github.com/euank/go@v0.0.0-20160829210321-495514729181/src/cmd/compile/internal/gc/syntax.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // “Abstract” syntax representation.
     6  
     7  package gc
     8  
     9  // A Node is a single node in the syntax tree.
    10  // Actually the syntax tree is a syntax DAG, because there is only one
    11  // node with Op=ONAME for a given instance of a variable x.
    12  // The same is true for Op=OTYPE and Op=OLITERAL.
    13  type Node struct {
    14  	// Tree structure.
    15  	// Generic recursive walks should follow these fields.
    16  	Left  *Node
    17  	Right *Node
    18  	Ninit Nodes
    19  	Nbody Nodes
    20  	List  Nodes
    21  	Rlist Nodes
    22  
    23  	// most nodes
    24  	Type *Type
    25  	Orig *Node // original form, for printing, and tracking copies of ONAMEs
    26  
    27  	// func
    28  	Func *Func
    29  
    30  	// ONAME
    31  	Name *Name
    32  
    33  	Sym *Sym        // various
    34  	E   interface{} // Opt or Val, see methods below
    35  
    36  	// Various. Usually an offset into a struct. For example, ONAME nodes
    37  	// that refer to local variables use it to identify their stack frame
    38  	// position. ODOT, ODOTPTR, and OINDREG use it to indicate offset
    39  	// relative to their base address. ONAME nodes on the left side of an
    40  	// OKEY within an OSTRUCTLIT use it to store the named field's offset.
    41  	// OXCASE and OXFALL use it to validate the use of fallthrough.
    42  	// Possibly still more uses. If you find any, document them.
    43  	Xoffset int64
    44  
    45  	Lineno int32
    46  
    47  	// OREGISTER, OINDREG
    48  	Reg int16
    49  
    50  	Esc uint16 // EscXXX
    51  
    52  	Op        Op
    53  	Ullman    uint8 // sethi/ullman number
    54  	Addable   bool  // addressable
    55  	Etype     EType // op for OASOP, etype for OTYPE, exclam for export, 6g saved reg, ChanDir for OTCHAN
    56  	Bounded   bool  // bounds check unnecessary
    57  	NonNil    bool  // guaranteed to be non-nil
    58  	Class     Class // PPARAM, PAUTO, PEXTERN, etc
    59  	Embedded  uint8 // ODCLFIELD embedded type
    60  	Colas     bool  // OAS resulting from :=
    61  	Diag      uint8 // already printed error about this
    62  	Noescape  bool  // func arguments do not escape; TODO(rsc): move Noescape to Func struct (see CL 7360)
    63  	Walkdef   uint8 // tracks state during typecheckdef; 2 == loop detected
    64  	Typecheck uint8 // tracks state during typechecking; 2 == loop detected
    65  	Local     bool
    66  	IsStatic  bool // whether this Node will be converted to purely static data
    67  	Initorder uint8
    68  	Used      bool // for variable/label declared and not used error
    69  	Isddd     bool // is the argument variadic
    70  	Implicit  bool
    71  	Addrtaken bool  // address taken, even if not moved to heap
    72  	Assigned  bool  // is the variable ever assigned to
    73  	Likely    int8  // likeliness of if statement
    74  	hasVal    int8  // +1 for Val, -1 for Opt, 0 for not yet set
    75  	flags     uint8 // TODO: store more bool fields in this flag field
    76  }
    77  
    78  const (
    79  	hasBreak = 1 << iota
    80  	notLiveAtEnd
    81  	isClosureVar
    82  	isOutputParamHeapAddr
    83  	noInline // used internally by inliner to indicate that a function call should not be inlined; set for OCALLFUNC and OCALLMETH only
    84  )
    85  
    86  func (n *Node) HasBreak() bool {
    87  	return n.flags&hasBreak != 0
    88  }
    89  func (n *Node) SetHasBreak(b bool) {
    90  	if b {
    91  		n.flags |= hasBreak
    92  	} else {
    93  		n.flags &^= hasBreak
    94  	}
    95  }
    96  func (n *Node) NotLiveAtEnd() bool {
    97  	return n.flags&notLiveAtEnd != 0
    98  }
    99  func (n *Node) SetNotLiveAtEnd(b bool) {
   100  	if b {
   101  		n.flags |= notLiveAtEnd
   102  	} else {
   103  		n.flags &^= notLiveAtEnd
   104  	}
   105  }
   106  func (n *Node) isClosureVar() bool {
   107  	return n.flags&isClosureVar != 0
   108  }
   109  func (n *Node) setIsClosureVar(b bool) {
   110  	if b {
   111  		n.flags |= isClosureVar
   112  	} else {
   113  		n.flags &^= isClosureVar
   114  	}
   115  }
   116  func (n *Node) noInline() bool {
   117  	return n.flags&noInline != 0
   118  }
   119  func (n *Node) setNoInline(b bool) {
   120  	if b {
   121  		n.flags |= noInline
   122  	} else {
   123  		n.flags &^= noInline
   124  	}
   125  }
   126  
   127  func (n *Node) IsOutputParamHeapAddr() bool {
   128  	return n.flags&isOutputParamHeapAddr != 0
   129  }
   130  func (n *Node) setIsOutputParamHeapAddr(b bool) {
   131  	if b {
   132  		n.flags |= isOutputParamHeapAddr
   133  	} else {
   134  		n.flags &^= isOutputParamHeapAddr
   135  	}
   136  }
   137  
   138  // Val returns the Val for the node.
   139  func (n *Node) Val() Val {
   140  	if n.hasVal != +1 {
   141  		return Val{}
   142  	}
   143  	return Val{n.E}
   144  }
   145  
   146  // SetVal sets the Val for the node, which must not have been used with SetOpt.
   147  func (n *Node) SetVal(v Val) {
   148  	if n.hasVal == -1 {
   149  		Debug['h'] = 1
   150  		Dump("have Opt", n)
   151  		Fatalf("have Opt")
   152  	}
   153  	n.hasVal = +1
   154  	n.E = v.U
   155  }
   156  
   157  // Opt returns the optimizer data for the node.
   158  func (n *Node) Opt() interface{} {
   159  	if n.hasVal != -1 {
   160  		return nil
   161  	}
   162  	return n.E
   163  }
   164  
   165  // SetOpt sets the optimizer data for the node, which must not have been used with SetVal.
   166  // SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts.
   167  func (n *Node) SetOpt(x interface{}) {
   168  	if x == nil && n.hasVal >= 0 {
   169  		return
   170  	}
   171  	if n.hasVal == +1 {
   172  		Debug['h'] = 1
   173  		Dump("have Val", n)
   174  		Fatalf("have Val")
   175  	}
   176  	n.hasVal = -1
   177  	n.E = x
   178  }
   179  
   180  // Name holds Node fields used only by named nodes (ONAME, OPACK, OLABEL, ODCLFIELD, some OLITERAL).
   181  type Name struct {
   182  	Pack      *Node  // real package for import . names
   183  	Pkg       *Pkg   // pkg for OPACK nodes
   184  	Heapaddr  *Node  // temp holding heap address of param (could move to Param?)
   185  	Inlvar    *Node  // ONAME substitute while inlining (could move to Param?)
   186  	Defn      *Node  // initializing assignment
   187  	Curfn     *Node  // function for local variables
   188  	Param     *Param // additional fields for ONAME, ODCLFIELD
   189  	Decldepth int32  // declaration loop depth, increased for every loop or label
   190  	Vargen    int32  // unique name for ONAME within a function.  Function outputs are numbered starting at one.
   191  	Iota      int32  // value if this name is iota
   192  	Funcdepth int32
   193  	Method    bool // OCALLMETH name
   194  	Readonly  bool
   195  	Captured  bool // is the variable captured by a closure
   196  	Byval     bool // is the variable captured by value or by reference
   197  	Needzero  bool // if it contains pointers, needs to be zeroed on function entry
   198  	Keepalive bool // mark value live across unknown assembly call
   199  }
   200  
   201  type Param struct {
   202  	Ntype *Node
   203  
   204  	// ONAME PAUTOHEAP
   205  	Stackcopy *Node // the PPARAM/PPARAMOUT on-stack slot (moved func params only)
   206  
   207  	// ONAME PPARAM
   208  	Field *Field // TFIELD in arg struct
   209  
   210  	// ONAME closure linkage
   211  	// Consider:
   212  	//
   213  	//	func f() {
   214  	//		x := 1 // x1
   215  	//		func() {
   216  	//			use(x) // x2
   217  	//			func() {
   218  	//				use(x) // x3
   219  	//				--- parser is here ---
   220  	//			}()
   221  	//		}()
   222  	//	}
   223  	//
   224  	// There is an original declaration of x and then a chain of mentions of x
   225  	// leading into the current function. Each time x is mentioned in a new closure,
   226  	// we create a variable representing x for use in that specific closure,
   227  	// since the way you get to x is different in each closure.
   228  	//
   229  	// Let's number the specific variables as shown in the code:
   230  	// x1 is the original x, x2 is when mentioned in the closure,
   231  	// and x3 is when mentioned in the closure in the closure.
   232  	//
   233  	// We keep these linked (assume N > 1):
   234  	//
   235  	//   - x1.Defn = original declaration statement for x (like most variables)
   236  	//   - x1.Innermost = current innermost closure x (in this case x3), or nil for none
   237  	//   - x1.isClosureVar() = false
   238  	//
   239  	//   - xN.Defn = x1, N > 1
   240  	//   - xN.isClosureVar() = true, N > 1
   241  	//   - x2.Outer = nil
   242  	//   - xN.Outer = x(N-1), N > 2
   243  	//
   244  	//
   245  	// When we look up x in the symbol table, we always get x1.
   246  	// Then we can use x1.Innermost (if not nil) to get the x
   247  	// for the innermost known closure function,
   248  	// but the first reference in a closure will find either no x1.Innermost
   249  	// or an x1.Innermost with .Funcdepth < Funcdepth.
   250  	// In that case, a new xN must be created, linked in with:
   251  	//
   252  	//     xN.Defn = x1
   253  	//     xN.Outer = x1.Innermost
   254  	//     x1.Innermost = xN
   255  	//
   256  	// When we finish the function, we'll process its closure variables
   257  	// and find xN and pop it off the list using:
   258  	//
   259  	//     x1 := xN.Defn
   260  	//     x1.Innermost = xN.Outer
   261  	//
   262  	// We leave xN.Innermost set so that we can still get to the original
   263  	// variable quickly. Not shown here, but once we're
   264  	// done parsing a function and no longer need xN.Outer for the
   265  	// lexical x reference links as described above, closurebody
   266  	// recomputes xN.Outer as the semantic x reference link tree,
   267  	// even filling in x in intermediate closures that might not
   268  	// have mentioned it along the way to inner closures that did.
   269  	// See closurebody for details.
   270  	//
   271  	// During the eventual compilation, then, for closure variables we have:
   272  	//
   273  	//     xN.Defn = original variable
   274  	//     xN.Outer = variable captured in next outward scope
   275  	//                to make closure where xN appears
   276  	//
   277  	// Because of the sharding of pieces of the node, x.Defn means x.Name.Defn
   278  	// and x.Innermost/Outer means x.Name.Param.Innermost/Outer.
   279  	Innermost *Node
   280  	Outer     *Node
   281  }
   282  
   283  // Func holds Node fields used only with function-like nodes.
   284  type Func struct {
   285  	Shortname  *Node
   286  	Enter      Nodes // for example, allocate and initialize memory for escaping parameters
   287  	Exit       Nodes
   288  	Cvars      Nodes   // closure params
   289  	Dcl        []*Node // autodcl for this func/closure
   290  	Inldcl     Nodes   // copy of dcl for use in inlining
   291  	Closgen    int
   292  	Outerfunc  *Node // outer function (for closure)
   293  	FieldTrack map[*Sym]struct{}
   294  	Ntype      *Node // signature
   295  	Top        int   // top context (Ecall, Eproc, etc)
   296  	Closure    *Node // OCLOSURE <-> ODCLFUNC
   297  	FCurfn     *Node
   298  	Nname      *Node
   299  
   300  	Inl     Nodes // copy of the body for use in inlining
   301  	InlCost int32
   302  	Depth   int32
   303  
   304  	Label int32 // largest auto-generated label in this function
   305  
   306  	Endlineno int32
   307  	WBLineno  int32 // line number of first write barrier
   308  
   309  	Pragma        Pragma // go:xxx function annotations
   310  	Dupok         bool   // duplicate definitions ok
   311  	Wrapper       bool   // is method wrapper
   312  	Needctxt      bool   // function uses context register (has closure variables)
   313  	ReflectMethod bool   // function calls reflect.Type.Method or MethodByName
   314  }
   315  
   316  type Op uint8
   317  
   318  // Node ops.
   319  const (
   320  	OXXX = Op(iota)
   321  
   322  	// names
   323  	ONAME    // var, const or func name
   324  	ONONAME  // unnamed arg or return value: f(int, string) (int, error) { etc }
   325  	OTYPE    // type name
   326  	OPACK    // import
   327  	OLITERAL // literal
   328  
   329  	// expressions
   330  	OADD             // Left + Right
   331  	OSUB             // Left - Right
   332  	OOR              // Left | Right
   333  	OXOR             // Left ^ Right
   334  	OADDSTR          // +{List} (string addition, list elements are strings)
   335  	OADDR            // &Left
   336  	OANDAND          // Left && Right
   337  	OAPPEND          // append(List)
   338  	OARRAYBYTESTR    // Type(Left) (Type is string, Left is a []byte)
   339  	OARRAYBYTESTRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral)
   340  	OARRAYRUNESTR    // Type(Left) (Type is string, Left is a []rune)
   341  	OSTRARRAYBYTE    // Type(Left) (Type is []byte, Left is a string)
   342  	OSTRARRAYBYTETMP // Type(Left) (Type is []byte, Left is a string, ephemeral)
   343  	OSTRARRAYRUNE    // Type(Left) (Type is []rune, Left is a string)
   344  	OAS              // Left = Right or (if Colas=true) Left := Right
   345  	OAS2             // List = Rlist (x, y, z = a, b, c)
   346  	OAS2FUNC         // List = Rlist (x, y = f())
   347  	OAS2RECV         // List = Rlist (x, ok = <-c)
   348  	OAS2MAPR         // List = Rlist (x, ok = m["foo"])
   349  	OAS2DOTTYPE      // List = Rlist (x, ok = I.(int))
   350  	OASOP            // Left Etype= Right (x += y)
   351  	OASWB            // Left = Right (with write barrier)
   352  	OCALL            // Left(List) (function call, method call or type conversion)
   353  	OCALLFUNC        // Left(List) (function call f(args))
   354  	OCALLMETH        // Left(List) (direct method call x.Method(args))
   355  	OCALLINTER       // Left(List) (interface method call x.Method(args))
   356  	OCALLPART        // Left.Right (method expression x.Method, not called)
   357  	OCAP             // cap(Left)
   358  	OCLOSE           // close(Left)
   359  	OCLOSURE         // func Type { Body } (func literal)
   360  	OCMPIFACE        // Left Etype Right (interface comparison, x == y or x != y)
   361  	OCMPSTR          // Left Etype Right (string comparison, x == y, x < y, etc)
   362  	OCOMPLIT         // Right{List} (composite literal, not yet lowered to specific form)
   363  	OMAPLIT          // Type{List} (composite literal, Type is map)
   364  	OSTRUCTLIT       // Type{List} (composite literal, Type is struct)
   365  	OARRAYLIT        // Type{List} (composite literal, Type is array or slice)
   366  	OPTRLIT          // &Left (left is composite literal)
   367  	OCONV            // Type(Left) (type conversion)
   368  	OCONVIFACE       // Type(Left) (type conversion, to interface)
   369  	OCONVNOP         // Type(Left) (type conversion, no effect)
   370  	OCOPY            // copy(Left, Right)
   371  	ODCL             // var Left (declares Left of type Left.Type)
   372  
   373  	// Used during parsing but don't last.
   374  	ODCLFUNC  // func f() or func (r) f()
   375  	ODCLFIELD // struct field, interface field, or func/method argument/return value.
   376  	ODCLCONST // const pi = 3.14
   377  	ODCLTYPE  // type Int int
   378  
   379  	ODELETE    // delete(Left, Right)
   380  	ODOT       // Left.Sym (Left is of struct type)
   381  	ODOTPTR    // Left.Sym (Left is of pointer to struct type)
   382  	ODOTMETH   // Left.Sym (Left is non-interface, Right is method name)
   383  	ODOTINTER  // Left.Sym (Left is interface, Right is method name)
   384  	OXDOT      // Left.Sym (before rewrite to one of the preceding)
   385  	ODOTTYPE   // Left.Right or Left.Type (.Right during parsing, .Type once resolved)
   386  	ODOTTYPE2  // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE)
   387  	OEQ        // Left == Right
   388  	ONE        // Left != Right
   389  	OLT        // Left < Right
   390  	OLE        // Left <= Right
   391  	OGE        // Left >= Right
   392  	OGT        // Left > Right
   393  	OIND       // *Left
   394  	OINDEX     // Left[Right] (index of array or slice)
   395  	OINDEXMAP  // Left[Right] (index of map)
   396  	OKEY       // Left:Right (key:value in struct/array/map literal, or slice index pair)
   397  	OIDATA     // data word of an interface value in Left; TODO: move next to OITAB once it is easier to regenerate the binary blob in builtin.go (issues 15835, 15839)
   398  	OLEN       // len(Left)
   399  	OMAKE      // make(List) (before type checking converts to one of the following)
   400  	OMAKECHAN  // make(Type, Left) (type is chan)
   401  	OMAKEMAP   // make(Type, Left) (type is map)
   402  	OMAKESLICE // make(Type, Left, Right) (type is slice)
   403  	OMUL       // Left * Right
   404  	ODIV       // Left / Right
   405  	OMOD       // Left % Right
   406  	OLSH       // Left << Right
   407  	ORSH       // Left >> Right
   408  	OAND       // Left & Right
   409  	OANDNOT    // Left &^ Right
   410  	ONEW       // new(Left)
   411  	ONOT       // !Left
   412  	OCOM       // ^Left
   413  	OPLUS      // +Left
   414  	OMINUS     // -Left
   415  	OOROR      // Left || Right
   416  	OPANIC     // panic(Left)
   417  	OPRINT     // print(List)
   418  	OPRINTN    // println(List)
   419  	OPAREN     // (Left)
   420  	OSEND      // Left <- Right
   421  	OSLICE     // Left[Right.Left : Right.Right] (Left is untypechecked or slice; Right.Op==OKEY)
   422  	OSLICEARR  // Left[Right.Left : Right.Right] (Left is array)
   423  	OSLICESTR  // Left[Right.Left : Right.Right] (Left is string)
   424  	OSLICE3    // Left[R.Left : R.R.Left : R.R.R] (R=Right; Left is untypedchecked or slice; R.Op and R.R.Op==OKEY)
   425  	OSLICE3ARR // Left[R.Left : R.R.Left : R.R.R] (R=Right; Left is array; R.Op and R.R.Op==OKEY)
   426  	ORECOVER   // recover()
   427  	ORECV      // <-Left
   428  	ORUNESTR   // Type(Left) (Type is string, Left is rune)
   429  	OSELRECV   // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV)
   430  	OSELRECV2  // List = <-Right.Left: (apperas as .Left of OCASE; count(List) == 2, Right.Op == ORECV)
   431  	OIOTA      // iota
   432  	OREAL      // real(Left)
   433  	OIMAG      // imag(Left)
   434  	OCOMPLEX   // complex(Left, Right)
   435  
   436  	// statements
   437  	OBLOCK    // { List } (block of code)
   438  	OBREAK    // break
   439  	OCASE     // case Left: Nbody (select case after processing; Left==nil means default)
   440  	OXCASE    // case List: Nbody (select case before processing; List==nil means default)
   441  	OCONTINUE // continue
   442  	ODEFER    // defer Left (Left must be call)
   443  	OEMPTY    // no-op (empty statement)
   444  	OFALL     // fallthrough (after processing)
   445  	OXFALL    // fallthrough (before processing)
   446  	OFOR      // for Ninit; Left; Right { Nbody }
   447  	OGOTO     // goto Left
   448  	OIF       // if Ninit; Left { Nbody } else { Rlist }
   449  	OLABEL    // Left:
   450  	OPROC     // go Left (Left must be call)
   451  	ORANGE    // for List = range Right { Nbody }
   452  	ORETURN   // return List
   453  	OSELECT   // select { List } (List is list of OXCASE or OCASE)
   454  	OSWITCH   // switch Ninit; Left { List } (List is a list of OXCASE or OCASE)
   455  	OTYPESW   // List = Left.(type) (appears as .Left of OSWITCH)
   456  
   457  	// types
   458  	OTCHAN   // chan int
   459  	OTMAP    // map[string]int
   460  	OTSTRUCT // struct{}
   461  	OTINTER  // interface{}
   462  	OTFUNC   // func()
   463  	OTARRAY  // []int, [8]int, [N]int or [...]int
   464  
   465  	// misc
   466  	ODDD        // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}.
   467  	ODDDARG     // func f(args ...int), introduced by escape analysis.
   468  	OINLCALL    // intermediary representation of an inlined call.
   469  	OEFACE      // itable and data words of an empty-interface value.
   470  	OITAB       // itable word of an interface value.
   471  	OSPTR       // base pointer of a slice or string.
   472  	OCLOSUREVAR // variable reference at beginning of closure function
   473  	OCFUNC      // reference to c function pointer (not go func value)
   474  	OCHECKNIL   // emit code to ensure pointer/interface not nil
   475  	OVARKILL    // variable is dead
   476  	OVARLIVE    // variable is alive
   477  
   478  	// thearch-specific registers
   479  	OREGISTER // a register, such as AX.
   480  	OINDREG   // offset plus indirect of a register, such as 8(SP).
   481  
   482  	// arch-specific opcodes
   483  	OCMP    // compare: ACMP.
   484  	ODEC    // decrement: ADEC.
   485  	OINC    // increment: AINC.
   486  	OEXTEND // extend: ACWD/ACDQ/ACQO.
   487  	OHMUL   // high mul: AMUL/AIMUL for unsigned/signed (OMUL uses AIMUL for both).
   488  	OLROT   // left rotate: AROL.
   489  	ORROTC  // right rotate-carry: ARCR.
   490  	ORETJMP // return to other function
   491  	OPS     // compare parity set (for x86 NaN check)
   492  	OPC     // compare parity clear (for x86 NaN check)
   493  	OSQRT   // sqrt(float64), on systems that have hw support
   494  	OGETG   // runtime.getg() (read g pointer)
   495  
   496  	OEND
   497  )
   498  
   499  // Nodes is a pointer to a slice of *Node.
   500  // For fields that are not used in most nodes, this is used instead of
   501  // a slice to save space.
   502  type Nodes struct{ slice *[]*Node }
   503  
   504  // Slice returns the entries in Nodes as a slice.
   505  // Changes to the slice entries (as in s[i] = n) will be reflected in
   506  // the Nodes.
   507  func (n Nodes) Slice() []*Node {
   508  	if n.slice == nil {
   509  		return nil
   510  	}
   511  	return *n.slice
   512  }
   513  
   514  // Len returns the number of entries in Nodes.
   515  func (n Nodes) Len() int {
   516  	if n.slice == nil {
   517  		return 0
   518  	}
   519  	return len(*n.slice)
   520  }
   521  
   522  // Index returns the i'th element of Nodes.
   523  // It panics if n does not have at least i+1 elements.
   524  func (n Nodes) Index(i int) *Node {
   525  	return (*n.slice)[i]
   526  }
   527  
   528  // First returns the first element of Nodes (same as n.Index(0)).
   529  // It panics if n has no elements.
   530  func (n Nodes) First() *Node {
   531  	return (*n.slice)[0]
   532  }
   533  
   534  // Second returns the second element of Nodes (same as n.Index(1)).
   535  // It panics if n has fewer than two elements.
   536  func (n Nodes) Second() *Node {
   537  	return (*n.slice)[1]
   538  }
   539  
   540  // Set sets n to a slice.
   541  // This takes ownership of the slice.
   542  func (n *Nodes) Set(s []*Node) {
   543  	if len(s) == 0 {
   544  		n.slice = nil
   545  	} else {
   546  		// Copy s and take address of t rather than s to avoid
   547  		// allocation in the case where len(s) == 0 (which is
   548  		// over 3x more common, dynamically, for make.bash).
   549  		t := s
   550  		n.slice = &t
   551  	}
   552  }
   553  
   554  // Set1 sets n to a slice containing a single node.
   555  func (n *Nodes) Set1(node *Node) {
   556  	n.slice = &[]*Node{node}
   557  }
   558  
   559  // Set2 sets n to a slice containing two nodes.
   560  func (n *Nodes) Set2(n1, n2 *Node) {
   561  	n.slice = &[]*Node{n1, n2}
   562  }
   563  
   564  // MoveNodes sets n to the contents of n2, then clears n2.
   565  func (n *Nodes) MoveNodes(n2 *Nodes) {
   566  	n.slice = n2.slice
   567  	n2.slice = nil
   568  }
   569  
   570  // SetIndex sets the i'th element of Nodes to node.
   571  // It panics if n does not have at least i+1 elements.
   572  func (n Nodes) SetIndex(i int, node *Node) {
   573  	(*n.slice)[i] = node
   574  }
   575  
   576  // Addr returns the address of the i'th element of Nodes.
   577  // It panics if n does not have at least i+1 elements.
   578  func (n Nodes) Addr(i int) **Node {
   579  	return &(*n.slice)[i]
   580  }
   581  
   582  // Append appends entries to Nodes.
   583  // If a slice is passed in, this will take ownership of it.
   584  func (n *Nodes) Append(a ...*Node) {
   585  	if n.slice == nil {
   586  		if len(a) > 0 {
   587  			n.slice = &a
   588  		}
   589  	} else {
   590  		*n.slice = append(*n.slice, a...)
   591  	}
   592  }
   593  
   594  // AppendNodes appends the contents of *n2 to n, then clears n2.
   595  func (n *Nodes) AppendNodes(n2 *Nodes) {
   596  	switch {
   597  	case n2.slice == nil:
   598  	case n.slice == nil:
   599  		n.slice = n2.slice
   600  	default:
   601  		*n.slice = append(*n.slice, *n2.slice...)
   602  	}
   603  	n2.slice = nil
   604  }