  2199  	assign := s.f.NewBlock(ssa.BlockPlain)
  2200  
  2201  	// Decide if we need to grow
  2202  	nargs := int64(n.List.Len() - 1)
  2203  	p := s.newValue1(ssa.OpSlicePtr, pt, slice)
  2204  	l := s.newValue1(ssa.OpSliceLen, Types[TINT], slice)
  2205  	c := s.newValue1(ssa.OpSliceCap, Types[TINT], slice)
  2206  	nl := s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], l, s.constInt(Types[TINT], nargs))
  2207  
  2208  	cmp := s.newValue2(s.ssaOp(OGT, Types[TINT]), Types[TBOOL], nl, c)
  2209  	s.vars[&ptrVar] = p
  2210  
  2211  	if !inplace {
  2212  		s.vars[&newlenVar] = nl
  2213  		s.vars[&capVar] = c
  2214  	} else {
  2215  		s.vars[&lenVar] = l
  2216  	}
  2217  
  2218  	b := s.endBlock()
  2219  	b.Kind = ssa.BlockIf
  2220  	b.Likely = ssa.BranchUnlikely
  2221  	b.SetControl(cmp)
  2222  	b.AddEdgeTo(grow)
  2223  	b.AddEdgeTo(assign)
  2224  
  2225  	// Call growslice
  2226  	s.startBlock(grow)
  2227  	taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(n.Type.Elem())}, s.sb)
  2228  
  2229  	r := s.rtcall(growslice, true, []*Type{pt, Types[TINT], Types[TINT]}, taddr, p, l, c, nl)
  2230  
  2231  	if inplace {
  2232  		if sn.Op == ONAME {
  2233  			// Tell liveness we're about to build a new slice
  2234  			s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, sn, s.mem())
  2235  		}
  2236  		capaddr := s.newValue1I(ssa.OpOffPtr, pt, int64(Array_cap), addr)
  2237  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, capaddr, r[2], s.mem())
  2238  		s.insertWBstore(pt, addr, r[0], n.Lineno, 0)
  2239  		// load the value we just stored to avoid having to spill it
  2240  		s.vars[&ptrVar] = s.newValue2(ssa.OpLoad, pt, addr, s.mem())
  2241  		s.vars[&lenVar] = r[1] // avoid a spill in the fast path
  2242  	} else {
  2243  		s.vars[&ptrVar] = r[0]
  2244  		s.vars[&newlenVar] = s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], r[1], s.constInt(Types[TINT], nargs))
  2245  		s.vars[&capVar] = r[2]
  2246  	}
  2247  
  2248  	b = s.endBlock()
  2249  	b.AddEdgeTo(assign)
  2250  
  2251  	// assign new elements to slots
  2252  	s.startBlock(assign)
  2253  
  2254  	if inplace {
  2255  		l = s.variable(&lenVar, Types[TINT]) // generates phi for len
  2256  		nl = s.newValue2(s.ssaOp(OADD, Types[TINT]), Types[TINT], l, s.constInt(Types[TINT], nargs))
  2257  		lenaddr := s.newValue1I(ssa.OpOffPtr, pt, int64(Array_nel), addr)
  2258  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenaddr, nl, s.mem())
  2259  	}
  2260  
  2261  	// Evaluate args
  2262  	type argRec struct {
  2263  		// if store is true, we're appending the value v.  If false, we're appending the
  2264  		// value at *v.  If store==false, isVolatile reports whether the source
  2265  		// is in the outargs section of the stack frame.
  2266  		v          *ssa.Value
  2267  		store      bool
  2268  		isVolatile bool
  2269  	}
  2270  	args := make([]argRec, 0, nargs)
  2271  	for _, n := range n.List.Slice()[1:] {
  2272  		if canSSAType(n.Type) {
  2273  			args = append(args, argRec{v: s.expr(n), store: true})
  2274  		} else {
  2275  			v, isVolatile := s.addr(n, false)
  2276  			args = append(args, argRec{v: v, isVolatile: isVolatile})
  2277  		}
  2278  	}
  2279  
  2280  	p = s.variable(&ptrVar, pt) // generates phi for ptr
  2281  	if !inplace {
  2282  		nl = s.variable(&newlenVar, Types[TINT]) // generates phi for nl
  2283  		c = s.variable(&capVar, Types[TINT])     // generates phi for cap
  2284  	}
  2285  	p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l)
  2286  	// TODO: just one write barrier call for all of these writes?
  2287  	// TODO: maybe just one writeBarrier.enabled check?
  2288  	for i, arg := range args {
  2289  		addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(Types[TINT], int64(i)))
  2290  		if arg.store {
  2291  			if haspointers(et) {
  2292  				s.insertWBstore(et, addr, arg.v, n.Lineno, 0)
  2293  			} else {
  2294  				s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, et.Size(), addr, arg.v, s.mem())
  2295  			}
  2296  		} else {
  2297  			if haspointers(et) {
  2298  				s.insertWBmove(et, addr, arg.v, n.Lineno, arg.isVolatile)
  2299  			} else {
  2300  				s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, SizeAlignAuxInt(et), addr, arg.v, s.mem())
  2301  			}
  2302  		}
  2303  	}
  2304  
  2305  	delete(s.vars, &ptrVar)
  2306  	if inplace {
  2307  		delete(s.vars, &lenVar)
  2308  		return nil
  2309  	}
  2310  	delete(s.vars, &newlenVar)
  2311  	delete(s.vars, &capVar)
  2312  	// make result
  2313  	return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c)
  2314  }
  2315  
  2316  // condBranch evaluates the boolean expression cond and branches to yes
  2317  // if cond is true and no if cond is false.
  2318  // This function is intended to handle && and || better than just calling
  2319  // s.expr(cond) and branching on the result.
  2320  func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) {
  2321  	if cond.Op == OANDAND {
  2322  		mid := s.f.NewBlock(ssa.BlockPlain)
  2323  		s.stmtList(cond.Ninit)
  2324  		s.condBranch(cond.Left, mid, no, max8(likely, 0))
  2325  		s.startBlock(mid)
  2326  		s.condBranch(cond.Right, yes, no, likely)
  2327  		return
  2328  		// Note: if likely==1, then both recursive calls pass 1.
  2329  		// If likely==-1, then we don't have enough information to decide
  2330  		// whether the first branch is likely or not. So we pass 0 for
  2331  		// the likeliness of the first branch.
  2332  		// TODO: have the frontend give us branch prediction hints for
  2333  		// OANDAND and OOROR nodes (if it ever has such info).
  2334  	}
  2335  	if cond.Op == OOROR {
  2336  		mid := s.f.NewBlock(ssa.BlockPlain)
  2337  		s.stmtList(cond.Ninit)
  2338  		s.condBranch(cond.Left, yes, mid, min8(likely, 0))
  2339  		s.startBlock(mid)
  2340  		s.condBranch(cond.Right, yes, no, likely)
  2341  		return
  2342  		// Note: if likely==-1, then both recursive calls pass -1.
  2343  		// If likely==1, then we don't have enough info to decide
  2344  		// the likelihood of the first branch.
  2345  	}
  2346  	if cond.Op == ONOT {
  2347  		s.stmtList(cond.Ninit)
  2348  		s.condBranch(cond.Left, no, yes, -likely)
  2349  		return
  2350  	}
  2351  	c := s.expr(cond)
  2352  	b := s.endBlock()
  2353  	b.Kind = ssa.BlockIf
  2354  	b.SetControl(c)
  2355  	b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness
  2356  	b.AddEdgeTo(yes)
  2357  	b.AddEdgeTo(no)
  2358  }
  2359  
  2360  type skipMask uint8
  2361  
  2362  const (
  2363  	skipPtr skipMask = 1 << iota
  2364  	skipLen
  2365  	skipCap
  2366  )
  2367  
  2368  // assign does left = right.
  2369  // Right has already been evaluated to ssa, left has not.
  2370  // If deref is true, then we do left = *right instead (and right has already been nil-checked).
  2371  // If deref is true and right == nil, just do left = 0.
  2372  // If deref is true, rightIsVolatile reports whether right points to volatile (clobbered by a call) storage.
  2373  // Include a write barrier if wb is true.
  2374  // skip indicates assignments (at the top level) that can be avoided.
  2375  func (s *state) assign(left *Node, right *ssa.Value, wb, deref bool, line int32, skip skipMask, rightIsVolatile bool) {
  2376  	if left.Op == ONAME && isblank(left) {
  2377  		return
  2378  	}
  2379  	t := left.Type
  2380  	dowidth(t)
  2381  	if s.canSSA(left) {
  2382  		if deref {
  2383  			s.Fatalf("can SSA LHS %s but not RHS %s", left, right)
  2384  		}
  2385  		if left.Op == ODOT {
  2386  			// We're assigning to a field of an ssa-able value.
  2387  			// We need to build a new structure with the new value for the
  2388  			// field we're assigning and the old values for the other fields.
  2389  			// For instance:
  2390  			//   type T struct {a, b, c int}
  2391  			//   var T x
  2392  			//   x.b = 5
  2393  			// For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c}
  2394  
  2395  			// Grab information about the structure type.
  2396  			t := left.Left.Type
  2397  			nf := t.NumFields()
  2398  			idx := fieldIdx(left)
  2399  
  2400  			// Grab old value of structure.
  2401  			old := s.expr(left.Left)
  2402  
  2403  			// Make new structure.
  2404  			new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t)
  2405  
  2406  			// Add fields as args.
  2407  			for i := 0; i < nf; i++ {
  2408  				if i == idx {
  2409  					new.AddArg(right)
  2410  				} else {
  2411  					new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old))
  2412  				}
  2413  			}
  2414  
  2415  			// Recursively assign the new value we've made to the base of the dot op.
  2416  			s.assign(left.Left, new, false, false, line, 0, rightIsVolatile)
  2417  			// TODO: do we need to update named values here?
  2418  			return
  2419  		}
  2420  		// Update variable assignment.
  2421  		s.vars[left] = right
  2422  		s.addNamedValue(left, right)
  2423  		return
  2424  	}
  2425  	// Left is not ssa-able. Compute its address.
  2426  	addr, _ := s.addr(left, false)
  2427  	if left.Op == ONAME && skip == 0 {
  2428  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, left, s.mem())
  2429  	}
  2430  	if deref {
  2431  		// Treat as a mem->mem move.
  2432  		if right == nil {
  2433  			s.vars[&memVar] = s.newValue2I(ssa.OpZero, ssa.TypeMem, SizeAlignAuxInt(t), addr, s.mem())
  2434  			return
  2435  		}
  2436  		if wb {
  2437  			s.insertWBmove(t, addr, right, line, rightIsVolatile)
  2438  			return
  2439  		}
  2440  		s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, SizeAlignAuxInt(t), addr, right, s.mem())
  2441  		return
  2442  	}
  2443  	// Treat as a store.
  2444  	if wb {
  2445  		if skip&skipPtr != 0 {
  2446  			// Special case: if we don't write back the pointers, don't bother
  2447  			// doing the write barrier check.
  2448  			s.storeTypeScalars(t, addr, right, skip)
  2449  			return
  2450  		}
  2451  		s.insertWBstore(t, addr, right, line, skip)
  2452  		return
  2453  	}
  2454  	if skip != 0 {
  2455  		if skip&skipPtr == 0 {
  2456  			s.storeTypePtrs(t, addr, right)
  2457  		}
  2458  		s.storeTypeScalars(t, addr, right, skip)
  2459  		return
  2460  	}
  2461  	s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), addr, right, s.mem())
  2462  }
  2463  
  2464  // zeroVal returns the zero value for type t.
  2465  func (s *state) zeroVal(t *Type) *ssa.Value {
  2466  	switch {
  2467  	case t.IsInteger():
  2468  		switch t.Size() {
  2469  		case 1:
  2470  			return s.constInt8(t, 0)
  2471  		case 2:
  2472  			return s.constInt16(t, 0)
  2473  		case 4:
  2474  			return s.constInt32(t, 0)
  2475  		case 8:
  2476  			return s.constInt64(t, 0)
  2477  		default:
  2478  			s.Fatalf("bad sized integer type %s", t)
  2479  		}
  2480  	case t.IsFloat():
  2481  		switch t.Size() {
  2482  		case 4:
  2483  			return s.constFloat32(t, 0)
  2484  		case 8:
  2485  			return s.constFloat64(t, 0)
  2486  		default:
  2487  			s.Fatalf("bad sized float type %s", t)
  2488  		}
  2489  	case t.IsComplex():
  2490  		switch t.Size() {
  2491  		case 8:
  2492  			z := s.constFloat32(Types[TFLOAT32], 0)
  2493  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2494  		case 16:
  2495  			z := s.constFloat64(Types[TFLOAT64], 0)
  2496  			return s.entryNewValue2(ssa.OpComplexMake, t, z, z)
  2497  		default:
  2498  			s.Fatalf("bad sized complex type %s", t)
  2499  		}
  2500  
  2501  	case t.IsString():
  2502  		return s.constEmptyString(t)
  2503  	case t.IsPtrShaped():
  2504  		return s.constNil(t)
  2505  	case t.IsBoolean():
  2506  		return s.constBool(false)
  2507  	case t.IsInterface():
  2508  		return s.constInterface(t)
  2509  	case t.IsSlice():
  2510  		return s.constSlice(t)
  2511  	case t.IsStruct():
  2512  		n := t.NumFields()
  2513  		v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t)
  2514  		for i := 0; i < n; i++ {
  2515  			v.AddArg(s.zeroVal(t.FieldType(i).(*Type)))
  2516  		}
  2517  		return v
  2518  	}
  2519  	s.Unimplementedf("zero for type %v not implemented", t)
  2520  	return nil
  2521  }
  2522  
  2523  type callKind int8
  2524  
  2525  const (
  2526  	callNormal callKind = iota
  2527  	callDefer
  2528  	callGo
  2529  )
  2530  
  2531  // isSSAIntrinsic returns true if n is a call to a recognized intrinsic
  2532  // that can be handled by the SSA backend.
  2533  // SSA uses this, but so does the front end to see if should not
  2534  // inline a function because it is a candidate for intrinsic
  2535  // substitution.
  2536  func isSSAIntrinsic(s *Sym) bool {
  2537  	// The test below is not quite accurate -- in the event that
  2538  	// a function is disabled on a per-function basis, for example
  2539  	// because of hash-keyed binary failure search, SSA might be
  2540  	// disabled for that function but it would not be noted here,
  2541  	// and thus an inlining would not occur (in practice, inlining
  2542  	// so far has only been noticed for Bswap32 and the 16-bit count
  2543  	// leading/trailing instructions, but heuristics might change
  2544  	// in the future or on different architectures).
  2545  	if !ssaEnabled || ssa.IntrinsicsDisable || Thearch.LinkArch.Family != sys.AMD64 {
  2546  		return false
  2547  	}
  2548  	if s != nil && s.Pkg != nil && s.Pkg.Path == "runtime/internal/sys" {
  2549  		switch s.Name {
  2550  		case
  2551  			"Ctz64", "Ctz32",
  2552  			"Bswap64", "Bswap32":
  2553  			return true
  2554  		}
  2555  	}
  2556  	if s != nil && s.Pkg != nil && s.Pkg.Path == "runtime/internal/atomic" {
  2557  		switch s.Name {
  2558  		case "Load", "Load64", "Loadint64", "Loadp", "Loaduint", "Loaduintptr":
  2559  			return true
  2560  		case "Store", "Store64", "StorepNoWB", "Storeuintptr":
  2561  			return true
  2562  		case "Xchg", "Xchg64", "Xchguintptr":
  2563  			return true
  2564  		case "Xadd", "Xadd64", "Xaddint64", "Xadduintptr":
  2565  			return true
  2566  		case "Cas", "Cas64", "Casp1", "Casuintptr":
  2567  			return true
  2568  		case "And8", "Or8":
  2569  			return true
  2570  		}
  2571  	}
  2572  	return false
  2573  }
  2574  
  2575  func isIntrinsicCall(n *Node) bool {
  2576  	if n == nil || n.Left == nil {
  2577  		return false
  2578  	}
  2579  	return isSSAIntrinsic(n.Left.Sym)
  2580  }
  2581  
  2582  // intrinsicArg extracts the ith arg from n.List and returns its value.
  2583  func (s *state) intrinsicArg(n *Node, i int) *ssa.Value {
  2584  	x := n.List.Slice()[i]
  2585  	if x.Op == OAS {
  2586  		x = x.Right
  2587  	}
  2588  	return s.expr(x)
  2589  }
  2590  func (s *state) intrinsicFirstArg(n *Node) *ssa.Value {
  2591  	return s.intrinsicArg(n, 0)
  2592  }
  2593  
  2594  // intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation.
  2595  func (s *state) intrinsicCall(n *Node) (ret *ssa.Value) {
  2596  	var result *ssa.Value
  2597  	name := n.Left.Sym.Name
  2598  	switch {
  2599  	case name == "Ctz64":
  2600  		result = s.newValue1(ssa.OpCtz64, Types[TUINT64], s.intrinsicFirstArg(n))
  2601  		ret = result
  2602  	case name == "Ctz32":
  2603  		result = s.newValue1(ssa.OpCtz32, Types[TUINT32], s.intrinsicFirstArg(n))
  2604  		ret = result
  2605  	case name == "Bswap64":
  2606  		result = s.newValue1(ssa.OpBswap64, Types[TUINT64], s.intrinsicFirstArg(n))
  2607  		ret = result
  2608  	case name == "Bswap32":
  2609  		result = s.newValue1(ssa.OpBswap32, Types[TUINT32], s.intrinsicFirstArg(n))
  2610  		ret = result
  2611  	case name == "Load" || name == "Loaduint" && s.config.IntSize == 4 || name == "Loaduintptr" && s.config.PtrSize == 4:
  2612  		result = s.newValue2(ssa.OpAtomicLoad32, ssa.MakeTuple(Types[TUINT32], ssa.TypeMem), s.intrinsicArg(n, 0), s.mem())
  2613  		s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, result)
  2614  		ret = s.newValue1(ssa.OpSelect0, Types[TUINT32], result)
  2615  	case name == "Load64" || name == "Loadint64" || name == "Loaduint" && s.config.IntSize == 8 || name == "Loaduintptr" && s.config.PtrSize == 8:
  2616  		result = s.newValue2(ssa.OpAtomicLoad64, ssa.MakeTuple(Types[TUINT64], ssa.TypeMem), s.intrinsicArg(n, 0), s.mem())
  2617  		s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, result)
  2618  		ret = s.newValue1(ssa.OpSelect0, Types[TUINT64], result)
  2619  	case name == "Loadp":
  2620  		result = s.newValue2(ssa.OpAtomicLoadPtr, ssa.MakeTuple(Ptrto(Types[TUINT8]), ssa.TypeMem), s.intrinsicArg(n, 0), s.mem())
  2621  		s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, result)
  2622  		ret = s.newValue1(ssa.OpSelect0, Ptrto(Types[TUINT8]), result)
  2623  	case name == "Store" || name == "Storeuintptr" && s.config.PtrSize == 4:
  2624  		result = s.newValue3(ssa.OpAtomicStore32, ssa.TypeMem, s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem())
  2625  		s.vars[&memVar] = result
  2626  	case name == "Store64" || name == "Storeuintptr" && s.config.PtrSize == 8:
  2627  		result = s.newValue3(ssa.OpAtomicStore64, ssa.TypeMem, s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem())
  2628  		s.vars[&memVar] = result
  2629  	case name == "StorepNoWB":
  2630  		result = s.newValue3(ssa.OpAtomicStorePtrNoWB, ssa.TypeMem, s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem())
  2631  		s.vars[&memVar] = result
  2632  	case name == "Xchg" || name == "Xchguintptr" && s.config.PtrSize == 4:
  2633  		result = s.newValue3(ssa.OpAtomicExchange32, ssa.MakeTuple(Types[TUINT32], ssa.TypeMem), s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem())
  2634  		s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, result)
  2635  		ret = s.newValue1(ssa.OpSelect0, Types[TUINT32], result)
  2636  	case name == "Xchg64" || name == "Xchguintptr" && s.config.PtrSize == 8:
  2637  		result = s.newValue3(ssa.OpAtomicExchange64, ssa.MakeTuple(Types[TUINT64], ssa.TypeMem), s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem())
  2638  		s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, result)
  2639  		ret = s.newValue1(ssa.OpSelect0, Types[TUINT64], result)
  2640  	case name == "Xadd" || name == "Xadduintptr" && s.config.PtrSize == 4:
  2641  		result = s.newValue3(ssa.OpAtomicAdd32, ssa.MakeTuple(Types[TUINT32], ssa.TypeMem), s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem())
  2642  		s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, result)
  2643  		ret = s.newValue1(ssa.OpSelect0, Types[TUINT32], result)
  2644  	case name == "Xadd64" || name == "Xaddint64" || name == "Xadduintptr" && s.config.PtrSize == 8:
  2645  		result = s.newValue3(ssa.OpAtomicAdd64, ssa.MakeTuple(Types[TUINT64], ssa.TypeMem), s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem())
  2646  		s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, result)
  2647  		ret = s.newValue1(ssa.OpSelect0, Types[TUINT64], result)
  2648  	case name == "Cas" || (name == "Casp1" || name == "Casuintptr") && s.config.PtrSize == 4:
  2649  		result = s.newValue4(ssa.OpAtomicCompareAndSwap32, ssa.MakeTuple(Types[TBOOL], ssa.TypeMem), s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.intrinsicArg(n, 2), s.mem())
  2650  		s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, result)
  2651  		ret = s.newValue1(ssa.OpSelect0, Types[TBOOL], result)
  2652  	case name == "Cas64" || (name == "Casp1" || name == "Casuintptr") && s.config.PtrSize == 8:
  2653  		result = s.newValue4(ssa.OpAtomicCompareAndSwap64, ssa.MakeTuple(Types[TBOOL], ssa.TypeMem), s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.intrinsicArg(n, 2), s.mem())
  2654  		s.vars[&memVar] = s.newValue1(ssa.OpSelect1, ssa.TypeMem, result)
  2655  		ret = s.newValue1(ssa.OpSelect0, Types[TBOOL], result)
  2656  	case name == "And8":
  2657  		result = s.newValue3(ssa.OpAtomicAnd8, ssa.TypeMem, s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem())
  2658  		s.vars[&memVar] = result
  2659  	case name == "Or8":
  2660  		result = s.newValue3(ssa.OpAtomicOr8, ssa.TypeMem, s.intrinsicArg(n, 0), s.intrinsicArg(n, 1), s.mem())
  2661  		s.vars[&memVar] = result
  2662  	}
  2663  	if result == nil {
  2664  		Fatalf("Unknown special call: %v", n.Left.Sym)
  2665  	}
  2666  	if ssa.IntrinsicsDebug > 0 {
  2667  		Warnl(n.Lineno, "intrinsic substitution for %v with %s", n.Left.Sym.Name, result.LongString())
  2668  	}
  2669  	return
  2670  }
  2671  
  2672  // Calls the function n using the specified call type.
  2673  // Returns the address of the return value (or nil if none).
  2674  func (s *state) call(n *Node, k callKind) *ssa.Value {
  2675  	var sym *Sym           // target symbol (if static)
  2676  	var closure *ssa.Value // ptr to closure to run (if dynamic)
  2677  	var codeptr *ssa.Value // ptr to target code (if dynamic)
  2678  	var rcvr *ssa.Value    // receiver to set
  2679  	fn := n.Left
  2680  	switch n.Op {
  2681  	case OCALLFUNC:
  2682  		if k == callNormal && fn.Op == ONAME && fn.Class == PFUNC {
  2683  			sym = fn.Sym
  2684  			break
  2685  		}
  2686  		closure = s.expr(fn)
  2687  	case OCALLMETH:
  2688  		if fn.Op != ODOTMETH {
  2689  			Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn)
  2690  		}
  2691  		if k == callNormal {
  2692  			sym = fn.Sym
  2693  			break
  2694  		}
  2695  		n2 := newname(fn.Sym)
  2696  		n2.Class = PFUNC
  2697  		n2.Lineno = fn.Lineno
  2698  		closure = s.expr(n2)
  2699  		// Note: receiver is already assigned in n.List, so we don't
  2700  		// want to set it here.
  2701  	case OCALLINTER:
  2702  		if fn.Op != ODOTINTER {
  2703  			Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op)
  2704  		}
  2705  		i := s.expr(fn.Left)
  2706  		itab := s.newValue1(ssa.OpITab, Types[TUINTPTR], i)
  2707  		if k != callNormal {
  2708  			s.nilCheck(itab)
  2709  		}
  2710  		itabidx := fn.Xoffset + 3*int64(Widthptr) + 8 // offset of fun field in runtime.itab
  2711  		itab = s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TUINTPTR]), itabidx, itab)
  2712  		if k == callNormal {
  2713  			codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], itab, s.mem())
  2714  		} else {
  2715  			closure = itab
  2716  		}
  2717  		rcvr = s.newValue1(ssa.OpIData, Types[TUINTPTR], i)
  2718  	}
  2719  	dowidth(fn.Type)
  2720  	stksize := fn.Type.ArgWidth() // includes receiver
  2721  
  2722  	// Run all argument assignments. The arg slots have already
  2723  	// been offset by the appropriate amount (+2*widthptr for go/defer,
  2724  	// +widthptr for interface calls).
  2725  	// For OCALLMETH, the receiver is set in these statements.
  2726  	s.stmtList(n.List)
  2727  
  2728  	// Set receiver (for interface calls)
  2729  	if rcvr != nil {
  2730  		argStart := Ctxt.FixedFrameSize()
  2731  		if k != callNormal {
  2732  			argStart += int64(2 * Widthptr)
  2733  		}
  2734  		addr := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(Types[TUINTPTR]), argStart, s.sp)
  2735  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, rcvr, s.mem())
  2736  	}
  2737  
  2738  	// Defer/go args
  2739  	if k != callNormal {
  2740  		// Write argsize and closure (args to Newproc/Deferproc).
  2741  		argStart := Ctxt.FixedFrameSize()
  2742  		argsize := s.constInt32(Types[TUINT32], int32(stksize))
  2743  		addr := s.entryNewValue1I(ssa.OpOffPtr, Ptrto(Types[TUINT32]), argStart, s.sp)
  2744  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, 4, addr, argsize, s.mem())
  2745  		addr = s.entryNewValue1I(ssa.OpOffPtr, Ptrto(Types[TUINTPTR]), argStart+int64(Widthptr), s.sp)
  2746  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, int64(Widthptr), addr, closure, s.mem())
  2747  		stksize += 2 * int64(Widthptr)
  2748  	}
  2749  
  2750  	// call target
  2751  	bNext := s.f.NewBlock(ssa.BlockPlain)
  2752  	var call *ssa.Value
  2753  	switch {
  2754  	case k == callDefer:
  2755  		call = s.newValue1(ssa.OpDeferCall, ssa.TypeMem, s.mem())
  2756  	case k == callGo:
  2757  		call = s.newValue1(ssa.OpGoCall, ssa.TypeMem, s.mem())
  2758  	case closure != nil:
  2759  		codeptr = s.newValue2(ssa.OpLoad, Types[TUINTPTR], closure, s.mem())
  2760  		call = s.newValue3(ssa.OpClosureCall, ssa.TypeMem, codeptr, closure, s.mem())
  2761  	case codeptr != nil:
  2762  		call = s.newValue2(ssa.OpInterCall, ssa.TypeMem, codeptr, s.mem())
  2763  	case sym != nil:
  2764  		call = s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, sym, s.mem())
  2765  	default:
  2766  		Fatalf("bad call type %s %v", n.Op, n)
  2767  	}
  2768  	call.AuxInt = stksize // Call operations carry the argsize of the callee along with them
  2769  
  2770  	// Finish call block
  2771  	s.vars[&memVar] = call
  2772  	b := s.endBlock()
  2773  	b.Kind = ssa.BlockCall
  2774  	b.SetControl(call)
  2775  	b.AddEdgeTo(bNext)
  2776  	if k == callDefer {
  2777  		// Add recover edge to exit code.
  2778  		b.Kind = ssa.BlockDefer
  2779  		r := s.f.NewBlock(ssa.BlockPlain)
  2780  		s.startBlock(r)
  2781  		s.exit()
  2782  		b.AddEdgeTo(r)
  2783  		b.Likely = ssa.BranchLikely
  2784  	}
  2785  
  2786  	// Start exit block, find address of result.
  2787  	s.startBlock(bNext)
  2788  	// Keep input pointer args live across calls.  This is a bandaid until 1.8.
  2789  	for _, n := range s.ptrargs {
  2790  		s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, ssa.TypeMem, s.variable(n, n.Type), s.mem())
  2791  	}
  2792  	res := n.Left.Type.Results()
  2793  	if res.NumFields() == 0 || k != callNormal {
  2794  		// call has no return value. Continue with the next statement.
  2795  		return nil
  2796  	}
  2797  	fp := res.Field(0)
  2798  	return s.entryNewValue1I(ssa.OpOffPtr, Ptrto(fp.Type), fp.Offset+Ctxt.FixedFrameSize(), s.sp)
  2799  }
  2800  
  2801  // etypesign returns the signed-ness of e, for integer/pointer etypes.
  2802  // -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer.
  2803  func etypesign(e EType) int8 {
  2804  	switch e {
  2805  	case TINT8, TINT16, TINT32, TINT64, TINT:
  2806  		return -1
  2807  	case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR:
  2808  		return +1
  2809  	}
  2810  	return 0
  2811  }
  2812  
  2813  // lookupSymbol is used to retrieve the symbol (Extern, Arg or Auto) used for a particular node.
  2814  // This improves the effectiveness of cse by using the same Aux values for the
  2815  // same symbols.
  2816  func (s *state) lookupSymbol(n *Node, sym interface{}) interface{} {
  2817  	switch sym.(type) {
  2818  	default:
  2819  		s.Fatalf("sym %v is of uknown type %T", sym, sym)
  2820  	case *ssa.ExternSymbol, *ssa.ArgSymbol, *ssa.AutoSymbol:
  2821  		// these are the only valid types
  2822  	}
  2823  
  2824  	if lsym, ok := s.varsyms[n]; ok {
  2825  		return lsym
  2826  	} else {
  2827  		s.varsyms[n] = sym
  2828  		return sym
  2829  	}
  2830  }
  2831  
  2832  // addr converts the address of the expression n to SSA, adds it to s and returns the SSA result.
  2833  // Also returns a bool reporting whether the returned value is "volatile", that is it
  2834  // points to the outargs section and thus the referent will be clobbered by any call.
  2835  // The value that the returned Value represents is guaranteed to be non-nil.
  2836  // If bounded is true then this address does not require a nil check for its operand
  2837  // even if that would otherwise be implied.
  2838  func (s *state) addr(n *Node, bounded bool) (*ssa.Value, bool) {
  2839  	t := Ptrto(n.Type)
  2840  	switch n.Op {
  2841  	case ONAME:
  2842  		switch n.Class {
  2843  		case PEXTERN:
  2844  			// global variable
  2845  			aux := s.lookupSymbol(n, &ssa.ExternSymbol{Typ: n.Type, Sym: n.Sym})
  2846  			v := s.entryNewValue1A(ssa.OpAddr, t, aux, s.sb)
  2847  			// TODO: Make OpAddr use AuxInt as well as Aux.
  2848  			if n.Xoffset != 0 {
  2849  				v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v)
  2850  			}
  2851  			return v, false
  2852  		case PPARAM:
  2853  			// parameter slot
  2854  			v := s.decladdrs[n]
  2855  			if v != nil {
  2856  				return v, false
  2857  			}
  2858  			if n.String() == ".fp" {
  2859  				// Special arg that points to the frame pointer.
  2860  				// (Used by the race detector, others?)
  2861  				aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
  2862  				return s.entryNewValue1A(ssa.OpAddr, t, aux, s.sp), false
  2863  			}
  2864  			s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs)
  2865  			return nil, false
  2866  		case PAUTO:
  2867  			aux := s.lookupSymbol(n, &ssa.AutoSymbol{Typ: n.Type, Node: n})
  2868  			return s.newValue1A(ssa.OpAddr, t, aux, s.sp), false
  2869  		case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early.
  2870  			// ensure that we reuse symbols for out parameters so
  2871  			// that cse works on their addresses
  2872  			aux := s.lookupSymbol(n, &ssa.ArgSymbol{Typ: n.Type, Node: n})
  2873  			return s.newValue1A(ssa.OpAddr, t, aux, s.sp), false
  2874  		default:
  2875  			s.Unimplementedf("variable address class %v not implemented", classnames[n.Class])
  2876  			return nil, false
  2877  		}
  2878  	case OINDREG:
  2879  		// indirect off a register
  2880  		// used for storing/loading arguments/returns to/from callees
  2881  		if int(n.Reg) != Thearch.REGSP {
  2882  			s.Unimplementedf("OINDREG of non-SP register %s in addr: %v", obj.Rconv(int(n.Reg)), n)
  2883  			return nil, false
  2884  		}
  2885  		return s.entryNewValue1I(ssa.OpOffPtr, t, n.Xoffset, s.sp), true
  2886  	case OINDEX:
  2887  		if n.Left.Type.IsSlice() {
  2888  			a := s.expr(n.Left)
  2889  			i := s.expr(n.Right)
  2890  			i = s.extendIndex(i, Panicindex)
  2891  			len := s.newValue1(ssa.OpSliceLen, Types[TINT], a)
  2892  			if !n.Bounded {
  2893  				s.boundsCheck(i, len)
  2894  			}
  2895  			p := s.newValue1(ssa.OpSlicePtr, t, a)
  2896  			return s.newValue2(ssa.OpPtrIndex, t, p, i), false
  2897  		} else { // array
  2898  			a, isVolatile := s.addr(n.Left, bounded)
  2899  			i := s.expr(n.Right)
  2900  			i = s.extendIndex(i, Panicindex)
  2901  			len := s.constInt(Types[TINT], n.Left.Type.NumElem())
  2902  			if !n.Bounded {
  2903  				s.boundsCheck(i, len)
  2904  			}
  2905  			return s.newValue2(ssa.OpPtrIndex, Ptrto(n.Left.Type.Elem()), a, i), isVolatile
  2906  		}
  2907  	case OIND:
  2908  		return s.exprPtr(n.Left, bounded, n.Lineno), false
  2909  	case ODOT:
  2910  		p, isVolatile := s.addr(n.Left, bounded)
  2911  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p), isVolatile
  2912  	case ODOTPTR:
  2913  		p := s.exprPtr(n.Left, bounded, n.Lineno)
  2914  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p), false
  2915  	case OCLOSUREVAR:
  2916  		return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset,
  2917  			s.entryNewValue0(ssa.OpGetClosurePtr, Ptrto(Types[TUINT8]))), false
  2918  	case OCONVNOP:
  2919  		addr, isVolatile := s.addr(n.Left, bounded)
  2920  		return s.newValue1(ssa.OpCopy, t, addr), isVolatile // ensure that addr has the right type
  2921  	case OCALLFUNC, OCALLINTER, OCALLMETH:
  2922  		return s.call(n, callNormal), true
  2923  
  2924  	default:
  2925  		s.Unimplementedf("unhandled addr %v", n.Op)
  2926  		return nil, false
  2927  	}
  2928  }
  2929  
  2930  // canSSA reports whether n is SSA-able.
  2931  // n must be an ONAME (or an ODOT sequence with an ONAME base).
  2932  func (s *state) canSSA(n *Node) bool {
  2933  	if Debug['N'] != 0 {
  2934  		return false
  2935  	}
  2936  	for n.Op == ODOT {
  2937  		n = n.Left
  2938  	}
  2939  	if n.Op != ONAME {
  2940  		return false
  2941  	}
  2942  	if n.Addrtaken {
  2943  		return false
  2944  	}
  2945  	if n.isParamHeapCopy() {
  2946  		return false
  2947  	}
  2948  	if n.Class == PAUTOHEAP {
  2949  		Fatalf("canSSA of PAUTOHEAP %v", n)
  2950  	}
  2951  	switch n.Class {
  2952  	case PEXTERN:
  2953  		return false
  2954  	case PPARAMOUT:
  2955  		if hasdefer {
  2956  			// TODO: handle this case?  Named return values must be
  2957  			// in memory so that the deferred function can see them.
  2958  			// Maybe do: if !strings.HasPrefix(n.String(), "~") { return false }
  2959  			return false
  2960  		}
  2961  		if s.cgoUnsafeArgs {
  2962  			// Cgo effectively takes the address of all result args,
  2963  			// but the compiler can't see that.
  2964  			return false
  2965  		}
  2966  	}
  2967  	if n.Class == PPARAM && n.String() == ".this" {
  2968  		// wrappers generated by genwrapper need to update
  2969  		// the .this pointer in place.
  2970  		// TODO: treat as a PPARMOUT?
  2971  		return false
  2972  	}
  2973  	return canSSAType(n.Type)
  2974  	// TODO: try to make more variables SSAable?
  2975  }
  2976  
  2977  // canSSA reports whether variables of type t are SSA-able.
  2978  func canSSAType(t *Type) bool {
  2979  	dowidth(t)
  2980  	if t.Width > int64(4*Widthptr) {
  2981  		// 4*Widthptr is an arbitrary constant. We want it
  2982  		// to be at least 3*Widthptr so slices can be registerized.
  2983  		// Too big and we'll introduce too much register pressure.
  2984  		return false
  2985  	}
  2986  	switch t.Etype {
  2987  	case TARRAY:
  2988  		// We can't do arrays because dynamic indexing is
  2989  		// not supported on SSA variables.
  2990  		// TODO: maybe allow if length is <=1?  All indexes
  2991  		// are constant?  Might be good for the arrays
  2992  		// introduced by the compiler for variadic functions.
  2993  		return false
  2994  	case TSTRUCT:
  2995  		if t.NumFields() > ssa.MaxStruct {
  2996  			return false
  2997  		}
  2998  		for _, t1 := range t.Fields().Slice() {
  2999  			if !canSSAType(t1.Type) {
  3000  				return false
  3001  			}
  3002  		}
  3003  		return true
  3004  	default:
  3005  		return true
  3006  	}
  3007  }
  3008  
  3009  // exprPtr evaluates n to a pointer and nil-checks it.
  3010  func (s *state) exprPtr(n *Node, bounded bool, lineno int32) *ssa.Value {
  3011  	p := s.expr(n)
  3012  	if bounded || n.NonNil {
  3013  		if s.f.Config.Debug_checknil() && lineno > 1 {
  3014  			s.f.Config.Warnl(lineno, "removed nil check")
  3015  		}
  3016  		return p
  3017  	}
  3018  	s.nilCheck(p)
  3019  	return p
  3020  }
  3021  
  3022  // nilCheck generates nil pointer checking code.
  3023  // Starts a new block on return, unless nil checks are disabled.
  3024  // Used only for automatically inserted nil checks,
  3025  // not for user code like 'x != nil'.
  3026  func (s *state) nilCheck(ptr *ssa.Value) {
  3027  	if Disable_checknil != 0 {
  3028  		return
  3029  	}
  3030  	chk := s.newValue2(ssa.OpNilCheck, ssa.TypeVoid, ptr, s.mem())
  3031  	b := s.endBlock()
  3032  	b.Kind = ssa.BlockCheck
  3033  	b.SetControl(chk)
  3034  	bNext := s.f.NewBlock(ssa.BlockPlain)
  3035  	b.AddEdgeTo(bNext)
  3036  	s.startBlock(bNext)
  3037  }
  3038  
  3039  // boundsCheck generates bounds checking code. Checks if 0 <= idx < len, branches to exit if not.
  3040  // Starts a new block on return.
  3041  // idx is already converted to full int width.
  3042  func (s *state) boundsCheck(idx, len *ssa.Value) {
  3043  	if Debug['B'] != 0 {
  3044  		return
  3045  	}
  3046  
  3047  	// bounds check
  3048  	cmp := s.newValue2(ssa.OpIsInBounds, Types[TBOOL], idx, len)
  3049  	s.check(cmp, Panicindex)
  3050  }
  3051  
  3052  // sliceBoundsCheck generates slice bounds checking code. Checks if 0 <= idx <= len, branches to exit if not.
  3053  // Starts a new block on return.
  3054  // idx and len are already converted to full int width.
  3055  func (s *state) sliceBoundsCheck(idx, len *ssa.Value) {
  3056  	if Debug['B'] != 0 {
  3057  		return
  3058  	}
  3059  
  3060  	// bounds check
  3061  	cmp := s.newValue2(ssa.OpIsSliceInBounds, Types[TBOOL], idx, len)
  3062  	s.check(cmp, panicslice)
  3063  }
  3064  
  3065  // If cmp (a bool) is false, panic using the given function.
  3066  func (s *state) check(cmp *ssa.Value, fn *Node) {
  3067  	b := s.endBlock()
  3068  	b.Kind = ssa.BlockIf
  3069  	b.SetControl(cmp)
  3070  	b.Likely = ssa.BranchLikely
  3071  	bNext := s.f.NewBlock(ssa.BlockPlain)
  3072  	line := s.peekLine()
  3073  	bPanic := s.panics[funcLine{fn, line}]
  3074  	if bPanic == nil {
  3075  		bPanic = s.f.NewBlock(ssa.BlockPlain)
  3076  		s.panics[funcLine{fn, line}] = bPanic
  3077  		s.startBlock(bPanic)
  3078  		// The panic call takes/returns memory to ensure that the right
  3079  		// memory state is observed if the panic happens.
  3080  		s.rtcall(fn, false, nil)
  3081  	}
  3082  	b.AddEdgeTo(bNext)
  3083  	b.AddEdgeTo(bPanic)
  3084  	s.startBlock(bNext)
  3085  }
  3086  
  3087  // rtcall issues a call to the given runtime function fn with the listed args.
  3088  // Returns a slice of results of the given result types.
  3089  // The call is added to the end of the current block.
  3090  // If returns is false, the block is marked as an exit block.
  3091  // If returns is true, the block is marked as a call block. A new block
  3092  // is started to load the return values.
  3093  func (s *state) rtcall(fn *Node, returns bool, results []*Type, args ...*ssa.Value) []*ssa.Value {
  3094  	// Write args to the stack
  3095  	off := Ctxt.FixedFrameSize()
  3096  	for _, arg := range args {
  3097  		t := arg.Type
  3098  		off = Rnd(off, t.Alignment())
  3099  		ptr := s.sp
  3100  		if off != 0 {
  3101  			ptr = s.newValue1I(ssa.OpOffPtr, t.PtrTo(), off, s.sp)
  3102  		}
  3103  		size := t.Size()
  3104  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, size, ptr, arg, s.mem())
  3105  		off += size
  3106  	}
  3107  	off = Rnd(off, int64(Widthptr))
  3108  	if Thearch.LinkArch.Name == "amd64p32" {
  3109  		// amd64p32 wants 8-byte alignment of the start of the return values.
  3110  		off = Rnd(off, 8)
  3111  	}
  3112  
  3113  	// Issue call
  3114  	call := s.newValue1A(ssa.OpStaticCall, ssa.TypeMem, fn.Sym, s.mem())
  3115  	s.vars[&memVar] = call
  3116  
  3117  	// Finish block
  3118  	b := s.endBlock()
  3119  	if !returns {
  3120  		b.Kind = ssa.BlockExit
  3121  		b.SetControl(call)
  3122  		call.AuxInt = off - Ctxt.FixedFrameSize()
  3123  		if len(results) > 0 {
  3124  			Fatalf("panic call can't have results")
  3125  		}
  3126  		return nil
  3127  	}
  3128  	b.Kind = ssa.BlockCall
  3129  	b.SetControl(call)
  3130  	bNext := s.f.NewBlock(ssa.BlockPlain)
  3131  	b.AddEdgeTo(bNext)
  3132  	s.startBlock(bNext)
  3133  
  3134  	// Keep input pointer args live across calls.  This is a bandaid until 1.8.
  3135  	for _, n := range s.ptrargs {
  3136  		s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, ssa.TypeMem, s.variable(n, n.Type), s.mem())
  3137  	}
  3138  
  3139  	// Load results
  3140  	res := make([]*ssa.Value, len(results))
  3141  	for i, t := range results {
  3142  		off = Rnd(off, t.Alignment())
  3143  		ptr := s.sp
  3144  		if off != 0 {
  3145  			ptr = s.newValue1I(ssa.OpOffPtr, Ptrto(t), off, s.sp)
  3146  		}
  3147  		res[i] = s.newValue2(ssa.OpLoad, t, ptr, s.mem())
  3148  		off += t.Size()
  3149  	}
  3150  	off = Rnd(off, int64(Widthptr))
  3151  
  3152  	// Remember how much callee stack space we needed.
  3153  	call.AuxInt = off
  3154  
  3155  	return res
  3156  }
  3157  
  3158  // insertWBmove inserts the assignment *left = *right including a write barrier.
  3159  // t is the type being assigned.
  3160  func (s *state) insertWBmove(t *Type, left, right *ssa.Value, line int32, rightIsVolatile bool) {
  3161  	// if writeBarrier.enabled {
  3162  	//   typedmemmove(&t, left, right)
  3163  	// } else {
  3164  	//   *left = *right
  3165  	// }
  3166  
  3167  	if s.noWB {
  3168  		s.Fatalf("write barrier prohibited")
  3169  	}
  3170  	if s.WBLineno == 0 {
  3171  		s.WBLineno = left.Line
  3172  	}
  3173  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3174  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3175  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  3176  
  3177  	aux := &ssa.ExternSymbol{Typ: Types[TBOOL], Sym: syslook("writeBarrier").Sym}
  3178  	flagaddr := s.newValue1A(ssa.OpAddr, Ptrto(Types[TUINT32]), aux, s.sb)
  3179  	// Load word, test word, avoiding partial register write from load byte.
  3180  	flag := s.newValue2(ssa.OpLoad, Types[TUINT32], flagaddr, s.mem())
  3181  	flag = s.newValue2(ssa.OpNeq32, Types[TBOOL], flag, s.constInt32(Types[TUINT32], 0))
  3182  	b := s.endBlock()
  3183  	b.Kind = ssa.BlockIf
  3184  	b.Likely = ssa.BranchUnlikely
  3185  	b.SetControl(flag)
  3186  	b.AddEdgeTo(bThen)
  3187  	b.AddEdgeTo(bElse)
  3188  
  3189  	s.startBlock(bThen)
  3190  
  3191  	if !rightIsVolatile {
  3192  		// Issue typedmemmove call.
  3193  		taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(t)}, s.sb)
  3194  		s.rtcall(typedmemmove, true, nil, taddr, left, right)
  3195  	} else {
  3196  		// Copy to temp location if the source is volatile (will be clobbered by
  3197  		// a function call).  Marshaling the args to typedmemmove might clobber the
  3198  		// value we're trying to move.
  3199  		tmp := temp(t)
  3200  		s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, ssa.TypeMem, tmp, s.mem())
  3201  		tmpaddr, _ := s.addr(tmp, true)
  3202  		s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, SizeAlignAuxInt(t), tmpaddr, right, s.mem())
  3203  		// Issue typedmemmove call.
  3204  		taddr := s.newValue1A(ssa.OpAddr, Types[TUINTPTR], &ssa.ExternSymbol{Typ: Types[TUINTPTR], Sym: typenamesym(t)}, s.sb)
  3205  		s.rtcall(typedmemmove, true, nil, taddr, left, tmpaddr)
  3206  		// Mark temp as dead.
  3207  		s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, ssa.TypeMem, tmp, s.mem())
  3208  	}
  3209  	s.endBlock().AddEdgeTo(bEnd)
  3210  
  3211  	s.startBlock(bElse)
  3212  	s.vars[&memVar] = s.newValue3I(ssa.OpMove, ssa.TypeMem, SizeAlignAuxInt(t), left, right, s.mem())
  3213  	s.endBlock().AddEdgeTo(bEnd)
  3214  
  3215  	s.startBlock(bEnd)
  3216  
  3217  	if Debug_wb > 0 {
  3218  		Warnl(line, "write barrier")
  3219  	}
  3220  }
  3221  
  3222  // insertWBstore inserts the assignment *left = right including a write barrier.
  3223  // t is the type being assigned.
  3224  func (s *state) insertWBstore(t *Type, left, right *ssa.Value, line int32, skip skipMask) {
  3225  	// store scalar fields
  3226  	// if writeBarrier.enabled {
  3227  	//   writebarrierptr for pointer fields
  3228  	// } else {
  3229  	//   store pointer fields
  3230  	// }
  3231  
  3232  	if s.noWB {
  3233  		s.Fatalf("write barrier prohibited")
  3234  	}
  3235  	if s.WBLineno == 0 {
  3236  		s.WBLineno = left.Line
  3237  	}
  3238  	s.storeTypeScalars(t, left, right, skip)
  3239  
  3240  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3241  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3242  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  3243  
  3244  	aux := &ssa.ExternSymbol{Typ: Types[TBOOL], Sym: syslook("writeBarrier").Sym}
  3245  	flagaddr := s.newValue1A(ssa.OpAddr, Ptrto(Types[TUINT32]), aux, s.sb)
  3246  	// Load word, test word, avoiding partial register write from load byte.
  3247  	flag := s.newValue2(ssa.OpLoad, Types[TUINT32], flagaddr, s.mem())
  3248  	flag = s.newValue2(ssa.OpNeq32, Types[TBOOL], flag, s.constInt32(Types[TUINT32], 0))
  3249  	b := s.endBlock()
  3250  	b.Kind = ssa.BlockIf
  3251  	b.Likely = ssa.BranchUnlikely
  3252  	b.SetControl(flag)
  3253  	b.AddEdgeTo(bThen)
  3254  	b.AddEdgeTo(bElse)
  3255  
  3256  	// Issue write barriers for pointer writes.
  3257  	s.startBlock(bThen)
  3258  	s.storeTypePtrsWB(t, left, right)
  3259  	s.endBlock().AddEdgeTo(bEnd)
  3260  
  3261  	// Issue regular stores for pointer writes.
  3262  	s.startBlock(bElse)
  3263  	s.storeTypePtrs(t, left, right)
  3264  	s.endBlock().AddEdgeTo(bEnd)
  3265  
  3266  	s.startBlock(bEnd)
  3267  
  3268  	if Debug_wb > 0 {
  3269  		Warnl(line, "write barrier")
  3270  	}
  3271  }
  3272  
  3273  // do *left = right for all scalar (non-pointer) parts of t.
  3274  func (s *state) storeTypeScalars(t *Type, left, right *ssa.Value, skip skipMask) {
  3275  	switch {
  3276  	case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex():
  3277  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, t.Size(), left, right, s.mem())
  3278  	case t.IsPtrShaped():
  3279  		// no scalar fields.
  3280  	case t.IsString():
  3281  		if skip&skipLen != 0 {
  3282  			return
  3283  		}
  3284  		len := s.newValue1(ssa.OpStringLen, Types[TINT], right)
  3285  		lenAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TINT]), s.config.IntSize, left)
  3286  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem())
  3287  	case t.IsSlice():
  3288  		if skip&skipLen == 0 {
  3289  			len := s.newValue1(ssa.OpSliceLen, Types[TINT], right)
  3290  			lenAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TINT]), s.config.IntSize, left)
  3291  			s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, lenAddr, len, s.mem())
  3292  		}
  3293  		if skip&skipCap == 0 {
  3294  			cap := s.newValue1(ssa.OpSliceCap, Types[TINT], right)
  3295  			capAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TINT]), 2*s.config.IntSize, left)
  3296  			s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, capAddr, cap, s.mem())
  3297  		}
  3298  	case t.IsInterface():
  3299  		// itab field doesn't need a write barrier (even though it is a pointer).
  3300  		itab := s.newValue1(ssa.OpITab, Ptrto(Types[TUINT8]), right)
  3301  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.IntSize, left, itab, s.mem())
  3302  	case t.IsStruct():
  3303  		n := t.NumFields()
  3304  		for i := 0; i < n; i++ {
  3305  			ft := t.FieldType(i)
  3306  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3307  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3308  			s.storeTypeScalars(ft.(*Type), addr, val, 0)
  3309  		}
  3310  	default:
  3311  		s.Fatalf("bad write barrier type %s", t)
  3312  	}
  3313  }
  3314  
  3315  // do *left = right for all pointer parts of t.
  3316  func (s *state) storeTypePtrs(t *Type, left, right *ssa.Value) {
  3317  	switch {
  3318  	case t.IsPtrShaped():
  3319  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, right, s.mem())
  3320  	case t.IsString():
  3321  		ptr := s.newValue1(ssa.OpStringPtr, Ptrto(Types[TUINT8]), right)
  3322  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
  3323  	case t.IsSlice():
  3324  		ptr := s.newValue1(ssa.OpSlicePtr, Ptrto(Types[TUINT8]), right)
  3325  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, left, ptr, s.mem())
  3326  	case t.IsInterface():
  3327  		// itab field is treated as a scalar.
  3328  		idata := s.newValue1(ssa.OpIData, Ptrto(Types[TUINT8]), right)
  3329  		idataAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TUINT8]), s.config.PtrSize, left)
  3330  		s.vars[&memVar] = s.newValue3I(ssa.OpStore, ssa.TypeMem, s.config.PtrSize, idataAddr, idata, s.mem())
  3331  	case t.IsStruct():
  3332  		n := t.NumFields()
  3333  		for i := 0; i < n; i++ {
  3334  			ft := t.FieldType(i)
  3335  			if !haspointers(ft.(*Type)) {
  3336  				continue
  3337  			}
  3338  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3339  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3340  			s.storeTypePtrs(ft.(*Type), addr, val)
  3341  		}
  3342  	default:
  3343  		s.Fatalf("bad write barrier type %s", t)
  3344  	}
  3345  }
  3346  
  3347  // do *left = right with a write barrier for all pointer parts of t.
  3348  func (s *state) storeTypePtrsWB(t *Type, left, right *ssa.Value) {
  3349  	switch {
  3350  	case t.IsPtrShaped():
  3351  		s.rtcall(writebarrierptr, true, nil, left, right)
  3352  	case t.IsString():
  3353  		ptr := s.newValue1(ssa.OpStringPtr, Ptrto(Types[TUINT8]), right)
  3354  		s.rtcall(writebarrierptr, true, nil, left, ptr)
  3355  	case t.IsSlice():
  3356  		ptr := s.newValue1(ssa.OpSlicePtr, Ptrto(Types[TUINT8]), right)
  3357  		s.rtcall(writebarrierptr, true, nil, left, ptr)
  3358  	case t.IsInterface():
  3359  		idata := s.newValue1(ssa.OpIData, Ptrto(Types[TUINT8]), right)
  3360  		idataAddr := s.newValue1I(ssa.OpOffPtr, Ptrto(Types[TUINT8]), s.config.PtrSize, left)
  3361  		s.rtcall(writebarrierptr, true, nil, idataAddr, idata)
  3362  	case t.IsStruct():
  3363  		n := t.NumFields()
  3364  		for i := 0; i < n; i++ {
  3365  			ft := t.FieldType(i)
  3366  			if !haspointers(ft.(*Type)) {
  3367  				continue
  3368  			}
  3369  			addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left)
  3370  			val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right)
  3371  			s.storeTypePtrsWB(ft.(*Type), addr, val)
  3372  		}
  3373  	default:
  3374  		s.Fatalf("bad write barrier type %s", t)
  3375  	}
  3376  }
  3377  
  3378  // slice computes the slice v[i:j:k] and returns ptr, len, and cap of result.
  3379  // i,j,k may be nil, in which case they are set to their default value.
  3380  // t is a slice, ptr to array, or string type.
  3381  func (s *state) slice(t *Type, v, i, j, k *ssa.Value) (p, l, c *ssa.Value) {
  3382  	var elemtype *Type
  3383  	var ptrtype *Type
  3384  	var ptr *ssa.Value
  3385  	var len *ssa.Value
  3386  	var cap *ssa.Value
  3387  	zero := s.constInt(Types[TINT], 0)
  3388  	switch {
  3389  	case t.IsSlice():
  3390  		elemtype = t.Elem()
  3391  		ptrtype = Ptrto(elemtype)
  3392  		ptr = s.newValue1(ssa.OpSlicePtr, ptrtype, v)
  3393  		len = s.newValue1(ssa.OpSliceLen, Types[TINT], v)
  3394  		cap = s.newValue1(ssa.OpSliceCap, Types[TINT], v)
  3395  	case t.IsString():
  3396  		elemtype = Types[TUINT8]
  3397  		ptrtype = Ptrto(elemtype)
  3398  		ptr = s.newValue1(ssa.OpStringPtr, ptrtype, v)
  3399  		len = s.newValue1(ssa.OpStringLen, Types[TINT], v)
  3400  		cap = len
  3401  	case t.IsPtr():
  3402  		if !t.Elem().IsArray() {
  3403  			s.Fatalf("bad ptr to array in slice %v\n", t)
  3404  		}
  3405  		elemtype = t.Elem().Elem()
  3406  		ptrtype = Ptrto(elemtype)
  3407  		s.nilCheck(v)
  3408  		ptr = v
  3409  		len = s.constInt(Types[TINT], t.Elem().NumElem())
  3410  		cap = len
  3411  	default:
  3412  		s.Fatalf("bad type in slice %v\n", t)
  3413  	}
  3414  
  3415  	// Set default values
  3416  	if i == nil {
  3417  		i = zero
  3418  	}
  3419  	if j == nil {
  3420  		j = len
  3421  	}
  3422  	if k == nil {
  3423  		k = cap
  3424  	}
  3425  
  3426  	// Panic if slice indices are not in bounds.
  3427  	s.sliceBoundsCheck(i, j)
  3428  	if j != k {
  3429  		s.sliceBoundsCheck(j, k)
  3430  	}
  3431  	if k != cap {
  3432  		s.sliceBoundsCheck(k, cap)
  3433  	}
  3434  
  3435  	// Generate the following code assuming that indexes are in bounds.
  3436  	// The conditional is to make sure that we don't generate a slice
  3437  	// that points to the next object in memory.
  3438  	// rlen = j-i
  3439  	// rcap = k-i
  3440  	// delta = i*elemsize
  3441  	// if rcap == 0 {
  3442  	//    delta = 0
  3443  	// }
  3444  	// rptr = p+delta
  3445  	// result = (SliceMake rptr rlen rcap)
  3446  	subOp := s.ssaOp(OSUB, Types[TINT])
  3447  	eqOp := s.ssaOp(OEQ, Types[TINT])
  3448  	mulOp := s.ssaOp(OMUL, Types[TINT])
  3449  	rlen := s.newValue2(subOp, Types[TINT], j, i)
  3450  	var rcap *ssa.Value
  3451  	switch {
  3452  	case t.IsString():
  3453  		// Capacity of the result is unimportant. However, we use
  3454  		// rcap to test if we've generated a zero-length slice.
  3455  		// Use length of strings for that.
  3456  		rcap = rlen
  3457  	case j == k:
  3458  		rcap = rlen
  3459  	default:
  3460  		rcap = s.newValue2(subOp, Types[TINT], k, i)
  3461  	}
  3462  
  3463  	// delta = # of elements to offset pointer by.
  3464  	s.vars[&deltaVar] = i
  3465  
  3466  	// Generate code to set delta=0 if the resulting capacity is zero.
  3467  	if !((i.Op == ssa.OpConst64 && i.AuxInt == 0) ||
  3468  		(i.Op == ssa.OpConst32 && int32(i.AuxInt) == 0)) {
  3469  		cmp := s.newValue2(eqOp, Types[TBOOL], rcap, zero)
  3470  
  3471  		b := s.endBlock()
  3472  		b.Kind = ssa.BlockIf
  3473  		b.Likely = ssa.BranchUnlikely
  3474  		b.SetControl(cmp)
  3475  
  3476  		// Generate block which zeros the delta variable.
  3477  		nz := s.f.NewBlock(ssa.BlockPlain)
  3478  		b.AddEdgeTo(nz)
  3479  		s.startBlock(nz)
  3480  		s.vars[&deltaVar] = zero
  3481  		s.endBlock()
  3482  
  3483  		// All done.
  3484  		merge := s.f.NewBlock(ssa.BlockPlain)
  3485  		b.AddEdgeTo(merge)
  3486  		nz.AddEdgeTo(merge)
  3487  		s.startBlock(merge)
  3488  
  3489  		// TODO: use conditional moves somehow?
  3490  	}
  3491  
  3492  	// Compute rptr = ptr + delta * elemsize
  3493  	rptr := s.newValue2(ssa.OpAddPtr, ptrtype, ptr, s.newValue2(mulOp, Types[TINT], s.variable(&deltaVar, Types[TINT]), s.constInt(Types[TINT], elemtype.Width)))
  3494  	delete(s.vars, &deltaVar)
  3495  	return rptr, rlen, rcap
  3496  }
  3497  
  3498  type u2fcvtTab struct {
  3499  	geq, cvt2F, and, rsh, or, add ssa.Op
  3500  	one                           func(*state, ssa.Type, int64) *ssa.Value
  3501  }
  3502  
  3503  var u64_f64 u2fcvtTab = u2fcvtTab{
  3504  	geq:   ssa.OpGeq64,
  3505  	cvt2F: ssa.OpCvt64to64F,
  3506  	and:   ssa.OpAnd64,
  3507  	rsh:   ssa.OpRsh64Ux64,
  3508  	or:    ssa.OpOr64,
  3509  	add:   ssa.OpAdd64F,
  3510  	one:   (*state).constInt64,
  3511  }
  3512  
  3513  var u64_f32 u2fcvtTab = u2fcvtTab{
  3514  	geq:   ssa.OpGeq64,
  3515  	cvt2F: ssa.OpCvt64to32F,
  3516  	and:   ssa.OpAnd64,
  3517  	rsh:   ssa.OpRsh64Ux64,
  3518  	or:    ssa.OpOr64,
  3519  	add:   ssa.OpAdd32F,
  3520  	one:   (*state).constInt64,
  3521  }
  3522  
  3523  func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3524  	return s.uintTofloat(&u64_f64, n, x, ft, tt)
  3525  }
  3526  
  3527  func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3528  	return s.uintTofloat(&u64_f32, n, x, ft, tt)
  3529  }
  3530  
  3531  func (s *state) uintTofloat(cvttab *u2fcvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3532  	// if x >= 0 {
  3533  	//    result = (floatY) x
  3534  	// } else {
  3535  	// 	  y = uintX(x) ; y = x & 1
  3536  	// 	  z = uintX(x) ; z = z >> 1
  3537  	// 	  z = z >> 1
  3538  	// 	  z = z | y
  3539  	// 	  result = floatY(z)
  3540  	// 	  result = result + result
  3541  	// }
  3542  	//
  3543  	// Code borrowed from old code generator.
  3544  	// What's going on: large 64-bit "unsigned" looks like
  3545  	// negative number to hardware's integer-to-float
  3546  	// conversion. However, because the mantissa is only
  3547  	// 63 bits, we don't need the LSB, so instead we do an
  3548  	// unsigned right shift (divide by two), convert, and
  3549  	// double. However, before we do that, we need to be
  3550  	// sure that we do not lose a "1" if that made the
  3551  	// difference in the resulting rounding. Therefore, we
  3552  	// preserve it, and OR (not ADD) it back in. The case
  3553  	// that matters is when the eleven discarded bits are
  3554  	// equal to 10000000001; that rounds up, and the 1 cannot
  3555  	// be lost else it would round down if the LSB of the
  3556  	// candidate mantissa is 0.
  3557  	cmp := s.newValue2(cvttab.geq, Types[TBOOL], x, s.zeroVal(ft))
  3558  	b := s.endBlock()
  3559  	b.Kind = ssa.BlockIf
  3560  	b.SetControl(cmp)
  3561  	b.Likely = ssa.BranchLikely
  3562  
  3563  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3564  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3565  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3566  
  3567  	b.AddEdgeTo(bThen)
  3568  	s.startBlock(bThen)
  3569  	a0 := s.newValue1(cvttab.cvt2F, tt, x)
  3570  	s.vars[n] = a0
  3571  	s.endBlock()
  3572  	bThen.AddEdgeTo(bAfter)
  3573  
  3574  	b.AddEdgeTo(bElse)
  3575  	s.startBlock(bElse)
  3576  	one := cvttab.one(s, ft, 1)
  3577  	y := s.newValue2(cvttab.and, ft, x, one)
  3578  	z := s.newValue2(cvttab.rsh, ft, x, one)
  3579  	z = s.newValue2(cvttab.or, ft, z, y)
  3580  	a := s.newValue1(cvttab.cvt2F, tt, z)
  3581  	a1 := s.newValue2(cvttab.add, tt, a, a)
  3582  	s.vars[n] = a1
  3583  	s.endBlock()
  3584  	bElse.AddEdgeTo(bAfter)
  3585  
  3586  	s.startBlock(bAfter)
  3587  	return s.variable(n, n.Type)
  3588  }
  3589  
  3590  // referenceTypeBuiltin generates code for the len/cap builtins for maps and channels.
  3591  func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value {
  3592  	if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() {
  3593  		s.Fatalf("node must be a map or a channel")
  3594  	}
  3595  	// if n == nil {
  3596  	//   return 0
  3597  	// } else {
  3598  	//   // len
  3599  	//   return *((*int)n)
  3600  	//   // cap
  3601  	//   return *(((*int)n)+1)
  3602  	// }
  3603  	lenType := n.Type
  3604  	nilValue := s.constNil(Types[TUINTPTR])
  3605  	cmp := s.newValue2(ssa.OpEqPtr, Types[TBOOL], x, nilValue)
  3606  	b := s.endBlock()
  3607  	b.Kind = ssa.BlockIf
  3608  	b.SetControl(cmp)
  3609  	b.Likely = ssa.BranchUnlikely
  3610  
  3611  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3612  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3613  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3614  
  3615  	// length/capacity of a nil map/chan is zero
  3616  	b.AddEdgeTo(bThen)
  3617  	s.startBlock(bThen)
  3618  	s.vars[n] = s.zeroVal(lenType)
  3619  	s.endBlock()
  3620  	bThen.AddEdgeTo(bAfter)
  3621  
  3622  	b.AddEdgeTo(bElse)
  3623  	s.startBlock(bElse)
  3624  	if n.Op == OLEN {
  3625  		// length is stored in the first word for map/chan
  3626  		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, x, s.mem())
  3627  	} else if n.Op == OCAP {
  3628  		// capacity is stored in the second word for chan
  3629  		sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x)
  3630  		s.vars[n] = s.newValue2(ssa.OpLoad, lenType, sw, s.mem())
  3631  	} else {
  3632  		s.Fatalf("op must be OLEN or OCAP")
  3633  	}
  3634  	s.endBlock()
  3635  	bElse.AddEdgeTo(bAfter)
  3636  
  3637  	s.startBlock(bAfter)
  3638  	return s.variable(n, lenType)
  3639  }
  3640  
  3641  type f2uCvtTab struct {
  3642  	ltf, cvt2U, subf ssa.Op
  3643  	value            func(*state, ssa.Type, float64) *ssa.Value
  3644  }
  3645  
  3646  var f32_u64 f2uCvtTab = f2uCvtTab{
  3647  	ltf:   ssa.OpLess32F,
  3648  	cvt2U: ssa.OpCvt32Fto64,
  3649  	subf:  ssa.OpSub32F,
  3650  	value: (*state).constFloat32,
  3651  }
  3652  
  3653  var f64_u64 f2uCvtTab = f2uCvtTab{
  3654  	ltf:   ssa.OpLess64F,
  3655  	cvt2U: ssa.OpCvt64Fto64,
  3656  	subf:  ssa.OpSub64F,
  3657  	value: (*state).constFloat64,
  3658  }
  3659  
  3660  func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3661  	return s.floatToUint(&f32_u64, n, x, ft, tt)
  3662  }
  3663  func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3664  	return s.floatToUint(&f64_u64, n, x, ft, tt)
  3665  }
  3666  
  3667  func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *Type) *ssa.Value {
  3668  	// if x < 9223372036854775808.0 {
  3669  	// 	result = uintY(x)
  3670  	// } else {
  3671  	// 	y = x - 9223372036854775808.0
  3672  	// 	z = uintY(y)
  3673  	// 	result = z | -9223372036854775808
  3674  	// }
  3675  	twoToThe63 := cvttab.value(s, ft, 9223372036854775808.0)
  3676  	cmp := s.newValue2(cvttab.ltf, Types[TBOOL], x, twoToThe63)
  3677  	b := s.endBlock()
  3678  	b.Kind = ssa.BlockIf
  3679  	b.SetControl(cmp)
  3680  	b.Likely = ssa.BranchLikely
  3681  
  3682  	bThen := s.f.NewBlock(ssa.BlockPlain)
  3683  	bElse := s.f.NewBlock(ssa.BlockPlain)
  3684  	bAfter := s.f.NewBlock(ssa.BlockPlain)
  3685  
  3686  	b.AddEdgeTo(bThen)
  3687  	s.startBlock(bThen)
  3688  	a0 := s.newValue1(cvttab.cvt2U, tt, x)
  3689  	s.vars[n] = a0
  3690  	s.endBlock()
  3691  	bThen.AddEdgeTo(bAfter)
  3692  
  3693  	b.AddEdgeTo(bElse)
  3694  	s.startBlock(bElse)
  3695  	y := s.newValue2(cvttab.subf, ft, x, twoToThe63)
  3696  	y = s.newValue1(cvttab.cvt2U, tt, y)
  3697  	z := s.constInt64(tt, -9223372036854775808)
  3698  	a1 := s.newValue2(ssa.OpOr64, tt, y, z)
  3699  	s.vars[n] = a1
  3700  	s.endBlock()
  3701  	bElse.AddEdgeTo(bAfter)
  3702  
  3703  	s.startBlock(bAfter)
  3704  	return s.variable(n, n.Type)
  3705  }
  3706  
  3707  // ifaceType returns the value for the word containing the type.
  3708  // n is the node for the interface expression.
  3709  // v is the corresponding value.
  3710  func (s *state) ifaceType(n *Node, v *ssa.Value) *ssa.Value {
  3711  	byteptr := Ptrto(Types[TUINT8]) // type used in runtime prototypes for runtime type (*byte)
  3712  
  3713  	if n.Type.IsEmptyInterface() {
  3714  		// Have *eface. The type is the first word in the struct.
  3715  		return s.newValue1(ssa.OpITab, byteptr, v)
  3716  	}
  3717  
  3718  	// Have *iface.
  3719  	// The first word in the struct is the *itab.
  3720  	// If the *itab is nil, return 0.
  3721  	// Otherwise, the second word in the *itab is the type.
  3722  
  3723  	tab := s.newValue1(ssa.OpITab, byteptr, v)
  3724  	s.vars[&typVar] = tab
  3725  	isnonnil := s.newValue2(ssa.OpNeqPtr, Types[TBOOL], tab, s.constNil(byteptr))
  3726  	b := s.endBlock()
  3727  	b.Kind = ssa.BlockIf
  3728  	b.SetControl(isnonnil)
  3729  	b.Likely = ssa.BranchLikely
  3730  
  3731  	bLoad := s.f.NewBlock(ssa.BlockPlain)
  3732  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  3733  
  3734  	b.AddEdgeTo(bLoad)
  3735  	b.AddEdgeTo(bEnd)
  3736  	bLoad.AddEdgeTo(bEnd)
  3737  
  3738  	s.startBlock(bLoad)
  3739  	off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), tab)
  3740  	s.vars[&typVar] = s.newValue2(ssa.OpLoad, byteptr, off, s.mem())
  3741  	s.endBlock()
  3742  
  3743  	s.startBlock(bEnd)
  3744  	typ := s.variable(&typVar, byteptr)
  3745  	delete(s.vars, &typVar)
  3746  	return typ
  3747  }
  3748  
  3749  // dottype generates SSA for a type assertion node.
  3750  // commaok indicates whether to panic or return a bool.
  3751  // If commaok is false, resok will be nil.
  3752  func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) {
  3753  	iface := s.expr(n.Left)
  3754  	typ := s.ifaceType(n.Left, iface)  // actual concrete type
  3755  	target := s.expr(typename(n.Type)) // target type
  3756  	if !isdirectiface(n.Type) {
  3757  		// walk rewrites ODOTTYPE/OAS2DOTTYPE into runtime calls except for this case.
  3758  		Fatalf("dottype needs a direct iface type %s", n.Type)
  3759  	}
  3760  
  3761  	if Debug_typeassert > 0 {
  3762  		Warnl(n.Lineno, "type assertion inlined")
  3763  	}
  3764  
  3765  	// TODO:  If we have a nonempty interface and its itab field is nil,
  3766  	// then this test is redundant and ifaceType should just branch directly to bFail.
  3767  	cond := s.newValue2(ssa.OpEqPtr, Types[TBOOL], typ, target)
  3768  	b := s.endBlock()
  3769  	b.Kind = ssa.BlockIf
  3770  	b.SetControl(cond)
  3771  	b.Likely = ssa.BranchLikely
  3772  
  3773  	byteptr := Ptrto(Types[TUINT8])
  3774  
  3775  	bOk := s.f.NewBlock(ssa.BlockPlain)
  3776  	bFail := s.f.NewBlock(ssa.BlockPlain)
  3777  	b.AddEdgeTo(bOk)
  3778  	b.AddEdgeTo(bFail)
  3779  
  3780  	if !commaok {
  3781  		// on failure, panic by calling panicdottype
  3782  		s.startBlock(bFail)
  3783  		taddr := s.newValue1A(ssa.OpAddr, byteptr, &ssa.ExternSymbol{Typ: byteptr, Sym: typenamesym(n.Left.Type)}, s.sb)
  3784  		s.rtcall(panicdottype, false, nil, typ, target, taddr)
  3785  
  3786  		// on success, return idata field
  3787  		s.startBlock(bOk)
  3788  		return s.newValue1(ssa.OpIData, n.Type, iface), nil
  3789  	}
  3790  
  3791  	// commaok is the more complicated case because we have
  3792  	// a control flow merge point.
  3793  	bEnd := s.f.NewBlock(ssa.BlockPlain)
  3794  
  3795  	// type assertion succeeded
  3796  	s.startBlock(bOk)
  3797  	s.vars[&idataVar] = s.newValue1(ssa.OpIData, n.Type, iface)
  3798  	s.vars[&okVar] = s.constBool(true)
  3799  	s.endBlock()
  3800  	bOk.AddEdgeTo(bEnd)
  3801  
  3802  	// type assertion failed
  3803  	s.startBlock(bFail)
  3804  	s.vars[&idataVar] = s.constNil(byteptr)
  3805  	s.vars[&okVar] = s.constBool(false)
  3806  	s.endBlock()
  3807  	bFail.AddEdgeTo(bEnd)
  3808  
  3809  	// merge point
  3810  	s.startBlock(bEnd)
  3811  	res = s.variable(&idataVar, byteptr)
  3812  	resok = s.variable(&okVar, Types[TBOOL])
  3813  	delete(s.vars, &idataVar)
  3814  	delete(s.vars, &okVar)
  3815  	return res, resok
  3816  }
  3817  
  3818  // checkgoto checks that a goto from from to to does not
  3819  // jump into a block or jump over variable declarations.
  3820  // It is a copy of checkgoto in the pre-SSA backend,
  3821  // modified only for line number handling.
  3822  // TODO: document how this works and why it is designed the way it is.
  3823  func (s *state) checkgoto(from *Node, to *Node) {
  3824  	if from.Sym == to.Sym {
  3825  		return
  3826  	}
  3827  
  3828  	nf := 0
  3829  	for fs := from.Sym; fs != nil; fs = fs.Link {
  3830  		nf++
  3831  	}
  3832  	nt := 0
  3833  	for fs := to.Sym; fs != nil; fs = fs.Link {
  3834  		nt++
  3835  	}
  3836  	fs := from.Sym
  3837  	for ; nf > nt; nf-- {
  3838  		fs = fs.Link
  3839  	}
  3840  	if fs != to.Sym {
  3841  		// decide what to complain about.
  3842  		// prefer to complain about 'into block' over declarations,
  3843  		// so scan backward to find most recent block or else dcl.
  3844  		var block *Sym
  3845  
  3846  		var dcl *Sym
  3847  		ts := to.Sym
  3848  		for ; nt > nf; nt-- {
  3849  			if ts.Pkg == nil {
  3850  				block = ts
  3851  			} else {
  3852  				dcl = ts
  3853  			}
  3854  			ts = ts.Link
  3855  		}
  3856  
  3857  		for ts != fs {
  3858  			if ts.Pkg == nil {
  3859  				block = ts
  3860  			} else {
  3861  				dcl = ts
  3862  			}
  3863  			ts = ts.Link
  3864  			fs = fs.Link
  3865  		}
  3866  
  3867  		lno := from.Left.Lineno
  3868  		if block != nil {
  3869  			yyerrorl(lno, "goto %v jumps into block starting at %v", from.Left.Sym, linestr(block.Lastlineno))
  3870  		} else {
  3871  			yyerrorl(lno, "goto %v jumps over declaration of %v at %v", from.Left.Sym, dcl, linestr(dcl.Lastlineno))
  3872  		}
  3873  	}
  3874  }
  3875  
  3876  // variable returns the value of a variable at the current location.
  3877  func (s *state) variable(name *Node, t ssa.Type) *ssa.Value {
  3878  	v := s.vars[name]
  3879  	if v == nil {
  3880  		v = s.newValue0A(ssa.OpFwdRef, t, name)
  3881  		s.fwdRefs = append(s.fwdRefs, v)
  3882  		s.vars[name] = v
  3883  		s.addNamedValue(name, v)
  3884  	}
  3885  	return v
  3886  }
  3887  
  3888  func (s *state) mem() *ssa.Value {
  3889  	return s.variable(&memVar, ssa.TypeMem)
  3890  }
  3891  
  3892  func (s *state) linkForwardReferences(dm *sparseDefState) {
  3893  
  3894  	// Build SSA graph. Each variable on its first use in a basic block
  3895  	// leaves a FwdRef in that block representing the incoming value
  3896  	// of that variable. This function links that ref up with possible definitions,
  3897  	// inserting Phi values as needed. This is essentially the algorithm
  3898  	// described by Braun, Buchwald, Hack, Leißa, Mallon, and Zwinkau:
  3899  	// http://pp.info.uni-karlsruhe.de/uploads/publikationen/braun13cc.pdf
  3900  	// Differences:
  3901  	//   - We use FwdRef nodes to postpone phi building until the CFG is
  3902  	//     completely built. That way we can avoid the notion of "sealed"
  3903  	//     blocks.
  3904  	//   - Phi optimization is a separate pass (in ../ssa/phielim.go).
  3905  	for len(s.fwdRefs) > 0 {
  3906  		v := s.fwdRefs[len(s.fwdRefs)-1]
  3907  		s.fwdRefs = s.fwdRefs[:len(s.fwdRefs)-1]
  3908  		s.resolveFwdRef(v, dm)
  3909  	}
  3910  }
  3911  
  3912  // resolveFwdRef modifies v to be the variable's value at the start of its block.
  3913  // v must be a FwdRef op.
  3914  func (s *state) resolveFwdRef(v *ssa.Value, dm *sparseDefState) {
  3915  	b := v.Block
  3916  	name := v.Aux.(*Node)
  3917  	v.Aux = nil
  3918  	if b == s.f.Entry {
  3919  		// Live variable at start of function.
  3920  		if s.canSSA(name) {
  3921  			if strings.HasPrefix(name.Sym.Name, "autotmp_") {
  3922  				// It's likely that this is an uninitialized variable in the entry block.
  3923  				s.Fatalf("Treating auto as if it were arg, func %s, node %v, value %v", b.Func.Name, name, v)
  3924  			}
  3925  			v.Op = ssa.OpArg
  3926  			v.Aux = name
  3927  			return
  3928  		}
  3929  		// Not SSAable. Load it.
  3930  		addr := s.decladdrs[name]
  3931  		if addr == nil {
  3932  			// TODO: closure args reach here.
  3933  			s.Unimplementedf("unhandled closure arg %s at entry to function %s", name, b.Func.Name)
  3934  		}
  3935  		if _, ok := addr.Aux.(*ssa.ArgSymbol); !ok {
  3936  			s.Fatalf("variable live at start of function %s is not an argument %s", b.Func.Name, name)
  3937  		}
  3938  		v.Op = ssa.OpLoad
  3939  		v.AddArgs(addr, s.startmem)
  3940  		return
  3941  	}
  3942  	if len(b.Preds) == 0 {
  3943  		// This block is dead; we have no predecessors and we're not the entry block.
  3944  		// It doesn't matter what we use here as long as it is well-formed.
  3945  		v.Op = ssa.OpUnknown
  3946  		return
  3947  	}
  3948  	// Find variable value on each predecessor.
  3949  	var argstore [4]*ssa.Value
  3950  	args := argstore[:0]
  3951  	for _, e := range b.Preds {
  3952  		p := e.Block()
  3953  		p = dm.FindBetterDefiningBlock(name, p) // try sparse improvement on p
  3954  		args = append(args, s.lookupVarOutgoing(p, v.Type, name, v.Line))
  3955  	}
  3956  
  3957  	// Decide if we need a phi or not. We need a phi if there
  3958  	// are two different args (which are both not v).
  3959  	var w *ssa.Value
  3960  	for _, a := range args {
  3961  		if a == v {
  3962  			continue // self-reference
  3963  		}
  3964  		if a == w {
  3965  			continue // already have this witness
  3966  		}
  3967  		if w != nil {
  3968  			// two witnesses, need a phi value
  3969  			v.Op = ssa.OpPhi
  3970  			v.AddArgs(args...)
  3971  			return
  3972  		}
  3973  		w = a // save witness
  3974  	}
  3975  	if w == nil {
  3976  		s.Fatalf("no witness for reachable phi %s", v)
  3977  	}
  3978  	// One witness. Make v a copy of w.
  3979  	v.Op = ssa.OpCopy
  3980  	v.AddArg(w)
  3981  }
  3982  
  3983  // lookupVarOutgoing finds the variable's value at the end of block b.
  3984  func (s *state) lookupVarOutgoing(b *ssa.Block, t ssa.Type, name *Node, line int32) *ssa.Value {
  3985  	for {
  3986  		if v, ok := s.defvars[b.ID][name]; ok {
  3987  			return v
  3988  		}
  3989  		// The variable is not defined by b and we haven't looked it up yet.
  3990  		// If b has exactly one predecessor, loop to look it up there.
  3991  		// Otherwise, give up and insert a new FwdRef and resolve it later.
  3992  		if len(b.Preds) != 1 {
  3993  			break
  3994  		}
  3995  		b = b.Preds[0].Block()
  3996  	}
  3997  	// Generate a FwdRef for the variable and return that.
  3998  	v := b.NewValue0A(line, ssa.OpFwdRef, t, name)
  3999  	s.fwdRefs = append(s.fwdRefs, v)
  4000  	s.defvars[b.ID][name] = v
  4001  	s.addNamedValue(name, v)
  4002  	return v
  4003  }
  4004  
  4005  func (s *state) addNamedValue(n *Node, v *ssa.Value) {
  4006  	if n.Class == Pxxx {
  4007  		// Don't track our dummy nodes (&memVar etc.).
  4008  		return
  4009  	}
  4010  	if strings.HasPrefix(n.Sym.Name, "autotmp_") {
  4011  		// Don't track autotmp_ variables.
  4012  		return
  4013  	}
  4014  	if n.Class == PPARAMOUT {
  4015  		// Don't track named output values.  This prevents return values
  4016  		// from being assigned too early. See #14591 and #14762. TODO: allow this.
  4017  		return
  4018  	}
  4019  	if n.Class == PAUTO && n.Xoffset != 0 {
  4020  		s.Fatalf("AUTO var with offset %s %d", n, n.Xoffset)
  4021  	}
  4022  	loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0}
  4023  	values, ok := s.f.NamedValues[loc]
  4024  	if !ok {
  4025  		s.f.Names = append(s.f.Names, loc)
  4026  	}
  4027  	s.f.NamedValues[loc] = append(values, v)
  4028  }
  4029  
  4030  // Branch is an unresolved branch.
  4031  type Branch struct {
  4032  	P *obj.Prog  // branch instruction
  4033  	B *ssa.Block // target
  4034  }
  4035  
  4036  // SSAGenState contains state needed during Prog generation.
  4037  type SSAGenState struct {
  4038  	// Branches remembers all the branch instructions we've seen
  4039  	// and where they would like to go.
  4040  	Branches []Branch
  4041  
  4042  	// bstart remembers where each block starts (indexed by block ID)
  4043  	bstart []*obj.Prog
  4044  
  4045  	// 387 port: maps from SSE registers (REG_X?) to 387 registers (REG_F?)
  4046  	SSEto387 map[int16]int16
  4047  	// Some architectures require a 64-bit temporary for FP-related register shuffling. Examples include x86-387, PPC, and Sparc V8.
  4048  	ScratchFpMem *Node
  4049  }
  4050  
  4051  // Pc returns the current Prog.
  4052  func (s *SSAGenState) Pc() *obj.Prog {
  4053  	return Pc
  4054  }
  4055  
  4056  // SetLineno sets the current source line number.
  4057  func (s *SSAGenState) SetLineno(l int32) {
  4058  	lineno = l
  4059  }
  4060  
  4061  // genssa appends entries to ptxt for each instruction in f.
  4062  // gcargs and gclocals are filled in with pointer maps for the frame.
  4063  func genssa(f *ssa.Func, ptxt *obj.Prog, gcargs, gclocals *Sym) {
  4064  	var s SSAGenState
  4065  
  4066  	e := f.Config.Frontend().(*ssaExport)
  4067  	// We're about to emit a bunch of Progs.
  4068  	// Since the only way to get here is to explicitly request it,
  4069  	// just fail on unimplemented instead of trying to unwind our mess.
  4070  	e.mustImplement = true
  4071  
  4072  	// Remember where each block starts.
  4073  	s.bstart = make([]*obj.Prog, f.NumBlocks())
  4074  
  4075  	var valueProgs map[*obj.Prog]*ssa.Value
  4076  	var blockProgs map[*obj.Prog]*ssa.Block
  4077  	var logProgs = e.log
  4078  	if logProgs {
  4079  		valueProgs = make(map[*obj.Prog]*ssa.Value, f.NumValues())
  4080  		blockProgs = make(map[*obj.Prog]*ssa.Block, f.NumBlocks())
  4081  		f.Logf("genssa %s\n", f.Name)
  4082  		blockProgs[Pc] = f.Blocks[0]
  4083  	}
  4084  
  4085  	if Thearch.Use387 {
  4086  		s.SSEto387 = map[int16]int16{}
  4087  	}
  4088  	if f.Config.NeedsFpScratch {
  4089  		s.ScratchFpMem = temp(Types[TUINT64])
  4090  	}
  4091  
  4092  	// Emit basic blocks
  4093  	for i, b := range f.Blocks {
  4094  		s.bstart[b.ID] = Pc
  4095  		// Emit values in block
  4096  		Thearch.SSAMarkMoves(&s, b)
  4097  		for _, v := range b.Values {
  4098  			x := Pc
  4099  			Thearch.SSAGenValue(&s, v)
  4100  			if logProgs {
  4101  				for ; x != Pc; x = x.Link {
  4102  					valueProgs[x] = v
  4103  				}
  4104  			}
  4105  		}
  4106  		// Emit control flow instructions for block
  4107  		var next *ssa.Block
  4108  		if i < len(f.Blocks)-1 && (Debug['N'] == 0 || b.Kind == ssa.BlockCall) {
  4109  			// If -N, leave next==nil so every block with successors
  4110  			// ends in a JMP (except call blocks - plive doesn't like
  4111  			// select{send,recv} followed by a JMP call).  Helps keep
  4112  			// line numbers for otherwise empty blocks.
  4113  			next = f.Blocks[i+1]
  4114  		}
  4115  		x := Pc
  4116  		Thearch.SSAGenBlock(&s, b, next)
  4117  		if logProgs {
  4118  			for ; x != Pc; x = x.Link {
  4119  				blockProgs[x] = b
  4120  			}
  4121  		}
  4122  	}
  4123  
  4124  	// Resolve branches
  4125  	for _, br := range s.Branches {
  4126  		br.P.To.Val = s.bstart[br.B.ID]
  4127  	}
  4128  
  4129  	if logProgs {
  4130  		for p := ptxt; p != nil; p = p.Link {
  4131  			var s string
  4132  			if v, ok := valueProgs[p]; ok {
  4133  				s = v.String()
  4134  			} else if b, ok := blockProgs[p]; ok {
  4135  				s = b.String()
  4136  			} else {
  4137  				s = "   " // most value and branch strings are 2-3 characters long
  4138  			}
  4139  			f.Logf("%s\t%s\n", s, p)
  4140  		}
  4141  		if f.Config.HTML != nil {
  4142  			saved := ptxt.Ctxt.LineHist.PrintFilenameOnly
  4143  			ptxt.Ctxt.LineHist.PrintFilenameOnly = true
  4144  			var buf bytes.Buffer
  4145  			buf.WriteString("<code>")
  4146  			buf.WriteString("<dl class=\"ssa-gen\">")
  4147  			for p := ptxt; p != nil; p = p.Link {
  4148  				buf.WriteString("<dt class=\"ssa-prog-src\">")
  4149  				if v, ok := valueProgs[p]; ok {
  4150  					buf.WriteString(v.HTML())
  4151  				} else if b, ok := blockProgs[p]; ok {
  4152  					buf.WriteString(b.HTML())
  4153  				}
  4154  				buf.WriteString("</dt>")
  4155  				buf.WriteString("<dd class=\"ssa-prog\">")
  4156  				buf.WriteString(html.EscapeString(p.String()))
  4157  				buf.WriteString("</dd>")
  4158  				buf.WriteString("</li>")
  4159  			}
  4160  			buf.WriteString("</dl>")
  4161  			buf.WriteString("</code>")
  4162  			f.Config.HTML.WriteColumn("genssa", buf.String())
  4163  			ptxt.Ctxt.LineHist.PrintFilenameOnly = saved
  4164  		}
  4165  	}
  4166  
  4167  	// Emit static data
  4168  	if f.StaticData != nil {
  4169  		for _, n := range f.StaticData.([]*Node) {
  4170  			if !gen_as_init(n, false) {
  4171  				Fatalf("non-static data marked as static: %v\n\n", n)
  4172  			}
  4173  		}
  4174  	}
  4175  
  4176  	// Allocate stack frame
  4177  	allocauto(ptxt)
  4178  
  4179  	// Generate gc bitmaps.
  4180  	liveness(Curfn, ptxt, gcargs, gclocals)
  4181  
  4182  	// Add frame prologue. Zero ambiguously live variables.
  4183  	Thearch.Defframe(ptxt)
  4184  	if Debug['f'] != 0 {
  4185  		frame(0)
  4186  	}
  4187  
  4188  	// Remove leftover instrumentation from the instruction stream.
  4189  	removevardef(ptxt)
  4190  
  4191  	f.Config.HTML.Close()
  4192  }
  4193  
  4194  type FloatingEQNEJump struct {
  4195  	Jump  obj.As
  4196  	Index int
  4197  }
  4198  
  4199  func oneFPJump(b *ssa.Block, jumps *FloatingEQNEJump, likely ssa.BranchPrediction, branches []Branch) []Branch {
  4200  	p := Prog(jumps.Jump)
  4201  	p.To.Type = obj.TYPE_BRANCH
  4202  	to := jumps.Index
  4203  	branches = append(branches, Branch{p, b.Succs[to].Block()})
  4204  	if to == 1 {
  4205  		likely = -likely
  4206  	}
  4207  	// liblink reorders the instruction stream as it sees fit.
  4208  	// Pass along what we know so liblink can make use of it.
  4209  	// TODO: Once we've fully switched to SSA,
  4210  	// make liblink leave our output alone.
  4211  	switch likely {
  4212  	case ssa.BranchUnlikely:
  4213  		p.From.Type = obj.TYPE_CONST
  4214  		p.From.Offset = 0
  4215  	case ssa.BranchLikely:
  4216  		p.From.Type = obj.TYPE_CONST
  4217  		p.From.Offset = 1
  4218  	}
  4219  	return branches
  4220  }
  4221  
  4222  func SSAGenFPJump(s *SSAGenState, b, next *ssa.Block, jumps *[2][2]FloatingEQNEJump) {
  4223  	likely := b.Likely
  4224  	switch next {
  4225  	case b.Succs[0].Block():
  4226  		s.Branches = oneFPJump(b, &jumps[0][0], likely, s.Branches)
  4227  		s.Branches = oneFPJump(b, &jumps[0][1], likely, s.Branches)
  4228  	case b.Succs[1].Block():
  4229  		s.Branches = oneFPJump(b, &jumps[1][0], likely, s.Branches)
  4230  		s.Branches = oneFPJump(b, &jumps[1][1], likely, s.Branches)
  4231  	default:
  4232  		s.Branches = oneFPJump(b, &jumps[1][0], likely, s.Branches)
  4233  		s.Branches = oneFPJump(b, &jumps[1][1], likely, s.Branches)
  4234  		q := Prog(obj.AJMP)
  4235  		q.To.Type = obj.TYPE_BRANCH
  4236  		s.Branches = append(s.Branches, Branch{q, b.Succs[1].Block()})
  4237  	}
  4238  }
  4239  
  4240  func AuxOffset(v *ssa.Value) (offset int64) {
  4241  	if v.Aux == nil {
  4242  		return 0
  4243  	}
  4244  	switch sym := v.Aux.(type) {
  4245  
  4246  	case *ssa.AutoSymbol:
  4247  		n := sym.Node.(*Node)
  4248  		return n.Xoffset
  4249  	}
  4250  	return 0
  4251  }
  4252  
  4253  // AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a.
  4254  func AddAux(a *obj.Addr, v *ssa.Value) {
  4255  	AddAux2(a, v, v.AuxInt)
  4256  }
  4257  func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) {
  4258  	if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR {
  4259  		v.Fatalf("bad AddAux addr %v", a)
  4260  	}
  4261  	// add integer offset
  4262  	a.Offset += offset
  4263  
  4264  	// If no additional symbol offset, we're done.
  4265  	if v.Aux == nil {
  4266  		return
  4267  	}
  4268  	// Add symbol's offset from its base register.
  4269  	switch sym := v.Aux.(type) {
  4270  	case *ssa.ExternSymbol:
  4271  		a.Name = obj.NAME_EXTERN
  4272  		switch s := sym.Sym.(type) {
  4273  		case *Sym:
  4274  			a.Sym = Linksym(s)
  4275  		case *obj.LSym:
  4276  			a.Sym = s
  4277  		default:
  4278  			v.Fatalf("ExternSymbol.Sym is %T", s)
  4279  		}
  4280  	case *ssa.ArgSymbol:
  4281  		n := sym.Node.(*Node)
  4282  		a.Name = obj.NAME_PARAM
  4283  		a.Node = n
  4284  		a.Sym = Linksym(n.Orig.Sym)
  4285  		a.Offset += n.Xoffset // TODO: why do I have to add this here?  I don't for auto variables.
  4286  	case *ssa.AutoSymbol:
  4287  		n := sym.Node.(*Node)
  4288  		a.Name = obj.NAME_AUTO
  4289  		a.Node = n
  4290  		a.Sym = Linksym(n.Sym)
  4291  	default:
  4292  		v.Fatalf("aux in %s not implemented %#v", v, v.Aux)
  4293  	}
  4294  }
  4295  
  4296  // SizeAlignAuxInt returns an AuxInt encoding the size and alignment of type t.
  4297  func SizeAlignAuxInt(t *Type) int64 {
  4298  	return ssa.MakeSizeAndAlign(t.Size(), t.Alignment()).Int64()
  4299  }
  4300  
  4301  // extendIndex extends v to a full int width.
  4302  // panic using the given function if v does not fit in an int (only on 32-bit archs).
  4303  func (s *state) extendIndex(v *ssa.Value, panicfn *Node) *ssa.Value {
  4304  	size := v.Type.Size()
  4305  	if size == s.config.IntSize {
  4306  		return v
  4307  	}
  4308  	if size > s.config.IntSize {
  4309  		// truncate 64-bit indexes on 32-bit pointer archs. Test the
  4310  		// high word and branch to out-of-bounds failure if it is not 0.
  4311  		if Debug['B'] == 0 {
  4312  			hi := s.newValue1(ssa.OpInt64Hi, Types[TUINT32], v)
  4313  			cmp := s.newValue2(ssa.OpEq32, Types[TBOOL], hi, s.constInt32(Types[TUINT32], 0))
  4314  			s.check(cmp, panicfn)
  4315  		}
  4316  		return s.newValue1(ssa.OpTrunc64to32, Types[TINT], v)
  4317  	}
  4318  
  4319  	// Extend value to the required size
  4320  	var op ssa.Op
  4321  	if v.Type.IsSigned() {
  4322  		switch 10*size + s.config.IntSize {
  4323  		case 14:
  4324  			op = ssa.OpSignExt8to32
  4325  		case 18:
  4326  			op = ssa.OpSignExt8to64
  4327  		case 24:
  4328  			op = ssa.OpSignExt16to32
  4329  		case 28:
  4330  			op = ssa.OpSignExt16to64
  4331  		case 48:
  4332  			op = ssa.OpSignExt32to64
  4333  		default:
  4334  			s.Fatalf("bad signed index extension %s", v.Type)
  4335  		}
  4336  	} else {
  4337  		switch 10*size + s.config.IntSize {
  4338  		case 14:
  4339  			op = ssa.OpZeroExt8to32
  4340  		case 18:
  4341  			op = ssa.OpZeroExt8to64
  4342  		case 24:
  4343  			op = ssa.OpZeroExt16to32
  4344  		case 28:
  4345  			op = ssa.OpZeroExt16to64
  4346  		case 48:
  4347  			op = ssa.OpZeroExt32to64
  4348  		default:
  4349  			s.Fatalf("bad unsigned index extension %s", v.Type)
  4350  		}
  4351  	}
  4352  	return s.newValue1(op, Types[TINT], v)
  4353  }
  4354  
  4355  // SSAReg returns the register to which v has been allocated.
  4356  func SSAReg(v *ssa.Value) *ssa.Register {
  4357  	reg := v.Block.Func.RegAlloc[v.ID]
  4358  	if reg == nil {
  4359  		v.Fatalf("nil register for value: %s\n%s\n", v.LongString(), v.Block.Func)
  4360  	}
  4361  	return reg.(*ssa.Register)
  4362  }
  4363  
  4364  // SSAReg0 returns the register to which the first output of v has been allocated.
  4365  func SSAReg0(v *ssa.Value) *ssa.Register {
  4366  	reg := v.Block.Func.RegAlloc[v.ID].(ssa.LocPair)[0]
  4367  	if reg == nil {
  4368  		v.Fatalf("nil first register for value: %s\n%s\n", v.LongString(), v.Block.Func)
  4369  	}
  4370  	return reg.(*ssa.Register)
  4371  }
  4372  
  4373  // SSAReg1 returns the register to which the second output of v has been allocated.
  4374  func SSAReg1(v *ssa.Value) *ssa.Register {
  4375  	reg := v.Block.Func.RegAlloc[v.ID].(ssa.LocPair)[1]
  4376  	if reg == nil {
  4377  		v.Fatalf("nil second register for value: %s\n%s\n", v.LongString(), v.Block.Func)
  4378  	}
  4379  	return reg.(*ssa.Register)
  4380  }
  4381  
  4382  // SSARegNum returns the register number (in cmd/internal/obj numbering) to which v has been allocated.
  4383  func SSARegNum(v *ssa.Value) int16 {
  4384  	return Thearch.SSARegToReg[SSAReg(v).Num]
  4385  }
  4386  
  4387  // SSARegNum0 returns the register number (in cmd/internal/obj numbering) to which the first output of v has been allocated.
  4388  func SSARegNum0(v *ssa.Value) int16 {
  4389  	return Thearch.SSARegToReg[SSAReg0(v).Num]
  4390  }
  4391  
  4392  // SSARegNum1 returns the register number (in cmd/internal/obj numbering) to which the second output of v has been allocated.
  4393  func SSARegNum1(v *ssa.Value) int16 {
  4394  	return Thearch.SSARegToReg[SSAReg1(v).Num]
  4395  }
  4396  
  4397  // CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values.
  4398  // Called during ssaGenValue.
  4399  func CheckLoweredPhi(v *ssa.Value) {
  4400  	if v.Op != ssa.OpPhi {
  4401  		v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString())
  4402  	}
  4403  	if v.Type.IsMemory() {
  4404  		return
  4405  	}
  4406  	f := v.Block.Func
  4407  	loc := f.RegAlloc[v.ID]
  4408  	for _, a := range v.Args {
  4409  		if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead?
  4410  			v.Fatalf("phi arg at different location than phi: %v @ %v, but arg %v @ %v\n%s\n", v, loc, a, aloc, v.Block.Func)
  4411  		}
  4412  	}
  4413  }
  4414  
  4415  // CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block.
  4416  // The output of LoweredGetClosurePtr is generally hardwired to the correct register.
  4417  // That register contains the closure pointer on closure entry.
  4418  func CheckLoweredGetClosurePtr(v *ssa.Value) {
  4419  	entry := v.Block.Func.Entry
  4420  	if entry != v.Block || entry.Values[0] != v {
  4421  		Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v)
  4422  	}
  4423  }
  4424  
  4425  // AutoVar returns a *Node and int64 representing the auto variable and offset within it
  4426  // where v should be spilled.
  4427  func AutoVar(v *ssa.Value) (*Node, int64) {
  4428  	loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot)
  4429  	if v.Type.Size() > loc.Type.Size() {
  4430  		v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type)
  4431  	}
  4432  	return loc.N.(*Node), loc.Off
  4433  }
  4434  
  4435  // fieldIdx finds the index of the field referred to by the ODOT node n.
  4436  func fieldIdx(n *Node) int {
  4437  	t := n.Left.Type
  4438  	f := n.Sym
  4439  	if !t.IsStruct() {
  4440  		panic("ODOT's LHS is not a struct")
  4441  	}
  4442  
  4443  	var i int
  4444  	for _, t1 := range t.Fields().Slice() {
  4445  		if t1.Sym != f {
  4446  			i++
  4447  			continue
  4448  		}
  4449  		if t1.Offset != n.Xoffset {
  4450  			panic("field offset doesn't match")
  4451  		}
  4452  		return i
  4453  	}
  4454  	panic(fmt.Sprintf("can't find field in expr %s\n", n))
  4455  
  4456  	// TODO: keep the result of this function somewhere in the ODOT Node
  4457  	// so we don't have to recompute it each time we need it.
  4458  }
  4459  
  4460  // ssaExport exports a bunch of compiler services for the ssa backend.
  4461  type ssaExport struct {
  4462  	log           bool
  4463  	unimplemented bool
  4464  	mustImplement bool
  4465  }
  4466  
  4467  func (s *ssaExport) TypeBool() ssa.Type    { return Types[TBOOL] }
  4468  func (s *ssaExport) TypeInt8() ssa.Type    { return Types[TINT8] }
  4469  func (s *ssaExport) TypeInt16() ssa.Type   { return Types[TINT16] }
  4470  func (s *ssaExport) TypeInt32() ssa.Type   { return Types[TINT32] }
  4471  func (s *ssaExport) TypeInt64() ssa.Type   { return Types[TINT64] }
  4472  func (s *ssaExport) TypeUInt8() ssa.Type   { return Types[TUINT8] }
  4473  func (s *ssaExport) TypeUInt16() ssa.Type  { return Types[TUINT16] }
  4474  func (s *ssaExport) TypeUInt32() ssa.Type  { return Types[TUINT32] }
  4475  func (s *ssaExport) TypeUInt64() ssa.Type  { return Types[TUINT64] }
  4476  func (s *ssaExport) TypeFloat32() ssa.Type { return Types[TFLOAT32] }
  4477  func (s *ssaExport) TypeFloat64() ssa.Type { return Types[TFLOAT64] }
  4478  func (s *ssaExport) TypeInt() ssa.Type     { return Types[TINT] }
  4479  func (s *ssaExport) TypeUintptr() ssa.Type { return Types[TUINTPTR] }
  4480  func (s *ssaExport) TypeString() ssa.Type  { return Types[TSTRING] }
  4481  func (s *ssaExport) TypeBytePtr() ssa.Type { return Ptrto(Types[TUINT8]) }
  4482  
  4483  // StringData returns a symbol (a *Sym wrapped in an interface) which
  4484  // is the data component of a global string constant containing s.
  4485  func (*ssaExport) StringData(s string) interface{} {
  4486  	// TODO: is idealstring correct?  It might not matter...
  4487  	_, data := stringsym(s)
  4488  	return &ssa.ExternSymbol{Typ: idealstring, Sym: data}
  4489  }
  4490  
  4491  func (e *ssaExport) Auto(t ssa.Type) ssa.GCNode {
  4492  	n := temp(t.(*Type))   // Note: adds new auto to Curfn.Func.Dcl list
  4493  	e.mustImplement = true // This modifies the input to SSA, so we want to make sure we succeed from here!
  4494  	return n
  4495  }
  4496  
  4497  func (e *ssaExport) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4498  	n := name.N.(*Node)
  4499  	ptrType := Ptrto(Types[TUINT8])
  4500  	lenType := Types[TINT]
  4501  	if n.Class == PAUTO && !n.Addrtaken {
  4502  		// Split this string up into two separate variables.
  4503  		p := e.namedAuto(n.Sym.Name+".ptr", ptrType)
  4504  		l := e.namedAuto(n.Sym.Name+".len", lenType)
  4505  		return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0}
  4506  	}
  4507  	// Return the two parts of the larger variable.
  4508  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)}
  4509  }
  4510  
  4511  func (e *ssaExport) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4512  	n := name.N.(*Node)
  4513  	t := Ptrto(Types[TUINT8])
  4514  	if n.Class == PAUTO && !n.Addrtaken {
  4515  		// Split this interface up into two separate variables.
  4516  		f := ".itab"
  4517  		if n.Type.IsEmptyInterface() {
  4518  			f = ".type"
  4519  		}
  4520  		c := e.namedAuto(n.Sym.Name+f, t)
  4521  		d := e.namedAuto(n.Sym.Name+".data", t)
  4522  		return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0}
  4523  	}
  4524  	// Return the two parts of the larger variable.
  4525  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + int64(Widthptr)}
  4526  }
  4527  
  4528  func (e *ssaExport) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) {
  4529  	n := name.N.(*Node)
  4530  	ptrType := Ptrto(name.Type.ElemType().(*Type))
  4531  	lenType := Types[TINT]
  4532  	if n.Class == PAUTO && !n.Addrtaken {
  4533  		// Split this slice up into three separate variables.
  4534  		p := e.namedAuto(n.Sym.Name+".ptr", ptrType)
  4535  		l := e.namedAuto(n.Sym.Name+".len", lenType)
  4536  		c := e.namedAuto(n.Sym.Name+".cap", lenType)
  4537  		return ssa.LocalSlot{N: p, Type: ptrType, Off: 0}, ssa.LocalSlot{N: l, Type: lenType, Off: 0}, ssa.LocalSlot{N: c, Type: lenType, Off: 0}
  4538  	}
  4539  	// Return the three parts of the larger variable.
  4540  	return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off},
  4541  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)},
  4542  		ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(2*Widthptr)}
  4543  }
  4544  
  4545  func (e *ssaExport) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4546  	n := name.N.(*Node)
  4547  	s := name.Type.Size() / 2
  4548  	var t *Type
  4549  	if s == 8 {
  4550  		t = Types[TFLOAT64]
  4551  	} else {
  4552  		t = Types[TFLOAT32]
  4553  	}
  4554  	if n.Class == PAUTO && !n.Addrtaken {
  4555  		// Split this complex up into two separate variables.
  4556  		c := e.namedAuto(n.Sym.Name+".real", t)
  4557  		d := e.namedAuto(n.Sym.Name+".imag", t)
  4558  		return ssa.LocalSlot{N: c, Type: t, Off: 0}, ssa.LocalSlot{N: d, Type: t, Off: 0}
  4559  	}
  4560  	// Return the two parts of the larger variable.
  4561  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + s}
  4562  }
  4563  
  4564  func (e *ssaExport) SplitInt64(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) {
  4565  	n := name.N.(*Node)
  4566  	var t *Type
  4567  	if name.Type.IsSigned() {
  4568  		t = Types[TINT32]
  4569  	} else {
  4570  		t = Types[TUINT32]
  4571  	}
  4572  	if n.Class == PAUTO && !n.Addrtaken {
  4573  		// Split this int64 up into two separate variables.
  4574  		h := e.namedAuto(n.Sym.Name+".hi", t)
  4575  		l := e.namedAuto(n.Sym.Name+".lo", Types[TUINT32])
  4576  		return ssa.LocalSlot{N: h, Type: t, Off: 0}, ssa.LocalSlot{N: l, Type: Types[TUINT32], Off: 0}
  4577  	}
  4578  	// Return the two parts of the larger variable.
  4579  	// Assuming little endian (we don't support big endian 32-bit architecture yet)
  4580  	return ssa.LocalSlot{N: n, Type: t, Off: name.Off + 4}, ssa.LocalSlot{N: n, Type: Types[TUINT32], Off: name.Off}
  4581  }
  4582  
  4583  func (e *ssaExport) SplitStruct(name ssa.LocalSlot, i int) ssa.LocalSlot {
  4584  	n := name.N.(*Node)
  4585  	st := name.Type
  4586  	ft := st.FieldType(i)
  4587  	if n.Class == PAUTO && !n.Addrtaken {
  4588  		// Note: the _ field may appear several times.  But
  4589  		// have no fear, identically-named but distinct Autos are
  4590  		// ok, albeit maybe confusing for a debugger.
  4591  		x := e.namedAuto(n.Sym.Name+"."+st.FieldName(i), ft)
  4592  		return ssa.LocalSlot{N: x, Type: ft, Off: 0}
  4593  	}
  4594  	return ssa.LocalSlot{N: n, Type: ft, Off: name.Off + st.FieldOff(i)}
  4595  }
  4596  
  4597  // namedAuto returns a new AUTO variable with the given name and type.
  4598  func (e *ssaExport) namedAuto(name string, typ ssa.Type) ssa.GCNode {
  4599  	t := typ.(*Type)
  4600  	s := &Sym{Name: name, Pkg: localpkg}
  4601  	n := Nod(ONAME, nil, nil)
  4602  	s.Def = n
  4603  	s.Def.Used = true
  4604  	n.Sym = s
  4605  	n.Type = t
  4606  	n.Class = PAUTO
  4607  	n.Addable = true
  4608  	n.Ullman = 1
  4609  	n.Esc = EscNever
  4610  	n.Xoffset = 0
  4611  	n.Name.Curfn = Curfn
  4612  	Curfn.Func.Dcl = append(Curfn.Func.Dcl, n)
  4613  
  4614  	dowidth(t)
  4615  	e.mustImplement = true
  4616  
  4617  	return n
  4618  }
  4619  
  4620  func (e *ssaExport) CanSSA(t ssa.Type) bool {
  4621  	return canSSAType(t.(*Type))
  4622  }
  4623  
  4624  func (e *ssaExport) Line(line int32) string {
  4625  	return linestr(line)
  4626  }
  4627  
  4628  // Log logs a message from the compiler.
  4629  func (e *ssaExport) Logf(msg string, args ...interface{}) {
  4630  	// If e was marked as unimplemented, anything could happen. Ignore.
  4631  	if e.log && !e.unimplemented {
  4632  		fmt.Printf(msg, args...)
  4633  	}
  4634  }
  4635  
  4636  func (e *ssaExport) Log() bool {
  4637  	return e.log
  4638  }
  4639  
  4640  // Fatal reports a compiler error and exits.
  4641  func (e *ssaExport) Fatalf(line int32, msg string, args ...interface{}) {
  4642  	// If e was marked as unimplemented, anything could happen. Ignore.
  4643  	if !e.unimplemented {
  4644  		lineno = line
  4645  		Fatalf(msg, args...)
  4646  	}
  4647  }
  4648  
  4649  // Unimplemented reports that the function cannot be compiled.
  4650  // It will be removed once SSA work is complete.
  4651  func (e *ssaExport) Unimplementedf(line int32, msg string, args ...interface{}) {
  4652  	if e.mustImplement {
  4653  		lineno = line
  4654  		Fatalf(msg, args...)
  4655  	}
  4656  	const alwaysLog = false // enable to calculate top unimplemented features
  4657  	if !e.unimplemented && (e.log || alwaysLog) {
  4658  		// first implementation failure, print explanation
  4659  		fmt.Printf("SSA unimplemented: "+msg+"\n", args...)
  4660  	}
  4661  	e.unimplemented = true
  4662  }
  4663  
  4664  // Warnl reports a "warning", which is usually flag-triggered
  4665  // logging output for the benefit of tests.
  4666  func (e *ssaExport) Warnl(line int32, fmt_ string, args ...interface{}) {
  4667  	Warnl(line, fmt_, args...)
  4668  }
  4669  
  4670  func (e *ssaExport) Debug_checknil() bool {
  4671  	return Debug_checknil != 0
  4672  }
  4673  
  4674  func (n *Node) Typ() ssa.Type {
  4675  	return n.Type
  4676  }