github.com/euank/go@v0.0.0-20160829210321-495514729181/src/cmd/compile/internal/ssa/schedule.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package ssa
     6  
     7  import "container/heap"
     8  
     9  const (
    10  	ScorePhi = iota // towards top of block
    11  	ScoreReadTuple
    12  	ScoreVarDef
    13  	ScoreMemory
    14  	ScoreDefault
    15  	ScoreFlags
    16  	ScoreControl // towards bottom of block
    17  )
    18  
    19  type ValHeap struct {
    20  	a     []*Value
    21  	score []int8
    22  }
    23  
    24  func (h ValHeap) Len() int      { return len(h.a) }
    25  func (h ValHeap) Swap(i, j int) { a := h.a; a[i], a[j] = a[j], a[i] }
    26  
    27  func (h *ValHeap) Push(x interface{}) {
    28  	// Push and Pop use pointer receivers because they modify the slice's length,
    29  	// not just its contents.
    30  	v := x.(*Value)
    31  	h.a = append(h.a, v)
    32  }
    33  func (h *ValHeap) Pop() interface{} {
    34  	old := h.a
    35  	n := len(old)
    36  	x := old[n-1]
    37  	h.a = old[0 : n-1]
    38  	return x
    39  }
    40  func (h ValHeap) Less(i, j int) bool {
    41  	x := h.a[i]
    42  	y := h.a[j]
    43  	sx := h.score[x.ID]
    44  	sy := h.score[y.ID]
    45  	if c := sx - sy; c != 0 {
    46  		return c > 0 // higher score comes later.
    47  	}
    48  	if x.Line != y.Line { // Favor in-order line stepping
    49  		return x.Line > y.Line
    50  	}
    51  	if x.Op != OpPhi {
    52  		if c := len(x.Args) - len(y.Args); c != 0 {
    53  			return c < 0 // smaller args comes later
    54  		}
    55  	}
    56  	return x.ID > y.ID
    57  }
    58  
    59  // Schedule the Values in each Block. After this phase returns, the
    60  // order of b.Values matters and is the order in which those values
    61  // will appear in the assembly output. For now it generates a
    62  // reasonable valid schedule using a priority queue. TODO(khr):
    63  // schedule smarter.
    64  func schedule(f *Func) {
    65  	// For each value, the number of times it is used in the block
    66  	// by values that have not been scheduled yet.
    67  	uses := make([]int32, f.NumValues())
    68  
    69  	// reusable priority queue
    70  	priq := new(ValHeap)
    71  
    72  	// "priority" for a value
    73  	score := make([]int8, f.NumValues())
    74  
    75  	// scheduling order. We queue values in this list in reverse order.
    76  	var order []*Value
    77  
    78  	// maps mem values to the next live memory value
    79  	nextMem := make([]*Value, f.NumValues())
    80  	// additional pretend arguments for each Value. Used to enforce load/store ordering.
    81  	additionalArgs := make([][]*Value, f.NumValues())
    82  
    83  	for _, b := range f.Blocks {
    84  		// Compute score. Larger numbers are scheduled closer to the end of the block.
    85  		for _, v := range b.Values {
    86  			switch {
    87  			case v.Op == OpAMD64LoweredGetClosurePtr || v.Op == OpPPC64LoweredGetClosurePtr || v.Op == OpARMLoweredGetClosurePtr || v.Op == OpARM64LoweredGetClosurePtr || v.Op == Op386LoweredGetClosurePtr || v.Op == OpMIPS64LoweredGetClosurePtr:
    88  				// We also score GetLoweredClosurePtr as early as possible to ensure that the
    89  				// context register is not stomped. GetLoweredClosurePtr should only appear
    90  				// in the entry block where there are no phi functions, so there is no
    91  				// conflict or ambiguity here.
    92  				if b != f.Entry {
    93  					f.Fatalf("LoweredGetClosurePtr appeared outside of entry block, b=%s", b.String())
    94  				}
    95  				score[v.ID] = ScorePhi
    96  			case v.Op == OpPhi:
    97  				// We want all the phis first.
    98  				score[v.ID] = ScorePhi
    99  			case v.Op == OpVarDef:
   100  				// We want all the vardefs next.
   101  				score[v.ID] = ScoreVarDef
   102  			case v.Type.IsMemory():
   103  				// Schedule stores as early as possible. This tends to
   104  				// reduce register pressure. It also helps make sure
   105  				// VARDEF ops are scheduled before the corresponding LEA.
   106  				score[v.ID] = ScoreMemory
   107  			case v.Op == OpSelect0 || v.Op == OpSelect1:
   108  				// Schedule the pseudo-op of reading part of a tuple
   109  				// immediately after the tuple-generating op, since
   110  				// this value is already live. This also removes its
   111  				// false dependency on the other part of the tuple.
   112  				// Also ensures tuple is never spilled.
   113  				score[v.ID] = ScoreReadTuple
   114  			case v.Type.IsFlags() || v.Type.IsTuple():
   115  				// Schedule flag register generation as late as possible.
   116  				// This makes sure that we only have one live flags
   117  				// value at a time.
   118  				score[v.ID] = ScoreFlags
   119  			default:
   120  				score[v.ID] = ScoreDefault
   121  			}
   122  		}
   123  	}
   124  
   125  	for _, b := range f.Blocks {
   126  		// Find store chain for block.
   127  		// Store chains for different blocks overwrite each other, so
   128  		// the calculated store chain is good only for this block.
   129  		for _, v := range b.Values {
   130  			if v.Op != OpPhi && v.Type.IsMemory() {
   131  				for _, w := range v.Args {
   132  					if w.Type.IsMemory() {
   133  						nextMem[w.ID] = v
   134  					}
   135  				}
   136  			}
   137  		}
   138  
   139  		// Compute uses.
   140  		for _, v := range b.Values {
   141  			if v.Op == OpPhi {
   142  				// If a value is used by a phi, it does not induce
   143  				// a scheduling edge because that use is from the
   144  				// previous iteration.
   145  				continue
   146  			}
   147  			for _, w := range v.Args {
   148  				if w.Block == b {
   149  					uses[w.ID]++
   150  				}
   151  				// Any load must come before the following store.
   152  				if v.Type.IsMemory() || !w.Type.IsMemory() {
   153  					continue // not a load
   154  				}
   155  				s := nextMem[w.ID]
   156  				if s == nil || s.Block != b {
   157  					continue
   158  				}
   159  				additionalArgs[s.ID] = append(additionalArgs[s.ID], v)
   160  				uses[v.ID]++
   161  			}
   162  		}
   163  
   164  		if b.Control != nil && b.Control.Op != OpPhi {
   165  			// Force the control value to be scheduled at the end,
   166  			// unless it is a phi value (which must be first).
   167  			score[b.Control.ID] = ScoreControl
   168  
   169  			// Schedule values dependent on the control value at the end.
   170  			// This reduces the number of register spills. We don't find
   171  			// all values that depend on the control, just values with a
   172  			// direct dependency. This is cheaper and in testing there
   173  			// was no difference in the number of spills.
   174  			for _, v := range b.Values {
   175  				if v.Op != OpPhi {
   176  					for _, a := range v.Args {
   177  						if a == b.Control {
   178  							score[v.ID] = ScoreControl
   179  						}
   180  					}
   181  				}
   182  			}
   183  		}
   184  
   185  		// To put things into a priority queue
   186  		// The values that should come last are least.
   187  		priq.score = score
   188  		priq.a = priq.a[:0]
   189  
   190  		// Initialize priority queue with schedulable values.
   191  		for _, v := range b.Values {
   192  			if uses[v.ID] == 0 {
   193  				heap.Push(priq, v)
   194  			}
   195  		}
   196  
   197  		// Schedule highest priority value, update use counts, repeat.
   198  		order = order[:0]
   199  		tuples := make(map[ID][]*Value)
   200  		for {
   201  			// Find highest priority schedulable value.
   202  			// Note that schedule is assembled backwards.
   203  
   204  			if priq.Len() == 0 {
   205  				break
   206  			}
   207  
   208  			v := heap.Pop(priq).(*Value)
   209  
   210  			// Add it to the schedule.
   211  			// Do not emit tuple-reading ops until we're ready to emit the tuple-generating op.
   212  			//TODO: maybe remove ReadTuple score above, if it does not help on performance
   213  			switch {
   214  			case v.Op == OpSelect0:
   215  				if tuples[v.Args[0].ID] == nil {
   216  					tuples[v.Args[0].ID] = make([]*Value, 2)
   217  				}
   218  				tuples[v.Args[0].ID][0] = v
   219  			case v.Op == OpSelect1:
   220  				if tuples[v.Args[0].ID] == nil {
   221  					tuples[v.Args[0].ID] = make([]*Value, 2)
   222  				}
   223  				tuples[v.Args[0].ID][1] = v
   224  			case v.Type.IsTuple() && tuples[v.ID] != nil:
   225  				if tuples[v.ID][1] != nil {
   226  					order = append(order, tuples[v.ID][1])
   227  				}
   228  				if tuples[v.ID][0] != nil {
   229  					order = append(order, tuples[v.ID][0])
   230  				}
   231  				delete(tuples, v.ID)
   232  				fallthrough
   233  			default:
   234  				order = append(order, v)
   235  			}
   236  
   237  			// Update use counts of arguments.
   238  			for _, w := range v.Args {
   239  				if w.Block != b {
   240  					continue
   241  				}
   242  				uses[w.ID]--
   243  				if uses[w.ID] == 0 {
   244  					// All uses scheduled, w is now schedulable.
   245  					heap.Push(priq, w)
   246  				}
   247  			}
   248  			for _, w := range additionalArgs[v.ID] {
   249  				uses[w.ID]--
   250  				if uses[w.ID] == 0 {
   251  					// All uses scheduled, w is now schedulable.
   252  					heap.Push(priq, w)
   253  				}
   254  			}
   255  		}
   256  		if len(order) != len(b.Values) {
   257  			f.Fatalf("schedule does not include all values")
   258  		}
   259  		for i := 0; i < len(b.Values); i++ {
   260  			b.Values[i] = order[len(b.Values)-1-i]
   261  		}
   262  	}
   263  
   264  	f.scheduled = true
   265  }