github.com/euank/go@v0.0.0-20160829210321-495514729181/src/cmd/internal/obj/s390x/asmz.go (about)

     1  // Based on cmd/internal/obj/ppc64/asm9.go.
     2  //
     3  //    Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     4  //    Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     5  //    Portions Copyright © 1997-1999 Vita Nuova Limited
     6  //    Portions Copyright © 2000-2008 Vita Nuova Holdings Limited (www.vitanuova.com)
     7  //    Portions Copyright © 2004,2006 Bruce Ellis
     8  //    Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
     9  //    Revisions Copyright © 2000-2008 Lucent Technologies Inc. and others
    10  //    Portions Copyright © 2009 The Go Authors. All rights reserved.
    11  //
    12  // Permission is hereby granted, free of charge, to any person obtaining a copy
    13  // of this software and associated documentation files (the "Software"), to deal
    14  // in the Software without restriction, including without limitation the rights
    15  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    16  // copies of the Software, and to permit persons to whom the Software is
    17  // furnished to do so, subject to the following conditions:
    18  //
    19  // The above copyright notice and this permission notice shall be included in
    20  // all copies or substantial portions of the Software.
    21  //
    22  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    23  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    24  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    25  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    26  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    27  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    28  // THE SOFTWARE.
    29  
    30  package s390x
    31  
    32  import (
    33  	"cmd/internal/obj"
    34  	"log"
    35  	"math"
    36  	"sort"
    37  )
    38  
    39  // instruction layout.
    40  const (
    41  	FuncAlign = 16
    42  )
    43  
    44  type Optab struct {
    45  	as    obj.As // opcode
    46  	a1    uint8  // From
    47  	a2    uint8  // Reg
    48  	a3    uint8  // From3
    49  	a4    uint8  // To
    50  	type_ int8
    51  	param int16 // REGSP for auto variables
    52  }
    53  
    54  var optab = []Optab{
    55  	// instruction,  From,   Reg,    From3,  To, type, param
    56  	Optab{obj.ATEXT, C_ADDR, C_NONE, C_NONE, C_TEXTSIZE, 0, 0},
    57  	Optab{obj.ATEXT, C_ADDR, C_NONE, C_LCON, C_TEXTSIZE, 0, 0},
    58  
    59  	// move register
    60  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    61  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    62  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    63  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    64  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    65  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_FREG, 1, 0},
    66  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_REG, 1, 0},
    67  
    68  	// load constant
    69  	Optab{AMOVD, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    70  	Optab{AMOVW, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    71  	Optab{AMOVWZ, C_LACON, C_NONE, C_NONE, C_REG, 26, REGSP},
    72  	Optab{AMOVD, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    73  	Optab{AMOVW, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    74  	Optab{AMOVWZ, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    75  	Optab{AMOVB, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    76  	Optab{AMOVBZ, C_DCON, C_NONE, C_NONE, C_REG, 3, 0},
    77  
    78  	// store constant
    79  	Optab{AMOVD, C_SYMADDR, C_NONE, C_NONE, C_ADDR, 73, 0},
    80  	Optab{AMOVD, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    81  	Optab{AMOVW, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    82  	Optab{AMOVWZ, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    83  	Optab{AMOVBZ, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    84  	Optab{AMOVB, C_LCON, C_NONE, C_NONE, C_ADDR, 73, 0},
    85  	Optab{AMOVD, C_SYMADDR, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    86  	Optab{AMOVD, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    87  	Optab{AMOVW, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    88  	Optab{AMOVWZ, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    89  	Optab{AMOVB, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    90  	Optab{AMOVBZ, C_LCON, C_NONE, C_NONE, C_LAUTO, 72, REGSP},
    91  	Optab{AMOVD, C_SYMADDR, C_NONE, C_NONE, C_LOREG, 72, 0},
    92  	Optab{AMOVD, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
    93  	Optab{AMOVW, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
    94  	Optab{AMOVWZ, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
    95  	Optab{AMOVB, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
    96  	Optab{AMOVBZ, C_LCON, C_NONE, C_NONE, C_LOREG, 72, 0},
    97  
    98  	// store
    99  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   100  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   101  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   102  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   103  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   104  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   105  	Optab{AMOVHBR, C_REG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   106  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   107  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   108  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   109  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   110  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   111  	Optab{AMOVDBR, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   112  	Optab{AMOVHBR, C_REG, C_NONE, C_NONE, C_LOREG, 35, 0},
   113  	Optab{AMOVD, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   114  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   115  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   116  	Optab{AMOVBZ, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   117  	Optab{AMOVB, C_REG, C_NONE, C_NONE, C_ADDR, 74, 0},
   118  
   119  	// load
   120  	Optab{AMOVD, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   121  	Optab{AMOVW, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   122  	Optab{AMOVWZ, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   123  	Optab{AMOVBZ, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   124  	Optab{AMOVB, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   125  	Optab{AMOVDBR, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   126  	Optab{AMOVHBR, C_LAUTO, C_NONE, C_NONE, C_REG, 36, REGSP},
   127  	Optab{AMOVD, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   128  	Optab{AMOVW, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   129  	Optab{AMOVWZ, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   130  	Optab{AMOVBZ, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   131  	Optab{AMOVB, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   132  	Optab{AMOVDBR, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   133  	Optab{AMOVHBR, C_LOREG, C_NONE, C_NONE, C_REG, 36, 0},
   134  	Optab{AMOVD, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   135  	Optab{AMOVW, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   136  	Optab{AMOVWZ, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   137  	Optab{AMOVBZ, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   138  	Optab{AMOVB, C_ADDR, C_NONE, C_NONE, C_REG, 75, 0},
   139  
   140  	// interlocked load and op
   141  	Optab{ALAAG, C_REG, C_REG, C_NONE, C_LOREG, 99, 0},
   142  
   143  	// integer arithmetic
   144  	Optab{AADD, C_REG, C_REG, C_NONE, C_REG, 2, 0},
   145  	Optab{AADD, C_REG, C_NONE, C_NONE, C_REG, 2, 0},
   146  	Optab{AADD, C_LCON, C_REG, C_NONE, C_REG, 22, 0},
   147  	Optab{AADD, C_LCON, C_NONE, C_NONE, C_REG, 22, 0},
   148  	Optab{AMULHD, C_REG, C_NONE, C_NONE, C_REG, 4, 0},
   149  	Optab{AMULHD, C_REG, C_REG, C_NONE, C_REG, 4, 0},
   150  	Optab{ASUBC, C_REG, C_REG, C_NONE, C_REG, 10, 0},
   151  	Optab{ASUBC, C_REG, C_NONE, C_NONE, C_REG, 10, 0},
   152  	Optab{ADIVW, C_REG, C_REG, C_NONE, C_REG, 2, 0},
   153  	Optab{ADIVW, C_REG, C_NONE, C_NONE, C_REG, 2, 0},
   154  	Optab{ASUB, C_REG, C_REG, C_NONE, C_REG, 10, 0},
   155  	Optab{ASUB, C_REG, C_NONE, C_NONE, C_REG, 10, 0},
   156  	Optab{AADDME, C_REG, C_NONE, C_NONE, C_REG, 47, 0},
   157  	Optab{ANEG, C_REG, C_NONE, C_NONE, C_REG, 47, 0},
   158  	Optab{ANEG, C_NONE, C_NONE, C_NONE, C_REG, 47, 0},
   159  
   160  	// integer logical
   161  	Optab{AAND, C_REG, C_REG, C_NONE, C_REG, 6, 0},
   162  	Optab{AAND, C_REG, C_NONE, C_NONE, C_REG, 6, 0},
   163  	Optab{AAND, C_LCON, C_NONE, C_NONE, C_REG, 23, 0},
   164  	Optab{AAND, C_LCON, C_REG, C_NONE, C_REG, 23, 0},
   165  	Optab{AOR, C_REG, C_REG, C_NONE, C_REG, 6, 0},
   166  	Optab{AOR, C_REG, C_NONE, C_NONE, C_REG, 6, 0},
   167  	Optab{AOR, C_LCON, C_NONE, C_NONE, C_REG, 23, 0},
   168  	Optab{AOR, C_LCON, C_REG, C_NONE, C_REG, 23, 0},
   169  	Optab{ASLD, C_REG, C_NONE, C_NONE, C_REG, 7, 0},
   170  	Optab{ASLD, C_REG, C_REG, C_NONE, C_REG, 7, 0},
   171  	Optab{ASLD, C_SCON, C_REG, C_NONE, C_REG, 7, 0},
   172  	Optab{ASLD, C_SCON, C_NONE, C_NONE, C_REG, 7, 0},
   173  
   174  	// compare and swap
   175  	Optab{ACSG, C_REG, C_REG, C_NONE, C_SOREG, 79, 0},
   176  
   177  	// floating point
   178  	Optab{AFADD, C_FREG, C_NONE, C_NONE, C_FREG, 2, 0},
   179  	Optab{AFADD, C_FREG, C_FREG, C_NONE, C_FREG, 2, 0},
   180  	Optab{AFABS, C_FREG, C_NONE, C_NONE, C_FREG, 33, 0},
   181  	Optab{AFABS, C_NONE, C_NONE, C_NONE, C_FREG, 33, 0},
   182  	Optab{AFMADD, C_FREG, C_FREG, C_FREG, C_FREG, 34, 0},
   183  	Optab{AFMUL, C_FREG, C_NONE, C_NONE, C_FREG, 32, 0},
   184  	Optab{AFMUL, C_FREG, C_FREG, C_NONE, C_FREG, 32, 0},
   185  	Optab{AFMOVD, C_LAUTO, C_NONE, C_NONE, C_FREG, 36, REGSP},
   186  	Optab{AFMOVD, C_LOREG, C_NONE, C_NONE, C_FREG, 36, 0},
   187  	Optab{AFMOVD, C_ADDR, C_NONE, C_NONE, C_FREG, 75, 0},
   188  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_LAUTO, 35, REGSP},
   189  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_LOREG, 35, 0},
   190  	Optab{AFMOVD, C_FREG, C_NONE, C_NONE, C_ADDR, 74, 0},
   191  	Optab{AFMOVD, C_ZCON, C_NONE, C_NONE, C_FREG, 67, 0},
   192  	Optab{ACEFBRA, C_REG, C_NONE, C_NONE, C_FREG, 82, 0},
   193  	Optab{ACFEBRA, C_FREG, C_NONE, C_NONE, C_REG, 83, 0},
   194  	Optab{AFIEBR, C_SCON, C_FREG, C_NONE, C_FREG, 48, 0},
   195  
   196  	// load symbol address (plus offset)
   197  	Optab{AMOVD, C_SYMADDR, C_NONE, C_NONE, C_REG, 19, 0},
   198  	Optab{AMOVD, C_GOTADDR, C_NONE, C_NONE, C_REG, 93, 0},
   199  	Optab{AMOVD, C_TLS_LE, C_NONE, C_NONE, C_REG, 94, 0},
   200  	Optab{AMOVD, C_TLS_IE, C_NONE, C_NONE, C_REG, 95, 0},
   201  
   202  	// system call
   203  	Optab{ASYSCALL, C_NONE, C_NONE, C_NONE, C_NONE, 5, 0},
   204  	Optab{ASYSCALL, C_SCON, C_NONE, C_NONE, C_NONE, 77, 0},
   205  
   206  	// branch
   207  	Optab{ABEQ, C_NONE, C_NONE, C_NONE, C_SBRA, 16, 0},
   208  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_LBRA, 11, 0},
   209  	Optab{ABC, C_SCON, C_REG, C_NONE, C_LBRA, 16, 0},
   210  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_REG, 18, 0},
   211  	Optab{ABR, C_REG, C_NONE, C_NONE, C_REG, 18, 0},
   212  	Optab{ABR, C_NONE, C_NONE, C_NONE, C_ZOREG, 15, 0},
   213  	Optab{ABC, C_NONE, C_NONE, C_NONE, C_ZOREG, 15, 0},
   214  	Optab{ACMPBEQ, C_REG, C_REG, C_NONE, C_SBRA, 89, 0},
   215  	Optab{ACMPBEQ, C_REG, C_NONE, C_ADDCON, C_SBRA, 90, 0},
   216  	Optab{ACMPBEQ, C_REG, C_NONE, C_SCON, C_SBRA, 90, 0},
   217  	Optab{ACMPUBEQ, C_REG, C_REG, C_NONE, C_SBRA, 89, 0},
   218  	Optab{ACMPUBEQ, C_REG, C_NONE, C_ANDCON, C_SBRA, 90, 0},
   219  
   220  	// compare
   221  	Optab{ACMP, C_REG, C_NONE, C_NONE, C_REG, 70, 0},
   222  	Optab{ACMP, C_REG, C_NONE, C_NONE, C_LCON, 71, 0},
   223  	Optab{ACMPU, C_REG, C_NONE, C_NONE, C_REG, 70, 0},
   224  	Optab{ACMPU, C_REG, C_NONE, C_NONE, C_LCON, 71, 0},
   225  	Optab{AFCMPO, C_FREG, C_NONE, C_NONE, C_FREG, 70, 0},
   226  	Optab{AFCMPO, C_FREG, C_REG, C_NONE, C_FREG, 70, 0},
   227  
   228  	// 32-bit access registers
   229  	Optab{AMOVW, C_AREG, C_NONE, C_NONE, C_REG, 68, 0},
   230  	Optab{AMOVWZ, C_AREG, C_NONE, C_NONE, C_REG, 68, 0},
   231  	Optab{AMOVW, C_REG, C_NONE, C_NONE, C_AREG, 69, 0},
   232  	Optab{AMOVWZ, C_REG, C_NONE, C_NONE, C_AREG, 69, 0},
   233  
   234  	// macros
   235  	Optab{ACLEAR, C_LCON, C_NONE, C_NONE, C_LOREG, 96, 0},
   236  	Optab{ACLEAR, C_LCON, C_NONE, C_NONE, C_LAUTO, 96, REGSP},
   237  
   238  	// load/store multiple
   239  	Optab{ASTMG, C_REG, C_REG, C_NONE, C_LOREG, 97, 0},
   240  	Optab{ASTMG, C_REG, C_REG, C_NONE, C_LAUTO, 97, REGSP},
   241  	Optab{ALMG, C_LOREG, C_REG, C_NONE, C_REG, 98, 0},
   242  	Optab{ALMG, C_LAUTO, C_REG, C_NONE, C_REG, 98, REGSP},
   243  
   244  	// bytes
   245  	Optab{ABYTE, C_SCON, C_NONE, C_NONE, C_NONE, 40, 0},
   246  	Optab{AWORD, C_LCON, C_NONE, C_NONE, C_NONE, 40, 0},
   247  	Optab{ADWORD, C_LCON, C_NONE, C_NONE, C_NONE, 31, 0},
   248  	Optab{ADWORD, C_DCON, C_NONE, C_NONE, C_NONE, 31, 0},
   249  
   250  	// fast synchronization
   251  	Optab{ASYNC, C_NONE, C_NONE, C_NONE, C_NONE, 81, 0},
   252  
   253  	// store clock
   254  	Optab{ASTCK, C_NONE, C_NONE, C_NONE, C_SAUTO, 88, REGSP},
   255  	Optab{ASTCK, C_NONE, C_NONE, C_NONE, C_SOREG, 88, 0},
   256  
   257  	// storage and storage
   258  	Optab{AMVC, C_LOREG, C_NONE, C_SCON, C_LOREG, 84, 0},
   259  	Optab{AMVC, C_LOREG, C_NONE, C_SCON, C_LAUTO, 84, REGSP},
   260  	Optab{AMVC, C_LAUTO, C_NONE, C_SCON, C_LAUTO, 84, REGSP},
   261  
   262  	// address
   263  	Optab{ALARL, C_LCON, C_NONE, C_NONE, C_REG, 85, 0},
   264  	Optab{ALARL, C_SYMADDR, C_NONE, C_NONE, C_REG, 85, 0},
   265  	Optab{ALA, C_SOREG, C_NONE, C_NONE, C_REG, 86, 0},
   266  	Optab{ALA, C_SAUTO, C_NONE, C_NONE, C_REG, 86, REGSP},
   267  	Optab{AEXRL, C_SYMADDR, C_NONE, C_NONE, C_REG, 87, 0},
   268  
   269  	// misc
   270  	Optab{obj.AUNDEF, C_NONE, C_NONE, C_NONE, C_NONE, 78, 0},
   271  	Optab{obj.APCDATA, C_LCON, C_NONE, C_NONE, C_LCON, 0, 0},
   272  	Optab{obj.AFUNCDATA, C_SCON, C_NONE, C_NONE, C_ADDR, 0, 0},
   273  	Optab{obj.ANOP, C_NONE, C_NONE, C_NONE, C_NONE, 0, 0},
   274  	Optab{obj.ANOP, C_SAUTO, C_NONE, C_NONE, C_NONE, 0, 0},
   275  
   276  	// vector instructions
   277  
   278  	// VRX store
   279  	Optab{AVST, C_VREG, C_NONE, C_NONE, C_SOREG, 100, 0},
   280  	Optab{AVST, C_VREG, C_NONE, C_NONE, C_SAUTO, 100, REGSP},
   281  	Optab{AVSTEG, C_VREG, C_NONE, C_SCON, C_SOREG, 100, 0},
   282  	Optab{AVSTEG, C_VREG, C_NONE, C_SCON, C_SAUTO, 100, REGSP},
   283  
   284  	// VRX load
   285  	Optab{AVL, C_SOREG, C_NONE, C_NONE, C_VREG, 101, 0},
   286  	Optab{AVL, C_SAUTO, C_NONE, C_NONE, C_VREG, 101, REGSP},
   287  	Optab{AVLEG, C_SOREG, C_NONE, C_SCON, C_VREG, 101, 0},
   288  	Optab{AVLEG, C_SAUTO, C_NONE, C_SCON, C_VREG, 101, REGSP},
   289  
   290  	// VRV scatter
   291  	Optab{AVSCEG, C_VREG, C_NONE, C_SCON, C_SOREG, 102, 0},
   292  	Optab{AVSCEG, C_VREG, C_NONE, C_SCON, C_SAUTO, 102, REGSP},
   293  
   294  	// VRV gather
   295  	Optab{AVGEG, C_SOREG, C_NONE, C_SCON, C_VREG, 103, 0},
   296  	Optab{AVGEG, C_SAUTO, C_NONE, C_SCON, C_VREG, 103, REGSP},
   297  
   298  	// VRS element shift/rotate and load gr to/from vr element
   299  	Optab{AVESLG, C_SCON, C_VREG, C_NONE, C_VREG, 104, 0},
   300  	Optab{AVESLG, C_REG, C_VREG, C_NONE, C_VREG, 104, 0},
   301  	Optab{AVESLG, C_SCON, C_NONE, C_NONE, C_VREG, 104, 0},
   302  	Optab{AVESLG, C_REG, C_NONE, C_NONE, C_VREG, 104, 0},
   303  	Optab{AVLGVG, C_SCON, C_VREG, C_NONE, C_REG, 104, 0},
   304  	Optab{AVLGVG, C_REG, C_VREG, C_NONE, C_REG, 104, 0},
   305  	Optab{AVLVGG, C_SCON, C_REG, C_NONE, C_VREG, 104, 0},
   306  	Optab{AVLVGG, C_REG, C_REG, C_NONE, C_VREG, 104, 0},
   307  
   308  	// VRS store multiple
   309  	Optab{AVSTM, C_VREG, C_VREG, C_NONE, C_SOREG, 105, 0},
   310  	Optab{AVSTM, C_VREG, C_VREG, C_NONE, C_SAUTO, 105, REGSP},
   311  
   312  	// VRS load multiple
   313  	Optab{AVLM, C_SOREG, C_VREG, C_NONE, C_VREG, 106, 0},
   314  	Optab{AVLM, C_SAUTO, C_VREG, C_NONE, C_VREG, 106, REGSP},
   315  
   316  	// VRS store with length
   317  	Optab{AVSTL, C_VREG, C_NONE, C_REG, C_SOREG, 107, 0},
   318  	Optab{AVSTL, C_VREG, C_NONE, C_REG, C_SAUTO, 107, REGSP},
   319  
   320  	// VRS load with length
   321  	Optab{AVLL, C_SOREG, C_NONE, C_REG, C_VREG, 108, 0},
   322  	Optab{AVLL, C_SAUTO, C_NONE, C_REG, C_VREG, 108, REGSP},
   323  
   324  	// VRI-a
   325  	Optab{AVGBM, C_ANDCON, C_NONE, C_NONE, C_VREG, 109, 0},
   326  	Optab{AVZERO, C_NONE, C_NONE, C_NONE, C_VREG, 109, 0},
   327  	Optab{AVREPIG, C_ADDCON, C_NONE, C_NONE, C_VREG, 109, 0},
   328  	Optab{AVREPIG, C_SCON, C_NONE, C_NONE, C_VREG, 109, 0},
   329  	Optab{AVLEIG, C_ADDCON, C_NONE, C_SCON, C_VREG, 109, 0},
   330  	Optab{AVLEIG, C_SCON, C_NONE, C_SCON, C_VREG, 109, 0},
   331  
   332  	// VRI-b generate mask
   333  	Optab{AVGMG, C_SCON, C_NONE, C_SCON, C_VREG, 110, 0},
   334  
   335  	// VRI-c replicate
   336  	Optab{AVREPG, C_UCON, C_VREG, C_NONE, C_VREG, 111, 0},
   337  
   338  	// VRI-d element rotate and insert under mask and
   339  	// shift left double by byte
   340  	Optab{AVERIMG, C_VREG, C_VREG, C_SCON, C_VREG, 112, 0},
   341  	Optab{AVSLDB, C_VREG, C_VREG, C_SCON, C_VREG, 112, 0},
   342  
   343  	// VRI-d fp test data class immediate
   344  	Optab{AVFTCIDB, C_SCON, C_VREG, C_NONE, C_VREG, 113, 0},
   345  
   346  	// VRR-a load reg
   347  	Optab{AVLR, C_VREG, C_NONE, C_NONE, C_VREG, 114, 0},
   348  
   349  	// VRR-a compare
   350  	Optab{AVECG, C_VREG, C_NONE, C_NONE, C_VREG, 115, 0},
   351  
   352  	// VRR-b
   353  	Optab{AVCEQG, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   354  	Optab{AVFAEF, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   355  	Optab{AVPKSG, C_VREG, C_VREG, C_NONE, C_VREG, 117, 0},
   356  
   357  	// VRR-c
   358  	Optab{AVAQ, C_VREG, C_VREG, C_NONE, C_VREG, 118, 0},
   359  	Optab{AVAQ, C_VREG, C_NONE, C_NONE, C_VREG, 118, 0},
   360  	Optab{AVNOT, C_VREG, C_NONE, C_NONE, C_VREG, 118, 0},
   361  	Optab{AVPDI, C_VREG, C_VREG, C_SCON, C_VREG, 123, 0},
   362  
   363  	// VRR-c shifts
   364  	Optab{AVERLLVG, C_VREG, C_VREG, C_NONE, C_VREG, 119, 0},
   365  	Optab{AVERLLVG, C_VREG, C_NONE, C_NONE, C_VREG, 119, 0},
   366  
   367  	// VRR-d
   368  	//             2       3       1       4
   369  	Optab{AVACQ, C_VREG, C_VREG, C_VREG, C_VREG, 120, 0},
   370  
   371  	// VRR-e
   372  	Optab{AVSEL, C_VREG, C_VREG, C_VREG, C_VREG, 121, 0},
   373  
   374  	// VRR-f
   375  	Optab{AVLVGP, C_REG, C_REG, C_NONE, C_VREG, 122, 0},
   376  }
   377  
   378  var oprange [ALAST & obj.AMask][]Optab
   379  
   380  var xcmp [C_NCLASS][C_NCLASS]bool
   381  
   382  func spanz(ctxt *obj.Link, cursym *obj.LSym) {
   383  	p := cursym.Text
   384  	if p == nil || p.Link == nil { // handle external functions and ELF section symbols
   385  		return
   386  	}
   387  	ctxt.Cursym = cursym
   388  	ctxt.Autosize = int32(p.To.Offset)
   389  
   390  	if oprange[AANDN&obj.AMask] == nil {
   391  		buildop(ctxt)
   392  	}
   393  
   394  	buffer := make([]byte, 0)
   395  	changed := true
   396  	loop := 0
   397  	for changed {
   398  		if loop > 10 {
   399  			ctxt.Diag("stuck in spanz loop")
   400  			break
   401  		}
   402  		changed = false
   403  		buffer = buffer[:0]
   404  		ctxt.Cursym.R = make([]obj.Reloc, 0)
   405  		for p := cursym.Text; p != nil; p = p.Link {
   406  			pc := int64(len(buffer))
   407  			if pc != p.Pc {
   408  				changed = true
   409  			}
   410  			p.Pc = pc
   411  			ctxt.Pc = p.Pc
   412  			ctxt.Curp = p
   413  			asmout(ctxt, &buffer)
   414  			if pc == int64(len(buffer)) {
   415  				switch p.As {
   416  				case obj.ANOP, obj.AFUNCDATA, obj.APCDATA, obj.ATEXT:
   417  					// ok
   418  				default:
   419  					ctxt.Diag("zero-width instruction\n%v", p)
   420  				}
   421  			}
   422  		}
   423  		loop++
   424  	}
   425  
   426  	cursym.Size = int64(len(buffer))
   427  	if cursym.Size%FuncAlign != 0 {
   428  		cursym.Size += FuncAlign - (cursym.Size % FuncAlign)
   429  	}
   430  	cursym.Grow(cursym.Size)
   431  	copy(cursym.P, buffer)
   432  }
   433  
   434  func isint32(v int64) bool {
   435  	return int64(int32(v)) == v
   436  }
   437  
   438  func isuint32(v uint64) bool {
   439  	return uint64(uint32(v)) == v
   440  }
   441  
   442  func aclass(ctxt *obj.Link, a *obj.Addr) int {
   443  	switch a.Type {
   444  	case obj.TYPE_NONE:
   445  		return C_NONE
   446  
   447  	case obj.TYPE_REG:
   448  		if REG_R0 <= a.Reg && a.Reg <= REG_R15 {
   449  			return C_REG
   450  		}
   451  		if REG_F0 <= a.Reg && a.Reg <= REG_F15 {
   452  			return C_FREG
   453  		}
   454  		if REG_AR0 <= a.Reg && a.Reg <= REG_AR15 {
   455  			return C_AREG
   456  		}
   457  		if REG_V0 <= a.Reg && a.Reg <= REG_V31 {
   458  			return C_VREG
   459  		}
   460  		return C_GOK
   461  
   462  	case obj.TYPE_MEM:
   463  		switch a.Name {
   464  		case obj.NAME_EXTERN,
   465  			obj.NAME_STATIC:
   466  			if a.Sym == nil {
   467  				// must have a symbol
   468  				break
   469  			}
   470  			ctxt.Instoffset = a.Offset
   471  			if a.Sym.Type == obj.STLSBSS {
   472  				if ctxt.Flag_shared {
   473  					return C_TLS_IE // initial exec model
   474  				}
   475  				return C_TLS_LE // local exec model
   476  			}
   477  			return C_ADDR
   478  
   479  		case obj.NAME_GOTREF:
   480  			return C_GOTADDR
   481  
   482  		case obj.NAME_AUTO:
   483  			ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset
   484  			if ctxt.Instoffset >= -BIG && ctxt.Instoffset < BIG {
   485  				return C_SAUTO
   486  			}
   487  			return C_LAUTO
   488  
   489  		case obj.NAME_PARAM:
   490  			ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset + ctxt.FixedFrameSize()
   491  			if ctxt.Instoffset >= -BIG && ctxt.Instoffset < BIG {
   492  				return C_SAUTO
   493  			}
   494  			return C_LAUTO
   495  
   496  		case obj.NAME_NONE:
   497  			ctxt.Instoffset = a.Offset
   498  			if ctxt.Instoffset == 0 {
   499  				return C_ZOREG
   500  			}
   501  			if ctxt.Instoffset >= -BIG && ctxt.Instoffset < BIG {
   502  				return C_SOREG
   503  			}
   504  			return C_LOREG
   505  		}
   506  
   507  		return C_GOK
   508  
   509  	case obj.TYPE_TEXTSIZE:
   510  		return C_TEXTSIZE
   511  
   512  	case obj.TYPE_FCONST:
   513  		if f64, ok := a.Val.(float64); ok && math.Float64bits(f64) == 0 {
   514  			return C_ZCON
   515  		}
   516  		ctxt.Diag("cannot handle the floating point constant %v", a.Val)
   517  
   518  	case obj.TYPE_CONST,
   519  		obj.TYPE_ADDR:
   520  		switch a.Name {
   521  		case obj.NAME_NONE:
   522  			ctxt.Instoffset = a.Offset
   523  			if a.Reg != 0 {
   524  				if -BIG <= ctxt.Instoffset && ctxt.Instoffset <= BIG {
   525  					return C_SACON
   526  				}
   527  				if isint32(ctxt.Instoffset) {
   528  					return C_LACON
   529  				}
   530  				return C_DACON
   531  			}
   532  			goto consize
   533  
   534  		case obj.NAME_EXTERN,
   535  			obj.NAME_STATIC:
   536  			s := a.Sym
   537  			if s == nil {
   538  				break
   539  			}
   540  			ctxt.Instoffset = a.Offset
   541  			if s.Type == obj.SCONST {
   542  				goto consize
   543  			}
   544  
   545  			return C_SYMADDR
   546  
   547  		case obj.NAME_AUTO:
   548  			ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset
   549  			if ctxt.Instoffset >= -BIG && ctxt.Instoffset < BIG {
   550  				return C_SACON
   551  			}
   552  			return C_LACON
   553  
   554  		case obj.NAME_PARAM:
   555  			ctxt.Instoffset = int64(ctxt.Autosize) + a.Offset + ctxt.FixedFrameSize()
   556  			if ctxt.Instoffset >= -BIG && ctxt.Instoffset < BIG {
   557  				return C_SACON
   558  			}
   559  			return C_LACON
   560  		}
   561  
   562  		return C_GOK
   563  
   564  	consize:
   565  		if ctxt.Instoffset == 0 {
   566  			return C_ZCON
   567  		}
   568  		if ctxt.Instoffset >= 0 {
   569  			if ctxt.Instoffset <= 0x7fff {
   570  				return C_SCON
   571  			}
   572  			if ctxt.Instoffset <= 0xffff {
   573  				return C_ANDCON
   574  			}
   575  			if ctxt.Instoffset&0xffff == 0 && isuint32(uint64(ctxt.Instoffset)) { /* && (instoffset & (1<<31)) == 0) */
   576  				return C_UCON
   577  			}
   578  			if isint32(ctxt.Instoffset) || isuint32(uint64(ctxt.Instoffset)) {
   579  				return C_LCON
   580  			}
   581  			return C_DCON
   582  		}
   583  
   584  		if ctxt.Instoffset >= -0x8000 {
   585  			return C_ADDCON
   586  		}
   587  		if ctxt.Instoffset&0xffff == 0 && isint32(ctxt.Instoffset) {
   588  			return C_UCON
   589  		}
   590  		if isint32(ctxt.Instoffset) {
   591  			return C_LCON
   592  		}
   593  		return C_DCON
   594  
   595  	case obj.TYPE_BRANCH:
   596  		return C_SBRA
   597  	}
   598  
   599  	return C_GOK
   600  }
   601  
   602  func oplook(ctxt *obj.Link, p *obj.Prog) *Optab {
   603  	a1 := int(p.Optab)
   604  	if a1 != 0 {
   605  		return &optab[a1-1]
   606  	}
   607  	a1 = int(p.From.Class)
   608  	if a1 == 0 {
   609  		a1 = aclass(ctxt, &p.From) + 1
   610  		p.From.Class = int8(a1)
   611  	}
   612  
   613  	a1--
   614  	a3 := C_NONE + 1
   615  	if p.From3 != nil {
   616  		a3 = int(p.From3.Class)
   617  		if a3 == 0 {
   618  			a3 = aclass(ctxt, p.From3) + 1
   619  			p.From3.Class = int8(a3)
   620  		}
   621  	}
   622  
   623  	a3--
   624  	a4 := int(p.To.Class)
   625  	if a4 == 0 {
   626  		a4 = aclass(ctxt, &p.To) + 1
   627  		p.To.Class = int8(a4)
   628  	}
   629  
   630  	a4--
   631  	a2 := C_NONE
   632  	if p.Reg != 0 {
   633  		if REG_R0 <= p.Reg && p.Reg <= REG_R15 {
   634  			a2 = C_REG
   635  		} else if REG_V0 <= p.Reg && p.Reg <= REG_V31 {
   636  			a2 = C_VREG
   637  		} else if REG_F0 <= p.Reg && p.Reg <= REG_F15 {
   638  			a2 = C_FREG
   639  		} else if REG_AR0 <= p.Reg && p.Reg <= REG_AR15 {
   640  			a2 = C_AREG
   641  		}
   642  	}
   643  
   644  	ops := oprange[p.As&obj.AMask]
   645  	c1 := &xcmp[a1]
   646  	c2 := &xcmp[a2]
   647  	c3 := &xcmp[a3]
   648  	c4 := &xcmp[a4]
   649  	for i := range ops {
   650  		op := &ops[i]
   651  		if (int(op.a2) == a2 || c2[op.a2]) && c4[op.a4] && c1[op.a1] && c3[op.a3] {
   652  			p.Optab = uint16(cap(optab) - cap(ops) + i + 1)
   653  			return op
   654  		}
   655  	}
   656  
   657  	// cannot find a case; abort
   658  	ctxt.Diag("illegal combination %v %v %v %v %v\n", p.As, DRconv(a1), DRconv(a2), DRconv(a3), DRconv(a4))
   659  	ctxt.Diag("prog: %v\n", p)
   660  	return nil
   661  }
   662  
   663  func cmp(a int, b int) bool {
   664  	if a == b {
   665  		return true
   666  	}
   667  	switch a {
   668  	case C_DCON:
   669  		if b == C_LCON {
   670  			return true
   671  		}
   672  		fallthrough
   673  	case C_LCON:
   674  		if b == C_ZCON || b == C_SCON || b == C_UCON || b == C_ADDCON || b == C_ANDCON {
   675  			return true
   676  		}
   677  
   678  	case C_ADDCON:
   679  		if b == C_ZCON || b == C_SCON {
   680  			return true
   681  		}
   682  
   683  	case C_ANDCON:
   684  		if b == C_ZCON || b == C_SCON {
   685  			return true
   686  		}
   687  
   688  	case C_UCON:
   689  		if b == C_ZCON || b == C_SCON {
   690  			return true
   691  		}
   692  
   693  	case C_SCON:
   694  		if b == C_ZCON {
   695  			return true
   696  		}
   697  
   698  	case C_LACON:
   699  		if b == C_SACON {
   700  			return true
   701  		}
   702  
   703  	case C_LBRA:
   704  		if b == C_SBRA {
   705  			return true
   706  		}
   707  
   708  	case C_LAUTO:
   709  		if b == C_SAUTO {
   710  			return true
   711  		}
   712  
   713  	case C_LOREG:
   714  		if b == C_ZOREG || b == C_SOREG {
   715  			return true
   716  		}
   717  
   718  	case C_SOREG:
   719  		if b == C_ZOREG {
   720  			return true
   721  		}
   722  
   723  	case C_ANY:
   724  		return true
   725  	}
   726  
   727  	return false
   728  }
   729  
   730  type ocmp []Optab
   731  
   732  func (x ocmp) Len() int {
   733  	return len(x)
   734  }
   735  
   736  func (x ocmp) Swap(i, j int) {
   737  	x[i], x[j] = x[j], x[i]
   738  }
   739  
   740  func (x ocmp) Less(i, j int) bool {
   741  	p1 := &x[i]
   742  	p2 := &x[j]
   743  	n := int(p1.as) - int(p2.as)
   744  	if n != 0 {
   745  		return n < 0
   746  	}
   747  	n = int(p1.a1) - int(p2.a1)
   748  	if n != 0 {
   749  		return n < 0
   750  	}
   751  	n = int(p1.a2) - int(p2.a2)
   752  	if n != 0 {
   753  		return n < 0
   754  	}
   755  	n = int(p1.a3) - int(p2.a3)
   756  	if n != 0 {
   757  		return n < 0
   758  	}
   759  	n = int(p1.a4) - int(p2.a4)
   760  	if n != 0 {
   761  		return n < 0
   762  	}
   763  	return false
   764  }
   765  func opset(a, b obj.As) {
   766  	oprange[a&obj.AMask] = oprange[b&obj.AMask]
   767  }
   768  
   769  func buildop(ctxt *obj.Link) {
   770  	for i := 0; i < C_NCLASS; i++ {
   771  		for n := 0; n < C_NCLASS; n++ {
   772  			if cmp(n, i) {
   773  				xcmp[i][n] = true
   774  			}
   775  		}
   776  	}
   777  	sort.Sort(ocmp(optab))
   778  	for i := 0; i < len(optab); i++ {
   779  		r := optab[i].as
   780  		start := i
   781  		for ; i+1 < len(optab); i++ {
   782  			if optab[i+1].as != r {
   783  				break
   784  			}
   785  		}
   786  		oprange[r&obj.AMask] = optab[start : i+1]
   787  
   788  		// opset() aliases optab ranges for similar instructions, to reduce the number of optabs in the array.
   789  		// oprange[] is used by oplook() to find the Optab entry that applies to a given Prog.
   790  		switch r {
   791  		case AADD:
   792  			opset(AADDC, r)
   793  			opset(AMULLD, r)
   794  			opset(AMULLW, r)
   795  		case ADIVW:
   796  			opset(AADDE, r)
   797  			opset(ADIVD, r)
   798  			opset(ADIVDU, r)
   799  			opset(ADIVWU, r)
   800  		case AMULHD:
   801  			opset(AMULHDU, r)
   802  		case AMOVBZ:
   803  			opset(AMOVH, r)
   804  			opset(AMOVHZ, r)
   805  		case ALA:
   806  			opset(ALAY, r)
   807  		case AMVC:
   808  			opset(ACLC, r)
   809  			opset(AXC, r)
   810  			opset(AOC, r)
   811  			opset(ANC, r)
   812  		case ASTCK:
   813  			opset(ASTCKC, r)
   814  			opset(ASTCKE, r)
   815  			opset(ASTCKF, r)
   816  		case ALAAG:
   817  			opset(ALAA, r)
   818  			opset(ALAAL, r)
   819  			opset(ALAALG, r)
   820  			opset(ALAN, r)
   821  			opset(ALANG, r)
   822  			opset(ALAX, r)
   823  			opset(ALAXG, r)
   824  			opset(ALAO, r)
   825  			opset(ALAOG, r)
   826  		case ASTMG:
   827  			opset(ASTMY, r)
   828  		case ALMG:
   829  			opset(ALMY, r)
   830  		case AAND:
   831  			opset(AANDN, r)
   832  			opset(ANAND, r)
   833  			opset(ANOR, r)
   834  			opset(AORN, r)
   835  		case AADDME:
   836  			opset(AADDZE, r)
   837  			opset(ASUBME, r)
   838  			opset(ASUBZE, r)
   839  		case ABEQ:
   840  			opset(ABGE, r)
   841  			opset(ABGT, r)
   842  			opset(ABLE, r)
   843  			opset(ABLT, r)
   844  			opset(ABNE, r)
   845  			opset(ABVC, r)
   846  			opset(ABVS, r)
   847  		case ABR:
   848  			opset(ABL, r)
   849  		case ABC:
   850  			opset(ABCL, r)
   851  		case AFABS:
   852  			opset(AFNABS, r)
   853  			opset(AFNEG, r)
   854  			opset(ALEDBR, r)
   855  			opset(ALDEBR, r)
   856  			opset(AFSQRT, r)
   857  			opset(AFSQRTS, r)
   858  		case AFADD:
   859  			opset(AFADDS, r)
   860  			opset(AFDIV, r)
   861  			opset(AFDIVS, r)
   862  			opset(AFSUB, r)
   863  			opset(AFSUBS, r)
   864  		case AFMADD:
   865  			opset(AFMADDS, r)
   866  			opset(AFMSUB, r)
   867  			opset(AFMSUBS, r)
   868  			opset(AFNMADD, r)
   869  			opset(AFNMADDS, r)
   870  			opset(AFNMSUB, r)
   871  			opset(AFNMSUBS, r)
   872  		case AFMUL:
   873  			opset(AFMULS, r)
   874  		case AFCMPO:
   875  			opset(AFCMPU, r)
   876  			opset(ACEBR, r)
   877  		case AOR:
   878  			opset(AXOR, r)
   879  		case ASLD:
   880  			opset(ASRD, r)
   881  			opset(ASLW, r)
   882  			opset(ASRW, r)
   883  			opset(ASRAD, r)
   884  			opset(ASRAW, r)
   885  			opset(ARLL, r)
   886  			opset(ARLLG, r)
   887  		case ACSG:
   888  			opset(ACS, r)
   889  		case ASUB:
   890  			opset(ASUBC, r)
   891  			opset(ASUBE, r)
   892  		case AFMOVD:
   893  			opset(AFMOVS, r)
   894  		case AMOVDBR:
   895  			opset(AMOVWBR, r)
   896  		case ACMP:
   897  			opset(ACMPW, r)
   898  		case ACMPU:
   899  			opset(ACMPWU, r)
   900  		case ACEFBRA:
   901  			opset(ACDFBRA, r)
   902  			opset(ACEGBRA, r)
   903  			opset(ACDGBRA, r)
   904  			opset(ACELFBR, r)
   905  			opset(ACDLFBR, r)
   906  			opset(ACELGBR, r)
   907  			opset(ACDLGBR, r)
   908  		case ACFEBRA:
   909  			opset(ACFDBRA, r)
   910  			opset(ACGEBRA, r)
   911  			opset(ACGDBRA, r)
   912  			opset(ACLFEBR, r)
   913  			opset(ACLFDBR, r)
   914  			opset(ACLGEBR, r)
   915  			opset(ACLGDBR, r)
   916  		case AFIEBR:
   917  			opset(AFIDBR, r)
   918  		case ACMPBEQ:
   919  			opset(ACMPBGE, r)
   920  			opset(ACMPBGT, r)
   921  			opset(ACMPBLE, r)
   922  			opset(ACMPBLT, r)
   923  			opset(ACMPBNE, r)
   924  		case ACMPUBEQ:
   925  			opset(ACMPUBGE, r)
   926  			opset(ACMPUBGT, r)
   927  			opset(ACMPUBLE, r)
   928  			opset(ACMPUBLT, r)
   929  			opset(ACMPUBNE, r)
   930  		case AVL:
   931  			opset(AVLLEZB, r)
   932  			opset(AVLLEZH, r)
   933  			opset(AVLLEZF, r)
   934  			opset(AVLLEZG, r)
   935  			opset(AVLREPB, r)
   936  			opset(AVLREPH, r)
   937  			opset(AVLREPF, r)
   938  			opset(AVLREPG, r)
   939  		case AVLEG:
   940  			opset(AVLBB, r)
   941  			opset(AVLEB, r)
   942  			opset(AVLEH, r)
   943  			opset(AVLEF, r)
   944  			opset(AVLEG, r)
   945  			opset(AVLREP, r)
   946  		case AVSTEG:
   947  			opset(AVSTEB, r)
   948  			opset(AVSTEH, r)
   949  			opset(AVSTEF, r)
   950  		case AVSCEG:
   951  			opset(AVSCEF, r)
   952  		case AVGEG:
   953  			opset(AVGEF, r)
   954  		case AVESLG:
   955  			opset(AVESLB, r)
   956  			opset(AVESLH, r)
   957  			opset(AVESLF, r)
   958  			opset(AVERLLB, r)
   959  			opset(AVERLLH, r)
   960  			opset(AVERLLF, r)
   961  			opset(AVERLLG, r)
   962  			opset(AVESRAB, r)
   963  			opset(AVESRAH, r)
   964  			opset(AVESRAF, r)
   965  			opset(AVESRAG, r)
   966  			opset(AVESRLB, r)
   967  			opset(AVESRLH, r)
   968  			opset(AVESRLF, r)
   969  			opset(AVESRLG, r)
   970  		case AVLGVG:
   971  			opset(AVLGVB, r)
   972  			opset(AVLGVH, r)
   973  			opset(AVLGVF, r)
   974  		case AVLVGG:
   975  			opset(AVLVGB, r)
   976  			opset(AVLVGH, r)
   977  			opset(AVLVGF, r)
   978  		case AVZERO:
   979  			opset(AVONE, r)
   980  		case AVREPIG:
   981  			opset(AVREPIB, r)
   982  			opset(AVREPIH, r)
   983  			opset(AVREPIF, r)
   984  		case AVLEIG:
   985  			opset(AVLEIB, r)
   986  			opset(AVLEIH, r)
   987  			opset(AVLEIF, r)
   988  		case AVGMG:
   989  			opset(AVGMB, r)
   990  			opset(AVGMH, r)
   991  			opset(AVGMF, r)
   992  		case AVREPG:
   993  			opset(AVREPB, r)
   994  			opset(AVREPH, r)
   995  			opset(AVREPF, r)
   996  		case AVERIMG:
   997  			opset(AVERIMB, r)
   998  			opset(AVERIMH, r)
   999  			opset(AVERIMF, r)
  1000  		case AVFTCIDB:
  1001  			opset(AWFTCIDB, r)
  1002  		case AVLR:
  1003  			opset(AVUPHB, r)
  1004  			opset(AVUPHH, r)
  1005  			opset(AVUPHF, r)
  1006  			opset(AVUPLHB, r)
  1007  			opset(AVUPLHH, r)
  1008  			opset(AVUPLHF, r)
  1009  			opset(AVUPLB, r)
  1010  			opset(AVUPLHW, r)
  1011  			opset(AVUPLF, r)
  1012  			opset(AVUPLLB, r)
  1013  			opset(AVUPLLH, r)
  1014  			opset(AVUPLLF, r)
  1015  			opset(AVCLZB, r)
  1016  			opset(AVCLZH, r)
  1017  			opset(AVCLZF, r)
  1018  			opset(AVCLZG, r)
  1019  			opset(AVCTZB, r)
  1020  			opset(AVCTZH, r)
  1021  			opset(AVCTZF, r)
  1022  			opset(AVCTZG, r)
  1023  			opset(AVLDEB, r)
  1024  			opset(AWLDEB, r)
  1025  			opset(AVFLCDB, r)
  1026  			opset(AWFLCDB, r)
  1027  			opset(AVFLNDB, r)
  1028  			opset(AWFLNDB, r)
  1029  			opset(AVFLPDB, r)
  1030  			opset(AWFLPDB, r)
  1031  			opset(AVFSQDB, r)
  1032  			opset(AWFSQDB, r)
  1033  			opset(AVISTRB, r)
  1034  			opset(AVISTRH, r)
  1035  			opset(AVISTRF, r)
  1036  			opset(AVISTRBS, r)
  1037  			opset(AVISTRHS, r)
  1038  			opset(AVISTRFS, r)
  1039  			opset(AVLCB, r)
  1040  			opset(AVLCH, r)
  1041  			opset(AVLCF, r)
  1042  			opset(AVLCG, r)
  1043  			opset(AVLPB, r)
  1044  			opset(AVLPH, r)
  1045  			opset(AVLPF, r)
  1046  			opset(AVLPG, r)
  1047  			opset(AVPOPCT, r)
  1048  			opset(AVSEGB, r)
  1049  			opset(AVSEGH, r)
  1050  			opset(AVSEGF, r)
  1051  		case AVECG:
  1052  			opset(AVECB, r)
  1053  			opset(AVECH, r)
  1054  			opset(AVECF, r)
  1055  			opset(AVECLB, r)
  1056  			opset(AVECLH, r)
  1057  			opset(AVECLF, r)
  1058  			opset(AVECLG, r)
  1059  			opset(AWFCDB, r)
  1060  			opset(AWFKDB, r)
  1061  		case AVCEQG:
  1062  			opset(AVCEQB, r)
  1063  			opset(AVCEQH, r)
  1064  			opset(AVCEQF, r)
  1065  			opset(AVCEQBS, r)
  1066  			opset(AVCEQHS, r)
  1067  			opset(AVCEQFS, r)
  1068  			opset(AVCEQGS, r)
  1069  			opset(AVCHB, r)
  1070  			opset(AVCHH, r)
  1071  			opset(AVCHF, r)
  1072  			opset(AVCHG, r)
  1073  			opset(AVCHBS, r)
  1074  			opset(AVCHHS, r)
  1075  			opset(AVCHFS, r)
  1076  			opset(AVCHGS, r)
  1077  			opset(AVCHLB, r)
  1078  			opset(AVCHLH, r)
  1079  			opset(AVCHLF, r)
  1080  			opset(AVCHLG, r)
  1081  			opset(AVCHLBS, r)
  1082  			opset(AVCHLHS, r)
  1083  			opset(AVCHLFS, r)
  1084  			opset(AVCHLGS, r)
  1085  		case AVFAEF:
  1086  			opset(AVFAEB, r)
  1087  			opset(AVFAEH, r)
  1088  			opset(AVFAEBS, r)
  1089  			opset(AVFAEHS, r)
  1090  			opset(AVFAEFS, r)
  1091  			opset(AVFAEZB, r)
  1092  			opset(AVFAEZH, r)
  1093  			opset(AVFAEZF, r)
  1094  			opset(AVFAEZBS, r)
  1095  			opset(AVFAEZHS, r)
  1096  			opset(AVFAEZFS, r)
  1097  			opset(AVFEEB, r)
  1098  			opset(AVFEEH, r)
  1099  			opset(AVFEEF, r)
  1100  			opset(AVFEEBS, r)
  1101  			opset(AVFEEHS, r)
  1102  			opset(AVFEEFS, r)
  1103  			opset(AVFEEZB, r)
  1104  			opset(AVFEEZH, r)
  1105  			opset(AVFEEZF, r)
  1106  			opset(AVFEEZBS, r)
  1107  			opset(AVFEEZHS, r)
  1108  			opset(AVFEEZFS, r)
  1109  			opset(AVFENEB, r)
  1110  			opset(AVFENEH, r)
  1111  			opset(AVFENEF, r)
  1112  			opset(AVFENEBS, r)
  1113  			opset(AVFENEHS, r)
  1114  			opset(AVFENEFS, r)
  1115  			opset(AVFENEZB, r)
  1116  			opset(AVFENEZH, r)
  1117  			opset(AVFENEZF, r)
  1118  			opset(AVFENEZBS, r)
  1119  			opset(AVFENEZHS, r)
  1120  			opset(AVFENEZFS, r)
  1121  		case AVPKSG:
  1122  			opset(AVPKSH, r)
  1123  			opset(AVPKSF, r)
  1124  			opset(AVPKSHS, r)
  1125  			opset(AVPKSFS, r)
  1126  			opset(AVPKSGS, r)
  1127  			opset(AVPKLSH, r)
  1128  			opset(AVPKLSF, r)
  1129  			opset(AVPKLSG, r)
  1130  			opset(AVPKLSHS, r)
  1131  			opset(AVPKLSFS, r)
  1132  			opset(AVPKLSGS, r)
  1133  		case AVAQ:
  1134  			opset(AVAB, r)
  1135  			opset(AVAH, r)
  1136  			opset(AVAF, r)
  1137  			opset(AVAG, r)
  1138  			opset(AVACCB, r)
  1139  			opset(AVACCH, r)
  1140  			opset(AVACCF, r)
  1141  			opset(AVACCG, r)
  1142  			opset(AVACCQ, r)
  1143  			opset(AVN, r)
  1144  			opset(AVNC, r)
  1145  			opset(AVAVGB, r)
  1146  			opset(AVAVGH, r)
  1147  			opset(AVAVGF, r)
  1148  			opset(AVAVGG, r)
  1149  			opset(AVAVGLB, r)
  1150  			opset(AVAVGLH, r)
  1151  			opset(AVAVGLF, r)
  1152  			opset(AVAVGLG, r)
  1153  			opset(AVCKSM, r)
  1154  			opset(AVX, r)
  1155  			opset(AVFADB, r)
  1156  			opset(AWFADB, r)
  1157  			opset(AVFCEDB, r)
  1158  			opset(AVFCEDBS, r)
  1159  			opset(AWFCEDB, r)
  1160  			opset(AWFCEDBS, r)
  1161  			opset(AVFCHDB, r)
  1162  			opset(AVFCHDBS, r)
  1163  			opset(AWFCHDB, r)
  1164  			opset(AWFCHDBS, r)
  1165  			opset(AVFCHEDB, r)
  1166  			opset(AVFCHEDBS, r)
  1167  			opset(AWFCHEDB, r)
  1168  			opset(AWFCHEDBS, r)
  1169  			opset(AVFMDB, r)
  1170  			opset(AWFMDB, r)
  1171  			opset(AVGFMB, r)
  1172  			opset(AVGFMH, r)
  1173  			opset(AVGFMF, r)
  1174  			opset(AVGFMG, r)
  1175  			opset(AVMXB, r)
  1176  			opset(AVMXH, r)
  1177  			opset(AVMXF, r)
  1178  			opset(AVMXG, r)
  1179  			opset(AVMXLB, r)
  1180  			opset(AVMXLH, r)
  1181  			opset(AVMXLF, r)
  1182  			opset(AVMXLG, r)
  1183  			opset(AVMNB, r)
  1184  			opset(AVMNH, r)
  1185  			opset(AVMNF, r)
  1186  			opset(AVMNG, r)
  1187  			opset(AVMNLB, r)
  1188  			opset(AVMNLH, r)
  1189  			opset(AVMNLF, r)
  1190  			opset(AVMNLG, r)
  1191  			opset(AVMRHB, r)
  1192  			opset(AVMRHH, r)
  1193  			opset(AVMRHF, r)
  1194  			opset(AVMRHG, r)
  1195  			opset(AVMRLB, r)
  1196  			opset(AVMRLH, r)
  1197  			opset(AVMRLF, r)
  1198  			opset(AVMRLG, r)
  1199  			opset(AVMEB, r)
  1200  			opset(AVMEH, r)
  1201  			opset(AVMEF, r)
  1202  			opset(AVMLEB, r)
  1203  			opset(AVMLEH, r)
  1204  			opset(AVMLEF, r)
  1205  			opset(AVMOB, r)
  1206  			opset(AVMOH, r)
  1207  			opset(AVMOF, r)
  1208  			opset(AVMLOB, r)
  1209  			opset(AVMLOH, r)
  1210  			opset(AVMLOF, r)
  1211  			opset(AVMHB, r)
  1212  			opset(AVMHH, r)
  1213  			opset(AVMHF, r)
  1214  			opset(AVMLHB, r)
  1215  			opset(AVMLHH, r)
  1216  			opset(AVMLHF, r)
  1217  			opset(AVMLH, r)
  1218  			opset(AVMLHW, r)
  1219  			opset(AVMLF, r)
  1220  			opset(AVNO, r)
  1221  			opset(AVO, r)
  1222  			opset(AVPKH, r)
  1223  			opset(AVPKF, r)
  1224  			opset(AVPKG, r)
  1225  			opset(AVSUMGH, r)
  1226  			opset(AVSUMGF, r)
  1227  			opset(AVSUMQF, r)
  1228  			opset(AVSUMQG, r)
  1229  			opset(AVSUMB, r)
  1230  			opset(AVSUMH, r)
  1231  		case AVERLLVG:
  1232  			opset(AVERLLVB, r)
  1233  			opset(AVERLLVH, r)
  1234  			opset(AVERLLVF, r)
  1235  			opset(AVESLVB, r)
  1236  			opset(AVESLVH, r)
  1237  			opset(AVESLVF, r)
  1238  			opset(AVESLVG, r)
  1239  			opset(AVESRAVB, r)
  1240  			opset(AVESRAVH, r)
  1241  			opset(AVESRAVF, r)
  1242  			opset(AVESRAVG, r)
  1243  			opset(AVESRLVB, r)
  1244  			opset(AVESRLVH, r)
  1245  			opset(AVESRLVF, r)
  1246  			opset(AVESRLVG, r)
  1247  			opset(AVFDDB, r)
  1248  			opset(AWFDDB, r)
  1249  			opset(AVFSDB, r)
  1250  			opset(AWFSDB, r)
  1251  			opset(AVSL, r)
  1252  			opset(AVSLB, r)
  1253  			opset(AVSRA, r)
  1254  			opset(AVSRAB, r)
  1255  			opset(AVSRL, r)
  1256  			opset(AVSRLB, r)
  1257  			opset(AVSF, r)
  1258  			opset(AVSG, r)
  1259  			opset(AVSQ, r)
  1260  			opset(AVSCBIB, r)
  1261  			opset(AVSCBIH, r)
  1262  			opset(AVSCBIF, r)
  1263  			opset(AVSCBIG, r)
  1264  			opset(AVSCBIQ, r)
  1265  		case AVACQ:
  1266  			opset(AVACCCQ, r)
  1267  			opset(AVGFMAB, r)
  1268  			opset(AVGFMAH, r)
  1269  			opset(AVGFMAF, r)
  1270  			opset(AVGFMAG, r)
  1271  			opset(AVMALB, r)
  1272  			opset(AVMALHW, r)
  1273  			opset(AVMALF, r)
  1274  			opset(AVMAHB, r)
  1275  			opset(AVMAHH, r)
  1276  			opset(AVMAHF, r)
  1277  			opset(AVMALHB, r)
  1278  			opset(AVMALHH, r)
  1279  			opset(AVMALHF, r)
  1280  			opset(AVMAEB, r)
  1281  			opset(AVMAEH, r)
  1282  			opset(AVMAEF, r)
  1283  			opset(AVMALEB, r)
  1284  			opset(AVMALEH, r)
  1285  			opset(AVMALEF, r)
  1286  			opset(AVMAOB, r)
  1287  			opset(AVMAOH, r)
  1288  			opset(AVMAOF, r)
  1289  			opset(AVMALOB, r)
  1290  			opset(AVMALOH, r)
  1291  			opset(AVMALOF, r)
  1292  			opset(AVSTRCB, r)
  1293  			opset(AVSTRCH, r)
  1294  			opset(AVSTRCF, r)
  1295  			opset(AVSTRCBS, r)
  1296  			opset(AVSTRCHS, r)
  1297  			opset(AVSTRCFS, r)
  1298  			opset(AVSTRCZB, r)
  1299  			opset(AVSTRCZH, r)
  1300  			opset(AVSTRCZF, r)
  1301  			opset(AVSTRCZBS, r)
  1302  			opset(AVSTRCZHS, r)
  1303  			opset(AVSTRCZFS, r)
  1304  			opset(AVSBCBIQ, r)
  1305  			opset(AVSBIQ, r)
  1306  		case AVSEL:
  1307  			opset(AVFMADB, r)
  1308  			opset(AWFMADB, r)
  1309  			opset(AVFMSDB, r)
  1310  			opset(AWFMSDB, r)
  1311  			opset(AVPERM, r)
  1312  		}
  1313  	}
  1314  }
  1315  
  1316  const (
  1317  	op_A       uint32 = 0x5A00 // FORMAT_RX1        ADD (32)
  1318  	op_AD      uint32 = 0x6A00 // FORMAT_RX1        ADD NORMALIZED (long HFP)
  1319  	op_ADB     uint32 = 0xED1A // FORMAT_RXE        ADD (long BFP)
  1320  	op_ADBR    uint32 = 0xB31A // FORMAT_RRE        ADD (long BFP)
  1321  	op_ADR     uint32 = 0x2A00 // FORMAT_RR         ADD NORMALIZED (long HFP)
  1322  	op_ADTR    uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1323  	op_ADTRA   uint32 = 0xB3D2 // FORMAT_RRF1       ADD (long DFP)
  1324  	op_AE      uint32 = 0x7A00 // FORMAT_RX1        ADD NORMALIZED (short HFP)
  1325  	op_AEB     uint32 = 0xED0A // FORMAT_RXE        ADD (short BFP)
  1326  	op_AEBR    uint32 = 0xB30A // FORMAT_RRE        ADD (short BFP)
  1327  	op_AER     uint32 = 0x3A00 // FORMAT_RR         ADD NORMALIZED (short HFP)
  1328  	op_AFI     uint32 = 0xC209 // FORMAT_RIL1       ADD IMMEDIATE (32)
  1329  	op_AG      uint32 = 0xE308 // FORMAT_RXY1       ADD (64)
  1330  	op_AGF     uint32 = 0xE318 // FORMAT_RXY1       ADD (64<-32)
  1331  	op_AGFI    uint32 = 0xC208 // FORMAT_RIL1       ADD IMMEDIATE (64<-32)
  1332  	op_AGFR    uint32 = 0xB918 // FORMAT_RRE        ADD (64<-32)
  1333  	op_AGHI    uint32 = 0xA70B // FORMAT_RI1        ADD HALFWORD IMMEDIATE (64)
  1334  	op_AGHIK   uint32 = 0xECD9 // FORMAT_RIE4       ADD IMMEDIATE (64<-16)
  1335  	op_AGR     uint32 = 0xB908 // FORMAT_RRE        ADD (64)
  1336  	op_AGRK    uint32 = 0xB9E8 // FORMAT_RRF1       ADD (64)
  1337  	op_AGSI    uint32 = 0xEB7A // FORMAT_SIY        ADD IMMEDIATE (64<-8)
  1338  	op_AH      uint32 = 0x4A00 // FORMAT_RX1        ADD HALFWORD
  1339  	op_AHHHR   uint32 = 0xB9C8 // FORMAT_RRF1       ADD HIGH (32)
  1340  	op_AHHLR   uint32 = 0xB9D8 // FORMAT_RRF1       ADD HIGH (32)
  1341  	op_AHI     uint32 = 0xA70A // FORMAT_RI1        ADD HALFWORD IMMEDIATE (32)
  1342  	op_AHIK    uint32 = 0xECD8 // FORMAT_RIE4       ADD IMMEDIATE (32<-16)
  1343  	op_AHY     uint32 = 0xE37A // FORMAT_RXY1       ADD HALFWORD
  1344  	op_AIH     uint32 = 0xCC08 // FORMAT_RIL1       ADD IMMEDIATE HIGH (32)
  1345  	op_AL      uint32 = 0x5E00 // FORMAT_RX1        ADD LOGICAL (32)
  1346  	op_ALC     uint32 = 0xE398 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (32)
  1347  	op_ALCG    uint32 = 0xE388 // FORMAT_RXY1       ADD LOGICAL WITH CARRY (64)
  1348  	op_ALCGR   uint32 = 0xB988 // FORMAT_RRE        ADD LOGICAL WITH CARRY (64)
  1349  	op_ALCR    uint32 = 0xB998 // FORMAT_RRE        ADD LOGICAL WITH CARRY (32)
  1350  	op_ALFI    uint32 = 0xC20B // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (32)
  1351  	op_ALG     uint32 = 0xE30A // FORMAT_RXY1       ADD LOGICAL (64)
  1352  	op_ALGF    uint32 = 0xE31A // FORMAT_RXY1       ADD LOGICAL (64<-32)
  1353  	op_ALGFI   uint32 = 0xC20A // FORMAT_RIL1       ADD LOGICAL IMMEDIATE (64<-32)
  1354  	op_ALGFR   uint32 = 0xB91A // FORMAT_RRE        ADD LOGICAL (64<-32)
  1355  	op_ALGHSIK uint32 = 0xECDB // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (64<-16)
  1356  	op_ALGR    uint32 = 0xB90A // FORMAT_RRE        ADD LOGICAL (64)
  1357  	op_ALGRK   uint32 = 0xB9EA // FORMAT_RRF1       ADD LOGICAL (64)
  1358  	op_ALGSI   uint32 = 0xEB7E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (64<-8)
  1359  	op_ALHHHR  uint32 = 0xB9CA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1360  	op_ALHHLR  uint32 = 0xB9DA // FORMAT_RRF1       ADD LOGICAL HIGH (32)
  1361  	op_ALHSIK  uint32 = 0xECDA // FORMAT_RIE4       ADD LOGICAL WITH SIGNED IMMEDIATE (32<-16)
  1362  	op_ALR     uint32 = 0x1E00 // FORMAT_RR         ADD LOGICAL (32)
  1363  	op_ALRK    uint32 = 0xB9FA // FORMAT_RRF1       ADD LOGICAL (32)
  1364  	op_ALSI    uint32 = 0xEB6E // FORMAT_SIY        ADD LOGICAL WITH SIGNED IMMEDIATE (32<-8)
  1365  	op_ALSIH   uint32 = 0xCC0A // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1366  	op_ALSIHN  uint32 = 0xCC0B // FORMAT_RIL1       ADD LOGICAL WITH SIGNED IMMEDIATE HIGH (32)
  1367  	op_ALY     uint32 = 0xE35E // FORMAT_RXY1       ADD LOGICAL (32)
  1368  	op_AP      uint32 = 0xFA00 // FORMAT_SS2        ADD DECIMAL
  1369  	op_AR      uint32 = 0x1A00 // FORMAT_RR         ADD (32)
  1370  	op_ARK     uint32 = 0xB9F8 // FORMAT_RRF1       ADD (32)
  1371  	op_ASI     uint32 = 0xEB6A // FORMAT_SIY        ADD IMMEDIATE (32<-8)
  1372  	op_AU      uint32 = 0x7E00 // FORMAT_RX1        ADD UNNORMALIZED (short HFP)
  1373  	op_AUR     uint32 = 0x3E00 // FORMAT_RR         ADD UNNORMALIZED (short HFP)
  1374  	op_AW      uint32 = 0x6E00 // FORMAT_RX1        ADD UNNORMALIZED (long HFP)
  1375  	op_AWR     uint32 = 0x2E00 // FORMAT_RR         ADD UNNORMALIZED (long HFP)
  1376  	op_AXBR    uint32 = 0xB34A // FORMAT_RRE        ADD (extended BFP)
  1377  	op_AXR     uint32 = 0x3600 // FORMAT_RR         ADD NORMALIZED (extended HFP)
  1378  	op_AXTR    uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1379  	op_AXTRA   uint32 = 0xB3DA // FORMAT_RRF1       ADD (extended DFP)
  1380  	op_AY      uint32 = 0xE35A // FORMAT_RXY1       ADD (32)
  1381  	op_BAKR    uint32 = 0xB240 // FORMAT_RRE        BRANCH AND STACK
  1382  	op_BAL     uint32 = 0x4500 // FORMAT_RX1        BRANCH AND LINK
  1383  	op_BALR    uint32 = 0x0500 // FORMAT_RR         BRANCH AND LINK
  1384  	op_BAS     uint32 = 0x4D00 // FORMAT_RX1        BRANCH AND SAVE
  1385  	op_BASR    uint32 = 0x0D00 // FORMAT_RR         BRANCH AND SAVE
  1386  	op_BASSM   uint32 = 0x0C00 // FORMAT_RR         BRANCH AND SAVE AND SET MODE
  1387  	op_BC      uint32 = 0x4700 // FORMAT_RX2        BRANCH ON CONDITION
  1388  	op_BCR     uint32 = 0x0700 // FORMAT_RR         BRANCH ON CONDITION
  1389  	op_BCT     uint32 = 0x4600 // FORMAT_RX1        BRANCH ON COUNT (32)
  1390  	op_BCTG    uint32 = 0xE346 // FORMAT_RXY1       BRANCH ON COUNT (64)
  1391  	op_BCTGR   uint32 = 0xB946 // FORMAT_RRE        BRANCH ON COUNT (64)
  1392  	op_BCTR    uint32 = 0x0600 // FORMAT_RR         BRANCH ON COUNT (32)
  1393  	op_BPP     uint32 = 0xC700 // FORMAT_SMI        BRANCH PREDICTION PRELOAD
  1394  	op_BPRP    uint32 = 0xC500 // FORMAT_MII        BRANCH PREDICTION RELATIVE PRELOAD
  1395  	op_BRAS    uint32 = 0xA705 // FORMAT_RI2        BRANCH RELATIVE AND SAVE
  1396  	op_BRASL   uint32 = 0xC005 // FORMAT_RIL2       BRANCH RELATIVE AND SAVE LONG
  1397  	op_BRC     uint32 = 0xA704 // FORMAT_RI3        BRANCH RELATIVE ON CONDITION
  1398  	op_BRCL    uint32 = 0xC004 // FORMAT_RIL3       BRANCH RELATIVE ON CONDITION LONG
  1399  	op_BRCT    uint32 = 0xA706 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (32)
  1400  	op_BRCTG   uint32 = 0xA707 // FORMAT_RI2        BRANCH RELATIVE ON COUNT (64)
  1401  	op_BRCTH   uint32 = 0xCC06 // FORMAT_RIL2       BRANCH RELATIVE ON COUNT HIGH (32)
  1402  	op_BRXH    uint32 = 0x8400 // FORMAT_RSI        BRANCH RELATIVE ON INDEX HIGH (32)
  1403  	op_BRXHG   uint32 = 0xEC44 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX HIGH (64)
  1404  	op_BRXLE   uint32 = 0x8500 // FORMAT_RSI        BRANCH RELATIVE ON INDEX LOW OR EQ. (32)
  1405  	op_BRXLG   uint32 = 0xEC45 // FORMAT_RIE5       BRANCH RELATIVE ON INDEX LOW OR EQ. (64)
  1406  	op_BSA     uint32 = 0xB25A // FORMAT_RRE        BRANCH AND SET AUTHORITY
  1407  	op_BSG     uint32 = 0xB258 // FORMAT_RRE        BRANCH IN SUBSPACE GROUP
  1408  	op_BSM     uint32 = 0x0B00 // FORMAT_RR         BRANCH AND SET MODE
  1409  	op_BXH     uint32 = 0x8600 // FORMAT_RS1        BRANCH ON INDEX HIGH (32)
  1410  	op_BXHG    uint32 = 0xEB44 // FORMAT_RSY1       BRANCH ON INDEX HIGH (64)
  1411  	op_BXLE    uint32 = 0x8700 // FORMAT_RS1        BRANCH ON INDEX LOW OR EQUAL (32)
  1412  	op_BXLEG   uint32 = 0xEB45 // FORMAT_RSY1       BRANCH ON INDEX LOW OR EQUAL (64)
  1413  	op_C       uint32 = 0x5900 // FORMAT_RX1        COMPARE (32)
  1414  	op_CD      uint32 = 0x6900 // FORMAT_RX1        COMPARE (long HFP)
  1415  	op_CDB     uint32 = 0xED19 // FORMAT_RXE        COMPARE (long BFP)
  1416  	op_CDBR    uint32 = 0xB319 // FORMAT_RRE        COMPARE (long BFP)
  1417  	op_CDFBR   uint32 = 0xB395 // FORMAT_RRE        CONVERT FROM FIXED (32 to long BFP)
  1418  	op_CDFBRA  uint32 = 0xB395 // FORMAT_RRF5       CONVERT FROM FIXED (32 to long BFP)
  1419  	op_CDFR    uint32 = 0xB3B5 // FORMAT_RRE        CONVERT FROM FIXED (32 to long HFP)
  1420  	op_CDFTR   uint32 = 0xB951 // FORMAT_RRE        CONVERT FROM FIXED (32 to long DFP)
  1421  	op_CDGBR   uint32 = 0xB3A5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long BFP)
  1422  	op_CDGBRA  uint32 = 0xB3A5 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long BFP)
  1423  	op_CDGR    uint32 = 0xB3C5 // FORMAT_RRE        CONVERT FROM FIXED (64 to long HFP)
  1424  	op_CDGTR   uint32 = 0xB3F1 // FORMAT_RRE        CONVERT FROM FIXED (64 to long DFP)
  1425  	op_CDGTRA  uint32 = 0xB3F1 // FORMAT_RRF5       CONVERT FROM FIXED (64 to long DFP)
  1426  	op_CDLFBR  uint32 = 0xB391 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long BFP)
  1427  	op_CDLFTR  uint32 = 0xB953 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to long DFP)
  1428  	op_CDLGBR  uint32 = 0xB3A1 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long BFP)
  1429  	op_CDLGTR  uint32 = 0xB952 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to long DFP)
  1430  	op_CDR     uint32 = 0x2900 // FORMAT_RR         COMPARE (long HFP)
  1431  	op_CDS     uint32 = 0xBB00 // FORMAT_RS1        COMPARE DOUBLE AND SWAP (32)
  1432  	op_CDSG    uint32 = 0xEB3E // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (64)
  1433  	op_CDSTR   uint32 = 0xB3F3 // FORMAT_RRE        CONVERT FROM SIGNED PACKED (64 to long DFP)
  1434  	op_CDSY    uint32 = 0xEB31 // FORMAT_RSY1       COMPARE DOUBLE AND SWAP (32)
  1435  	op_CDTR    uint32 = 0xB3E4 // FORMAT_RRE        COMPARE (long DFP)
  1436  	op_CDUTR   uint32 = 0xB3F2 // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (64 to long DFP)
  1437  	op_CDZT    uint32 = 0xEDAA // FORMAT_RSL        CONVERT FROM ZONED (to long DFP)
  1438  	op_CE      uint32 = 0x7900 // FORMAT_RX1        COMPARE (short HFP)
  1439  	op_CEB     uint32 = 0xED09 // FORMAT_RXE        COMPARE (short BFP)
  1440  	op_CEBR    uint32 = 0xB309 // FORMAT_RRE        COMPARE (short BFP)
  1441  	op_CEDTR   uint32 = 0xB3F4 // FORMAT_RRE        COMPARE BIASED EXPONENT (long DFP)
  1442  	op_CEFBR   uint32 = 0xB394 // FORMAT_RRE        CONVERT FROM FIXED (32 to short BFP)
  1443  	op_CEFBRA  uint32 = 0xB394 // FORMAT_RRF5       CONVERT FROM FIXED (32 to short BFP)
  1444  	op_CEFR    uint32 = 0xB3B4 // FORMAT_RRE        CONVERT FROM FIXED (32 to short HFP)
  1445  	op_CEGBR   uint32 = 0xB3A4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short BFP)
  1446  	op_CEGBRA  uint32 = 0xB3A4 // FORMAT_RRF5       CONVERT FROM FIXED (64 to short BFP)
  1447  	op_CEGR    uint32 = 0xB3C4 // FORMAT_RRE        CONVERT FROM FIXED (64 to short HFP)
  1448  	op_CELFBR  uint32 = 0xB390 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to short BFP)
  1449  	op_CELGBR  uint32 = 0xB3A0 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to short BFP)
  1450  	op_CER     uint32 = 0x3900 // FORMAT_RR         COMPARE (short HFP)
  1451  	op_CEXTR   uint32 = 0xB3FC // FORMAT_RRE        COMPARE BIASED EXPONENT (extended DFP)
  1452  	op_CFC     uint32 = 0xB21A // FORMAT_S          COMPARE AND FORM CODEWORD
  1453  	op_CFDBR   uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1454  	op_CFDBRA  uint32 = 0xB399 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 32)
  1455  	op_CFDR    uint32 = 0xB3B9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 32)
  1456  	op_CFDTR   uint32 = 0xB941 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 32)
  1457  	op_CFEBR   uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1458  	op_CFEBRA  uint32 = 0xB398 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 32)
  1459  	op_CFER    uint32 = 0xB3B8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 32)
  1460  	op_CFI     uint32 = 0xC20D // FORMAT_RIL1       COMPARE IMMEDIATE (32)
  1461  	op_CFXBR   uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1462  	op_CFXBRA  uint32 = 0xB39A // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 32)
  1463  	op_CFXR    uint32 = 0xB3BA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 32)
  1464  	op_CFXTR   uint32 = 0xB949 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 32)
  1465  	op_CG      uint32 = 0xE320 // FORMAT_RXY1       COMPARE (64)
  1466  	op_CGDBR   uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1467  	op_CGDBRA  uint32 = 0xB3A9 // FORMAT_RRF5       CONVERT TO FIXED (long BFP to 64)
  1468  	op_CGDR    uint32 = 0xB3C9 // FORMAT_RRF5       CONVERT TO FIXED (long HFP to 64)
  1469  	op_CGDTR   uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1470  	op_CGDTRA  uint32 = 0xB3E1 // FORMAT_RRF5       CONVERT TO FIXED (long DFP to 64)
  1471  	op_CGEBR   uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1472  	op_CGEBRA  uint32 = 0xB3A8 // FORMAT_RRF5       CONVERT TO FIXED (short BFP to 64)
  1473  	op_CGER    uint32 = 0xB3C8 // FORMAT_RRF5       CONVERT TO FIXED (short HFP to 64)
  1474  	op_CGF     uint32 = 0xE330 // FORMAT_RXY1       COMPARE (64<-32)
  1475  	op_CGFI    uint32 = 0xC20C // FORMAT_RIL1       COMPARE IMMEDIATE (64<-32)
  1476  	op_CGFR    uint32 = 0xB930 // FORMAT_RRE        COMPARE (64<-32)
  1477  	op_CGFRL   uint32 = 0xC60C // FORMAT_RIL2       COMPARE RELATIVE LONG (64<-32)
  1478  	op_CGH     uint32 = 0xE334 // FORMAT_RXY1       COMPARE HALFWORD (64<-16)
  1479  	op_CGHI    uint32 = 0xA70F // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (64<-16)
  1480  	op_CGHRL   uint32 = 0xC604 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (64<-16)
  1481  	op_CGHSI   uint32 = 0xE558 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (64<-16)
  1482  	op_CGIB    uint32 = 0xECFC // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (64<-8)
  1483  	op_CGIJ    uint32 = 0xEC7C // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1484  	op_CGIT    uint32 = 0xEC70 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (64<-16)
  1485  	op_CGR     uint32 = 0xB920 // FORMAT_RRE        COMPARE (64)
  1486  	op_CGRB    uint32 = 0xECE4 // FORMAT_RRS        COMPARE AND BRANCH (64)
  1487  	op_CGRJ    uint32 = 0xEC64 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (64)
  1488  	op_CGRL    uint32 = 0xC608 // FORMAT_RIL2       COMPARE RELATIVE LONG (64)
  1489  	op_CGRT    uint32 = 0xB960 // FORMAT_RRF3       COMPARE AND TRAP (64)
  1490  	op_CGXBR   uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1491  	op_CGXBRA  uint32 = 0xB3AA // FORMAT_RRF5       CONVERT TO FIXED (extended BFP to 64)
  1492  	op_CGXR    uint32 = 0xB3CA // FORMAT_RRF5       CONVERT TO FIXED (extended HFP to 64)
  1493  	op_CGXTR   uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1494  	op_CGXTRA  uint32 = 0xB3E9 // FORMAT_RRF5       CONVERT TO FIXED (extended DFP to 64)
  1495  	op_CH      uint32 = 0x4900 // FORMAT_RX1        COMPARE HALFWORD (32<-16)
  1496  	op_CHF     uint32 = 0xE3CD // FORMAT_RXY1       COMPARE HIGH (32)
  1497  	op_CHHR    uint32 = 0xB9CD // FORMAT_RRE        COMPARE HIGH (32)
  1498  	op_CHHSI   uint32 = 0xE554 // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (16)
  1499  	op_CHI     uint32 = 0xA70E // FORMAT_RI1        COMPARE HALFWORD IMMEDIATE (32<-16)
  1500  	op_CHLR    uint32 = 0xB9DD // FORMAT_RRE        COMPARE HIGH (32)
  1501  	op_CHRL    uint32 = 0xC605 // FORMAT_RIL2       COMPARE HALFWORD RELATIVE LONG (32<-16)
  1502  	op_CHSI    uint32 = 0xE55C // FORMAT_SIL        COMPARE HALFWORD IMMEDIATE (32<-16)
  1503  	op_CHY     uint32 = 0xE379 // FORMAT_RXY1       COMPARE HALFWORD (32<-16)
  1504  	op_CIB     uint32 = 0xECFE // FORMAT_RIS        COMPARE IMMEDIATE AND BRANCH (32<-8)
  1505  	op_CIH     uint32 = 0xCC0D // FORMAT_RIL1       COMPARE IMMEDIATE HIGH (32)
  1506  	op_CIJ     uint32 = 0xEC7E // FORMAT_RIE3       COMPARE IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1507  	op_CIT     uint32 = 0xEC72 // FORMAT_RIE1       COMPARE IMMEDIATE AND TRAP (32<-16)
  1508  	op_CKSM    uint32 = 0xB241 // FORMAT_RRE        CHECKSUM
  1509  	op_CL      uint32 = 0x5500 // FORMAT_RX1        COMPARE LOGICAL (32)
  1510  	op_CLC     uint32 = 0xD500 // FORMAT_SS1        COMPARE LOGICAL (character)
  1511  	op_CLCL    uint32 = 0x0F00 // FORMAT_RR         COMPARE LOGICAL LONG
  1512  	op_CLCLE   uint32 = 0xA900 // FORMAT_RS1        COMPARE LOGICAL LONG EXTENDED
  1513  	op_CLCLU   uint32 = 0xEB8F // FORMAT_RSY1       COMPARE LOGICAL LONG UNICODE
  1514  	op_CLFDBR  uint32 = 0xB39D // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 32)
  1515  	op_CLFDTR  uint32 = 0xB943 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 32)
  1516  	op_CLFEBR  uint32 = 0xB39C // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 32)
  1517  	op_CLFHSI  uint32 = 0xE55D // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (32<-16)
  1518  	op_CLFI    uint32 = 0xC20F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (32)
  1519  	op_CLFIT   uint32 = 0xEC73 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (32<-16)
  1520  	op_CLFXBR  uint32 = 0xB39E // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 32)
  1521  	op_CLFXTR  uint32 = 0xB94B // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 32)
  1522  	op_CLG     uint32 = 0xE321 // FORMAT_RXY1       COMPARE LOGICAL (64)
  1523  	op_CLGDBR  uint32 = 0xB3AD // FORMAT_RRF5       CONVERT TO LOGICAL (long BFP to 64)
  1524  	op_CLGDTR  uint32 = 0xB942 // FORMAT_RRF5       CONVERT TO LOGICAL (long DFP to 64)
  1525  	op_CLGEBR  uint32 = 0xB3AC // FORMAT_RRF5       CONVERT TO LOGICAL (short BFP to 64)
  1526  	op_CLGF    uint32 = 0xE331 // FORMAT_RXY1       COMPARE LOGICAL (64<-32)
  1527  	op_CLGFI   uint32 = 0xC20E // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE (64<-32)
  1528  	op_CLGFR   uint32 = 0xB931 // FORMAT_RRE        COMPARE LOGICAL (64<-32)
  1529  	op_CLGFRL  uint32 = 0xC60E // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-32)
  1530  	op_CLGHRL  uint32 = 0xC606 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64<-16)
  1531  	op_CLGHSI  uint32 = 0xE559 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (64<-16)
  1532  	op_CLGIB   uint32 = 0xECFD // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (64<-8)
  1533  	op_CLGIJ   uint32 = 0xEC7D // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (64<-8)
  1534  	op_CLGIT   uint32 = 0xEC71 // FORMAT_RIE1       COMPARE LOGICAL IMMEDIATE AND TRAP (64<-16)
  1535  	op_CLGR    uint32 = 0xB921 // FORMAT_RRE        COMPARE LOGICAL (64)
  1536  	op_CLGRB   uint32 = 0xECE5 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (64)
  1537  	op_CLGRJ   uint32 = 0xEC65 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (64)
  1538  	op_CLGRL   uint32 = 0xC60A // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (64)
  1539  	op_CLGRT   uint32 = 0xB961 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (64)
  1540  	op_CLGT    uint32 = 0xEB2B // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (64)
  1541  	op_CLGXBR  uint32 = 0xB3AE // FORMAT_RRF5       CONVERT TO LOGICAL (extended BFP to 64)
  1542  	op_CLGXTR  uint32 = 0xB94A // FORMAT_RRF5       CONVERT TO LOGICAL (extended DFP to 64)
  1543  	op_CLHF    uint32 = 0xE3CF // FORMAT_RXY1       COMPARE LOGICAL HIGH (32)
  1544  	op_CLHHR   uint32 = 0xB9CF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1545  	op_CLHHSI  uint32 = 0xE555 // FORMAT_SIL        COMPARE LOGICAL IMMEDIATE (16)
  1546  	op_CLHLR   uint32 = 0xB9DF // FORMAT_RRE        COMPARE LOGICAL HIGH (32)
  1547  	op_CLHRL   uint32 = 0xC607 // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32<-16)
  1548  	op_CLI     uint32 = 0x9500 // FORMAT_SI         COMPARE LOGICAL (immediate)
  1549  	op_CLIB    uint32 = 0xECFF // FORMAT_RIS        COMPARE LOGICAL IMMEDIATE AND BRANCH (32<-8)
  1550  	op_CLIH    uint32 = 0xCC0F // FORMAT_RIL1       COMPARE LOGICAL IMMEDIATE HIGH (32)
  1551  	op_CLIJ    uint32 = 0xEC7F // FORMAT_RIE3       COMPARE LOGICAL IMMEDIATE AND BRANCH RELATIVE (32<-8)
  1552  	op_CLIY    uint32 = 0xEB55 // FORMAT_SIY        COMPARE LOGICAL (immediate)
  1553  	op_CLM     uint32 = 0xBD00 // FORMAT_RS2        COMPARE LOGICAL CHAR. UNDER MASK (low)
  1554  	op_CLMH    uint32 = 0xEB20 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (high)
  1555  	op_CLMY    uint32 = 0xEB21 // FORMAT_RSY2       COMPARE LOGICAL CHAR. UNDER MASK (low)
  1556  	op_CLR     uint32 = 0x1500 // FORMAT_RR         COMPARE LOGICAL (32)
  1557  	op_CLRB    uint32 = 0xECF7 // FORMAT_RRS        COMPARE LOGICAL AND BRANCH (32)
  1558  	op_CLRJ    uint32 = 0xEC77 // FORMAT_RIE2       COMPARE LOGICAL AND BRANCH RELATIVE (32)
  1559  	op_CLRL    uint32 = 0xC60F // FORMAT_RIL2       COMPARE LOGICAL RELATIVE LONG (32)
  1560  	op_CLRT    uint32 = 0xB973 // FORMAT_RRF3       COMPARE LOGICAL AND TRAP (32)
  1561  	op_CLST    uint32 = 0xB25D // FORMAT_RRE        COMPARE LOGICAL STRING
  1562  	op_CLT     uint32 = 0xEB23 // FORMAT_RSY2       COMPARE LOGICAL AND TRAP (32)
  1563  	op_CLY     uint32 = 0xE355 // FORMAT_RXY1       COMPARE LOGICAL (32)
  1564  	op_CMPSC   uint32 = 0xB263 // FORMAT_RRE        COMPRESSION CALL
  1565  	op_CP      uint32 = 0xF900 // FORMAT_SS2        COMPARE DECIMAL
  1566  	op_CPSDR   uint32 = 0xB372 // FORMAT_RRF2       COPY SIGN (long)
  1567  	op_CPYA    uint32 = 0xB24D // FORMAT_RRE        COPY ACCESS
  1568  	op_CR      uint32 = 0x1900 // FORMAT_RR         COMPARE (32)
  1569  	op_CRB     uint32 = 0xECF6 // FORMAT_RRS        COMPARE AND BRANCH (32)
  1570  	op_CRDTE   uint32 = 0xB98F // FORMAT_RRF2       COMPARE AND REPLACE DAT TABLE ENTRY
  1571  	op_CRJ     uint32 = 0xEC76 // FORMAT_RIE2       COMPARE AND BRANCH RELATIVE (32)
  1572  	op_CRL     uint32 = 0xC60D // FORMAT_RIL2       COMPARE RELATIVE LONG (32)
  1573  	op_CRT     uint32 = 0xB972 // FORMAT_RRF3       COMPARE AND TRAP (32)
  1574  	op_CS      uint32 = 0xBA00 // FORMAT_RS1        COMPARE AND SWAP (32)
  1575  	op_CSCH    uint32 = 0xB230 // FORMAT_S          CLEAR SUBCHANNEL
  1576  	op_CSDTR   uint32 = 0xB3E3 // FORMAT_RRF4       CONVERT TO SIGNED PACKED (long DFP to 64)
  1577  	op_CSG     uint32 = 0xEB30 // FORMAT_RSY1       COMPARE AND SWAP (64)
  1578  	op_CSP     uint32 = 0xB250 // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1579  	op_CSPG    uint32 = 0xB98A // FORMAT_RRE        COMPARE AND SWAP AND PURGE
  1580  	op_CSST    uint32 = 0xC802 // FORMAT_SSF        COMPARE AND SWAP AND STORE
  1581  	op_CSXTR   uint32 = 0xB3EB // FORMAT_RRF4       CONVERT TO SIGNED PACKED (extended DFP to 128)
  1582  	op_CSY     uint32 = 0xEB14 // FORMAT_RSY1       COMPARE AND SWAP (32)
  1583  	op_CU12    uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-16
  1584  	op_CU14    uint32 = 0xB9B0 // FORMAT_RRF3       CONVERT UTF-8 TO UTF-32
  1585  	op_CU21    uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-8
  1586  	op_CU24    uint32 = 0xB9B1 // FORMAT_RRF3       CONVERT UTF-16 TO UTF-32
  1587  	op_CU41    uint32 = 0xB9B2 // FORMAT_RRE        CONVERT UTF-32 TO UTF-8
  1588  	op_CU42    uint32 = 0xB9B3 // FORMAT_RRE        CONVERT UTF-32 TO UTF-16
  1589  	op_CUDTR   uint32 = 0xB3E2 // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (long DFP to 64)
  1590  	op_CUSE    uint32 = 0xB257 // FORMAT_RRE        COMPARE UNTIL SUBSTRING EQUAL
  1591  	op_CUTFU   uint32 = 0xB2A7 // FORMAT_RRF3       CONVERT UTF-8 TO UNICODE
  1592  	op_CUUTF   uint32 = 0xB2A6 // FORMAT_RRF3       CONVERT UNICODE TO UTF-8
  1593  	op_CUXTR   uint32 = 0xB3EA // FORMAT_RRE        CONVERT TO UNSIGNED PACKED (extended DFP to 128)
  1594  	op_CVB     uint32 = 0x4F00 // FORMAT_RX1        CONVERT TO BINARY (32)
  1595  	op_CVBG    uint32 = 0xE30E // FORMAT_RXY1       CONVERT TO BINARY (64)
  1596  	op_CVBY    uint32 = 0xE306 // FORMAT_RXY1       CONVERT TO BINARY (32)
  1597  	op_CVD     uint32 = 0x4E00 // FORMAT_RX1        CONVERT TO DECIMAL (32)
  1598  	op_CVDG    uint32 = 0xE32E // FORMAT_RXY1       CONVERT TO DECIMAL (64)
  1599  	op_CVDY    uint32 = 0xE326 // FORMAT_RXY1       CONVERT TO DECIMAL (32)
  1600  	op_CXBR    uint32 = 0xB349 // FORMAT_RRE        COMPARE (extended BFP)
  1601  	op_CXFBR   uint32 = 0xB396 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended BFP)
  1602  	op_CXFBRA  uint32 = 0xB396 // FORMAT_RRF5       CONVERT FROM FIXED (32 to extended BFP)
  1603  	op_CXFR    uint32 = 0xB3B6 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended HFP)
  1604  	op_CXFTR   uint32 = 0xB959 // FORMAT_RRE        CONVERT FROM FIXED (32 to extended DFP)
  1605  	op_CXGBR   uint32 = 0xB3A6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended BFP)
  1606  	op_CXGBRA  uint32 = 0xB3A6 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended BFP)
  1607  	op_CXGR    uint32 = 0xB3C6 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended HFP)
  1608  	op_CXGTR   uint32 = 0xB3F9 // FORMAT_RRE        CONVERT FROM FIXED (64 to extended DFP)
  1609  	op_CXGTRA  uint32 = 0xB3F9 // FORMAT_RRF5       CONVERT FROM FIXED (64 to extended DFP)
  1610  	op_CXLFBR  uint32 = 0xB392 // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended BFP)
  1611  	op_CXLFTR  uint32 = 0xB95B // FORMAT_RRF5       CONVERT FROM LOGICAL (32 to extended DFP)
  1612  	op_CXLGBR  uint32 = 0xB3A2 // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended BFP)
  1613  	op_CXLGTR  uint32 = 0xB95A // FORMAT_RRF5       CONVERT FROM LOGICAL (64 to extended DFP)
  1614  	op_CXR     uint32 = 0xB369 // FORMAT_RRE        COMPARE (extended HFP)
  1615  	op_CXSTR   uint32 = 0xB3FB // FORMAT_RRE        CONVERT FROM SIGNED PACKED (128 to extended DFP)
  1616  	op_CXTR    uint32 = 0xB3EC // FORMAT_RRE        COMPARE (extended DFP)
  1617  	op_CXUTR   uint32 = 0xB3FA // FORMAT_RRE        CONVERT FROM UNSIGNED PACKED (128 to ext. DFP)
  1618  	op_CXZT    uint32 = 0xEDAB // FORMAT_RSL        CONVERT FROM ZONED (to extended DFP)
  1619  	op_CY      uint32 = 0xE359 // FORMAT_RXY1       COMPARE (32)
  1620  	op_CZDT    uint32 = 0xEDA8 // FORMAT_RSL        CONVERT TO ZONED (from long DFP)
  1621  	op_CZXT    uint32 = 0xEDA9 // FORMAT_RSL        CONVERT TO ZONED (from extended DFP)
  1622  	op_D       uint32 = 0x5D00 // FORMAT_RX1        DIVIDE (32<-64)
  1623  	op_DD      uint32 = 0x6D00 // FORMAT_RX1        DIVIDE (long HFP)
  1624  	op_DDB     uint32 = 0xED1D // FORMAT_RXE        DIVIDE (long BFP)
  1625  	op_DDBR    uint32 = 0xB31D // FORMAT_RRE        DIVIDE (long BFP)
  1626  	op_DDR     uint32 = 0x2D00 // FORMAT_RR         DIVIDE (long HFP)
  1627  	op_DDTR    uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1628  	op_DDTRA   uint32 = 0xB3D1 // FORMAT_RRF1       DIVIDE (long DFP)
  1629  	op_DE      uint32 = 0x7D00 // FORMAT_RX1        DIVIDE (short HFP)
  1630  	op_DEB     uint32 = 0xED0D // FORMAT_RXE        DIVIDE (short BFP)
  1631  	op_DEBR    uint32 = 0xB30D // FORMAT_RRE        DIVIDE (short BFP)
  1632  	op_DER     uint32 = 0x3D00 // FORMAT_RR         DIVIDE (short HFP)
  1633  	op_DIDBR   uint32 = 0xB35B // FORMAT_RRF2       DIVIDE TO INTEGER (long BFP)
  1634  	op_DIEBR   uint32 = 0xB353 // FORMAT_RRF2       DIVIDE TO INTEGER (short BFP)
  1635  	op_DL      uint32 = 0xE397 // FORMAT_RXY1       DIVIDE LOGICAL (32<-64)
  1636  	op_DLG     uint32 = 0xE387 // FORMAT_RXY1       DIVIDE LOGICAL (64<-128)
  1637  	op_DLGR    uint32 = 0xB987 // FORMAT_RRE        DIVIDE LOGICAL (64<-128)
  1638  	op_DLR     uint32 = 0xB997 // FORMAT_RRE        DIVIDE LOGICAL (32<-64)
  1639  	op_DP      uint32 = 0xFD00 // FORMAT_SS2        DIVIDE DECIMAL
  1640  	op_DR      uint32 = 0x1D00 // FORMAT_RR         DIVIDE (32<-64)
  1641  	op_DSG     uint32 = 0xE30D // FORMAT_RXY1       DIVIDE SINGLE (64)
  1642  	op_DSGF    uint32 = 0xE31D // FORMAT_RXY1       DIVIDE SINGLE (64<-32)
  1643  	op_DSGFR   uint32 = 0xB91D // FORMAT_RRE        DIVIDE SINGLE (64<-32)
  1644  	op_DSGR    uint32 = 0xB90D // FORMAT_RRE        DIVIDE SINGLE (64)
  1645  	op_DXBR    uint32 = 0xB34D // FORMAT_RRE        DIVIDE (extended BFP)
  1646  	op_DXR     uint32 = 0xB22D // FORMAT_RRE        DIVIDE (extended HFP)
  1647  	op_DXTR    uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1648  	op_DXTRA   uint32 = 0xB3D9 // FORMAT_RRF1       DIVIDE (extended DFP)
  1649  	op_EAR     uint32 = 0xB24F // FORMAT_RRE        EXTRACT ACCESS
  1650  	op_ECAG    uint32 = 0xEB4C // FORMAT_RSY1       EXTRACT CACHE ATTRIBUTE
  1651  	op_ECTG    uint32 = 0xC801 // FORMAT_SSF        EXTRACT CPU TIME
  1652  	op_ED      uint32 = 0xDE00 // FORMAT_SS1        EDIT
  1653  	op_EDMK    uint32 = 0xDF00 // FORMAT_SS1        EDIT AND MARK
  1654  	op_EEDTR   uint32 = 0xB3E5 // FORMAT_RRE        EXTRACT BIASED EXPONENT (long DFP to 64)
  1655  	op_EEXTR   uint32 = 0xB3ED // FORMAT_RRE        EXTRACT BIASED EXPONENT (extended DFP to 64)
  1656  	op_EFPC    uint32 = 0xB38C // FORMAT_RRE        EXTRACT FPC
  1657  	op_EPAIR   uint32 = 0xB99A // FORMAT_RRE        EXTRACT PRIMARY ASN AND INSTANCE
  1658  	op_EPAR    uint32 = 0xB226 // FORMAT_RRE        EXTRACT PRIMARY ASN
  1659  	op_EPSW    uint32 = 0xB98D // FORMAT_RRE        EXTRACT PSW
  1660  	op_EREG    uint32 = 0xB249 // FORMAT_RRE        EXTRACT STACKED REGISTERS (32)
  1661  	op_EREGG   uint32 = 0xB90E // FORMAT_RRE        EXTRACT STACKED REGISTERS (64)
  1662  	op_ESAIR   uint32 = 0xB99B // FORMAT_RRE        EXTRACT SECONDARY ASN AND INSTANCE
  1663  	op_ESAR    uint32 = 0xB227 // FORMAT_RRE        EXTRACT SECONDARY ASN
  1664  	op_ESDTR   uint32 = 0xB3E7 // FORMAT_RRE        EXTRACT SIGNIFICANCE (long DFP)
  1665  	op_ESEA    uint32 = 0xB99D // FORMAT_RRE        EXTRACT AND SET EXTENDED AUTHORITY
  1666  	op_ESTA    uint32 = 0xB24A // FORMAT_RRE        EXTRACT STACKED STATE
  1667  	op_ESXTR   uint32 = 0xB3EF // FORMAT_RRE        EXTRACT SIGNIFICANCE (extended DFP)
  1668  	op_ETND    uint32 = 0xB2EC // FORMAT_RRE        EXTRACT TRANSACTION NESTING DEPTH
  1669  	op_EX      uint32 = 0x4400 // FORMAT_RX1        EXECUTE
  1670  	op_EXRL    uint32 = 0xC600 // FORMAT_RIL2       EXECUTE RELATIVE LONG
  1671  	op_FIDBR   uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1672  	op_FIDBRA  uint32 = 0xB35F // FORMAT_RRF5       LOAD FP INTEGER (long BFP)
  1673  	op_FIDR    uint32 = 0xB37F // FORMAT_RRE        LOAD FP INTEGER (long HFP)
  1674  	op_FIDTR   uint32 = 0xB3D7 // FORMAT_RRF5       LOAD FP INTEGER (long DFP)
  1675  	op_FIEBR   uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1676  	op_FIEBRA  uint32 = 0xB357 // FORMAT_RRF5       LOAD FP INTEGER (short BFP)
  1677  	op_FIER    uint32 = 0xB377 // FORMAT_RRE        LOAD FP INTEGER (short HFP)
  1678  	op_FIXBR   uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1679  	op_FIXBRA  uint32 = 0xB347 // FORMAT_RRF5       LOAD FP INTEGER (extended BFP)
  1680  	op_FIXR    uint32 = 0xB367 // FORMAT_RRE        LOAD FP INTEGER (extended HFP)
  1681  	op_FIXTR   uint32 = 0xB3DF // FORMAT_RRF5       LOAD FP INTEGER (extended DFP)
  1682  	op_FLOGR   uint32 = 0xB983 // FORMAT_RRE        FIND LEFTMOST ONE
  1683  	op_HDR     uint32 = 0x2400 // FORMAT_RR         HALVE (long HFP)
  1684  	op_HER     uint32 = 0x3400 // FORMAT_RR         HALVE (short HFP)
  1685  	op_HSCH    uint32 = 0xB231 // FORMAT_S          HALT SUBCHANNEL
  1686  	op_IAC     uint32 = 0xB224 // FORMAT_RRE        INSERT ADDRESS SPACE CONTROL
  1687  	op_IC      uint32 = 0x4300 // FORMAT_RX1        INSERT CHARACTER
  1688  	op_ICM     uint32 = 0xBF00 // FORMAT_RS2        INSERT CHARACTERS UNDER MASK (low)
  1689  	op_ICMH    uint32 = 0xEB80 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (high)
  1690  	op_ICMY    uint32 = 0xEB81 // FORMAT_RSY2       INSERT CHARACTERS UNDER MASK (low)
  1691  	op_ICY     uint32 = 0xE373 // FORMAT_RXY1       INSERT CHARACTER
  1692  	op_IDTE    uint32 = 0xB98E // FORMAT_RRF2       INVALIDATE DAT TABLE ENTRY
  1693  	op_IEDTR   uint32 = 0xB3F6 // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to long DFP)
  1694  	op_IEXTR   uint32 = 0xB3FE // FORMAT_RRF2       INSERT BIASED EXPONENT (64 to extended DFP)
  1695  	op_IIHF    uint32 = 0xC008 // FORMAT_RIL1       INSERT IMMEDIATE (high)
  1696  	op_IIHH    uint32 = 0xA500 // FORMAT_RI1        INSERT IMMEDIATE (high high)
  1697  	op_IIHL    uint32 = 0xA501 // FORMAT_RI1        INSERT IMMEDIATE (high low)
  1698  	op_IILF    uint32 = 0xC009 // FORMAT_RIL1       INSERT IMMEDIATE (low)
  1699  	op_IILH    uint32 = 0xA502 // FORMAT_RI1        INSERT IMMEDIATE (low high)
  1700  	op_IILL    uint32 = 0xA503 // FORMAT_RI1        INSERT IMMEDIATE (low low)
  1701  	op_IPK     uint32 = 0xB20B // FORMAT_S          INSERT PSW KEY
  1702  	op_IPM     uint32 = 0xB222 // FORMAT_RRE        INSERT PROGRAM MASK
  1703  	op_IPTE    uint32 = 0xB221 // FORMAT_RRF1       INVALIDATE PAGE TABLE ENTRY
  1704  	op_ISKE    uint32 = 0xB229 // FORMAT_RRE        INSERT STORAGE KEY EXTENDED
  1705  	op_IVSK    uint32 = 0xB223 // FORMAT_RRE        INSERT VIRTUAL STORAGE KEY
  1706  	op_KDB     uint32 = 0xED18 // FORMAT_RXE        COMPARE AND SIGNAL (long BFP)
  1707  	op_KDBR    uint32 = 0xB318 // FORMAT_RRE        COMPARE AND SIGNAL (long BFP)
  1708  	op_KDTR    uint32 = 0xB3E0 // FORMAT_RRE        COMPARE AND SIGNAL (long DFP)
  1709  	op_KEB     uint32 = 0xED08 // FORMAT_RXE        COMPARE AND SIGNAL (short BFP)
  1710  	op_KEBR    uint32 = 0xB308 // FORMAT_RRE        COMPARE AND SIGNAL (short BFP)
  1711  	op_KIMD    uint32 = 0xB93E // FORMAT_RRE        COMPUTE INTERMEDIATE MESSAGE DIGEST
  1712  	op_KLMD    uint32 = 0xB93F // FORMAT_RRE        COMPUTE LAST MESSAGE DIGEST
  1713  	op_KM      uint32 = 0xB92E // FORMAT_RRE        CIPHER MESSAGE
  1714  	op_KMAC    uint32 = 0xB91E // FORMAT_RRE        COMPUTE MESSAGE AUTHENTICATION CODE
  1715  	op_KMC     uint32 = 0xB92F // FORMAT_RRE        CIPHER MESSAGE WITH CHAINING
  1716  	op_KMCTR   uint32 = 0xB92D // FORMAT_RRF2       CIPHER MESSAGE WITH COUNTER
  1717  	op_KMF     uint32 = 0xB92A // FORMAT_RRE        CIPHER MESSAGE WITH CFB
  1718  	op_KMO     uint32 = 0xB92B // FORMAT_RRE        CIPHER MESSAGE WITH OFB
  1719  	op_KXBR    uint32 = 0xB348 // FORMAT_RRE        COMPARE AND SIGNAL (extended BFP)
  1720  	op_KXTR    uint32 = 0xB3E8 // FORMAT_RRE        COMPARE AND SIGNAL (extended DFP)
  1721  	op_L       uint32 = 0x5800 // FORMAT_RX1        LOAD (32)
  1722  	op_LA      uint32 = 0x4100 // FORMAT_RX1        LOAD ADDRESS
  1723  	op_LAA     uint32 = 0xEBF8 // FORMAT_RSY1       LOAD AND ADD (32)
  1724  	op_LAAG    uint32 = 0xEBE8 // FORMAT_RSY1       LOAD AND ADD (64)
  1725  	op_LAAL    uint32 = 0xEBFA // FORMAT_RSY1       LOAD AND ADD LOGICAL (32)
  1726  	op_LAALG   uint32 = 0xEBEA // FORMAT_RSY1       LOAD AND ADD LOGICAL (64)
  1727  	op_LAE     uint32 = 0x5100 // FORMAT_RX1        LOAD ADDRESS EXTENDED
  1728  	op_LAEY    uint32 = 0xE375 // FORMAT_RXY1       LOAD ADDRESS EXTENDED
  1729  	op_LAM     uint32 = 0x9A00 // FORMAT_RS1        LOAD ACCESS MULTIPLE
  1730  	op_LAMY    uint32 = 0xEB9A // FORMAT_RSY1       LOAD ACCESS MULTIPLE
  1731  	op_LAN     uint32 = 0xEBF4 // FORMAT_RSY1       LOAD AND AND (32)
  1732  	op_LANG    uint32 = 0xEBE4 // FORMAT_RSY1       LOAD AND AND (64)
  1733  	op_LAO     uint32 = 0xEBF6 // FORMAT_RSY1       LOAD AND OR (32)
  1734  	op_LAOG    uint32 = 0xEBE6 // FORMAT_RSY1       LOAD AND OR (64)
  1735  	op_LARL    uint32 = 0xC000 // FORMAT_RIL2       LOAD ADDRESS RELATIVE LONG
  1736  	op_LASP    uint32 = 0xE500 // FORMAT_SSE        LOAD ADDRESS SPACE PARAMETERS
  1737  	op_LAT     uint32 = 0xE39F // FORMAT_RXY1       LOAD AND TRAP (32L<-32)
  1738  	op_LAX     uint32 = 0xEBF7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (32)
  1739  	op_LAXG    uint32 = 0xEBE7 // FORMAT_RSY1       LOAD AND EXCLUSIVE OR (64)
  1740  	op_LAY     uint32 = 0xE371 // FORMAT_RXY1       LOAD ADDRESS
  1741  	op_LB      uint32 = 0xE376 // FORMAT_RXY1       LOAD BYTE (32)
  1742  	op_LBH     uint32 = 0xE3C0 // FORMAT_RXY1       LOAD BYTE HIGH (32<-8)
  1743  	op_LBR     uint32 = 0xB926 // FORMAT_RRE        LOAD BYTE (32)
  1744  	op_LCDBR   uint32 = 0xB313 // FORMAT_RRE        LOAD COMPLEMENT (long BFP)
  1745  	op_LCDFR   uint32 = 0xB373 // FORMAT_RRE        LOAD COMPLEMENT (long)
  1746  	op_LCDR    uint32 = 0x2300 // FORMAT_RR         LOAD COMPLEMENT (long HFP)
  1747  	op_LCEBR   uint32 = 0xB303 // FORMAT_RRE        LOAD COMPLEMENT (short BFP)
  1748  	op_LCER    uint32 = 0x3300 // FORMAT_RR         LOAD COMPLEMENT (short HFP)
  1749  	op_LCGFR   uint32 = 0xB913 // FORMAT_RRE        LOAD COMPLEMENT (64<-32)
  1750  	op_LCGR    uint32 = 0xB903 // FORMAT_RRE        LOAD COMPLEMENT (64)
  1751  	op_LCR     uint32 = 0x1300 // FORMAT_RR         LOAD COMPLEMENT (32)
  1752  	op_LCTL    uint32 = 0xB700 // FORMAT_RS1        LOAD CONTROL (32)
  1753  	op_LCTLG   uint32 = 0xEB2F // FORMAT_RSY1       LOAD CONTROL (64)
  1754  	op_LCXBR   uint32 = 0xB343 // FORMAT_RRE        LOAD COMPLEMENT (extended BFP)
  1755  	op_LCXR    uint32 = 0xB363 // FORMAT_RRE        LOAD COMPLEMENT (extended HFP)
  1756  	op_LD      uint32 = 0x6800 // FORMAT_RX1        LOAD (long)
  1757  	op_LDE     uint32 = 0xED24 // FORMAT_RXE        LOAD LENGTHENED (short to long HFP)
  1758  	op_LDEB    uint32 = 0xED04 // FORMAT_RXE        LOAD LENGTHENED (short to long BFP)
  1759  	op_LDEBR   uint32 = 0xB304 // FORMAT_RRE        LOAD LENGTHENED (short to long BFP)
  1760  	op_LDER    uint32 = 0xB324 // FORMAT_RRE        LOAD LENGTHENED (short to long HFP)
  1761  	op_LDETR   uint32 = 0xB3D4 // FORMAT_RRF4       LOAD LENGTHENED (short to long DFP)
  1762  	op_LDGR    uint32 = 0xB3C1 // FORMAT_RRE        LOAD FPR FROM GR (64 to long)
  1763  	op_LDR     uint32 = 0x2800 // FORMAT_RR         LOAD (long)
  1764  	op_LDXBR   uint32 = 0xB345 // FORMAT_RRE        LOAD ROUNDED (extended to long BFP)
  1765  	op_LDXBRA  uint32 = 0xB345 // FORMAT_RRF5       LOAD ROUNDED (extended to long BFP)
  1766  	op_LDXR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1767  	op_LDXTR   uint32 = 0xB3DD // FORMAT_RRF5       LOAD ROUNDED (extended to long DFP)
  1768  	op_LDY     uint32 = 0xED65 // FORMAT_RXY1       LOAD (long)
  1769  	op_LE      uint32 = 0x7800 // FORMAT_RX1        LOAD (short)
  1770  	op_LEDBR   uint32 = 0xB344 // FORMAT_RRE        LOAD ROUNDED (long to short BFP)
  1771  	op_LEDBRA  uint32 = 0xB344 // FORMAT_RRF5       LOAD ROUNDED (long to short BFP)
  1772  	op_LEDR    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1773  	op_LEDTR   uint32 = 0xB3D5 // FORMAT_RRF5       LOAD ROUNDED (long to short DFP)
  1774  	op_LER     uint32 = 0x3800 // FORMAT_RR         LOAD (short)
  1775  	op_LEXBR   uint32 = 0xB346 // FORMAT_RRE        LOAD ROUNDED (extended to short BFP)
  1776  	op_LEXBRA  uint32 = 0xB346 // FORMAT_RRF5       LOAD ROUNDED (extended to short BFP)
  1777  	op_LEXR    uint32 = 0xB366 // FORMAT_RRE        LOAD ROUNDED (extended to short HFP)
  1778  	op_LEY     uint32 = 0xED64 // FORMAT_RXY1       LOAD (short)
  1779  	op_LFAS    uint32 = 0xB2BD // FORMAT_S          LOAD FPC AND SIGNAL
  1780  	op_LFH     uint32 = 0xE3CA // FORMAT_RXY1       LOAD HIGH (32)
  1781  	op_LFHAT   uint32 = 0xE3C8 // FORMAT_RXY1       LOAD HIGH AND TRAP (32H<-32)
  1782  	op_LFPC    uint32 = 0xB29D // FORMAT_S          LOAD FPC
  1783  	op_LG      uint32 = 0xE304 // FORMAT_RXY1       LOAD (64)
  1784  	op_LGAT    uint32 = 0xE385 // FORMAT_RXY1       LOAD AND TRAP (64)
  1785  	op_LGB     uint32 = 0xE377 // FORMAT_RXY1       LOAD BYTE (64)
  1786  	op_LGBR    uint32 = 0xB906 // FORMAT_RRE        LOAD BYTE (64)
  1787  	op_LGDR    uint32 = 0xB3CD // FORMAT_RRE        LOAD GR FROM FPR (long to 64)
  1788  	op_LGF     uint32 = 0xE314 // FORMAT_RXY1       LOAD (64<-32)
  1789  	op_LGFI    uint32 = 0xC001 // FORMAT_RIL1       LOAD IMMEDIATE (64<-32)
  1790  	op_LGFR    uint32 = 0xB914 // FORMAT_RRE        LOAD (64<-32)
  1791  	op_LGFRL   uint32 = 0xC40C // FORMAT_RIL2       LOAD RELATIVE LONG (64<-32)
  1792  	op_LGH     uint32 = 0xE315 // FORMAT_RXY1       LOAD HALFWORD (64)
  1793  	op_LGHI    uint32 = 0xA709 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (64)
  1794  	op_LGHR    uint32 = 0xB907 // FORMAT_RRE        LOAD HALFWORD (64)
  1795  	op_LGHRL   uint32 = 0xC404 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (64<-16)
  1796  	op_LGR     uint32 = 0xB904 // FORMAT_RRE        LOAD (64)
  1797  	op_LGRL    uint32 = 0xC408 // FORMAT_RIL2       LOAD RELATIVE LONG (64)
  1798  	op_LH      uint32 = 0x4800 // FORMAT_RX1        LOAD HALFWORD (32)
  1799  	op_LHH     uint32 = 0xE3C4 // FORMAT_RXY1       LOAD HALFWORD HIGH (32<-16)
  1800  	op_LHI     uint32 = 0xA708 // FORMAT_RI1        LOAD HALFWORD IMMEDIATE (32)
  1801  	op_LHR     uint32 = 0xB927 // FORMAT_RRE        LOAD HALFWORD (32)
  1802  	op_LHRL    uint32 = 0xC405 // FORMAT_RIL2       LOAD HALFWORD RELATIVE LONG (32<-16)
  1803  	op_LHY     uint32 = 0xE378 // FORMAT_RXY1       LOAD HALFWORD (32)
  1804  	op_LLC     uint32 = 0xE394 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (32)
  1805  	op_LLCH    uint32 = 0xE3C2 // FORMAT_RXY1       LOAD LOGICAL CHARACTER HIGH (32<-8)
  1806  	op_LLCR    uint32 = 0xB994 // FORMAT_RRE        LOAD LOGICAL CHARACTER (32)
  1807  	op_LLGC    uint32 = 0xE390 // FORMAT_RXY1       LOAD LOGICAL CHARACTER (64)
  1808  	op_LLGCR   uint32 = 0xB984 // FORMAT_RRE        LOAD LOGICAL CHARACTER (64)
  1809  	op_LLGF    uint32 = 0xE316 // FORMAT_RXY1       LOAD LOGICAL (64<-32)
  1810  	op_LLGFAT  uint32 = 0xE39D // FORMAT_RXY1       LOAD LOGICAL AND TRAP (64<-32)
  1811  	op_LLGFR   uint32 = 0xB916 // FORMAT_RRE        LOAD LOGICAL (64<-32)
  1812  	op_LLGFRL  uint32 = 0xC40E // FORMAT_RIL2       LOAD LOGICAL RELATIVE LONG (64<-32)
  1813  	op_LLGH    uint32 = 0xE391 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (64)
  1814  	op_LLGHR   uint32 = 0xB985 // FORMAT_RRE        LOAD LOGICAL HALFWORD (64)
  1815  	op_LLGHRL  uint32 = 0xC406 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (64<-16)
  1816  	op_LLGT    uint32 = 0xE317 // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS
  1817  	op_LLGTAT  uint32 = 0xE39C // FORMAT_RXY1       LOAD LOGICAL THIRTY ONE BITS AND TRAP (64<-31)
  1818  	op_LLGTR   uint32 = 0xB917 // FORMAT_RRE        LOAD LOGICAL THIRTY ONE BITS
  1819  	op_LLH     uint32 = 0xE395 // FORMAT_RXY1       LOAD LOGICAL HALFWORD (32)
  1820  	op_LLHH    uint32 = 0xE3C6 // FORMAT_RXY1       LOAD LOGICAL HALFWORD HIGH (32<-16)
  1821  	op_LLHR    uint32 = 0xB995 // FORMAT_RRE        LOAD LOGICAL HALFWORD (32)
  1822  	op_LLHRL   uint32 = 0xC402 // FORMAT_RIL2       LOAD LOGICAL HALFWORD RELATIVE LONG (32<-16)
  1823  	op_LLIHF   uint32 = 0xC00E // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (high)
  1824  	op_LLIHH   uint32 = 0xA50C // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high high)
  1825  	op_LLIHL   uint32 = 0xA50D // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (high low)
  1826  	op_LLILF   uint32 = 0xC00F // FORMAT_RIL1       LOAD LOGICAL IMMEDIATE (low)
  1827  	op_LLILH   uint32 = 0xA50E // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low high)
  1828  	op_LLILL   uint32 = 0xA50F // FORMAT_RI1        LOAD LOGICAL IMMEDIATE (low low)
  1829  	op_LM      uint32 = 0x9800 // FORMAT_RS1        LOAD MULTIPLE (32)
  1830  	op_LMD     uint32 = 0xEF00 // FORMAT_SS5        LOAD MULTIPLE DISJOINT
  1831  	op_LMG     uint32 = 0xEB04 // FORMAT_RSY1       LOAD MULTIPLE (64)
  1832  	op_LMH     uint32 = 0xEB96 // FORMAT_RSY1       LOAD MULTIPLE HIGH
  1833  	op_LMY     uint32 = 0xEB98 // FORMAT_RSY1       LOAD MULTIPLE (32)
  1834  	op_LNDBR   uint32 = 0xB311 // FORMAT_RRE        LOAD NEGATIVE (long BFP)
  1835  	op_LNDFR   uint32 = 0xB371 // FORMAT_RRE        LOAD NEGATIVE (long)
  1836  	op_LNDR    uint32 = 0x2100 // FORMAT_RR         LOAD NEGATIVE (long HFP)
  1837  	op_LNEBR   uint32 = 0xB301 // FORMAT_RRE        LOAD NEGATIVE (short BFP)
  1838  	op_LNER    uint32 = 0x3100 // FORMAT_RR         LOAD NEGATIVE (short HFP)
  1839  	op_LNGFR   uint32 = 0xB911 // FORMAT_RRE        LOAD NEGATIVE (64<-32)
  1840  	op_LNGR    uint32 = 0xB901 // FORMAT_RRE        LOAD NEGATIVE (64)
  1841  	op_LNR     uint32 = 0x1100 // FORMAT_RR         LOAD NEGATIVE (32)
  1842  	op_LNXBR   uint32 = 0xB341 // FORMAT_RRE        LOAD NEGATIVE (extended BFP)
  1843  	op_LNXR    uint32 = 0xB361 // FORMAT_RRE        LOAD NEGATIVE (extended HFP)
  1844  	op_LOC     uint32 = 0xEBF2 // FORMAT_RSY2       LOAD ON CONDITION (32)
  1845  	op_LOCG    uint32 = 0xEBE2 // FORMAT_RSY2       LOAD ON CONDITION (64)
  1846  	op_LOCGR   uint32 = 0xB9E2 // FORMAT_RRF3       LOAD ON CONDITION (64)
  1847  	op_LOCR    uint32 = 0xB9F2 // FORMAT_RRF3       LOAD ON CONDITION (32)
  1848  	op_LPD     uint32 = 0xC804 // FORMAT_SSF        LOAD PAIR DISJOINT (32)
  1849  	op_LPDBR   uint32 = 0xB310 // FORMAT_RRE        LOAD POSITIVE (long BFP)
  1850  	op_LPDFR   uint32 = 0xB370 // FORMAT_RRE        LOAD POSITIVE (long)
  1851  	op_LPDG    uint32 = 0xC805 // FORMAT_SSF        LOAD PAIR DISJOINT (64)
  1852  	op_LPDR    uint32 = 0x2000 // FORMAT_RR         LOAD POSITIVE (long HFP)
  1853  	op_LPEBR   uint32 = 0xB300 // FORMAT_RRE        LOAD POSITIVE (short BFP)
  1854  	op_LPER    uint32 = 0x3000 // FORMAT_RR         LOAD POSITIVE (short HFP)
  1855  	op_LPGFR   uint32 = 0xB910 // FORMAT_RRE        LOAD POSITIVE (64<-32)
  1856  	op_LPGR    uint32 = 0xB900 // FORMAT_RRE        LOAD POSITIVE (64)
  1857  	op_LPQ     uint32 = 0xE38F // FORMAT_RXY1       LOAD PAIR FROM QUADWORD
  1858  	op_LPR     uint32 = 0x1000 // FORMAT_RR         LOAD POSITIVE (32)
  1859  	op_LPSW    uint32 = 0x8200 // FORMAT_S          LOAD PSW
  1860  	op_LPSWE   uint32 = 0xB2B2 // FORMAT_S          LOAD PSW EXTENDED
  1861  	op_LPTEA   uint32 = 0xB9AA // FORMAT_RRF2       LOAD PAGE TABLE ENTRY ADDRESS
  1862  	op_LPXBR   uint32 = 0xB340 // FORMAT_RRE        LOAD POSITIVE (extended BFP)
  1863  	op_LPXR    uint32 = 0xB360 // FORMAT_RRE        LOAD POSITIVE (extended HFP)
  1864  	op_LR      uint32 = 0x1800 // FORMAT_RR         LOAD (32)
  1865  	op_LRA     uint32 = 0xB100 // FORMAT_RX1        LOAD REAL ADDRESS (32)
  1866  	op_LRAG    uint32 = 0xE303 // FORMAT_RXY1       LOAD REAL ADDRESS (64)
  1867  	op_LRAY    uint32 = 0xE313 // FORMAT_RXY1       LOAD REAL ADDRESS (32)
  1868  	op_LRDR    uint32 = 0x2500 // FORMAT_RR         LOAD ROUNDED (extended to long HFP)
  1869  	op_LRER    uint32 = 0x3500 // FORMAT_RR         LOAD ROUNDED (long to short HFP)
  1870  	op_LRL     uint32 = 0xC40D // FORMAT_RIL2       LOAD RELATIVE LONG (32)
  1871  	op_LRV     uint32 = 0xE31E // FORMAT_RXY1       LOAD REVERSED (32)
  1872  	op_LRVG    uint32 = 0xE30F // FORMAT_RXY1       LOAD REVERSED (64)
  1873  	op_LRVGR   uint32 = 0xB90F // FORMAT_RRE        LOAD REVERSED (64)
  1874  	op_LRVH    uint32 = 0xE31F // FORMAT_RXY1       LOAD REVERSED (16)
  1875  	op_LRVR    uint32 = 0xB91F // FORMAT_RRE        LOAD REVERSED (32)
  1876  	op_LT      uint32 = 0xE312 // FORMAT_RXY1       LOAD AND TEST (32)
  1877  	op_LTDBR   uint32 = 0xB312 // FORMAT_RRE        LOAD AND TEST (long BFP)
  1878  	op_LTDR    uint32 = 0x2200 // FORMAT_RR         LOAD AND TEST (long HFP)
  1879  	op_LTDTR   uint32 = 0xB3D6 // FORMAT_RRE        LOAD AND TEST (long DFP)
  1880  	op_LTEBR   uint32 = 0xB302 // FORMAT_RRE        LOAD AND TEST (short BFP)
  1881  	op_LTER    uint32 = 0x3200 // FORMAT_RR         LOAD AND TEST (short HFP)
  1882  	op_LTG     uint32 = 0xE302 // FORMAT_RXY1       LOAD AND TEST (64)
  1883  	op_LTGF    uint32 = 0xE332 // FORMAT_RXY1       LOAD AND TEST (64<-32)
  1884  	op_LTGFR   uint32 = 0xB912 // FORMAT_RRE        LOAD AND TEST (64<-32)
  1885  	op_LTGR    uint32 = 0xB902 // FORMAT_RRE        LOAD AND TEST (64)
  1886  	op_LTR     uint32 = 0x1200 // FORMAT_RR         LOAD AND TEST (32)
  1887  	op_LTXBR   uint32 = 0xB342 // FORMAT_RRE        LOAD AND TEST (extended BFP)
  1888  	op_LTXR    uint32 = 0xB362 // FORMAT_RRE        LOAD AND TEST (extended HFP)
  1889  	op_LTXTR   uint32 = 0xB3DE // FORMAT_RRE        LOAD AND TEST (extended DFP)
  1890  	op_LURA    uint32 = 0xB24B // FORMAT_RRE        LOAD USING REAL ADDRESS (32)
  1891  	op_LURAG   uint32 = 0xB905 // FORMAT_RRE        LOAD USING REAL ADDRESS (64)
  1892  	op_LXD     uint32 = 0xED25 // FORMAT_RXE        LOAD LENGTHENED (long to extended HFP)
  1893  	op_LXDB    uint32 = 0xED05 // FORMAT_RXE        LOAD LENGTHENED (long to extended BFP)
  1894  	op_LXDBR   uint32 = 0xB305 // FORMAT_RRE        LOAD LENGTHENED (long to extended BFP)
  1895  	op_LXDR    uint32 = 0xB325 // FORMAT_RRE        LOAD LENGTHENED (long to extended HFP)
  1896  	op_LXDTR   uint32 = 0xB3DC // FORMAT_RRF4       LOAD LENGTHENED (long to extended DFP)
  1897  	op_LXE     uint32 = 0xED26 // FORMAT_RXE        LOAD LENGTHENED (short to extended HFP)
  1898  	op_LXEB    uint32 = 0xED06 // FORMAT_RXE        LOAD LENGTHENED (short to extended BFP)
  1899  	op_LXEBR   uint32 = 0xB306 // FORMAT_RRE        LOAD LENGTHENED (short to extended BFP)
  1900  	op_LXER    uint32 = 0xB326 // FORMAT_RRE        LOAD LENGTHENED (short to extended HFP)
  1901  	op_LXR     uint32 = 0xB365 // FORMAT_RRE        LOAD (extended)
  1902  	op_LY      uint32 = 0xE358 // FORMAT_RXY1       LOAD (32)
  1903  	op_LZDR    uint32 = 0xB375 // FORMAT_RRE        LOAD ZERO (long)
  1904  	op_LZER    uint32 = 0xB374 // FORMAT_RRE        LOAD ZERO (short)
  1905  	op_LZXR    uint32 = 0xB376 // FORMAT_RRE        LOAD ZERO (extended)
  1906  	op_M       uint32 = 0x5C00 // FORMAT_RX1        MULTIPLY (64<-32)
  1907  	op_MAD     uint32 = 0xED3E // FORMAT_RXF        MULTIPLY AND ADD (long HFP)
  1908  	op_MADB    uint32 = 0xED1E // FORMAT_RXF        MULTIPLY AND ADD (long BFP)
  1909  	op_MADBR   uint32 = 0xB31E // FORMAT_RRD        MULTIPLY AND ADD (long BFP)
  1910  	op_MADR    uint32 = 0xB33E // FORMAT_RRD        MULTIPLY AND ADD (long HFP)
  1911  	op_MAE     uint32 = 0xED2E // FORMAT_RXF        MULTIPLY AND ADD (short HFP)
  1912  	op_MAEB    uint32 = 0xED0E // FORMAT_RXF        MULTIPLY AND ADD (short BFP)
  1913  	op_MAEBR   uint32 = 0xB30E // FORMAT_RRD        MULTIPLY AND ADD (short BFP)
  1914  	op_MAER    uint32 = 0xB32E // FORMAT_RRD        MULTIPLY AND ADD (short HFP)
  1915  	op_MAY     uint32 = 0xED3A // FORMAT_RXF        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  1916  	op_MAYH    uint32 = 0xED3C // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  1917  	op_MAYHR   uint32 = 0xB33C // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. high HFP)
  1918  	op_MAYL    uint32 = 0xED38 // FORMAT_RXF        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  1919  	op_MAYLR   uint32 = 0xB338 // FORMAT_RRD        MULTIPLY AND ADD UNNRM. (long to ext. low HFP)
  1920  	op_MAYR    uint32 = 0xB33A // FORMAT_RRD        MULTIPLY & ADD UNNORMALIZED (long to ext. HFP)
  1921  	op_MC      uint32 = 0xAF00 // FORMAT_SI         MONITOR CALL
  1922  	op_MD      uint32 = 0x6C00 // FORMAT_RX1        MULTIPLY (long HFP)
  1923  	op_MDB     uint32 = 0xED1C // FORMAT_RXE        MULTIPLY (long BFP)
  1924  	op_MDBR    uint32 = 0xB31C // FORMAT_RRE        MULTIPLY (long BFP)
  1925  	op_MDE     uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  1926  	op_MDEB    uint32 = 0xED0C // FORMAT_RXE        MULTIPLY (short to long BFP)
  1927  	op_MDEBR   uint32 = 0xB30C // FORMAT_RRE        MULTIPLY (short to long BFP)
  1928  	op_MDER    uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  1929  	op_MDR     uint32 = 0x2C00 // FORMAT_RR         MULTIPLY (long HFP)
  1930  	op_MDTR    uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  1931  	op_MDTRA   uint32 = 0xB3D0 // FORMAT_RRF1       MULTIPLY (long DFP)
  1932  	op_ME      uint32 = 0x7C00 // FORMAT_RX1        MULTIPLY (short to long HFP)
  1933  	op_MEE     uint32 = 0xED37 // FORMAT_RXE        MULTIPLY (short HFP)
  1934  	op_MEEB    uint32 = 0xED17 // FORMAT_RXE        MULTIPLY (short BFP)
  1935  	op_MEEBR   uint32 = 0xB317 // FORMAT_RRE        MULTIPLY (short BFP)
  1936  	op_MEER    uint32 = 0xB337 // FORMAT_RRE        MULTIPLY (short HFP)
  1937  	op_MER     uint32 = 0x3C00 // FORMAT_RR         MULTIPLY (short to long HFP)
  1938  	op_MFY     uint32 = 0xE35C // FORMAT_RXY1       MULTIPLY (64<-32)
  1939  	op_MGHI    uint32 = 0xA70D // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (64)
  1940  	op_MH      uint32 = 0x4C00 // FORMAT_RX1        MULTIPLY HALFWORD (32)
  1941  	op_MHI     uint32 = 0xA70C // FORMAT_RI1        MULTIPLY HALFWORD IMMEDIATE (32)
  1942  	op_MHY     uint32 = 0xE37C // FORMAT_RXY1       MULTIPLY HALFWORD (32)
  1943  	op_ML      uint32 = 0xE396 // FORMAT_RXY1       MULTIPLY LOGICAL (64<-32)
  1944  	op_MLG     uint32 = 0xE386 // FORMAT_RXY1       MULTIPLY LOGICAL (128<-64)
  1945  	op_MLGR    uint32 = 0xB986 // FORMAT_RRE        MULTIPLY LOGICAL (128<-64)
  1946  	op_MLR     uint32 = 0xB996 // FORMAT_RRE        MULTIPLY LOGICAL (64<-32)
  1947  	op_MP      uint32 = 0xFC00 // FORMAT_SS2        MULTIPLY DECIMAL
  1948  	op_MR      uint32 = 0x1C00 // FORMAT_RR         MULTIPLY (64<-32)
  1949  	op_MS      uint32 = 0x7100 // FORMAT_RX1        MULTIPLY SINGLE (32)
  1950  	op_MSCH    uint32 = 0xB232 // FORMAT_S          MODIFY SUBCHANNEL
  1951  	op_MSD     uint32 = 0xED3F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long HFP)
  1952  	op_MSDB    uint32 = 0xED1F // FORMAT_RXF        MULTIPLY AND SUBTRACT (long BFP)
  1953  	op_MSDBR   uint32 = 0xB31F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long BFP)
  1954  	op_MSDR    uint32 = 0xB33F // FORMAT_RRD        MULTIPLY AND SUBTRACT (long HFP)
  1955  	op_MSE     uint32 = 0xED2F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short HFP)
  1956  	op_MSEB    uint32 = 0xED0F // FORMAT_RXF        MULTIPLY AND SUBTRACT (short BFP)
  1957  	op_MSEBR   uint32 = 0xB30F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short BFP)
  1958  	op_MSER    uint32 = 0xB32F // FORMAT_RRD        MULTIPLY AND SUBTRACT (short HFP)
  1959  	op_MSFI    uint32 = 0xC201 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (32)
  1960  	op_MSG     uint32 = 0xE30C // FORMAT_RXY1       MULTIPLY SINGLE (64)
  1961  	op_MSGF    uint32 = 0xE31C // FORMAT_RXY1       MULTIPLY SINGLE (64<-32)
  1962  	op_MSGFI   uint32 = 0xC200 // FORMAT_RIL1       MULTIPLY SINGLE IMMEDIATE (64<-32)
  1963  	op_MSGFR   uint32 = 0xB91C // FORMAT_RRE        MULTIPLY SINGLE (64<-32)
  1964  	op_MSGR    uint32 = 0xB90C // FORMAT_RRE        MULTIPLY SINGLE (64)
  1965  	op_MSR     uint32 = 0xB252 // FORMAT_RRE        MULTIPLY SINGLE (32)
  1966  	op_MSTA    uint32 = 0xB247 // FORMAT_RRE        MODIFY STACKED STATE
  1967  	op_MSY     uint32 = 0xE351 // FORMAT_RXY1       MULTIPLY SINGLE (32)
  1968  	op_MVC     uint32 = 0xD200 // FORMAT_SS1        MOVE (character)
  1969  	op_MVCDK   uint32 = 0xE50F // FORMAT_SSE        MOVE WITH DESTINATION KEY
  1970  	op_MVCIN   uint32 = 0xE800 // FORMAT_SS1        MOVE INVERSE
  1971  	op_MVCK    uint32 = 0xD900 // FORMAT_SS4        MOVE WITH KEY
  1972  	op_MVCL    uint32 = 0x0E00 // FORMAT_RR         MOVE LONG
  1973  	op_MVCLE   uint32 = 0xA800 // FORMAT_RS1        MOVE LONG EXTENDED
  1974  	op_MVCLU   uint32 = 0xEB8E // FORMAT_RSY1       MOVE LONG UNICODE
  1975  	op_MVCOS   uint32 = 0xC800 // FORMAT_SSF        MOVE WITH OPTIONAL SPECIFICATIONS
  1976  	op_MVCP    uint32 = 0xDA00 // FORMAT_SS4        MOVE TO PRIMARY
  1977  	op_MVCS    uint32 = 0xDB00 // FORMAT_SS4        MOVE TO SECONDARY
  1978  	op_MVCSK   uint32 = 0xE50E // FORMAT_SSE        MOVE WITH SOURCE KEY
  1979  	op_MVGHI   uint32 = 0xE548 // FORMAT_SIL        MOVE (64<-16)
  1980  	op_MVHHI   uint32 = 0xE544 // FORMAT_SIL        MOVE (16<-16)
  1981  	op_MVHI    uint32 = 0xE54C // FORMAT_SIL        MOVE (32<-16)
  1982  	op_MVI     uint32 = 0x9200 // FORMAT_SI         MOVE (immediate)
  1983  	op_MVIY    uint32 = 0xEB52 // FORMAT_SIY        MOVE (immediate)
  1984  	op_MVN     uint32 = 0xD100 // FORMAT_SS1        MOVE NUMERICS
  1985  	op_MVO     uint32 = 0xF100 // FORMAT_SS2        MOVE WITH OFFSET
  1986  	op_MVPG    uint32 = 0xB254 // FORMAT_RRE        MOVE PAGE
  1987  	op_MVST    uint32 = 0xB255 // FORMAT_RRE        MOVE STRING
  1988  	op_MVZ     uint32 = 0xD300 // FORMAT_SS1        MOVE ZONES
  1989  	op_MXBR    uint32 = 0xB34C // FORMAT_RRE        MULTIPLY (extended BFP)
  1990  	op_MXD     uint32 = 0x6700 // FORMAT_RX1        MULTIPLY (long to extended HFP)
  1991  	op_MXDB    uint32 = 0xED07 // FORMAT_RXE        MULTIPLY (long to extended BFP)
  1992  	op_MXDBR   uint32 = 0xB307 // FORMAT_RRE        MULTIPLY (long to extended BFP)
  1993  	op_MXDR    uint32 = 0x2700 // FORMAT_RR         MULTIPLY (long to extended HFP)
  1994  	op_MXR     uint32 = 0x2600 // FORMAT_RR         MULTIPLY (extended HFP)
  1995  	op_MXTR    uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  1996  	op_MXTRA   uint32 = 0xB3D8 // FORMAT_RRF1       MULTIPLY (extended DFP)
  1997  	op_MY      uint32 = 0xED3B // FORMAT_RXF        MULTIPLY UNNORMALIZED (long to ext. HFP)
  1998  	op_MYH     uint32 = 0xED3D // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. high HFP)
  1999  	op_MYHR    uint32 = 0xB33D // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. high HFP)
  2000  	op_MYL     uint32 = 0xED39 // FORMAT_RXF        MULTIPLY UNNORM. (long to ext. low HFP)
  2001  	op_MYLR    uint32 = 0xB339 // FORMAT_RRD        MULTIPLY UNNORM. (long to ext. low HFP)
  2002  	op_MYR     uint32 = 0xB33B // FORMAT_RRD        MULTIPLY UNNORMALIZED (long to ext. HFP)
  2003  	op_N       uint32 = 0x5400 // FORMAT_RX1        AND (32)
  2004  	op_NC      uint32 = 0xD400 // FORMAT_SS1        AND (character)
  2005  	op_NG      uint32 = 0xE380 // FORMAT_RXY1       AND (64)
  2006  	op_NGR     uint32 = 0xB980 // FORMAT_RRE        AND (64)
  2007  	op_NGRK    uint32 = 0xB9E4 // FORMAT_RRF1       AND (64)
  2008  	op_NI      uint32 = 0x9400 // FORMAT_SI         AND (immediate)
  2009  	op_NIAI    uint32 = 0xB2FA // FORMAT_IE         NEXT INSTRUCTION ACCESS INTENT
  2010  	op_NIHF    uint32 = 0xC00A // FORMAT_RIL1       AND IMMEDIATE (high)
  2011  	op_NIHH    uint32 = 0xA504 // FORMAT_RI1        AND IMMEDIATE (high high)
  2012  	op_NIHL    uint32 = 0xA505 // FORMAT_RI1        AND IMMEDIATE (high low)
  2013  	op_NILF    uint32 = 0xC00B // FORMAT_RIL1       AND IMMEDIATE (low)
  2014  	op_NILH    uint32 = 0xA506 // FORMAT_RI1        AND IMMEDIATE (low high)
  2015  	op_NILL    uint32 = 0xA507 // FORMAT_RI1        AND IMMEDIATE (low low)
  2016  	op_NIY     uint32 = 0xEB54 // FORMAT_SIY        AND (immediate)
  2017  	op_NR      uint32 = 0x1400 // FORMAT_RR         AND (32)
  2018  	op_NRK     uint32 = 0xB9F4 // FORMAT_RRF1       AND (32)
  2019  	op_NTSTG   uint32 = 0xE325 // FORMAT_RXY1       NONTRANSACTIONAL STORE
  2020  	op_NY      uint32 = 0xE354 // FORMAT_RXY1       AND (32)
  2021  	op_O       uint32 = 0x5600 // FORMAT_RX1        OR (32)
  2022  	op_OC      uint32 = 0xD600 // FORMAT_SS1        OR (character)
  2023  	op_OG      uint32 = 0xE381 // FORMAT_RXY1       OR (64)
  2024  	op_OGR     uint32 = 0xB981 // FORMAT_RRE        OR (64)
  2025  	op_OGRK    uint32 = 0xB9E6 // FORMAT_RRF1       OR (64)
  2026  	op_OI      uint32 = 0x9600 // FORMAT_SI         OR (immediate)
  2027  	op_OIHF    uint32 = 0xC00C // FORMAT_RIL1       OR IMMEDIATE (high)
  2028  	op_OIHH    uint32 = 0xA508 // FORMAT_RI1        OR IMMEDIATE (high high)
  2029  	op_OIHL    uint32 = 0xA509 // FORMAT_RI1        OR IMMEDIATE (high low)
  2030  	op_OILF    uint32 = 0xC00D // FORMAT_RIL1       OR IMMEDIATE (low)
  2031  	op_OILH    uint32 = 0xA50A // FORMAT_RI1        OR IMMEDIATE (low high)
  2032  	op_OILL    uint32 = 0xA50B // FORMAT_RI1        OR IMMEDIATE (low low)
  2033  	op_OIY     uint32 = 0xEB56 // FORMAT_SIY        OR (immediate)
  2034  	op_OR      uint32 = 0x1600 // FORMAT_RR         OR (32)
  2035  	op_ORK     uint32 = 0xB9F6 // FORMAT_RRF1       OR (32)
  2036  	op_OY      uint32 = 0xE356 // FORMAT_RXY1       OR (32)
  2037  	op_PACK    uint32 = 0xF200 // FORMAT_SS2        PACK
  2038  	op_PALB    uint32 = 0xB248 // FORMAT_RRE        PURGE ALB
  2039  	op_PC      uint32 = 0xB218 // FORMAT_S          PROGRAM CALL
  2040  	op_PCC     uint32 = 0xB92C // FORMAT_RRE        PERFORM CRYPTOGRAPHIC COMPUTATION
  2041  	op_PCKMO   uint32 = 0xB928 // FORMAT_RRE        PERFORM CRYPTOGRAPHIC KEY MGMT. OPERATIONS
  2042  	op_PFD     uint32 = 0xE336 // FORMAT_RXY2       PREFETCH DATA
  2043  	op_PFDRL   uint32 = 0xC602 // FORMAT_RIL3       PREFETCH DATA RELATIVE LONG
  2044  	op_PFMF    uint32 = 0xB9AF // FORMAT_RRE        PERFORM FRAME MANAGEMENT FUNCTION
  2045  	op_PFPO    uint32 = 0x010A // FORMAT_E          PERFORM FLOATING-POINT OPERATION
  2046  	op_PGIN    uint32 = 0xB22E // FORMAT_RRE        PAGE IN
  2047  	op_PGOUT   uint32 = 0xB22F // FORMAT_RRE        PAGE OUT
  2048  	op_PKA     uint32 = 0xE900 // FORMAT_SS6        PACK ASCII
  2049  	op_PKU     uint32 = 0xE100 // FORMAT_SS6        PACK UNICODE
  2050  	op_PLO     uint32 = 0xEE00 // FORMAT_SS5        PERFORM LOCKED OPERATION
  2051  	op_POPCNT  uint32 = 0xB9E1 // FORMAT_RRE        POPULATION COUNT
  2052  	op_PPA     uint32 = 0xB2E8 // FORMAT_RRF3       PERFORM PROCESSOR ASSIST
  2053  	op_PR      uint32 = 0x0101 // FORMAT_E          PROGRAM RETURN
  2054  	op_PT      uint32 = 0xB228 // FORMAT_RRE        PROGRAM TRANSFER
  2055  	op_PTF     uint32 = 0xB9A2 // FORMAT_RRE        PERFORM TOPOLOGY FUNCTION
  2056  	op_PTFF    uint32 = 0x0104 // FORMAT_E          PERFORM TIMING FACILITY FUNCTION
  2057  	op_PTI     uint32 = 0xB99E // FORMAT_RRE        PROGRAM TRANSFER WITH INSTANCE
  2058  	op_PTLB    uint32 = 0xB20D // FORMAT_S          PURGE TLB
  2059  	op_QADTR   uint32 = 0xB3F5 // FORMAT_RRF2       QUANTIZE (long DFP)
  2060  	op_QAXTR   uint32 = 0xB3FD // FORMAT_RRF2       QUANTIZE (extended DFP)
  2061  	op_RCHP    uint32 = 0xB23B // FORMAT_S          RESET CHANNEL PATH
  2062  	op_RISBG   uint32 = 0xEC55 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2063  	op_RISBGN  uint32 = 0xEC59 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS
  2064  	op_RISBHG  uint32 = 0xEC5D // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS HIGH
  2065  	op_RISBLG  uint32 = 0xEC51 // FORMAT_RIE6       ROTATE THEN INSERT SELECTED BITS LOW
  2066  	op_RLL     uint32 = 0xEB1D // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (32)
  2067  	op_RLLG    uint32 = 0xEB1C // FORMAT_RSY1       ROTATE LEFT SINGLE LOGICAL (64)
  2068  	op_RNSBG   uint32 = 0xEC54 // FORMAT_RIE6       ROTATE THEN AND SELECTED BITS
  2069  	op_ROSBG   uint32 = 0xEC56 // FORMAT_RIE6       ROTATE THEN OR SELECTED BITS
  2070  	op_RP      uint32 = 0xB277 // FORMAT_S          RESUME PROGRAM
  2071  	op_RRBE    uint32 = 0xB22A // FORMAT_RRE        RESET REFERENCE BIT EXTENDED
  2072  	op_RRBM    uint32 = 0xB9AE // FORMAT_RRE        RESET REFERENCE BITS MULTIPLE
  2073  	op_RRDTR   uint32 = 0xB3F7 // FORMAT_RRF2       REROUND (long DFP)
  2074  	op_RRXTR   uint32 = 0xB3FF // FORMAT_RRF2       REROUND (extended DFP)
  2075  	op_RSCH    uint32 = 0xB238 // FORMAT_S          RESUME SUBCHANNEL
  2076  	op_RXSBG   uint32 = 0xEC57 // FORMAT_RIE6       ROTATE THEN EXCLUSIVE OR SELECTED BITS
  2077  	op_S       uint32 = 0x5B00 // FORMAT_RX1        SUBTRACT (32)
  2078  	op_SAC     uint32 = 0xB219 // FORMAT_S          SET ADDRESS SPACE CONTROL
  2079  	op_SACF    uint32 = 0xB279 // FORMAT_S          SET ADDRESS SPACE CONTROL FAST
  2080  	op_SAL     uint32 = 0xB237 // FORMAT_S          SET ADDRESS LIMIT
  2081  	op_SAM24   uint32 = 0x010C // FORMAT_E          SET ADDRESSING MODE (24)
  2082  	op_SAM31   uint32 = 0x010D // FORMAT_E          SET ADDRESSING MODE (31)
  2083  	op_SAM64   uint32 = 0x010E // FORMAT_E          SET ADDRESSING MODE (64)
  2084  	op_SAR     uint32 = 0xB24E // FORMAT_RRE        SET ACCESS
  2085  	op_SCHM    uint32 = 0xB23C // FORMAT_S          SET CHANNEL MONITOR
  2086  	op_SCK     uint32 = 0xB204 // FORMAT_S          SET CLOCK
  2087  	op_SCKC    uint32 = 0xB206 // FORMAT_S          SET CLOCK COMPARATOR
  2088  	op_SCKPF   uint32 = 0x0107 // FORMAT_E          SET CLOCK PROGRAMMABLE FIELD
  2089  	op_SD      uint32 = 0x6B00 // FORMAT_RX1        SUBTRACT NORMALIZED (long HFP)
  2090  	op_SDB     uint32 = 0xED1B // FORMAT_RXE        SUBTRACT (long BFP)
  2091  	op_SDBR    uint32 = 0xB31B // FORMAT_RRE        SUBTRACT (long BFP)
  2092  	op_SDR     uint32 = 0x2B00 // FORMAT_RR         SUBTRACT NORMALIZED (long HFP)
  2093  	op_SDTR    uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2094  	op_SDTRA   uint32 = 0xB3D3 // FORMAT_RRF1       SUBTRACT (long DFP)
  2095  	op_SE      uint32 = 0x7B00 // FORMAT_RX1        SUBTRACT NORMALIZED (short HFP)
  2096  	op_SEB     uint32 = 0xED0B // FORMAT_RXE        SUBTRACT (short BFP)
  2097  	op_SEBR    uint32 = 0xB30B // FORMAT_RRE        SUBTRACT (short BFP)
  2098  	op_SER     uint32 = 0x3B00 // FORMAT_RR         SUBTRACT NORMALIZED (short HFP)
  2099  	op_SFASR   uint32 = 0xB385 // FORMAT_RRE        SET FPC AND SIGNAL
  2100  	op_SFPC    uint32 = 0xB384 // FORMAT_RRE        SET FPC
  2101  	op_SG      uint32 = 0xE309 // FORMAT_RXY1       SUBTRACT (64)
  2102  	op_SGF     uint32 = 0xE319 // FORMAT_RXY1       SUBTRACT (64<-32)
  2103  	op_SGFR    uint32 = 0xB919 // FORMAT_RRE        SUBTRACT (64<-32)
  2104  	op_SGR     uint32 = 0xB909 // FORMAT_RRE        SUBTRACT (64)
  2105  	op_SGRK    uint32 = 0xB9E9 // FORMAT_RRF1       SUBTRACT (64)
  2106  	op_SH      uint32 = 0x4B00 // FORMAT_RX1        SUBTRACT HALFWORD
  2107  	op_SHHHR   uint32 = 0xB9C9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2108  	op_SHHLR   uint32 = 0xB9D9 // FORMAT_RRF1       SUBTRACT HIGH (32)
  2109  	op_SHY     uint32 = 0xE37B // FORMAT_RXY1       SUBTRACT HALFWORD
  2110  	op_SIGP    uint32 = 0xAE00 // FORMAT_RS1        SIGNAL PROCESSOR
  2111  	op_SL      uint32 = 0x5F00 // FORMAT_RX1        SUBTRACT LOGICAL (32)
  2112  	op_SLA     uint32 = 0x8B00 // FORMAT_RS1        SHIFT LEFT SINGLE (32)
  2113  	op_SLAG    uint32 = 0xEB0B // FORMAT_RSY1       SHIFT LEFT SINGLE (64)
  2114  	op_SLAK    uint32 = 0xEBDD // FORMAT_RSY1       SHIFT LEFT SINGLE (32)
  2115  	op_SLB     uint32 = 0xE399 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (32)
  2116  	op_SLBG    uint32 = 0xE389 // FORMAT_RXY1       SUBTRACT LOGICAL WITH BORROW (64)
  2117  	op_SLBGR   uint32 = 0xB989 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (64)
  2118  	op_SLBR    uint32 = 0xB999 // FORMAT_RRE        SUBTRACT LOGICAL WITH BORROW (32)
  2119  	op_SLDA    uint32 = 0x8F00 // FORMAT_RS1        SHIFT LEFT DOUBLE
  2120  	op_SLDL    uint32 = 0x8D00 // FORMAT_RS1        SHIFT LEFT DOUBLE LOGICAL
  2121  	op_SLDT    uint32 = 0xED40 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (long DFP)
  2122  	op_SLFI    uint32 = 0xC205 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (32)
  2123  	op_SLG     uint32 = 0xE30B // FORMAT_RXY1       SUBTRACT LOGICAL (64)
  2124  	op_SLGF    uint32 = 0xE31B // FORMAT_RXY1       SUBTRACT LOGICAL (64<-32)
  2125  	op_SLGFI   uint32 = 0xC204 // FORMAT_RIL1       SUBTRACT LOGICAL IMMEDIATE (64<-32)
  2126  	op_SLGFR   uint32 = 0xB91B // FORMAT_RRE        SUBTRACT LOGICAL (64<-32)
  2127  	op_SLGR    uint32 = 0xB90B // FORMAT_RRE        SUBTRACT LOGICAL (64)
  2128  	op_SLGRK   uint32 = 0xB9EB // FORMAT_RRF1       SUBTRACT LOGICAL (64)
  2129  	op_SLHHHR  uint32 = 0xB9CB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2130  	op_SLHHLR  uint32 = 0xB9DB // FORMAT_RRF1       SUBTRACT LOGICAL HIGH (32)
  2131  	op_SLL     uint32 = 0x8900 // FORMAT_RS1        SHIFT LEFT SINGLE LOGICAL (32)
  2132  	op_SLLG    uint32 = 0xEB0D // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (64)
  2133  	op_SLLK    uint32 = 0xEBDF // FORMAT_RSY1       SHIFT LEFT SINGLE LOGICAL (32)
  2134  	op_SLR     uint32 = 0x1F00 // FORMAT_RR         SUBTRACT LOGICAL (32)
  2135  	op_SLRK    uint32 = 0xB9FB // FORMAT_RRF1       SUBTRACT LOGICAL (32)
  2136  	op_SLXT    uint32 = 0xED48 // FORMAT_RXF        SHIFT SIGNIFICAND LEFT (extended DFP)
  2137  	op_SLY     uint32 = 0xE35F // FORMAT_RXY1       SUBTRACT LOGICAL (32)
  2138  	op_SP      uint32 = 0xFB00 // FORMAT_SS2        SUBTRACT DECIMAL
  2139  	op_SPKA    uint32 = 0xB20A // FORMAT_S          SET PSW KEY FROM ADDRESS
  2140  	op_SPM     uint32 = 0x0400 // FORMAT_RR         SET PROGRAM MASK
  2141  	op_SPT     uint32 = 0xB208 // FORMAT_S          SET CPU TIMER
  2142  	op_SPX     uint32 = 0xB210 // FORMAT_S          SET PREFIX
  2143  	op_SQD     uint32 = 0xED35 // FORMAT_RXE        SQUARE ROOT (long HFP)
  2144  	op_SQDB    uint32 = 0xED15 // FORMAT_RXE        SQUARE ROOT (long BFP)
  2145  	op_SQDBR   uint32 = 0xB315 // FORMAT_RRE        SQUARE ROOT (long BFP)
  2146  	op_SQDR    uint32 = 0xB244 // FORMAT_RRE        SQUARE ROOT (long HFP)
  2147  	op_SQE     uint32 = 0xED34 // FORMAT_RXE        SQUARE ROOT (short HFP)
  2148  	op_SQEB    uint32 = 0xED14 // FORMAT_RXE        SQUARE ROOT (short BFP)
  2149  	op_SQEBR   uint32 = 0xB314 // FORMAT_RRE        SQUARE ROOT (short BFP)
  2150  	op_SQER    uint32 = 0xB245 // FORMAT_RRE        SQUARE ROOT (short HFP)
  2151  	op_SQXBR   uint32 = 0xB316 // FORMAT_RRE        SQUARE ROOT (extended BFP)
  2152  	op_SQXR    uint32 = 0xB336 // FORMAT_RRE        SQUARE ROOT (extended HFP)
  2153  	op_SR      uint32 = 0x1B00 // FORMAT_RR         SUBTRACT (32)
  2154  	op_SRA     uint32 = 0x8A00 // FORMAT_RS1        SHIFT RIGHT SINGLE (32)
  2155  	op_SRAG    uint32 = 0xEB0A // FORMAT_RSY1       SHIFT RIGHT SINGLE (64)
  2156  	op_SRAK    uint32 = 0xEBDC // FORMAT_RSY1       SHIFT RIGHT SINGLE (32)
  2157  	op_SRDA    uint32 = 0x8E00 // FORMAT_RS1        SHIFT RIGHT DOUBLE
  2158  	op_SRDL    uint32 = 0x8C00 // FORMAT_RS1        SHIFT RIGHT DOUBLE LOGICAL
  2159  	op_SRDT    uint32 = 0xED41 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (long DFP)
  2160  	op_SRK     uint32 = 0xB9F9 // FORMAT_RRF1       SUBTRACT (32)
  2161  	op_SRL     uint32 = 0x8800 // FORMAT_RS1        SHIFT RIGHT SINGLE LOGICAL (32)
  2162  	op_SRLG    uint32 = 0xEB0C // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (64)
  2163  	op_SRLK    uint32 = 0xEBDE // FORMAT_RSY1       SHIFT RIGHT SINGLE LOGICAL (32)
  2164  	op_SRNM    uint32 = 0xB299 // FORMAT_S          SET BFP ROUNDING MODE (2 bit)
  2165  	op_SRNMB   uint32 = 0xB2B8 // FORMAT_S          SET BFP ROUNDING MODE (3 bit)
  2166  	op_SRNMT   uint32 = 0xB2B9 // FORMAT_S          SET DFP ROUNDING MODE
  2167  	op_SRP     uint32 = 0xF000 // FORMAT_SS3        SHIFT AND ROUND DECIMAL
  2168  	op_SRST    uint32 = 0xB25E // FORMAT_RRE        SEARCH STRING
  2169  	op_SRSTU   uint32 = 0xB9BE // FORMAT_RRE        SEARCH STRING UNICODE
  2170  	op_SRXT    uint32 = 0xED49 // FORMAT_RXF        SHIFT SIGNIFICAND RIGHT (extended DFP)
  2171  	op_SSAIR   uint32 = 0xB99F // FORMAT_RRE        SET SECONDARY ASN WITH INSTANCE
  2172  	op_SSAR    uint32 = 0xB225 // FORMAT_RRE        SET SECONDARY ASN
  2173  	op_SSCH    uint32 = 0xB233 // FORMAT_S          START SUBCHANNEL
  2174  	op_SSKE    uint32 = 0xB22B // FORMAT_RRF3       SET STORAGE KEY EXTENDED
  2175  	op_SSM     uint32 = 0x8000 // FORMAT_S          SET SYSTEM MASK
  2176  	op_ST      uint32 = 0x5000 // FORMAT_RX1        STORE (32)
  2177  	op_STAM    uint32 = 0x9B00 // FORMAT_RS1        STORE ACCESS MULTIPLE
  2178  	op_STAMY   uint32 = 0xEB9B // FORMAT_RSY1       STORE ACCESS MULTIPLE
  2179  	op_STAP    uint32 = 0xB212 // FORMAT_S          STORE CPU ADDRESS
  2180  	op_STC     uint32 = 0x4200 // FORMAT_RX1        STORE CHARACTER
  2181  	op_STCH    uint32 = 0xE3C3 // FORMAT_RXY1       STORE CHARACTER HIGH (8)
  2182  	op_STCK    uint32 = 0xB205 // FORMAT_S          STORE CLOCK
  2183  	op_STCKC   uint32 = 0xB207 // FORMAT_S          STORE CLOCK COMPARATOR
  2184  	op_STCKE   uint32 = 0xB278 // FORMAT_S          STORE CLOCK EXTENDED
  2185  	op_STCKF   uint32 = 0xB27C // FORMAT_S          STORE CLOCK FAST
  2186  	op_STCM    uint32 = 0xBE00 // FORMAT_RS2        STORE CHARACTERS UNDER MASK (low)
  2187  	op_STCMH   uint32 = 0xEB2C // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (high)
  2188  	op_STCMY   uint32 = 0xEB2D // FORMAT_RSY2       STORE CHARACTERS UNDER MASK (low)
  2189  	op_STCPS   uint32 = 0xB23A // FORMAT_S          STORE CHANNEL PATH STATUS
  2190  	op_STCRW   uint32 = 0xB239 // FORMAT_S          STORE CHANNEL REPORT WORD
  2191  	op_STCTG   uint32 = 0xEB25 // FORMAT_RSY1       STORE CONTROL (64)
  2192  	op_STCTL   uint32 = 0xB600 // FORMAT_RS1        STORE CONTROL (32)
  2193  	op_STCY    uint32 = 0xE372 // FORMAT_RXY1       STORE CHARACTER
  2194  	op_STD     uint32 = 0x6000 // FORMAT_RX1        STORE (long)
  2195  	op_STDY    uint32 = 0xED67 // FORMAT_RXY1       STORE (long)
  2196  	op_STE     uint32 = 0x7000 // FORMAT_RX1        STORE (short)
  2197  	op_STEY    uint32 = 0xED66 // FORMAT_RXY1       STORE (short)
  2198  	op_STFH    uint32 = 0xE3CB // FORMAT_RXY1       STORE HIGH (32)
  2199  	op_STFL    uint32 = 0xB2B1 // FORMAT_S          STORE FACILITY LIST
  2200  	op_STFLE   uint32 = 0xB2B0 // FORMAT_S          STORE FACILITY LIST EXTENDED
  2201  	op_STFPC   uint32 = 0xB29C // FORMAT_S          STORE FPC
  2202  	op_STG     uint32 = 0xE324 // FORMAT_RXY1       STORE (64)
  2203  	op_STGRL   uint32 = 0xC40B // FORMAT_RIL2       STORE RELATIVE LONG (64)
  2204  	op_STH     uint32 = 0x4000 // FORMAT_RX1        STORE HALFWORD
  2205  	op_STHH    uint32 = 0xE3C7 // FORMAT_RXY1       STORE HALFWORD HIGH (16)
  2206  	op_STHRL   uint32 = 0xC407 // FORMAT_RIL2       STORE HALFWORD RELATIVE LONG
  2207  	op_STHY    uint32 = 0xE370 // FORMAT_RXY1       STORE HALFWORD
  2208  	op_STIDP   uint32 = 0xB202 // FORMAT_S          STORE CPU ID
  2209  	op_STM     uint32 = 0x9000 // FORMAT_RS1        STORE MULTIPLE (32)
  2210  	op_STMG    uint32 = 0xEB24 // FORMAT_RSY1       STORE MULTIPLE (64)
  2211  	op_STMH    uint32 = 0xEB26 // FORMAT_RSY1       STORE MULTIPLE HIGH
  2212  	op_STMY    uint32 = 0xEB90 // FORMAT_RSY1       STORE MULTIPLE (32)
  2213  	op_STNSM   uint32 = 0xAC00 // FORMAT_SI         STORE THEN AND SYSTEM MASK
  2214  	op_STOC    uint32 = 0xEBF3 // FORMAT_RSY2       STORE ON CONDITION (32)
  2215  	op_STOCG   uint32 = 0xEBE3 // FORMAT_RSY2       STORE ON CONDITION (64)
  2216  	op_STOSM   uint32 = 0xAD00 // FORMAT_SI         STORE THEN OR SYSTEM MASK
  2217  	op_STPQ    uint32 = 0xE38E // FORMAT_RXY1       STORE PAIR TO QUADWORD
  2218  	op_STPT    uint32 = 0xB209 // FORMAT_S          STORE CPU TIMER
  2219  	op_STPX    uint32 = 0xB211 // FORMAT_S          STORE PREFIX
  2220  	op_STRAG   uint32 = 0xE502 // FORMAT_SSE        STORE REAL ADDRESS
  2221  	op_STRL    uint32 = 0xC40F // FORMAT_RIL2       STORE RELATIVE LONG (32)
  2222  	op_STRV    uint32 = 0xE33E // FORMAT_RXY1       STORE REVERSED (32)
  2223  	op_STRVG   uint32 = 0xE32F // FORMAT_RXY1       STORE REVERSED (64)
  2224  	op_STRVH   uint32 = 0xE33F // FORMAT_RXY1       STORE REVERSED (16)
  2225  	op_STSCH   uint32 = 0xB234 // FORMAT_S          STORE SUBCHANNEL
  2226  	op_STSI    uint32 = 0xB27D // FORMAT_S          STORE SYSTEM INFORMATION
  2227  	op_STURA   uint32 = 0xB246 // FORMAT_RRE        STORE USING REAL ADDRESS (32)
  2228  	op_STURG   uint32 = 0xB925 // FORMAT_RRE        STORE USING REAL ADDRESS (64)
  2229  	op_STY     uint32 = 0xE350 // FORMAT_RXY1       STORE (32)
  2230  	op_SU      uint32 = 0x7F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (short HFP)
  2231  	op_SUR     uint32 = 0x3F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (short HFP)
  2232  	op_SVC     uint32 = 0x0A00 // FORMAT_I          SUPERVISOR CALL
  2233  	op_SW      uint32 = 0x6F00 // FORMAT_RX1        SUBTRACT UNNORMALIZED (long HFP)
  2234  	op_SWR     uint32 = 0x2F00 // FORMAT_RR         SUBTRACT UNNORMALIZED (long HFP)
  2235  	op_SXBR    uint32 = 0xB34B // FORMAT_RRE        SUBTRACT (extended BFP)
  2236  	op_SXR     uint32 = 0x3700 // FORMAT_RR         SUBTRACT NORMALIZED (extended HFP)
  2237  	op_SXTR    uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2238  	op_SXTRA   uint32 = 0xB3DB // FORMAT_RRF1       SUBTRACT (extended DFP)
  2239  	op_SY      uint32 = 0xE35B // FORMAT_RXY1       SUBTRACT (32)
  2240  	op_TABORT  uint32 = 0xB2FC // FORMAT_S          TRANSACTION ABORT
  2241  	op_TAM     uint32 = 0x010B // FORMAT_E          TEST ADDRESSING MODE
  2242  	op_TAR     uint32 = 0xB24C // FORMAT_RRE        TEST ACCESS
  2243  	op_TB      uint32 = 0xB22C // FORMAT_RRE        TEST BLOCK
  2244  	op_TBDR    uint32 = 0xB351 // FORMAT_RRF5       CONVERT HFP TO BFP (long)
  2245  	op_TBEDR   uint32 = 0xB350 // FORMAT_RRF5       CONVERT HFP TO BFP (long to short)
  2246  	op_TBEGIN  uint32 = 0xE560 // FORMAT_SIL        TRANSACTION BEGIN
  2247  	op_TBEGINC uint32 = 0xE561 // FORMAT_SIL        TRANSACTION BEGIN
  2248  	op_TCDB    uint32 = 0xED11 // FORMAT_RXE        TEST DATA CLASS (long BFP)
  2249  	op_TCEB    uint32 = 0xED10 // FORMAT_RXE        TEST DATA CLASS (short BFP)
  2250  	op_TCXB    uint32 = 0xED12 // FORMAT_RXE        TEST DATA CLASS (extended BFP)
  2251  	op_TDCDT   uint32 = 0xED54 // FORMAT_RXE        TEST DATA CLASS (long DFP)
  2252  	op_TDCET   uint32 = 0xED50 // FORMAT_RXE        TEST DATA CLASS (short DFP)
  2253  	op_TDCXT   uint32 = 0xED58 // FORMAT_RXE        TEST DATA CLASS (extended DFP)
  2254  	op_TDGDT   uint32 = 0xED55 // FORMAT_RXE        TEST DATA GROUP (long DFP)
  2255  	op_TDGET   uint32 = 0xED51 // FORMAT_RXE        TEST DATA GROUP (short DFP)
  2256  	op_TDGXT   uint32 = 0xED59 // FORMAT_RXE        TEST DATA GROUP (extended DFP)
  2257  	op_TEND    uint32 = 0xB2F8 // FORMAT_S          TRANSACTION END
  2258  	op_THDER   uint32 = 0xB358 // FORMAT_RRE        CONVERT BFP TO HFP (short to long)
  2259  	op_THDR    uint32 = 0xB359 // FORMAT_RRE        CONVERT BFP TO HFP (long)
  2260  	op_TM      uint32 = 0x9100 // FORMAT_SI         TEST UNDER MASK
  2261  	op_TMH     uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK HIGH
  2262  	op_TMHH    uint32 = 0xA702 // FORMAT_RI1        TEST UNDER MASK (high high)
  2263  	op_TMHL    uint32 = 0xA703 // FORMAT_RI1        TEST UNDER MASK (high low)
  2264  	op_TML     uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK LOW
  2265  	op_TMLH    uint32 = 0xA700 // FORMAT_RI1        TEST UNDER MASK (low high)
  2266  	op_TMLL    uint32 = 0xA701 // FORMAT_RI1        TEST UNDER MASK (low low)
  2267  	op_TMY     uint32 = 0xEB51 // FORMAT_SIY        TEST UNDER MASK
  2268  	op_TP      uint32 = 0xEBC0 // FORMAT_RSL        TEST DECIMAL
  2269  	op_TPI     uint32 = 0xB236 // FORMAT_S          TEST PENDING INTERRUPTION
  2270  	op_TPROT   uint32 = 0xE501 // FORMAT_SSE        TEST PROTECTION
  2271  	op_TR      uint32 = 0xDC00 // FORMAT_SS1        TRANSLATE
  2272  	op_TRACE   uint32 = 0x9900 // FORMAT_RS1        TRACE (32)
  2273  	op_TRACG   uint32 = 0xEB0F // FORMAT_RSY1       TRACE (64)
  2274  	op_TRAP2   uint32 = 0x01FF // FORMAT_E          TRAP
  2275  	op_TRAP4   uint32 = 0xB2FF // FORMAT_S          TRAP
  2276  	op_TRE     uint32 = 0xB2A5 // FORMAT_RRE        TRANSLATE EXTENDED
  2277  	op_TROO    uint32 = 0xB993 // FORMAT_RRF3       TRANSLATE ONE TO ONE
  2278  	op_TROT    uint32 = 0xB992 // FORMAT_RRF3       TRANSLATE ONE TO TWO
  2279  	op_TRT     uint32 = 0xDD00 // FORMAT_SS1        TRANSLATE AND TEST
  2280  	op_TRTE    uint32 = 0xB9BF // FORMAT_RRF3       TRANSLATE AND TEST EXTENDED
  2281  	op_TRTO    uint32 = 0xB991 // FORMAT_RRF3       TRANSLATE TWO TO ONE
  2282  	op_TRTR    uint32 = 0xD000 // FORMAT_SS1        TRANSLATE AND TEST REVERSE
  2283  	op_TRTRE   uint32 = 0xB9BD // FORMAT_RRF3       TRANSLATE AND TEST REVERSE EXTENDED
  2284  	op_TRTT    uint32 = 0xB990 // FORMAT_RRF3       TRANSLATE TWO TO TWO
  2285  	op_TS      uint32 = 0x9300 // FORMAT_S          TEST AND SET
  2286  	op_TSCH    uint32 = 0xB235 // FORMAT_S          TEST SUBCHANNEL
  2287  	op_UNPK    uint32 = 0xF300 // FORMAT_SS2        UNPACK
  2288  	op_UNPKA   uint32 = 0xEA00 // FORMAT_SS1        UNPACK ASCII
  2289  	op_UNPKU   uint32 = 0xE200 // FORMAT_SS1        UNPACK UNICODE
  2290  	op_UPT     uint32 = 0x0102 // FORMAT_E          UPDATE TREE
  2291  	op_X       uint32 = 0x5700 // FORMAT_RX1        EXCLUSIVE OR (32)
  2292  	op_XC      uint32 = 0xD700 // FORMAT_SS1        EXCLUSIVE OR (character)
  2293  	op_XG      uint32 = 0xE382 // FORMAT_RXY1       EXCLUSIVE OR (64)
  2294  	op_XGR     uint32 = 0xB982 // FORMAT_RRE        EXCLUSIVE OR (64)
  2295  	op_XGRK    uint32 = 0xB9E7 // FORMAT_RRF1       EXCLUSIVE OR (64)
  2296  	op_XI      uint32 = 0x9700 // FORMAT_SI         EXCLUSIVE OR (immediate)
  2297  	op_XIHF    uint32 = 0xC006 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (high)
  2298  	op_XILF    uint32 = 0xC007 // FORMAT_RIL1       EXCLUSIVE OR IMMEDIATE (low)
  2299  	op_XIY     uint32 = 0xEB57 // FORMAT_SIY        EXCLUSIVE OR (immediate)
  2300  	op_XR      uint32 = 0x1700 // FORMAT_RR         EXCLUSIVE OR (32)
  2301  	op_XRK     uint32 = 0xB9F7 // FORMAT_RRF1       EXCLUSIVE OR (32)
  2302  	op_XSCH    uint32 = 0xB276 // FORMAT_S          CANCEL SUBCHANNEL
  2303  	op_XY      uint32 = 0xE357 // FORMAT_RXY1       EXCLUSIVE OR (32)
  2304  	op_ZAP     uint32 = 0xF800 // FORMAT_SS2        ZERO AND ADD
  2305  
  2306  	// added in z13
  2307  	op_CXPT   uint32 = 0xEDAF // 	RSL-b	CONVERT FROM PACKED (to extended DFP)
  2308  	op_CDPT   uint32 = 0xEDAE // 	RSL-b	CONVERT FROM PACKED (to long DFP)
  2309  	op_CPXT   uint32 = 0xEDAD // 	RSL-b	CONVERT TO PACKED (from extended DFP)
  2310  	op_CPDT   uint32 = 0xEDAC // 	RSL-b	CONVERT TO PACKED (from long DFP)
  2311  	op_LZRF   uint32 = 0xE33B // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (32)
  2312  	op_LZRG   uint32 = 0xE32A // 	RXY-a	LOAD AND ZERO RIGHTMOST BYTE (64)
  2313  	op_LCCB   uint32 = 0xE727 // 	RXE	LOAD COUNT TO BLOCK BOUNDARY
  2314  	op_LOCHHI uint32 = 0xEC4E // 	RIE-g	LOAD HALFWORD HIGH IMMEDIATE ON CONDITION (32←16)
  2315  	op_LOCHI  uint32 = 0xEC42 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (32←16)
  2316  	op_LOCGHI uint32 = 0xEC46 // 	RIE-g	LOAD HALFWORD IMMEDIATE ON CONDITION (64←16)
  2317  	op_LOCFH  uint32 = 0xEBE0 // 	RSY-b	LOAD HIGH ON CONDITION (32)
  2318  	op_LOCFHR uint32 = 0xB9E0 // 	RRF-c	LOAD HIGH ON CONDITION (32)
  2319  	op_LLZRGF uint32 = 0xE33A // 	RXY-a	LOAD LOGICAL AND ZERO RIGHTMOST BYTE (64←32)
  2320  	op_STOCFH uint32 = 0xEBE1 // 	RSY-b	STORE HIGH ON CONDITION
  2321  	op_VA     uint32 = 0xE7F3 // 	VRR-c	VECTOR ADD
  2322  	op_VACC   uint32 = 0xE7F1 // 	VRR-c	VECTOR ADD COMPUTE CARRY
  2323  	op_VAC    uint32 = 0xE7BB // 	VRR-d	VECTOR ADD WITH CARRY
  2324  	op_VACCC  uint32 = 0xE7B9 // 	VRR-d	VECTOR ADD WITH CARRY COMPUTE CARRY
  2325  	op_VN     uint32 = 0xE768 // 	VRR-c	VECTOR AND
  2326  	op_VNC    uint32 = 0xE769 // 	VRR-c	VECTOR AND WITH COMPLEMENT
  2327  	op_VAVG   uint32 = 0xE7F2 // 	VRR-c	VECTOR AVERAGE
  2328  	op_VAVGL  uint32 = 0xE7F0 // 	VRR-c	VECTOR AVERAGE LOGICAL
  2329  	op_VCKSM  uint32 = 0xE766 // 	VRR-c	VECTOR CHECKSUM
  2330  	op_VCEQ   uint32 = 0xE7F8 // 	VRR-b	VECTOR COMPARE EQUAL
  2331  	op_VCH    uint32 = 0xE7FB // 	VRR-b	VECTOR COMPARE HIGH
  2332  	op_VCHL   uint32 = 0xE7F9 // 	VRR-b	VECTOR COMPARE HIGH LOGICAL
  2333  	op_VCLZ   uint32 = 0xE753 // 	VRR-a	VECTOR COUNT LEADING ZEROS
  2334  	op_VCTZ   uint32 = 0xE752 // 	VRR-a	VECTOR COUNT TRAILING ZEROS
  2335  	op_VEC    uint32 = 0xE7DB // 	VRR-a	VECTOR ELEMENT COMPARE
  2336  	op_VECL   uint32 = 0xE7D9 // 	VRR-a	VECTOR ELEMENT COMPARE LOGICAL
  2337  	op_VERIM  uint32 = 0xE772 // 	VRI-d	VECTOR ELEMENT ROTATE AND INSERT UNDER MASK
  2338  	op_VERLL  uint32 = 0xE733 // 	VRS-a	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2339  	op_VERLLV uint32 = 0xE773 // 	VRR-c	VECTOR ELEMENT ROTATE LEFT LOGICAL
  2340  	op_VESLV  uint32 = 0xE770 // 	VRR-c	VECTOR ELEMENT SHIFT LEFT
  2341  	op_VESL   uint32 = 0xE730 // 	VRS-a	VECTOR ELEMENT SHIFT LEFT
  2342  	op_VESRA  uint32 = 0xE73A // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2343  	op_VESRAV uint32 = 0xE77A // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT ARITHMETIC
  2344  	op_VESRL  uint32 = 0xE738 // 	VRS-a	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2345  	op_VESRLV uint32 = 0xE778 // 	VRR-c	VECTOR ELEMENT SHIFT RIGHT LOGICAL
  2346  	op_VX     uint32 = 0xE76D // 	VRR-c	VECTOR EXCLUSIVE OR
  2347  	op_VFAE   uint32 = 0xE782 // 	VRR-b	VECTOR FIND ANY ELEMENT EQUAL
  2348  	op_VFEE   uint32 = 0xE780 // 	VRR-b	VECTOR FIND ELEMENT EQUAL
  2349  	op_VFENE  uint32 = 0xE781 // 	VRR-b	VECTOR FIND ELEMENT NOT EQUAL
  2350  	op_VFA    uint32 = 0xE7E3 // 	VRR-c	VECTOR FP ADD
  2351  	op_WFK    uint32 = 0xE7CA // 	VRR-a	VECTOR FP COMPARE AND SIGNAL SCALAR
  2352  	op_VFCE   uint32 = 0xE7E8 // 	VRR-c	VECTOR FP COMPARE EQUAL
  2353  	op_VFCH   uint32 = 0xE7EB // 	VRR-c	VECTOR FP COMPARE HIGH
  2354  	op_VFCHE  uint32 = 0xE7EA // 	VRR-c	VECTOR FP COMPARE HIGH OR EQUAL
  2355  	op_WFC    uint32 = 0xE7CB // 	VRR-a	VECTOR FP COMPARE SCALAR
  2356  	op_VCDG   uint32 = 0xE7C3 // 	VRR-a	VECTOR FP CONVERT FROM FIXED 64-BIT
  2357  	op_VCDLG  uint32 = 0xE7C1 // 	VRR-a	VECTOR FP CONVERT FROM LOGICAL 64-BIT
  2358  	op_VCGD   uint32 = 0xE7C2 // 	VRR-a	VECTOR FP CONVERT TO FIXED 64-BIT
  2359  	op_VCLGD  uint32 = 0xE7C0 // 	VRR-a	VECTOR FP CONVERT TO LOGICAL 64-BIT
  2360  	op_VFD    uint32 = 0xE7E5 // 	VRR-c	VECTOR FP DIVIDE
  2361  	op_VLDE   uint32 = 0xE7C4 // 	VRR-a	VECTOR FP LOAD LENGTHENED
  2362  	op_VLED   uint32 = 0xE7C5 // 	VRR-a	VECTOR FP LOAD ROUNDED
  2363  	op_VFM    uint32 = 0xE7E7 // 	VRR-c	VECTOR FP MULTIPLY
  2364  	op_VFMA   uint32 = 0xE78F // 	VRR-e	VECTOR FP MULTIPLY AND ADD
  2365  	op_VFMS   uint32 = 0xE78E // 	VRR-e	VECTOR FP MULTIPLY AND SUBTRACT
  2366  	op_VFPSO  uint32 = 0xE7CC // 	VRR-a	VECTOR FP PERFORM SIGN OPERATION
  2367  	op_VFSQ   uint32 = 0xE7CE // 	VRR-a	VECTOR FP SQUARE ROOT
  2368  	op_VFS    uint32 = 0xE7E2 // 	VRR-c	VECTOR FP SUBTRACT
  2369  	op_VFTCI  uint32 = 0xE74A // 	VRI-e	VECTOR FP TEST DATA CLASS IMMEDIATE
  2370  	op_VGFM   uint32 = 0xE7B4 // 	VRR-c	VECTOR GALOIS FIELD MULTIPLY SUM
  2371  	op_VGFMA  uint32 = 0xE7BC // 	VRR-d	VECTOR GALOIS FIELD MULTIPLY SUM AND ACCUMULATE
  2372  	op_VGEF   uint32 = 0xE713 // 	VRV	VECTOR GATHER ELEMENT (32)
  2373  	op_VGEG   uint32 = 0xE712 // 	VRV	VECTOR GATHER ELEMENT (64)
  2374  	op_VGBM   uint32 = 0xE744 // 	VRI-a	VECTOR GENERATE BYTE MASK
  2375  	op_VGM    uint32 = 0xE746 // 	VRI-b	VECTOR GENERATE MASK
  2376  	op_VISTR  uint32 = 0xE75C // 	VRR-a	VECTOR ISOLATE STRING
  2377  	op_VL     uint32 = 0xE706 // 	VRX	VECTOR LOAD
  2378  	op_VLR    uint32 = 0xE756 // 	VRR-a	VECTOR LOAD
  2379  	op_VLREP  uint32 = 0xE705 // 	VRX	VECTOR LOAD AND REPLICATE
  2380  	op_VLC    uint32 = 0xE7DE // 	VRR-a	VECTOR LOAD COMPLEMENT
  2381  	op_VLEH   uint32 = 0xE701 // 	VRX	VECTOR LOAD ELEMENT (16)
  2382  	op_VLEF   uint32 = 0xE703 // 	VRX	VECTOR LOAD ELEMENT (32)
  2383  	op_VLEG   uint32 = 0xE702 // 	VRX	VECTOR LOAD ELEMENT (64)
  2384  	op_VLEB   uint32 = 0xE700 // 	VRX	VECTOR LOAD ELEMENT (8)
  2385  	op_VLEIH  uint32 = 0xE741 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (16)
  2386  	op_VLEIF  uint32 = 0xE743 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (32)
  2387  	op_VLEIG  uint32 = 0xE742 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (64)
  2388  	op_VLEIB  uint32 = 0xE740 // 	VRI-a	VECTOR LOAD ELEMENT IMMEDIATE (8)
  2389  	op_VFI    uint32 = 0xE7C7 // 	VRR-a	VECTOR LOAD FP INTEGER
  2390  	op_VLGV   uint32 = 0xE721 // 	VRS-c	VECTOR LOAD GR FROM VR ELEMENT
  2391  	op_VLLEZ  uint32 = 0xE704 // 	VRX	VECTOR LOAD LOGICAL ELEMENT AND ZERO
  2392  	op_VLM    uint32 = 0xE736 // 	VRS-a	VECTOR LOAD MULTIPLE
  2393  	op_VLP    uint32 = 0xE7DF // 	VRR-a	VECTOR LOAD POSITIVE
  2394  	op_VLBB   uint32 = 0xE707 // 	VRX	VECTOR LOAD TO BLOCK BOUNDARY
  2395  	op_VLVG   uint32 = 0xE722 // 	VRS-b	VECTOR LOAD VR ELEMENT FROM GR
  2396  	op_VLVGP  uint32 = 0xE762 // 	VRR-f	VECTOR LOAD VR FROM GRS DISJOINT
  2397  	op_VLL    uint32 = 0xE737 // 	VRS-b	VECTOR LOAD WITH LENGTH
  2398  	op_VMX    uint32 = 0xE7FF // 	VRR-c	VECTOR MAXIMUM
  2399  	op_VMXL   uint32 = 0xE7FD // 	VRR-c	VECTOR MAXIMUM LOGICAL
  2400  	op_VMRH   uint32 = 0xE761 // 	VRR-c	VECTOR MERGE HIGH
  2401  	op_VMRL   uint32 = 0xE760 // 	VRR-c	VECTOR MERGE LOW
  2402  	op_VMN    uint32 = 0xE7FE // 	VRR-c	VECTOR MINIMUM
  2403  	op_VMNL   uint32 = 0xE7FC // 	VRR-c	VECTOR MINIMUM LOGICAL
  2404  	op_VMAE   uint32 = 0xE7AE // 	VRR-d	VECTOR MULTIPLY AND ADD EVEN
  2405  	op_VMAH   uint32 = 0xE7AB // 	VRR-d	VECTOR MULTIPLY AND ADD HIGH
  2406  	op_VMALE  uint32 = 0xE7AC // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL EVEN
  2407  	op_VMALH  uint32 = 0xE7A9 // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL HIGH
  2408  	op_VMALO  uint32 = 0xE7AD // 	VRR-d	VECTOR MULTIPLY AND ADD LOGICAL ODD
  2409  	op_VMAL   uint32 = 0xE7AA // 	VRR-d	VECTOR MULTIPLY AND ADD LOW
  2410  	op_VMAO   uint32 = 0xE7AF // 	VRR-d	VECTOR MULTIPLY AND ADD ODD
  2411  	op_VME    uint32 = 0xE7A6 // 	VRR-c	VECTOR MULTIPLY EVEN
  2412  	op_VMH    uint32 = 0xE7A3 // 	VRR-c	VECTOR MULTIPLY HIGH
  2413  	op_VMLE   uint32 = 0xE7A4 // 	VRR-c	VECTOR MULTIPLY EVEN LOGICAL
  2414  	op_VMLH   uint32 = 0xE7A1 // 	VRR-c	VECTOR MULTIPLY HIGH LOGICAL
  2415  	op_VMLO   uint32 = 0xE7A5 // 	VRR-c	VECTOR MULTIPLY ODD LOGICAL
  2416  	op_VML    uint32 = 0xE7A2 // 	VRR-c	VECTOR MULTIPLY LOW
  2417  	op_VMO    uint32 = 0xE7A7 // 	VRR-c	VECTOR MULTIPLY ODD
  2418  	op_VNO    uint32 = 0xE76B // 	VRR-c	VECTOR NOR
  2419  	op_VO     uint32 = 0xE76A // 	VRR-c	VECTOR OR
  2420  	op_VPK    uint32 = 0xE794 // 	VRR-c	VECTOR PACK
  2421  	op_VPKLS  uint32 = 0xE795 // 	VRR-b	VECTOR PACK LOGICAL SATURATE
  2422  	op_VPKS   uint32 = 0xE797 // 	VRR-b	VECTOR PACK SATURATE
  2423  	op_VPERM  uint32 = 0xE78C // 	VRR-e	VECTOR PERMUTE
  2424  	op_VPDI   uint32 = 0xE784 // 	VRR-c	VECTOR PERMUTE DOUBLEWORD IMMEDIATE
  2425  	op_VPOPCT uint32 = 0xE750 // 	VRR-a	VECTOR POPULATION COUNT
  2426  	op_VREP   uint32 = 0xE74D // 	VRI-c	VECTOR REPLICATE
  2427  	op_VREPI  uint32 = 0xE745 // 	VRI-a	VECTOR REPLICATE IMMEDIATE
  2428  	op_VSCEF  uint32 = 0xE71B // 	VRV	VECTOR SCATTER ELEMENT (32)
  2429  	op_VSCEG  uint32 = 0xE71A // 	VRV	VECTOR SCATTER ELEMENT (64)
  2430  	op_VSEL   uint32 = 0xE78D // 	VRR-e	VECTOR SELECT
  2431  	op_VSL    uint32 = 0xE774 // 	VRR-c	VECTOR SHIFT LEFT
  2432  	op_VSLB   uint32 = 0xE775 // 	VRR-c	VECTOR SHIFT LEFT BY BYTE
  2433  	op_VSLDB  uint32 = 0xE777 // 	VRI-d	VECTOR SHIFT LEFT DOUBLE BY BYTE
  2434  	op_VSRA   uint32 = 0xE77E // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC
  2435  	op_VSRAB  uint32 = 0xE77F // 	VRR-c	VECTOR SHIFT RIGHT ARITHMETIC BY BYTE
  2436  	op_VSRL   uint32 = 0xE77C // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL
  2437  	op_VSRLB  uint32 = 0xE77D // 	VRR-c	VECTOR SHIFT RIGHT LOGICAL BY BYTE
  2438  	op_VSEG   uint32 = 0xE75F // 	VRR-a	VECTOR SIGN EXTEND TO DOUBLEWORD
  2439  	op_VST    uint32 = 0xE70E // 	VRX	VECTOR STORE
  2440  	op_VSTEH  uint32 = 0xE709 // 	VRX	VECTOR STORE ELEMENT (16)
  2441  	op_VSTEF  uint32 = 0xE70B // 	VRX	VECTOR STORE ELEMENT (32)
  2442  	op_VSTEG  uint32 = 0xE70A // 	VRX	VECTOR STORE ELEMENT (64)
  2443  	op_VSTEB  uint32 = 0xE708 // 	VRX	VECTOR STORE ELEMENT (8)
  2444  	op_VSTM   uint32 = 0xE73E // 	VRS-a	VECTOR STORE MULTIPLE
  2445  	op_VSTL   uint32 = 0xE73F // 	VRS-b	VECTOR STORE WITH LENGTH
  2446  	op_VSTRC  uint32 = 0xE78A // 	VRR-d	VECTOR STRING RANGE COMPARE
  2447  	op_VS     uint32 = 0xE7F7 // 	VRR-c	VECTOR SUBTRACT
  2448  	op_VSCBI  uint32 = 0xE7F5 // 	VRR-c	VECTOR SUBTRACT COMPUTE BORROW INDICATION
  2449  	op_VSBCBI uint32 = 0xE7BD // 	VRR-d	VECTOR SUBTRACT WITH BORROW COMPUTE BORROW INDICATION
  2450  	op_VSBI   uint32 = 0xE7BF // 	VRR-d	VECTOR SUBTRACT WITH BORROW INDICATION
  2451  	op_VSUMG  uint32 = 0xE765 // 	VRR-c	VECTOR SUM ACROSS DOUBLEWORD
  2452  	op_VSUMQ  uint32 = 0xE767 // 	VRR-c	VECTOR SUM ACROSS QUADWORD
  2453  	op_VSUM   uint32 = 0xE764 // 	VRR-c	VECTOR SUM ACROSS WORD
  2454  	op_VTM    uint32 = 0xE7D8 // 	VRR-a	VECTOR TEST UNDER MASK
  2455  	op_VUPH   uint32 = 0xE7D7 // 	VRR-a	VECTOR UNPACK HIGH
  2456  	op_VUPLH  uint32 = 0xE7D5 // 	VRR-a	VECTOR UNPACK LOGICAL HIGH
  2457  	op_VUPLL  uint32 = 0xE7D4 // 	VRR-a	VECTOR UNPACK LOGICAL LOW
  2458  	op_VUPL   uint32 = 0xE7D6 // 	VRR-a	VECTOR UNPACK LOW
  2459  )
  2460  
  2461  func oclass(a *obj.Addr) int {
  2462  	return int(a.Class) - 1
  2463  }
  2464  
  2465  // Add a relocation for the immediate in a RIL style instruction.
  2466  // The addend will be adjusted as required.
  2467  func addrilreloc(ctxt *obj.Link, sym *obj.LSym, add int64) *obj.Reloc {
  2468  	if sym == nil {
  2469  		ctxt.Diag("require symbol to apply relocation")
  2470  	}
  2471  	offset := int64(2) // relocation offset from start of instruction
  2472  	rel := obj.Addrel(ctxt.Cursym)
  2473  	rel.Off = int32(ctxt.Pc + offset)
  2474  	rel.Siz = 4
  2475  	rel.Sym = sym
  2476  	rel.Add = add + offset + int64(rel.Siz)
  2477  	rel.Type = obj.R_PCRELDBL
  2478  	return rel
  2479  }
  2480  
  2481  func addrilrelocoffset(ctxt *obj.Link, sym *obj.LSym, add, offset int64) *obj.Reloc {
  2482  	if sym == nil {
  2483  		ctxt.Diag("require symbol to apply relocation")
  2484  	}
  2485  	offset += int64(2) // relocation offset from start of instruction
  2486  	rel := obj.Addrel(ctxt.Cursym)
  2487  	rel.Off = int32(ctxt.Pc + offset)
  2488  	rel.Siz = 4
  2489  	rel.Sym = sym
  2490  	rel.Add = add + offset + int64(rel.Siz)
  2491  	rel.Type = obj.R_PCRELDBL
  2492  	return rel
  2493  }
  2494  
  2495  // Add a CALL relocation for the immediate in a RIL style instruction.
  2496  // The addend will be adjusted as required.
  2497  func addcallreloc(ctxt *obj.Link, sym *obj.LSym, add int64) *obj.Reloc {
  2498  	if sym == nil {
  2499  		ctxt.Diag("require symbol to apply relocation")
  2500  	}
  2501  	offset := int64(2) // relocation offset from start of instruction
  2502  	rel := obj.Addrel(ctxt.Cursym)
  2503  	rel.Off = int32(ctxt.Pc + offset)
  2504  	rel.Siz = 4
  2505  	rel.Sym = sym
  2506  	rel.Add = add + offset + int64(rel.Siz)
  2507  	rel.Type = obj.R_CALL
  2508  	return rel
  2509  }
  2510  
  2511  func branchMask(ctxt *obj.Link, p *obj.Prog) uint32 {
  2512  	switch p.As {
  2513  	case ABEQ, ACMPBEQ, ACMPUBEQ:
  2514  		return 0x8
  2515  	case ABGE, ACMPBGE, ACMPUBGE:
  2516  		return 0xA
  2517  	case ABGT, ACMPBGT, ACMPUBGT:
  2518  		return 0x2
  2519  	case ABLE, ACMPBLE, ACMPUBLE:
  2520  		return 0xC
  2521  	case ABLT, ACMPBLT, ACMPUBLT:
  2522  		return 0x4
  2523  	case ABNE, ACMPBNE, ACMPUBNE:
  2524  		return 0x7
  2525  	case ABVC:
  2526  		return 0x0 //needs extra instruction
  2527  	case ABVS:
  2528  		return 0x1
  2529  	}
  2530  	ctxt.Diag("unknown conditional branch %v", p.As)
  2531  	return 0xF
  2532  }
  2533  
  2534  func asmout(ctxt *obj.Link, asm *[]byte) {
  2535  	p := ctxt.Curp
  2536  	o := oplook(ctxt, p)
  2537  	ctxt.Printp = p
  2538  
  2539  	switch o.type_ {
  2540  	default:
  2541  		ctxt.Diag("unknown type %d", o.type_)
  2542  
  2543  	case 0: // PSEUDO OPS
  2544  		break
  2545  
  2546  	case 1: // mov reg reg
  2547  		switch p.As {
  2548  		default:
  2549  			ctxt.Diag("unhandled operation: %v", p.As)
  2550  		case AMOVD:
  2551  			zRRE(op_LGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2552  		// sign extend
  2553  		case AMOVW:
  2554  			zRRE(op_LGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2555  		case AMOVH:
  2556  			zRRE(op_LGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2557  		case AMOVB:
  2558  			zRRE(op_LGBR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2559  		// zero extend
  2560  		case AMOVWZ:
  2561  			zRRE(op_LLGFR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2562  		case AMOVHZ:
  2563  			zRRE(op_LLGHR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2564  		case AMOVBZ:
  2565  			zRRE(op_LLGCR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2566  		// reverse bytes
  2567  		case AMOVDBR:
  2568  			zRRE(op_LRVGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2569  		case AMOVWBR:
  2570  			zRRE(op_LRVR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2571  		// floating point
  2572  		case AFMOVD, AFMOVS:
  2573  			zRR(op_LDR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2574  		}
  2575  
  2576  	case 2: // arithmetic op reg [reg] reg
  2577  		r := int(p.Reg)
  2578  		if r == 0 {
  2579  			r = int(p.To.Reg)
  2580  		}
  2581  
  2582  		var opcode uint32
  2583  
  2584  		switch p.As {
  2585  		default:
  2586  			ctxt.Diag("invalid opcode")
  2587  		case AADD:
  2588  			opcode = op_AGRK
  2589  		case AADDC:
  2590  			opcode = op_ALGRK
  2591  		case AADDE:
  2592  			opcode = op_ALCGR
  2593  		case AMULLW:
  2594  			opcode = op_MSGFR
  2595  		case AMULLD:
  2596  			opcode = op_MSGR
  2597  		case ADIVW:
  2598  			opcode = op_DSGFR
  2599  		case ADIVWU:
  2600  			opcode = op_DLR
  2601  		case ADIVD:
  2602  			opcode = op_DSGR
  2603  		case ADIVDU:
  2604  			opcode = op_DLGR
  2605  		case AFADD:
  2606  			opcode = op_ADBR
  2607  		case AFADDS:
  2608  			opcode = op_AEBR
  2609  		case AFSUB:
  2610  			opcode = op_SDBR
  2611  		case AFSUBS:
  2612  			opcode = op_SEBR
  2613  		case AFDIV:
  2614  			opcode = op_DDBR
  2615  		case AFDIVS:
  2616  			opcode = op_DEBR
  2617  		}
  2618  
  2619  		switch p.As {
  2620  		default:
  2621  
  2622  		case AADD, AADDC:
  2623  			zRRF(opcode, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2624  
  2625  		case AADDE, AMULLW, AMULLD:
  2626  			if r == int(p.To.Reg) {
  2627  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2628  			} else if p.From.Reg == p.To.Reg {
  2629  				zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  2630  			} else {
  2631  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2632  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2633  			}
  2634  
  2635  		case ADIVW, ADIVWU, ADIVD, ADIVDU:
  2636  			if p.As == ADIVWU || p.As == ADIVDU {
  2637  				zRRE(op_LGR, REGTMP, REGZERO, asm)
  2638  			}
  2639  			zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2640  			zRRE(opcode, REGTMP, uint32(p.From.Reg), asm)
  2641  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP2, asm)
  2642  
  2643  		case AFADD, AFADDS:
  2644  			if r == int(p.To.Reg) {
  2645  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2646  			} else if p.From.Reg == p.To.Reg {
  2647  				zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  2648  			} else {
  2649  				zRR(op_LDR, uint32(p.To.Reg), uint32(r), asm)
  2650  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2651  			}
  2652  
  2653  		case AFSUB, AFSUBS, AFDIV, AFDIVS:
  2654  			if r == int(p.To.Reg) {
  2655  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2656  			} else if p.From.Reg == p.To.Reg {
  2657  				zRRE(op_LGDR, REGTMP, uint32(r), asm)
  2658  				zRRE(opcode, uint32(r), uint32(p.From.Reg), asm)
  2659  				zRR(op_LDR, uint32(p.To.Reg), uint32(r), asm)
  2660  				zRRE(op_LDGR, uint32(r), REGTMP, asm)
  2661  			} else {
  2662  				zRR(op_LDR, uint32(p.To.Reg), uint32(r), asm)
  2663  				zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2664  			}
  2665  
  2666  		}
  2667  
  2668  	case 3: // mov $constant reg
  2669  		v := vregoff(ctxt, &p.From)
  2670  		switch p.As {
  2671  		case AMOVBZ:
  2672  			v = int64(uint8(v))
  2673  		case AMOVHZ:
  2674  			v = int64(uint16(v))
  2675  		case AMOVWZ:
  2676  			v = int64(uint32(v))
  2677  		case AMOVB:
  2678  			v = int64(int8(v))
  2679  		case AMOVH:
  2680  			v = int64(int16(v))
  2681  		case AMOVW:
  2682  			v = int64(int32(v))
  2683  		}
  2684  		if v&0xffff == v {
  2685  			zRI(op_LLILL, uint32(p.To.Reg), uint32(v), asm)
  2686  		} else if v&0xffff0000 == v {
  2687  			zRI(op_LLILH, uint32(p.To.Reg), uint32(v>>16), asm)
  2688  		} else if v&0xffff00000000 == v {
  2689  			zRI(op_LLIHL, uint32(p.To.Reg), uint32(v>>32), asm)
  2690  		} else if uint64(v)&0xffff000000000000 == uint64(v) {
  2691  			zRI(op_LLIHH, uint32(p.To.Reg), uint32(v>>48), asm)
  2692  		} else if int64(int16(v)) == v {
  2693  			zRI(op_LGHI, uint32(p.To.Reg), uint32(v), asm)
  2694  		} else if int64(int32(v)) == v {
  2695  			zRIL(_a, op_LGFI, uint32(p.To.Reg), uint32(v), asm)
  2696  		} else if int64(uint32(v)) == v {
  2697  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2698  		} else if uint64(v)&0xffffffff00000000 == uint64(v) {
  2699  			zRIL(_a, op_LLIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2700  		} else {
  2701  			zRIL(_a, op_LLILF, uint32(p.To.Reg), uint32(v), asm)
  2702  			zRIL(_a, op_IIHF, uint32(p.To.Reg), uint32(v>>32), asm)
  2703  		}
  2704  
  2705  	case 4: // multiply high (a*b)>>64
  2706  		r := p.Reg
  2707  		if r == 0 {
  2708  			r = p.To.Reg
  2709  		}
  2710  		zRRE(op_LGR, REGTMP2, uint32(r), asm)
  2711  		zRRE(op_MLGR, REGTMP, uint32(p.From.Reg), asm)
  2712  		switch p.As {
  2713  		case AMULHDU:
  2714  			// Unsigned: move result into correct register.
  2715  			zRRE(op_LGR, uint32(p.To.Reg), REGTMP, asm)
  2716  		case AMULHD:
  2717  			// Signed: need to convert result.
  2718  			// See Hacker's Delight 8-3.
  2719  			zRSY(op_SRAG, REGTMP2, uint32(p.From.Reg), 0, 63, asm)
  2720  			zRRE(op_NGR, REGTMP2, uint32(r), asm)
  2721  			zRRE(op_SGR, REGTMP, REGTMP2, asm)
  2722  			zRSY(op_SRAG, REGTMP2, uint32(r), 0, 63, asm)
  2723  			zRRE(op_NGR, REGTMP2, uint32(p.From.Reg), asm)
  2724  			zRRF(op_SGRK, REGTMP2, 0, uint32(p.To.Reg), REGTMP, asm)
  2725  		}
  2726  
  2727  	case 5: // syscall
  2728  		zI(op_SVC, 0, asm)
  2729  
  2730  	case 6: // logical op reg [reg] reg
  2731  		if p.To.Reg == 0 {
  2732  			ctxt.Diag("literal operation on R0\n%v", p)
  2733  		}
  2734  
  2735  		switch p.As {
  2736  		case AAND, AOR, AXOR:
  2737  			var opcode1, opcode2 uint32
  2738  			switch p.As {
  2739  			default:
  2740  			case AAND:
  2741  				opcode1 = op_NGR
  2742  				opcode2 = op_NGRK
  2743  			case AOR:
  2744  				opcode1 = op_OGR
  2745  				opcode2 = op_OGRK
  2746  			case AXOR:
  2747  				opcode1 = op_XGR
  2748  				opcode2 = op_XGRK
  2749  			}
  2750  
  2751  			r := int(p.Reg)
  2752  			if r == 0 {
  2753  				zRRE(opcode1, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2754  			} else {
  2755  				zRRF(opcode2, uint32(r), 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2756  			}
  2757  
  2758  		case AANDN, AORN:
  2759  			var opcode1, opcode2 uint32
  2760  			switch p.As {
  2761  			default:
  2762  			case AANDN:
  2763  				opcode1 = op_NGR
  2764  				opcode2 = op_NGRK
  2765  			case AORN:
  2766  				opcode1 = op_OGR
  2767  				opcode2 = op_OGRK
  2768  			}
  2769  
  2770  			r := int(p.Reg)
  2771  			if r == 0 {
  2772  				zRRE(op_LCGR, uint32(p.To.Reg), uint32(p.To.Reg), asm)
  2773  				zRRE(opcode1, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2774  			} else {
  2775  				zRRE(op_LCGR, REGTMP, uint32(r), asm)
  2776  				zRRF(opcode2, REGTMP, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2777  			}
  2778  
  2779  		case ANAND, ANOR:
  2780  			var opcode1, opcode2 uint32
  2781  			switch p.As {
  2782  			default:
  2783  			case ANAND:
  2784  				opcode1 = op_NGR
  2785  				opcode2 = op_NGRK
  2786  			case ANOR:
  2787  				opcode1 = op_OGR
  2788  				opcode2 = op_OGRK
  2789  			}
  2790  
  2791  			r := int(p.Reg)
  2792  			if r == 0 {
  2793  				zRRE(opcode1, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2794  			} else {
  2795  				zRRF(opcode2, uint32(r), 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2796  			}
  2797  
  2798  			zRRE(op_LCGR, uint32(p.To.Reg), uint32(p.To.Reg), asm)
  2799  		}
  2800  
  2801  	case 7: // shift/rotate reg [reg] reg
  2802  		d2 := vregoff(ctxt, &p.From)
  2803  		b2 := p.From.Reg
  2804  		r3 := p.Reg
  2805  		if r3 == 0 {
  2806  			r3 = p.To.Reg
  2807  		}
  2808  		r1 := p.To.Reg
  2809  		var opcode uint32
  2810  		switch p.As {
  2811  		default:
  2812  		case ASLD:
  2813  			opcode = op_SLLG
  2814  		case ASRD:
  2815  			opcode = op_SRLG
  2816  		case ASLW:
  2817  			opcode = op_SLLK
  2818  		case ASRW:
  2819  			opcode = op_SRLK
  2820  		case ARLL:
  2821  			opcode = op_RLL
  2822  		case ARLLG:
  2823  			opcode = op_RLLG
  2824  		case ASRAW:
  2825  			opcode = op_SRAK
  2826  		case ASRAD:
  2827  			opcode = op_SRAG
  2828  		}
  2829  		zRSY(opcode, uint32(r1), uint32(r3), uint32(b2), uint32(d2), asm)
  2830  
  2831  	case 10: // subtract reg [reg] reg
  2832  		r := int(p.Reg)
  2833  
  2834  		switch p.As {
  2835  		default:
  2836  		case ASUB:
  2837  			if r == 0 {
  2838  				zRRE(op_SGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2839  			} else {
  2840  				zRRF(op_SGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2841  			}
  2842  		case ASUBC:
  2843  			if r == 0 {
  2844  				zRRE(op_SLGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2845  			} else {
  2846  				zRRF(op_SLGRK, uint32(p.From.Reg), 0, uint32(p.To.Reg), uint32(r), asm)
  2847  			}
  2848  
  2849  		case ASUBE:
  2850  			if r == 0 {
  2851  				r = int(p.To.Reg)
  2852  			}
  2853  			if r == int(p.To.Reg) {
  2854  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2855  			} else if p.From.Reg == p.To.Reg {
  2856  				zRRE(op_LGR, REGTMP, uint32(p.From.Reg), asm)
  2857  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2858  				zRRE(op_SLBGR, uint32(p.To.Reg), REGTMP, asm)
  2859  			} else {
  2860  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2861  				zRRE(op_SLBGR, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  2862  			}
  2863  		}
  2864  
  2865  	case 11: // br/bl
  2866  		v := int32(0)
  2867  
  2868  		if p.Pcond != nil {
  2869  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  2870  		}
  2871  
  2872  		if p.As == ABR && p.To.Sym == nil && int32(int16(v)) == v {
  2873  			zRI(op_BRC, 0xF, uint32(v), asm)
  2874  		} else {
  2875  			if p.As == ABL {
  2876  				zRIL(_b, op_BRASL, uint32(REG_LR), uint32(v), asm)
  2877  			} else {
  2878  				zRIL(_c, op_BRCL, 0xF, uint32(v), asm)
  2879  			}
  2880  			if p.To.Sym != nil {
  2881  				addcallreloc(ctxt, p.To.Sym, p.To.Offset)
  2882  			}
  2883  		}
  2884  
  2885  	case 15: // br/bl (reg)
  2886  		r := p.To.Reg
  2887  		if p.As == ABCL || p.As == ABL {
  2888  			zRR(op_BASR, uint32(REG_LR), uint32(r), asm)
  2889  		} else {
  2890  			zRR(op_BCR, 0xF, uint32(r), asm)
  2891  		}
  2892  
  2893  	case 16: // conditional branch
  2894  		v := int32(0)
  2895  		if p.Pcond != nil {
  2896  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  2897  		}
  2898  		mask := branchMask(ctxt, p)
  2899  		if p.To.Sym == nil && int32(int16(v)) == v {
  2900  			zRI(op_BRC, mask, uint32(v), asm)
  2901  		} else {
  2902  			zRIL(_c, op_BRCL, mask, uint32(v), asm)
  2903  		}
  2904  		if p.To.Sym != nil {
  2905  			addrilreloc(ctxt, p.To.Sym, p.To.Offset)
  2906  		}
  2907  
  2908  	case 18: // br/bl reg
  2909  		if p.As == ABL {
  2910  			zRR(op_BASR, uint32(REG_LR), uint32(p.To.Reg), asm)
  2911  		} else {
  2912  			zRR(op_BCR, 0xF, uint32(p.To.Reg), asm)
  2913  		}
  2914  
  2915  	case 19: // mov $sym+n(SB) reg
  2916  		d := vregoff(ctxt, &p.From)
  2917  		zRIL(_b, op_LARL, uint32(p.To.Reg), 0, asm)
  2918  		if d&1 != 0 {
  2919  			zRX(op_LA, uint32(p.To.Reg), uint32(p.To.Reg), 0, 1, asm)
  2920  			d -= 1
  2921  		}
  2922  		addrilreloc(ctxt, p.From.Sym, d)
  2923  
  2924  	case 22: // arithmetic op $constant [reg] reg
  2925  		if p.From.Sym != nil {
  2926  			ctxt.Diag("%v is not supported", p)
  2927  		}
  2928  		v := vregoff(ctxt, &p.From)
  2929  		r := p.Reg
  2930  		if r == 0 {
  2931  			r = p.To.Reg
  2932  		}
  2933  		switch p.As {
  2934  		default:
  2935  		case AADD:
  2936  			if r == p.To.Reg {
  2937  				zRIL(_a, op_AGFI, uint32(p.To.Reg), uint32(v), asm)
  2938  			} else if int64(int16(v)) == v {
  2939  				zRIE(_d, op_AGHIK, uint32(p.To.Reg), uint32(r), uint32(v), 0, 0, 0, 0, asm)
  2940  			} else {
  2941  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2942  				zRIL(_a, op_AGFI, uint32(p.To.Reg), uint32(v), asm)
  2943  			}
  2944  		case AADDC:
  2945  			if r != p.To.Reg {
  2946  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2947  			}
  2948  			zRIL(_a, op_ALGFI, uint32(p.To.Reg), uint32(v), asm)
  2949  		case AMULLW, AMULLD:
  2950  			if r != p.To.Reg {
  2951  				zRRE(op_LGR, uint32(p.To.Reg), uint32(r), asm)
  2952  			}
  2953  			if int64(int16(v)) == v {
  2954  				zRI(op_MGHI, uint32(p.To.Reg), uint32(v), asm)
  2955  			} else {
  2956  				zRIL(_a, op_MSGFI, uint32(p.To.Reg), uint32(v), asm)
  2957  			}
  2958  		}
  2959  
  2960  	case 23: // logical op $constant [reg] reg
  2961  		v := vregoff(ctxt, &p.From)
  2962  		var opcode uint32
  2963  		r := p.Reg
  2964  		if r == 0 {
  2965  			r = p.To.Reg
  2966  		}
  2967  		if r == p.To.Reg {
  2968  			switch p.As {
  2969  			default:
  2970  				ctxt.Diag("%v is not supported", p)
  2971  			case AAND:
  2972  				if v >= 0 { // needs zero extend
  2973  					zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  2974  					zRRE(op_NGR, uint32(p.To.Reg), REGTMP, asm)
  2975  				} else if int64(int16(v)) == v {
  2976  					zRI(op_NILL, uint32(p.To.Reg), uint32(v), asm)
  2977  				} else { //  r.To.Reg & 0xffffffff00000000 & uint32(v)
  2978  					zRIL(_a, op_NILF, uint32(p.To.Reg), uint32(v), asm)
  2979  				}
  2980  			case AOR:
  2981  				if int64(uint32(v)) != v { // needs sign extend
  2982  					zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  2983  					zRRE(op_OGR, uint32(p.To.Reg), REGTMP, asm)
  2984  				} else if int64(uint16(v)) == v {
  2985  					zRI(op_OILL, uint32(p.To.Reg), uint32(v), asm)
  2986  				} else {
  2987  					zRIL(_a, op_OILF, uint32(p.To.Reg), uint32(v), asm)
  2988  				}
  2989  			case AXOR:
  2990  				if int64(uint32(v)) != v { // needs sign extend
  2991  					zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  2992  					zRRE(op_XGR, uint32(p.To.Reg), REGTMP, asm)
  2993  				} else {
  2994  					zRIL(_a, op_XILF, uint32(p.To.Reg), uint32(v), asm)
  2995  				}
  2996  			}
  2997  		} else {
  2998  			switch p.As {
  2999  			default:
  3000  				ctxt.Diag("%v is not supported", p)
  3001  			case AAND:
  3002  				opcode = op_NGRK
  3003  			case AOR:
  3004  				opcode = op_OGRK
  3005  			case AXOR:
  3006  				opcode = op_XGRK
  3007  			}
  3008  			zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3009  			zRRF(opcode, uint32(r), 0, uint32(p.To.Reg), REGTMP, asm)
  3010  		}
  3011  
  3012  	case 26: // mov $addr/sym reg
  3013  		v := regoff(ctxt, &p.From)
  3014  		r := p.From.Reg
  3015  		if r == 0 {
  3016  			r = o.param
  3017  		}
  3018  		if v >= 0 && v < DISP12 {
  3019  			zRX(op_LA, uint32(p.To.Reg), uint32(r), 0, uint32(v), asm)
  3020  		} else if v >= -DISP20/2 && v < DISP20/2 {
  3021  			zRXY(op_LAY, uint32(p.To.Reg), uint32(r), 0, uint32(v), asm)
  3022  		} else {
  3023  			zRIL(_a, op_LGFI, REGTMP, uint32(v), asm)
  3024  			zRX(op_LA, uint32(p.To.Reg), uint32(r), REGTMP, 0, asm)
  3025  		}
  3026  
  3027  	case 31: // dword
  3028  		wd := uint64(vregoff(ctxt, &p.From))
  3029  		*asm = append(*asm,
  3030  			uint8(wd>>56),
  3031  			uint8(wd>>48),
  3032  			uint8(wd>>40),
  3033  			uint8(wd>>32),
  3034  			uint8(wd>>24),
  3035  			uint8(wd>>16),
  3036  			uint8(wd>>8),
  3037  			uint8(wd))
  3038  
  3039  	case 32: // fmul freg [freg] freg
  3040  		r := int(p.Reg)
  3041  		if r == 0 {
  3042  			r = int(p.To.Reg)
  3043  		}
  3044  
  3045  		var opcode uint32
  3046  
  3047  		switch p.As {
  3048  		default:
  3049  			ctxt.Diag("invalid opcode")
  3050  		case AFMUL:
  3051  			opcode = op_MDBR
  3052  		case AFMULS:
  3053  			opcode = op_MEEBR
  3054  		}
  3055  
  3056  		if r == int(p.To.Reg) {
  3057  			zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3058  		} else if p.From.Reg == p.To.Reg {
  3059  			zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  3060  		} else {
  3061  			zRR(op_LDR, uint32(p.To.Reg), uint32(r), asm)
  3062  			zRRE(opcode, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3063  		}
  3064  
  3065  	case 33: // float op [freg] freg
  3066  		r := p.From.Reg
  3067  		if oclass(&p.From) == C_NONE {
  3068  			r = p.To.Reg
  3069  		}
  3070  		var opcode uint32
  3071  		switch p.As {
  3072  		default:
  3073  		case AFABS:
  3074  			opcode = op_LPDBR
  3075  		case AFNABS:
  3076  			opcode = op_LNDBR
  3077  		case AFNEG:
  3078  			opcode = op_LCDFR
  3079  		case ALEDBR:
  3080  			opcode = op_LEDBR
  3081  		case ALDEBR:
  3082  			opcode = op_LDEBR
  3083  		case AFSQRT:
  3084  			opcode = op_SQDBR
  3085  		case AFSQRTS:
  3086  			opcode = op_SQEBR
  3087  		}
  3088  		zRRE(opcode, uint32(p.To.Reg), uint32(r), asm)
  3089  
  3090  	case 34: // float multiply-add freg freg freg freg
  3091  		var opcode uint32
  3092  
  3093  		switch p.As {
  3094  		default:
  3095  			ctxt.Diag("invalid opcode")
  3096  		case AFMADD:
  3097  			opcode = op_MADBR
  3098  		case AFMADDS:
  3099  			opcode = op_MAEBR
  3100  		case AFMSUB:
  3101  			opcode = op_MSDBR
  3102  		case AFMSUBS:
  3103  			opcode = op_MSEBR
  3104  		case AFNMADD:
  3105  			opcode = op_MADBR
  3106  		case AFNMADDS:
  3107  			opcode = op_MAEBR
  3108  		case AFNMSUB:
  3109  			opcode = op_MSDBR
  3110  		case AFNMSUBS:
  3111  			opcode = op_MSEBR
  3112  		}
  3113  
  3114  		zRR(op_LDR, uint32(p.To.Reg), uint32(p.Reg), asm)
  3115  		zRRD(opcode, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.From3.Reg), asm)
  3116  
  3117  		if p.As == AFNMADD || p.As == AFNMADDS || p.As == AFNMSUB || p.As == AFNMSUBS {
  3118  			zRRE(op_LCDFR, uint32(p.To.Reg), uint32(p.To.Reg), asm)
  3119  		}
  3120  
  3121  	case 35: // mov reg mem (no relocation)
  3122  		d2 := regoff(ctxt, &p.To)
  3123  		b2 := p.To.Reg
  3124  		if b2 == 0 {
  3125  			b2 = o.param
  3126  		}
  3127  		x2 := p.To.Index
  3128  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3129  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  3130  			if x2 != 0 {
  3131  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  3132  			}
  3133  			x2 = REGTMP
  3134  			d2 = 0
  3135  		}
  3136  		zRXY(zopstore(ctxt, p.As), uint32(p.From.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3137  
  3138  	case 36: // mov mem reg (no relocation)
  3139  		d2 := regoff(ctxt, &p.From)
  3140  		b2 := p.From.Reg
  3141  		if b2 == 0 {
  3142  			b2 = o.param
  3143  		}
  3144  		x2 := p.From.Index
  3145  		if d2 < -DISP20/2 || d2 >= DISP20/2 {
  3146  			zRIL(_a, op_LGFI, REGTMP, uint32(d2), asm)
  3147  			if x2 != 0 {
  3148  				zRX(op_LA, REGTMP, REGTMP, uint32(x2), 0, asm)
  3149  			}
  3150  			x2 = REGTMP
  3151  			d2 = 0
  3152  		}
  3153  		zRXY(zopload(ctxt, p.As), uint32(p.To.Reg), uint32(x2), uint32(b2), uint32(d2), asm)
  3154  
  3155  	case 40: // word/byte
  3156  		wd := uint32(regoff(ctxt, &p.From))
  3157  		if p.As == AWORD { //WORD
  3158  			*asm = append(*asm, uint8(wd>>24), uint8(wd>>16), uint8(wd>>8), uint8(wd))
  3159  		} else { //BYTE
  3160  			*asm = append(*asm, uint8(wd))
  3161  		}
  3162  
  3163  	case 47: // arithmetic op (carry) reg [reg] reg
  3164  		switch p.As {
  3165  		default:
  3166  
  3167  		case AADDME:
  3168  			r := int(p.From.Reg)
  3169  			if p.To.Reg == p.From.Reg {
  3170  				zRRE(op_LGR, REGTMP, uint32(p.From.Reg), asm)
  3171  				r = REGTMP
  3172  			}
  3173  			zRIL(_a, op_LGFI, uint32(p.To.Reg), 0xffffffff, asm) // p.To.Reg <- -1
  3174  			zRRE(op_ALCGR, uint32(p.To.Reg), uint32(r), asm)
  3175  
  3176  		case AADDZE:
  3177  			r := int(p.From.Reg)
  3178  			if p.To.Reg == p.From.Reg {
  3179  				zRRE(op_LGR, REGTMP, uint32(p.From.Reg), asm)
  3180  				r = REGTMP
  3181  			}
  3182  			zRRE(op_LGR, uint32(p.To.Reg), REGZERO, asm) // p.To.Reg <- 0
  3183  			zRRE(op_ALCGR, uint32(p.To.Reg), uint32(r), asm)
  3184  
  3185  		case ASUBME:
  3186  			r := int(p.From.Reg)
  3187  			if p.To.Reg == p.From.Reg {
  3188  				zRRE(op_LGR, REGTMP, uint32(p.From.Reg), asm)
  3189  				r = REGTMP
  3190  			}
  3191  			zRIL(_a, op_LGFI, uint32(p.To.Reg), 0xffffffff, asm) // p.To.Reg <- -1
  3192  			zRRE(op_SLBGR, uint32(p.To.Reg), uint32(r), asm)
  3193  
  3194  		case ASUBZE:
  3195  			r := int(p.From.Reg)
  3196  			if p.To.Reg == p.From.Reg {
  3197  				zRRE(op_LGR, REGTMP, uint32(p.From.Reg), asm)
  3198  				r = REGTMP
  3199  			}
  3200  			zRRE(op_LGR, uint32(p.To.Reg), REGZERO, asm) // p.To.Reg <- 0
  3201  			zRRE(op_SLBGR, uint32(p.To.Reg), uint32(r), asm)
  3202  
  3203  		case ANEG:
  3204  			r := int(p.From.Reg)
  3205  			if r == 0 {
  3206  				r = int(p.To.Reg)
  3207  			}
  3208  			zRRE(op_LCGR, uint32(p.To.Reg), uint32(r), asm)
  3209  		}
  3210  
  3211  	case 48: // floating-point round to integer
  3212  		m3 := vregoff(ctxt, &p.From)
  3213  		if 0 > m3 || m3 > 7 {
  3214  			ctxt.Diag("mask (%v) must be in the range [0, 7]", m3)
  3215  		}
  3216  		var opcode uint32
  3217  		switch p.As {
  3218  		case AFIEBR:
  3219  			opcode = op_FIEBR
  3220  		case AFIDBR:
  3221  			opcode = op_FIDBR
  3222  		}
  3223  		zRRF(opcode, uint32(m3), 0, uint32(p.To.Reg), uint32(p.Reg), asm)
  3224  
  3225  	case 67: // fmov $0 freg
  3226  		var opcode uint32
  3227  		switch p.As {
  3228  		case AFMOVS:
  3229  			opcode = op_LZER
  3230  		case AFMOVD:
  3231  			opcode = op_LZDR
  3232  		}
  3233  		zRRE(opcode, uint32(p.To.Reg), 0, asm)
  3234  
  3235  	case 68: // movw areg reg
  3236  		zRRE(op_EAR, uint32(p.To.Reg), uint32(p.From.Reg-REG_AR0), asm)
  3237  
  3238  	case 69: // movw reg areg
  3239  		zRRE(op_SAR, uint32(p.To.Reg-REG_AR0), uint32(p.From.Reg), asm)
  3240  
  3241  	case 70: // cmp reg reg
  3242  		if p.As == ACMPW || p.As == ACMPWU {
  3243  			zRR(zoprr(ctxt, p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3244  		} else {
  3245  			zRRE(zoprre(ctxt, p.As), uint32(p.From.Reg), uint32(p.To.Reg), asm)
  3246  		}
  3247  
  3248  	case 71: // cmp reg $constant
  3249  		v := vregoff(ctxt, &p.To)
  3250  		switch p.As {
  3251  		case ACMP, ACMPW:
  3252  			if int64(int32(v)) != v {
  3253  				ctxt.Diag("%v overflows an int32", v)
  3254  			}
  3255  		case ACMPU, ACMPWU:
  3256  			if int64(uint32(v)) != v {
  3257  				ctxt.Diag("%v overflows a uint32", v)
  3258  			}
  3259  		}
  3260  		zRIL(_a, zopril(ctxt, p.As), uint32(p.From.Reg), uint32(regoff(ctxt, &p.To)), asm)
  3261  
  3262  	case 72: // mov $constant/$addr mem
  3263  		v := regoff(ctxt, &p.From)
  3264  		d := regoff(ctxt, &p.To)
  3265  		r := p.To.Reg
  3266  		x := p.To.Index
  3267  		if r == 0 {
  3268  			r = o.param
  3269  		}
  3270  		if p.From.Sym != nil {
  3271  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3272  			if v&0x1 != 0 {
  3273  				v -= 1
  3274  				zRX(op_LA, REGTMP, REGTMP, 0, 1, asm)
  3275  			}
  3276  			addrilreloc(ctxt, p.From.Sym, int64(v))
  3277  			if d < -DISP20/2 || d >= DISP20/2 {
  3278  				zRIL(_a, op_LGFI, REGTMP2, uint32(d), asm)
  3279  				if x != 0 {
  3280  					zRRE(op_AGR, REGTMP2, uint32(x), asm)
  3281  				}
  3282  				d = 0
  3283  				x = REGTMP2
  3284  			}
  3285  			zRXY(zopstore(ctxt, p.As), REGTMP, uint32(x), uint32(r), uint32(d), asm)
  3286  		} else if int32(int16(v)) == v && x == 0 {
  3287  			if d < 0 || d >= DISP12 {
  3288  				if r == REGTMP || r == REGTMP2 {
  3289  					zRIL(_a, op_AGFI, uint32(r), uint32(d), asm)
  3290  				} else {
  3291  					zRIL(_a, op_LGFI, REGTMP, uint32(d), asm)
  3292  					zRRE(op_AGR, REGTMP, uint32(r), asm)
  3293  					r = REGTMP
  3294  				}
  3295  				d = 0
  3296  			}
  3297  			var opcode uint32
  3298  			switch p.As {
  3299  			case AMOVD:
  3300  				opcode = op_MVGHI
  3301  			case AMOVW, AMOVWZ:
  3302  				opcode = op_MVHI
  3303  			case AMOVH, AMOVHZ:
  3304  				opcode = op_MVHHI
  3305  			case AMOVB, AMOVBZ:
  3306  				opcode = op_MVI
  3307  			}
  3308  			if opcode == op_MVI {
  3309  				zSI(opcode, uint32(v), uint32(r), uint32(d), asm)
  3310  			} else {
  3311  				zSIL(opcode, uint32(r), uint32(d), uint32(v), asm)
  3312  			}
  3313  		} else {
  3314  			zRIL(_a, op_LGFI, REGTMP2, uint32(v), asm)
  3315  			if d < -DISP20/2 || d >= DISP20/2 {
  3316  				if r == REGTMP {
  3317  					zRIL(_a, op_AGFI, REGTMP, uint32(d), asm)
  3318  				} else {
  3319  					zRIL(_a, op_LGFI, REGTMP, uint32(d), asm)
  3320  					if x != 0 {
  3321  						zRRE(op_AGR, REGTMP, uint32(x), asm)
  3322  					}
  3323  					x = REGTMP
  3324  				}
  3325  				d = 0
  3326  			}
  3327  			zRXY(zopstore(ctxt, p.As), REGTMP2, uint32(x), uint32(r), uint32(d), asm)
  3328  		}
  3329  
  3330  	case 73: // mov $constant addr (including relocation)
  3331  		v := regoff(ctxt, &p.From)
  3332  		d := regoff(ctxt, &p.To)
  3333  		a := uint32(0)
  3334  		if d&1 != 0 {
  3335  			d -= 1
  3336  			a = 1
  3337  		}
  3338  		zRIL(_b, op_LARL, REGTMP, uint32(d), asm)
  3339  		addrilreloc(ctxt, p.To.Sym, int64(d))
  3340  		if p.From.Sym != nil {
  3341  			zRIL(_b, op_LARL, REGTMP2, 0, asm)
  3342  			a := uint32(0)
  3343  			if v&0x1 != 0 {
  3344  				v -= 1
  3345  				zRX(op_LA, REGTMP2, REGTMP2, 0, 1, asm)
  3346  			}
  3347  			addrilrelocoffset(ctxt, p.From.Sym, int64(v), sizeRIL)
  3348  			zRXY(zopstore(ctxt, p.As), REGTMP2, 0, REGTMP, a, asm)
  3349  		} else if int32(int16(v)) == v {
  3350  			var opcode uint32
  3351  			switch p.As {
  3352  			case AMOVD:
  3353  				opcode = op_MVGHI
  3354  			case AMOVW, AMOVWZ:
  3355  				opcode = op_MVHI
  3356  			case AMOVH, AMOVHZ:
  3357  				opcode = op_MVHHI
  3358  			case AMOVB, AMOVBZ:
  3359  				opcode = op_MVI
  3360  			}
  3361  			if opcode == op_MVI {
  3362  				zSI(opcode, uint32(v), REGTMP, a, asm)
  3363  			} else {
  3364  				zSIL(opcode, REGTMP, a, uint32(v), asm)
  3365  			}
  3366  		} else {
  3367  			zRIL(_a, op_LGFI, REGTMP2, uint32(v), asm)
  3368  			zRXY(zopstore(ctxt, p.As), REGTMP2, 0, REGTMP, a, asm)
  3369  		}
  3370  
  3371  	case 74: // mov reg addr (including relocation)
  3372  		i2 := regoff(ctxt, &p.To)
  3373  		switch p.As {
  3374  		case AMOVD:
  3375  			zRIL(_b, op_STGRL, uint32(p.From.Reg), 0, asm)
  3376  		case AMOVW, AMOVWZ: // The zero extension doesn't affect store instructions
  3377  			zRIL(_b, op_STRL, uint32(p.From.Reg), 0, asm)
  3378  		case AMOVH, AMOVHZ: // The zero extension doesn't affect store instructions
  3379  			zRIL(_b, op_STHRL, uint32(p.From.Reg), 0, asm)
  3380  		case AMOVB, AMOVBZ: // The zero extension doesn't affect store instructions
  3381  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3382  			adj := uint32(0) // adjustment needed for odd addresses
  3383  			if i2&1 != 0 {
  3384  				i2 -= 1
  3385  				adj = 1
  3386  			}
  3387  			zRX(op_STC, uint32(p.From.Reg), 0, REGTMP, adj, asm)
  3388  		case AFMOVD:
  3389  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3390  			zRX(op_STD, uint32(p.From.Reg), 0, REGTMP, 0, asm)
  3391  		case AFMOVS:
  3392  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3393  			zRX(op_STE, uint32(p.From.Reg), 0, REGTMP, 0, asm)
  3394  		}
  3395  		addrilreloc(ctxt, p.To.Sym, int64(i2))
  3396  
  3397  	case 75: // mov addr reg (including relocation)
  3398  		i2 := regoff(ctxt, &p.From)
  3399  		switch p.As {
  3400  		case AMOVD:
  3401  			if i2&1 != 0 {
  3402  				zRIL(_b, op_LARL, REGTMP, 0, asm)
  3403  				zRXY(op_LG, uint32(p.To.Reg), REGTMP, 0, 1, asm)
  3404  				i2 -= 1
  3405  			} else {
  3406  				zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3407  			}
  3408  		case AMOVW:
  3409  			zRIL(_b, op_LGFRL, uint32(p.To.Reg), 0, asm)
  3410  		case AMOVWZ:
  3411  			zRIL(_b, op_LLGFRL, uint32(p.To.Reg), 0, asm)
  3412  		case AMOVH:
  3413  			zRIL(_b, op_LGHRL, uint32(p.To.Reg), 0, asm)
  3414  		case AMOVHZ:
  3415  			zRIL(_b, op_LLGHRL, uint32(p.To.Reg), 0, asm)
  3416  		case AMOVB, AMOVBZ:
  3417  			zRIL(_b, op_LARL, REGTMP, 0, asm)
  3418  			adj := uint32(0) // adjustment needed for odd addresses
  3419  			if i2&1 != 0 {
  3420  				i2 -= 1
  3421  				adj = 1
  3422  			}
  3423  			switch p.As {
  3424  			case AMOVB:
  3425  				zRXY(op_LGB, uint32(p.To.Reg), 0, REGTMP, adj, asm)
  3426  			case AMOVBZ:
  3427  				zRXY(op_LLGC, uint32(p.To.Reg), 0, REGTMP, adj, asm)
  3428  			}
  3429  		case AFMOVD:
  3430  			zRIL(_a, op_LARL, REGTMP, 0, asm)
  3431  			zRX(op_LD, uint32(p.To.Reg), 0, REGTMP, 0, asm)
  3432  		case AFMOVS:
  3433  			zRIL(_a, op_LARL, REGTMP, 0, asm)
  3434  			zRX(op_LE, uint32(p.To.Reg), 0, REGTMP, 0, asm)
  3435  		}
  3436  		addrilreloc(ctxt, p.From.Sym, int64(i2))
  3437  
  3438  	case 77: // syscall $constant
  3439  		if p.From.Offset > 255 || p.From.Offset < 1 {
  3440  			ctxt.Diag("illegal system call; system call number out of range: %v", p)
  3441  			zE(op_TRAP2, asm) // trap always
  3442  		} else {
  3443  			zI(op_SVC, uint32(p.From.Offset), asm)
  3444  		}
  3445  
  3446  	case 78: // undef
  3447  		// "An instruction consisting entirely of binary 0s is guaranteed
  3448  		// always to be an illegal instruction."
  3449  		*asm = append(*asm, 0, 0, 0, 0)
  3450  
  3451  	case 79: // compare and swap reg reg reg
  3452  		v := regoff(ctxt, &p.To)
  3453  		if v < 0 {
  3454  			v = 0
  3455  		}
  3456  		if p.As == ACS {
  3457  			zRS(op_CS, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3458  		} else if p.As == ACSG {
  3459  			zRSY(op_CSG, uint32(p.From.Reg), uint32(p.Reg), uint32(p.To.Reg), uint32(v), asm)
  3460  		}
  3461  
  3462  	case 81: // sync
  3463  		zRR(op_BCR, 0xE, 0, asm)
  3464  
  3465  	case 82: // fixed to float conversion
  3466  		var opcode uint32
  3467  		switch p.As {
  3468  		default:
  3469  			log.Fatalf("unexpected opcode %v", p.As)
  3470  		case ACEFBRA:
  3471  			opcode = op_CEFBRA
  3472  		case ACDFBRA:
  3473  			opcode = op_CDFBRA
  3474  		case ACEGBRA:
  3475  			opcode = op_CEGBRA
  3476  		case ACDGBRA:
  3477  			opcode = op_CDGBRA
  3478  		case ACELFBR:
  3479  			opcode = op_CELFBR
  3480  		case ACDLFBR:
  3481  			opcode = op_CDLFBR
  3482  		case ACELGBR:
  3483  			opcode = op_CELGBR
  3484  		case ACDLGBR:
  3485  			opcode = op_CDLGBR
  3486  		}
  3487  		// set immediate operand M3 to 0 to use the default BFP rounding mode
  3488  		// (usually round to nearest, ties to even)
  3489  		// TODO(mundaym): should this be fixed at round to nearest, ties to even?
  3490  		// M4 is reserved and must be 0
  3491  		zRRF(opcode, 0, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3492  
  3493  	case 83: // float to fixed conversion
  3494  		var opcode uint32
  3495  		switch p.As {
  3496  		default:
  3497  			log.Fatalf("unexpected opcode %v", p.As)
  3498  		case ACFEBRA:
  3499  			opcode = op_CFEBRA
  3500  		case ACFDBRA:
  3501  			opcode = op_CFDBRA
  3502  		case ACGEBRA:
  3503  			opcode = op_CGEBRA
  3504  		case ACGDBRA:
  3505  			opcode = op_CGDBRA
  3506  		case ACLFEBR:
  3507  			opcode = op_CLFEBR
  3508  		case ACLFDBR:
  3509  			opcode = op_CLFDBR
  3510  		case ACLGEBR:
  3511  			opcode = op_CLGEBR
  3512  		case ACLGDBR:
  3513  			opcode = op_CLGDBR
  3514  		}
  3515  		// set immediate operand M3 to 5 for rounding toward zero (required by Go spec)
  3516  		// M4 is reserved and must be 0
  3517  		zRRF(opcode, 5, 0, uint32(p.To.Reg), uint32(p.From.Reg), asm)
  3518  
  3519  	case 84: // storage-and-storage operations $length mem mem (length in From3)
  3520  		l := regoff(ctxt, p.From3)
  3521  		if l < 1 || l > 256 {
  3522  			ctxt.Diag("number of bytes (%v) not in range [1,256]", l)
  3523  		}
  3524  		if p.From.Index != 0 || p.To.Index != 0 {
  3525  			ctxt.Diag("cannot use index reg")
  3526  		}
  3527  		b1 := p.To.Reg
  3528  		b2 := p.From.Reg
  3529  		if b1 == 0 {
  3530  			b1 = o.param
  3531  		}
  3532  		if b2 == 0 {
  3533  			b2 = o.param
  3534  		}
  3535  		d1 := regoff(ctxt, &p.To)
  3536  		d2 := regoff(ctxt, &p.From)
  3537  		if d1 < 0 || d1 >= DISP12 {
  3538  			if b2 == REGTMP {
  3539  				ctxt.Diag("REGTMP conflict")
  3540  			}
  3541  			if b1 != REGTMP {
  3542  				zRRE(op_LGR, REGTMP, uint32(b1), asm)
  3543  			}
  3544  			zRIL(_a, op_AGFI, REGTMP, uint32(d1), asm)
  3545  			if d1 == d2 && b1 == b2 {
  3546  				d2 = 0
  3547  				b2 = REGTMP
  3548  			}
  3549  			d1 = 0
  3550  			b1 = REGTMP
  3551  		}
  3552  		if d2 < 0 || d2 >= DISP12 {
  3553  			if b1 == REGTMP2 {
  3554  				ctxt.Diag("REGTMP2 conflict")
  3555  			}
  3556  			if b2 != REGTMP2 {
  3557  				zRRE(op_LGR, REGTMP2, uint32(b2), asm)
  3558  			}
  3559  			zRIL(_a, op_AGFI, REGTMP2, uint32(d2), asm)
  3560  			d2 = 0
  3561  			b2 = REGTMP2
  3562  		}
  3563  		var opcode uint32
  3564  		switch p.As {
  3565  		default:
  3566  			ctxt.Diag("unexpected opcode %v", p.As)
  3567  		case AMVC:
  3568  			opcode = op_MVC
  3569  		case ACLC:
  3570  			opcode = op_CLC
  3571  			// swap operand order for CLC so that it matches CMP
  3572  			b1, b2 = b2, b1
  3573  			d1, d2 = d2, d1
  3574  		case AXC:
  3575  			opcode = op_XC
  3576  		case AOC:
  3577  			opcode = op_OC
  3578  		case ANC:
  3579  			opcode = op_NC
  3580  		}
  3581  		zSS(_a, opcode, uint32(l-1), 0, uint32(b1), uint32(d1), uint32(b2), uint32(d2), asm)
  3582  
  3583  	case 85: // load address relative long
  3584  		v := regoff(ctxt, &p.From)
  3585  		if p.From.Sym == nil {
  3586  			if (v & 1) != 0 {
  3587  				ctxt.Diag("cannot use LARL with odd offset: %v", v)
  3588  			}
  3589  		} else {
  3590  			addrilreloc(ctxt, p.From.Sym, int64(v))
  3591  			v = 0
  3592  		}
  3593  		zRIL(_b, op_LARL, uint32(p.To.Reg), uint32(v>>1), asm)
  3594  
  3595  	case 86: // load address
  3596  		d := vregoff(ctxt, &p.From)
  3597  		x := p.From.Index
  3598  		b := p.From.Reg
  3599  		if b == 0 {
  3600  			b = o.param
  3601  		}
  3602  		switch p.As {
  3603  		case ALA:
  3604  			zRX(op_LA, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3605  		case ALAY:
  3606  			zRXY(op_LAY, uint32(p.To.Reg), uint32(x), uint32(b), uint32(d), asm)
  3607  		}
  3608  
  3609  	case 87: // execute relative long
  3610  		v := vregoff(ctxt, &p.From)
  3611  		if p.From.Sym == nil {
  3612  			if v&1 != 0 {
  3613  				ctxt.Diag("cannot use EXRL with odd offset: %v", v)
  3614  			}
  3615  		} else {
  3616  			addrilreloc(ctxt, p.From.Sym, v)
  3617  			v = 0
  3618  		}
  3619  		zRIL(_b, op_EXRL, uint32(p.To.Reg), uint32(v>>1), asm)
  3620  
  3621  	case 88: // store clock
  3622  		var opcode uint32
  3623  		switch p.As {
  3624  		case ASTCK:
  3625  			opcode = op_STCK
  3626  		case ASTCKC:
  3627  			opcode = op_STCKC
  3628  		case ASTCKE:
  3629  			opcode = op_STCKE
  3630  		case ASTCKF:
  3631  			opcode = op_STCKF
  3632  		}
  3633  		v := vregoff(ctxt, &p.To)
  3634  		r := int(p.To.Reg)
  3635  		if r == 0 {
  3636  			r = int(o.param)
  3637  		}
  3638  		zS(opcode, uint32(r), uint32(v), asm)
  3639  
  3640  	case 89: // compare and branch reg reg
  3641  		var v int32
  3642  		if p.Pcond != nil {
  3643  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  3644  		}
  3645  		var opcode, opcode2 uint32
  3646  		switch p.As {
  3647  		case ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3648  			opcode = op_CGRJ
  3649  			opcode2 = op_CGR
  3650  		case ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3651  			opcode = op_CLGRJ
  3652  			opcode2 = op_CLGR
  3653  		}
  3654  		mask := branchMask(ctxt, p)
  3655  		if int32(int16(v)) != v {
  3656  			zRRE(opcode2, uint32(p.From.Reg), uint32(p.Reg), asm)
  3657  			zRIL(_c, op_BRCL, mask, uint32(v-sizeRRE/2), asm)
  3658  		} else {
  3659  			zRIE(_b, opcode, uint32(p.From.Reg), uint32(p.Reg), uint32(v), 0, 0, mask, 0, asm)
  3660  		}
  3661  
  3662  	case 90: // compare and branch reg $constant
  3663  		var v int32
  3664  		if p.Pcond != nil {
  3665  			v = int32((p.Pcond.Pc - p.Pc) >> 1)
  3666  		}
  3667  		var opcode, opcode2 uint32
  3668  		switch p.As {
  3669  		case ACMPBEQ, ACMPBGE, ACMPBGT, ACMPBLE, ACMPBLT, ACMPBNE:
  3670  			opcode = op_CGIJ
  3671  			opcode2 = op_CGFI
  3672  		case ACMPUBEQ, ACMPUBGE, ACMPUBGT, ACMPUBLE, ACMPUBLT, ACMPUBNE:
  3673  			opcode = op_CLGIJ
  3674  			opcode2 = op_CLGFI
  3675  		}
  3676  		mask := branchMask(ctxt, p)
  3677  		if int32(int16(v)) != v {
  3678  			zRIL(_a, opcode2, uint32(p.From.Reg), uint32(regoff(ctxt, p.From3)), asm)
  3679  			zRIL(_c, op_BRCL, mask, uint32(v-sizeRIL/2), asm)
  3680  		} else {
  3681  			zRIE(_c, opcode, uint32(p.From.Reg), mask, uint32(v), 0, 0, 0, uint32(regoff(ctxt, p.From3)), asm)
  3682  		}
  3683  
  3684  	case 93: // GOT lookup
  3685  		v := vregoff(ctxt, &p.To)
  3686  		if v != 0 {
  3687  			ctxt.Diag("invalid offset against GOT slot %v", p)
  3688  		}
  3689  		zRIL(_b, op_LGRL, uint32(p.To.Reg), 0, asm)
  3690  		rel := obj.Addrel(ctxt.Cursym)
  3691  		rel.Off = int32(ctxt.Pc + 2)
  3692  		rel.Siz = 4
  3693  		rel.Sym = p.From.Sym
  3694  		rel.Type = obj.R_GOTPCREL
  3695  		rel.Add = 2 + int64(rel.Siz)
  3696  
  3697  	case 94: // TLS local exec model
  3698  		zRIL(_b, op_LARL, REGTMP, (sizeRIL+sizeRXY+sizeRI)>>1, asm)
  3699  		zRXY(op_LG, uint32(p.To.Reg), REGTMP, 0, 0, asm)
  3700  		zRI(op_BRC, 0xF, (sizeRI+8)>>1, asm)
  3701  		*asm = append(*asm, 0, 0, 0, 0, 0, 0, 0, 0)
  3702  		rel := obj.Addrel(ctxt.Cursym)
  3703  		rel.Off = int32(ctxt.Pc + sizeRIL + sizeRXY + sizeRI)
  3704  		rel.Siz = 8
  3705  		rel.Sym = p.From.Sym
  3706  		rel.Type = obj.R_TLS_LE
  3707  		rel.Add = 0
  3708  
  3709  	case 95: // TLS initial exec model
  3710  		// Assembly                   | Relocation symbol    | Done Here?
  3711  		// --------------------------------------------------------------
  3712  		// ear  %r11, %a0             |                      |
  3713  		// sllg %r11, %r11, 32        |                      |
  3714  		// ear  %r11, %a1             |                      |
  3715  		// larl %r10, <var>@indntpoff | R_390_TLS_IEENT      | Y
  3716  		// lg   %r10, 0(%r10)         | R_390_TLS_LOAD (tag) | Y
  3717  		// la   %r10, 0(%r10, %r11)   |                      |
  3718  		// --------------------------------------------------------------
  3719  
  3720  		// R_390_TLS_IEENT
  3721  		zRIL(_b, op_LARL, REGTMP, 0, asm)
  3722  		ieent := obj.Addrel(ctxt.Cursym)
  3723  		ieent.Off = int32(ctxt.Pc + 2)
  3724  		ieent.Siz = 4
  3725  		ieent.Sym = p.From.Sym
  3726  		ieent.Type = obj.R_TLS_IE
  3727  		ieent.Add = 2 + int64(ieent.Siz)
  3728  
  3729  		// R_390_TLS_LOAD
  3730  		zRXY(op_LGF, uint32(p.To.Reg), REGTMP, 0, 0, asm)
  3731  		// TODO(mundaym): add R_390_TLS_LOAD relocation here
  3732  		// not strictly required but might allow the linker to optimize
  3733  
  3734  	case 96: // clear macro
  3735  		length := vregoff(ctxt, &p.From)
  3736  		offset := vregoff(ctxt, &p.To)
  3737  		reg := p.To.Reg
  3738  		if reg == 0 {
  3739  			reg = o.param
  3740  		}
  3741  		if length <= 0 {
  3742  			ctxt.Diag("cannot CLEAR %d bytes, must be greater than 0", length)
  3743  		}
  3744  		for length > 0 {
  3745  			if offset < 0 || offset >= DISP12 {
  3746  				if offset >= -DISP20/2 && offset < DISP20/2 {
  3747  					zRXY(op_LAY, REGTMP, uint32(reg), 0, uint32(offset), asm)
  3748  				} else {
  3749  					if reg != REGTMP {
  3750  						zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3751  					}
  3752  					zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3753  				}
  3754  				reg = REGTMP
  3755  				offset = 0
  3756  			}
  3757  			size := length
  3758  			if size > 256 {
  3759  				size = 256
  3760  			}
  3761  
  3762  			switch size {
  3763  			case 1:
  3764  				zSI(op_MVI, 0, uint32(reg), uint32(offset), asm)
  3765  			case 2:
  3766  				zSIL(op_MVHHI, uint32(reg), uint32(offset), 0, asm)
  3767  			case 4:
  3768  				zSIL(op_MVHI, uint32(reg), uint32(offset), 0, asm)
  3769  			case 8:
  3770  				zSIL(op_MVGHI, uint32(reg), uint32(offset), 0, asm)
  3771  			default:
  3772  				zSS(_a, op_XC, uint32(size-1), 0, uint32(reg), uint32(offset), uint32(reg), uint32(offset), asm)
  3773  			}
  3774  
  3775  			length -= size
  3776  			offset += size
  3777  		}
  3778  
  3779  	case 97: // store multiple
  3780  		rstart := p.From.Reg
  3781  		rend := p.Reg
  3782  		offset := regoff(ctxt, &p.To)
  3783  		reg := p.To.Reg
  3784  		if reg == 0 {
  3785  			reg = o.param
  3786  		}
  3787  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3788  			if reg != REGTMP {
  3789  				zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3790  			}
  3791  			zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3792  			reg = REGTMP
  3793  			offset = 0
  3794  		}
  3795  		switch p.As {
  3796  		case ASTMY:
  3797  			if offset >= 0 && offset < DISP12 {
  3798  				zRS(op_STM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3799  			} else {
  3800  				zRSY(op_STMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3801  			}
  3802  		case ASTMG:
  3803  			zRSY(op_STMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3804  		}
  3805  
  3806  	case 98: // load multiple
  3807  		rstart := p.Reg
  3808  		rend := p.To.Reg
  3809  		offset := regoff(ctxt, &p.From)
  3810  		reg := p.From.Reg
  3811  		if reg == 0 {
  3812  			reg = o.param
  3813  		}
  3814  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3815  			if reg != REGTMP {
  3816  				zRRE(op_LGR, REGTMP, uint32(reg), asm)
  3817  			}
  3818  			zRIL(_a, op_AGFI, REGTMP, uint32(offset), asm)
  3819  			reg = REGTMP
  3820  			offset = 0
  3821  		}
  3822  		switch p.As {
  3823  		case ALMY:
  3824  			if offset >= 0 && offset < DISP12 {
  3825  				zRS(op_LM, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3826  			} else {
  3827  				zRSY(op_LMY, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3828  			}
  3829  		case ALMG:
  3830  			zRSY(op_LMG, uint32(rstart), uint32(rend), uint32(reg), uint32(offset), asm)
  3831  		}
  3832  
  3833  	case 99: // interlocked load and op
  3834  		if p.To.Index != 0 {
  3835  			ctxt.Diag("cannot use indexed address")
  3836  		}
  3837  		offset := regoff(ctxt, &p.To)
  3838  		if offset < -DISP20/2 || offset >= DISP20/2 {
  3839  			ctxt.Diag("%v does not fit into 20-bit signed integer", offset)
  3840  		}
  3841  		var opcode uint32
  3842  		switch p.As {
  3843  		case ALAA:
  3844  			opcode = op_LAA
  3845  		case ALAAG:
  3846  			opcode = op_LAAG
  3847  		case ALAAL:
  3848  			opcode = op_LAAL
  3849  		case ALAALG:
  3850  			opcode = op_LAALG
  3851  		case ALAN:
  3852  			opcode = op_LAN
  3853  		case ALANG:
  3854  			opcode = op_LANG
  3855  		case ALAX:
  3856  			opcode = op_LAX
  3857  		case ALAXG:
  3858  			opcode = op_LAXG
  3859  		case ALAO:
  3860  			opcode = op_LAO
  3861  		case ALAOG:
  3862  			opcode = op_LAOG
  3863  		}
  3864  		zRSY(opcode, uint32(p.Reg), uint32(p.From.Reg), uint32(p.To.Reg), uint32(offset), asm)
  3865  
  3866  	case 100: // VRX STORE
  3867  		op, m3, _ := vop(p.As)
  3868  		if p.From3 != nil {
  3869  			m3 = uint32(vregoff(ctxt, p.From3))
  3870  		}
  3871  		b2 := p.To.Reg
  3872  		if b2 == 0 {
  3873  			b2 = o.param
  3874  		}
  3875  		d2 := uint32(vregoff(ctxt, &p.To))
  3876  		zVRX(op, uint32(p.From.Reg), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  3877  
  3878  	case 101: // VRX LOAD
  3879  		op, m3, _ := vop(p.As)
  3880  		if p.From3 != nil {
  3881  			m3 = uint32(vregoff(ctxt, p.From3))
  3882  		}
  3883  		b2 := p.From.Reg
  3884  		if b2 == 0 {
  3885  			b2 = o.param
  3886  		}
  3887  		d2 := uint32(vregoff(ctxt, &p.From))
  3888  		zVRX(op, uint32(p.To.Reg), uint32(p.From.Index), uint32(b2), d2, m3, asm)
  3889  
  3890  	case 102: // VRV SCATTER
  3891  		op, m3, _ := vop(p.As)
  3892  		if p.From3 != nil {
  3893  			m3 = uint32(vregoff(ctxt, p.From3))
  3894  		}
  3895  		b2 := p.To.Reg
  3896  		if b2 == 0 {
  3897  			b2 = o.param
  3898  		}
  3899  		d2 := uint32(vregoff(ctxt, &p.To))
  3900  		zVRV(op, uint32(p.From.Reg), uint32(p.To.Index), uint32(b2), d2, m3, asm)
  3901  
  3902  	case 103: // VRV GATHER
  3903  		op, m3, _ := vop(p.As)
  3904  		if p.From3 != nil {
  3905  			m3 = uint32(vregoff(ctxt, p.From3))
  3906  		}
  3907  		b2 := p.From.Reg
  3908  		if b2 == 0 {
  3909  			b2 = o.param
  3910  		}
  3911  		d2 := uint32(vregoff(ctxt, &p.From))
  3912  		zVRV(op, uint32(p.To.Reg), uint32(p.From.Index), uint32(b2), d2, m3, asm)
  3913  
  3914  	case 104: // VRS SHIFT/ROTATE and LOAD GR FROM VR ELEMENT
  3915  		op, m4, _ := vop(p.As)
  3916  		fr := p.Reg
  3917  		if fr == 0 {
  3918  			fr = p.To.Reg
  3919  		}
  3920  		bits := uint32(vregoff(ctxt, &p.From))
  3921  		zVRS(op, uint32(p.To.Reg), uint32(fr), uint32(p.From.Reg), bits, m4, asm)
  3922  
  3923  	case 105: // VRS STORE MULTIPLE
  3924  		op, _, _ := vop(p.As)
  3925  		offset := uint32(vregoff(ctxt, &p.To))
  3926  		reg := p.To.Reg
  3927  		if reg == 0 {
  3928  			reg = o.param
  3929  		}
  3930  		zVRS(op, uint32(p.From.Reg), uint32(p.Reg), uint32(reg), offset, 0, asm)
  3931  
  3932  	case 106: // VRS LOAD MULTIPLE
  3933  		op, _, _ := vop(p.As)
  3934  		offset := uint32(vregoff(ctxt, &p.From))
  3935  		reg := p.From.Reg
  3936  		if reg == 0 {
  3937  			reg = o.param
  3938  		}
  3939  		zVRS(op, uint32(p.Reg), uint32(p.To.Reg), uint32(reg), offset, 0, asm)
  3940  
  3941  	case 107: // VRS STORE WITH LENGTH
  3942  		op, _, _ := vop(p.As)
  3943  		offset := uint32(vregoff(ctxt, &p.To))
  3944  		reg := p.To.Reg
  3945  		if reg == 0 {
  3946  			reg = o.param
  3947  		}
  3948  		zVRS(op, uint32(p.From.Reg), uint32(p.From3.Reg), uint32(reg), offset, 0, asm)
  3949  
  3950  	case 108: // VRS LOAD WITH LENGTH
  3951  		op, _, _ := vop(p.As)
  3952  		offset := uint32(vregoff(ctxt, &p.From))
  3953  		reg := p.From.Reg
  3954  		if reg == 0 {
  3955  			reg = o.param
  3956  		}
  3957  		zVRS(op, uint32(p.To.Reg), uint32(p.From3.Reg), uint32(reg), offset, 0, asm)
  3958  
  3959  	case 109: // VRI-a
  3960  		op, _, _ := vop(p.As)
  3961  		i2 := uint32(vregoff(ctxt, &p.From))
  3962  		switch p.As {
  3963  		case AVZERO:
  3964  			i2 = 0
  3965  		case AVONE:
  3966  			i2 = 0xffff
  3967  		}
  3968  		m3 := uint32(0)
  3969  		if p.From3 != nil {
  3970  			m3 = uint32(vregoff(ctxt, p.From3))
  3971  		}
  3972  		zVRIa(op, uint32(p.To.Reg), i2, m3, asm)
  3973  
  3974  	case 110:
  3975  		op, m4, _ := vop(p.As)
  3976  		i2 := uint32(vregoff(ctxt, p.From3))
  3977  		i3 := uint32(vregoff(ctxt, &p.From))
  3978  		zVRIb(op, uint32(p.To.Reg), i2, i3, m4, asm)
  3979  
  3980  	case 111:
  3981  		op, m4, _ := vop(p.As)
  3982  		i2 := uint32(vregoff(ctxt, &p.From))
  3983  		zVRIc(op, uint32(p.To.Reg), uint32(p.Reg), i2, m4, asm)
  3984  
  3985  	case 112:
  3986  		op, m5, _ := vop(p.As)
  3987  		i4 := uint32(vregoff(ctxt, p.From3))
  3988  		zVRId(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), i4, m5, asm)
  3989  
  3990  	case 113:
  3991  		op, m4, _ := vop(p.As)
  3992  		m5 := singleElementMask(p.As)
  3993  		i3 := uint32(vregoff(ctxt, &p.From))
  3994  		zVRIe(op, uint32(p.To.Reg), uint32(p.Reg), i3, m5, m4, asm)
  3995  
  3996  	case 114: // VRR-a
  3997  		op, m3, m5 := vop(p.As)
  3998  		m4 := singleElementMask(p.As)
  3999  		zVRRa(op, uint32(p.To.Reg), uint32(p.From.Reg), m5, m4, m3, asm)
  4000  
  4001  	case 115: // VRR-a COMPARE
  4002  		op, m3, m5 := vop(p.As)
  4003  		m4 := singleElementMask(p.As)
  4004  		zVRRa(op, uint32(p.From.Reg), uint32(p.To.Reg), m5, m4, m3, asm)
  4005  
  4006  	case 116: // VRR-a
  4007  
  4008  	case 117: // VRR-b
  4009  		op, m4, m5 := vop(p.As)
  4010  		zVRRb(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), m5, m4, asm)
  4011  
  4012  	case 118: // VRR-c
  4013  		op, m4, m6 := vop(p.As)
  4014  		m5 := singleElementMask(p.As)
  4015  		v3 := p.Reg
  4016  		if v3 == 0 {
  4017  			v3 = p.To.Reg
  4018  		}
  4019  		zVRRc(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(v3), m6, m5, m4, asm)
  4020  
  4021  	case 119: // VRR-c SHIFT/ROTATE/DIVIDE/SUB (rhs value on the left, like SLD, DIV etc.)
  4022  		op, m4, m6 := vop(p.As)
  4023  		m5 := singleElementMask(p.As)
  4024  		v2 := p.Reg
  4025  		if v2 == 0 {
  4026  			v2 = p.To.Reg
  4027  		}
  4028  		zVRRc(op, uint32(p.To.Reg), uint32(v2), uint32(p.From.Reg), m6, m5, m4, asm)
  4029  
  4030  	case 120: // VRR-d
  4031  		op, m6, _ := vop(p.As)
  4032  		m5 := singleElementMask(p.As)
  4033  		v1 := uint32(p.To.Reg)
  4034  		v2 := uint32(p.From3.Reg)
  4035  		v3 := uint32(p.From.Reg)
  4036  		v4 := uint32(p.Reg)
  4037  		zVRRd(op, v1, v2, v3, m6, m5, v4, asm)
  4038  
  4039  	case 121: // VRR-e
  4040  		op, m6, _ := vop(p.As)
  4041  		m5 := singleElementMask(p.As)
  4042  		v1 := uint32(p.To.Reg)
  4043  		v2 := uint32(p.From3.Reg)
  4044  		v3 := uint32(p.From.Reg)
  4045  		v4 := uint32(p.Reg)
  4046  		zVRRe(op, v1, v2, v3, m5, m6, v4, asm)
  4047  
  4048  	case 122: // VRR-f LOAD VRS FROM GRS DISJOINT
  4049  		op, _, _ := vop(p.As)
  4050  		zVRRf(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), asm)
  4051  
  4052  	case 123: // VPDI $m4, V2, V3, V1
  4053  		op, _, _ := vop(p.As)
  4054  		m4 := regoff(ctxt, p.From3)
  4055  		zVRRc(op, uint32(p.To.Reg), uint32(p.From.Reg), uint32(p.Reg), 0, 0, uint32(m4), asm)
  4056  	}
  4057  }
  4058  
  4059  func vregoff(ctxt *obj.Link, a *obj.Addr) int64 {
  4060  	ctxt.Instoffset = 0
  4061  	if a != nil {
  4062  		aclass(ctxt, a)
  4063  	}
  4064  	return ctxt.Instoffset
  4065  }
  4066  
  4067  func regoff(ctxt *obj.Link, a *obj.Addr) int32 {
  4068  	return int32(vregoff(ctxt, a))
  4069  }
  4070  
  4071  // zopload returns the RXY op for the given load
  4072  func zopload(ctxt *obj.Link, a obj.As) uint32 {
  4073  	switch a {
  4074  	// fixed point load
  4075  	case AMOVD:
  4076  		return op_LG
  4077  	case AMOVW:
  4078  		return op_LGF
  4079  	case AMOVWZ:
  4080  		return op_LLGF
  4081  	case AMOVH:
  4082  		return op_LGH
  4083  	case AMOVHZ:
  4084  		return op_LLGH
  4085  	case AMOVB:
  4086  		return op_LGB
  4087  	case AMOVBZ:
  4088  		return op_LLGC
  4089  
  4090  	// floating point load
  4091  	case AFMOVD:
  4092  		return op_LDY
  4093  	case AFMOVS:
  4094  		return op_LEY
  4095  
  4096  	// byte reversed load
  4097  	case AMOVDBR:
  4098  		return op_LRVG
  4099  	case AMOVWBR:
  4100  		return op_LRV
  4101  	case AMOVHBR:
  4102  		return op_LRVH
  4103  	}
  4104  
  4105  	ctxt.Diag("unknown store opcode %v", a)
  4106  	return 0
  4107  }
  4108  
  4109  // zopstore returns the RXY op for the given store
  4110  func zopstore(ctxt *obj.Link, a obj.As) uint32 {
  4111  	switch a {
  4112  	// fixed point store
  4113  	case AMOVD:
  4114  		return op_STG
  4115  	case AMOVW, AMOVWZ:
  4116  		return op_STY
  4117  	case AMOVH, AMOVHZ:
  4118  		return op_STHY
  4119  	case AMOVB, AMOVBZ:
  4120  		return op_STCY
  4121  
  4122  	// floating point store
  4123  	case AFMOVD:
  4124  		return op_STDY
  4125  	case AFMOVS:
  4126  		return op_STEY
  4127  
  4128  	// byte reversed store
  4129  	case AMOVDBR:
  4130  		return op_STRVG
  4131  	case AMOVWBR:
  4132  		return op_STRV
  4133  	case AMOVHBR:
  4134  		return op_STRVH
  4135  	}
  4136  
  4137  	ctxt.Diag("unknown store opcode %v", a)
  4138  	return 0
  4139  }
  4140  
  4141  // zoprre returns the RRE op for the given a
  4142  func zoprre(ctxt *obj.Link, a obj.As) uint32 {
  4143  	switch a {
  4144  	case ACMP:
  4145  		return op_CGR
  4146  	case ACMPU:
  4147  		return op_CLGR
  4148  	case AFCMPO: //ordered
  4149  		return op_KDBR
  4150  	case AFCMPU: //unordered
  4151  		return op_CDBR
  4152  	case ACEBR:
  4153  		return op_CEBR
  4154  	}
  4155  	ctxt.Diag("unknown rre opcode %v", a)
  4156  	return 0
  4157  }
  4158  
  4159  // zoprr returns the RR op for the given a
  4160  func zoprr(ctxt *obj.Link, a obj.As) uint32 {
  4161  	switch a {
  4162  	case ACMPW:
  4163  		return op_CR
  4164  	case ACMPWU:
  4165  		return op_CLR
  4166  	}
  4167  	ctxt.Diag("unknown rr opcode %v", a)
  4168  	return 0
  4169  }
  4170  
  4171  // zopril returns the RIL op for the given a
  4172  func zopril(ctxt *obj.Link, a obj.As) uint32 {
  4173  	switch a {
  4174  	case ACMP:
  4175  		return op_CGFI
  4176  	case ACMPU:
  4177  		return op_CLGFI
  4178  	case ACMPW:
  4179  		return op_CFI
  4180  	case ACMPWU:
  4181  		return op_CLFI
  4182  	}
  4183  	ctxt.Diag("unknown ril opcode %v", a)
  4184  	return 0
  4185  }
  4186  
  4187  // z instructions sizes
  4188  const (
  4189  	sizeE    = 2
  4190  	sizeI    = 2
  4191  	sizeIE   = 4
  4192  	sizeMII  = 6
  4193  	sizeRI   = 4
  4194  	sizeRI1  = 4
  4195  	sizeRI2  = 4
  4196  	sizeRI3  = 4
  4197  	sizeRIE  = 6
  4198  	sizeRIE1 = 6
  4199  	sizeRIE2 = 6
  4200  	sizeRIE3 = 6
  4201  	sizeRIE4 = 6
  4202  	sizeRIE5 = 6
  4203  	sizeRIE6 = 6
  4204  	sizeRIL  = 6
  4205  	sizeRIL1 = 6
  4206  	sizeRIL2 = 6
  4207  	sizeRIL3 = 6
  4208  	sizeRIS  = 6
  4209  	sizeRR   = 2
  4210  	sizeRRD  = 4
  4211  	sizeRRE  = 4
  4212  	sizeRRF  = 4
  4213  	sizeRRF1 = 4
  4214  	sizeRRF2 = 4
  4215  	sizeRRF3 = 4
  4216  	sizeRRF4 = 4
  4217  	sizeRRF5 = 4
  4218  	sizeRRR  = 2
  4219  	sizeRRS  = 6
  4220  	sizeRS   = 4
  4221  	sizeRS1  = 4
  4222  	sizeRS2  = 4
  4223  	sizeRSI  = 4
  4224  	sizeRSL  = 6
  4225  	sizeRSY  = 6
  4226  	sizeRSY1 = 6
  4227  	sizeRSY2 = 6
  4228  	sizeRX   = 4
  4229  	sizeRX1  = 4
  4230  	sizeRX2  = 4
  4231  	sizeRXE  = 6
  4232  	sizeRXF  = 6
  4233  	sizeRXY  = 6
  4234  	sizeRXY1 = 6
  4235  	sizeRXY2 = 6
  4236  	sizeS    = 4
  4237  	sizeSI   = 4
  4238  	sizeSIL  = 6
  4239  	sizeSIY  = 6
  4240  	sizeSMI  = 6
  4241  	sizeSS   = 6
  4242  	sizeSS1  = 6
  4243  	sizeSS2  = 6
  4244  	sizeSS3  = 6
  4245  	sizeSS4  = 6
  4246  	sizeSS5  = 6
  4247  	sizeSS6  = 6
  4248  	sizeSSE  = 6
  4249  	sizeSSF  = 6
  4250  )
  4251  
  4252  // instruction format variations
  4253  type form int
  4254  
  4255  const (
  4256  	_a form = iota
  4257  	_b
  4258  	_c
  4259  	_d
  4260  	_e
  4261  	_f
  4262  )
  4263  
  4264  func zE(op uint32, asm *[]byte) {
  4265  	*asm = append(*asm, uint8(op>>8), uint8(op))
  4266  }
  4267  
  4268  func zI(op, i1 uint32, asm *[]byte) {
  4269  	*asm = append(*asm, uint8(op>>8), uint8(i1))
  4270  }
  4271  
  4272  func zMII(op, m1, ri2, ri3 uint32, asm *[]byte) {
  4273  	*asm = append(*asm,
  4274  		uint8(op>>8),
  4275  		(uint8(m1)<<4)|uint8((ri2>>8)&0x0F),
  4276  		uint8(ri2),
  4277  		uint8(ri3>>16),
  4278  		uint8(ri3>>8),
  4279  		uint8(ri3))
  4280  }
  4281  
  4282  func zRI(op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4283  	*asm = append(*asm,
  4284  		uint8(op>>8),
  4285  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4286  		uint8(i2_ri2>>8),
  4287  		uint8(i2_ri2))
  4288  }
  4289  
  4290  // Expected argument values for the instruction formats.
  4291  //
  4292  // Format    a1  a2   a3  a4  a5  a6  a7
  4293  // ------------------------------------
  4294  // a         r1,  0,  i2,  0,  0, m3,  0
  4295  // b         r1, r2, ri4,  0,  0, m3,  0
  4296  // c         r1, m3, ri4,  0,  0,  0, i2
  4297  // d         r1, r3,  i2,  0,  0,  0,  0
  4298  // e         r1, r3, ri2,  0,  0,  0,  0
  4299  // f         r1, r2,   0, i3, i4,  0, i5
  4300  // g         r1, m3,  i2,  0,  0,  0,  0
  4301  func zRIE(f form, op, r1, r2_m3_r3, i2_ri4_ri2, i3, i4, m3, i2_i5 uint32, asm *[]byte) {
  4302  	*asm = append(*asm, uint8(op>>8), uint8(r1)<<4|uint8(r2_m3_r3&0x0F))
  4303  
  4304  	switch f {
  4305  	default:
  4306  		*asm = append(*asm, uint8(i2_ri4_ri2>>8), uint8(i2_ri4_ri2))
  4307  	case _f:
  4308  		*asm = append(*asm, uint8(i3), uint8(i4))
  4309  	}
  4310  
  4311  	switch f {
  4312  	case _a, _b:
  4313  		*asm = append(*asm, uint8(m3)<<4)
  4314  	default:
  4315  		*asm = append(*asm, uint8(i2_i5))
  4316  	}
  4317  
  4318  	*asm = append(*asm, uint8(op))
  4319  }
  4320  
  4321  func zRIL(f form, op, r1_m1, i2_ri2 uint32, asm *[]byte) {
  4322  	if f == _a || f == _b {
  4323  		r1_m1 = r1_m1 - obj.RBaseS390X // this is a register base
  4324  	}
  4325  	*asm = append(*asm,
  4326  		uint8(op>>8),
  4327  		(uint8(r1_m1)<<4)|(uint8(op)&0x0F),
  4328  		uint8(i2_ri2>>24),
  4329  		uint8(i2_ri2>>16),
  4330  		uint8(i2_ri2>>8),
  4331  		uint8(i2_ri2))
  4332  }
  4333  
  4334  func zRIS(op, r1, m3, b4, d4, i2 uint32, asm *[]byte) {
  4335  	*asm = append(*asm,
  4336  		uint8(op>>8),
  4337  		(uint8(r1)<<4)|uint8(m3&0x0F),
  4338  		(uint8(b4)<<4)|(uint8(d4>>8)&0x0F),
  4339  		uint8(d4),
  4340  		uint8(i2),
  4341  		uint8(op))
  4342  }
  4343  
  4344  func zRR(op, r1, r2 uint32, asm *[]byte) {
  4345  	*asm = append(*asm, uint8(op>>8), (uint8(r1)<<4)|uint8(r2&0x0F))
  4346  }
  4347  
  4348  func zRRD(op, r1, r3, r2 uint32, asm *[]byte) {
  4349  	*asm = append(*asm,
  4350  		uint8(op>>8),
  4351  		uint8(op),
  4352  		uint8(r1)<<4,
  4353  		(uint8(r3)<<4)|uint8(r2&0x0F))
  4354  }
  4355  
  4356  func zRRE(op, r1, r2 uint32, asm *[]byte) {
  4357  	*asm = append(*asm,
  4358  		uint8(op>>8),
  4359  		uint8(op),
  4360  		0,
  4361  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4362  }
  4363  
  4364  func zRRF(op, r3_m3, m4, r1, r2 uint32, asm *[]byte) {
  4365  	*asm = append(*asm,
  4366  		uint8(op>>8),
  4367  		uint8(op),
  4368  		(uint8(r3_m3)<<4)|uint8(m4&0x0F),
  4369  		(uint8(r1)<<4)|uint8(r2&0x0F))
  4370  }
  4371  
  4372  func zRRS(op, r1, r2, b4, d4, m3 uint32, asm *[]byte) {
  4373  	*asm = append(*asm,
  4374  		uint8(op>>8),
  4375  		(uint8(r1)<<4)|uint8(r2&0x0F),
  4376  		(uint8(b4)<<4)|uint8((d4>>8)&0x0F),
  4377  		uint8(d4),
  4378  		uint8(m3)<<4,
  4379  		uint8(op))
  4380  }
  4381  
  4382  func zRS(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4383  	*asm = append(*asm,
  4384  		uint8(op>>8),
  4385  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4386  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4387  		uint8(d2))
  4388  }
  4389  
  4390  func zRSI(op, r1, r3, ri2 uint32, asm *[]byte) {
  4391  	*asm = append(*asm,
  4392  		uint8(op>>8),
  4393  		(uint8(r1)<<4)|uint8(r3&0x0F),
  4394  		uint8(ri2>>8),
  4395  		uint8(ri2))
  4396  }
  4397  
  4398  func zRSL(op, l1, b2, d2 uint32, asm *[]byte) {
  4399  	*asm = append(*asm,
  4400  		uint8(op>>8),
  4401  		uint8(l1),
  4402  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4403  		uint8(d2),
  4404  		uint8(op))
  4405  }
  4406  
  4407  func zRSY(op, r1, r3_m3, b2, d2 uint32, asm *[]byte) {
  4408  	dl2 := uint16(d2) & 0x0FFF
  4409  	*asm = append(*asm,
  4410  		uint8(op>>8),
  4411  		(uint8(r1)<<4)|uint8(r3_m3&0x0F),
  4412  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4413  		uint8(dl2),
  4414  		uint8(d2>>12),
  4415  		uint8(op))
  4416  }
  4417  
  4418  func zRX(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4419  	*asm = append(*asm,
  4420  		uint8(op>>8),
  4421  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4422  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4423  		uint8(d2))
  4424  }
  4425  
  4426  func zRXE(op, r1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4427  	*asm = append(*asm,
  4428  		uint8(op>>8),
  4429  		(uint8(r1)<<4)|uint8(x2&0x0F),
  4430  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4431  		uint8(d2),
  4432  		uint8(m3)<<4,
  4433  		uint8(op))
  4434  }
  4435  
  4436  func zRXF(op, r3, x2, b2, d2, m1 uint32, asm *[]byte) {
  4437  	*asm = append(*asm,
  4438  		uint8(op>>8),
  4439  		(uint8(r3)<<4)|uint8(x2&0x0F),
  4440  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4441  		uint8(d2),
  4442  		uint8(m1)<<4,
  4443  		uint8(op))
  4444  }
  4445  
  4446  func zRXY(op, r1_m1, x2, b2, d2 uint32, asm *[]byte) {
  4447  	dl2 := uint16(d2) & 0x0FFF
  4448  	*asm = append(*asm,
  4449  		uint8(op>>8),
  4450  		(uint8(r1_m1)<<4)|uint8(x2&0x0F),
  4451  		(uint8(b2)<<4)|(uint8(dl2>>8)&0x0F),
  4452  		uint8(dl2),
  4453  		uint8(d2>>12),
  4454  		uint8(op))
  4455  }
  4456  
  4457  func zS(op, b2, d2 uint32, asm *[]byte) {
  4458  	*asm = append(*asm,
  4459  		uint8(op>>8),
  4460  		uint8(op),
  4461  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4462  		uint8(d2))
  4463  }
  4464  
  4465  func zSI(op, i2, b1, d1 uint32, asm *[]byte) {
  4466  	*asm = append(*asm,
  4467  		uint8(op>>8),
  4468  		uint8(i2),
  4469  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4470  		uint8(d1))
  4471  }
  4472  
  4473  func zSIL(op, b1, d1, i2 uint32, asm *[]byte) {
  4474  	*asm = append(*asm,
  4475  		uint8(op>>8),
  4476  		uint8(op),
  4477  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4478  		uint8(d1),
  4479  		uint8(i2>>8),
  4480  		uint8(i2))
  4481  }
  4482  
  4483  func zSIY(op, i2, b1, d1 uint32, asm *[]byte) {
  4484  	dl1 := uint16(d1) & 0x0FFF
  4485  	*asm = append(*asm,
  4486  		uint8(op>>8),
  4487  		uint8(i2),
  4488  		(uint8(b1)<<4)|(uint8(dl1>>8)&0x0F),
  4489  		uint8(dl1),
  4490  		uint8(d1>>12),
  4491  		uint8(op))
  4492  }
  4493  
  4494  func zSMI(op, m1, b3, d3, ri2 uint32, asm *[]byte) {
  4495  	*asm = append(*asm,
  4496  		uint8(op>>8),
  4497  		uint8(m1)<<4,
  4498  		(uint8(b3)<<4)|uint8((d3>>8)&0x0F),
  4499  		uint8(d3),
  4500  		uint8(ri2>>8),
  4501  		uint8(ri2))
  4502  }
  4503  
  4504  // Expected argument values for the instruction formats.
  4505  //
  4506  // Format    a1  a2  a3  a4  a5  a6
  4507  // -------------------------------
  4508  // a         l1,  0, b1, d1, b2, d2
  4509  // b         l1, l2, b1, d1, b2, d2
  4510  // c         l1, i3, b1, d1, b2, d2
  4511  // d         r1, r3, b1, d1, b2, d2
  4512  // e         r1, r3, b2, d2, b4, d4
  4513  // f          0, l2, b1, d1, b2, d2
  4514  func zSS(f form, op, l1_r1, l2_i3_r3, b1_b2, d1_d2, b2_b4, d2_d4 uint32, asm *[]byte) {
  4515  	*asm = append(*asm, uint8(op>>8))
  4516  
  4517  	switch f {
  4518  	case _a:
  4519  		*asm = append(*asm, uint8(l1_r1))
  4520  	case _b, _c, _d, _e:
  4521  		*asm = append(*asm, (uint8(l1_r1)<<4)|uint8(l2_i3_r3&0x0F))
  4522  	case _f:
  4523  		*asm = append(*asm, uint8(l2_i3_r3))
  4524  	}
  4525  
  4526  	*asm = append(*asm,
  4527  		(uint8(b1_b2)<<4)|uint8((d1_d2>>8)&0x0F),
  4528  		uint8(d1_d2),
  4529  		(uint8(b2_b4)<<4)|uint8((d2_d4>>8)&0x0F),
  4530  		uint8(d2_d4))
  4531  }
  4532  
  4533  func zSSE(op, b1, d1, b2, d2 uint32, asm *[]byte) {
  4534  	*asm = append(*asm,
  4535  		uint8(op>>8),
  4536  		uint8(op),
  4537  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4538  		uint8(d1),
  4539  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4540  		uint8(d2))
  4541  }
  4542  
  4543  func zSSF(op, r3, b1, d1, b2, d2 uint32, asm *[]byte) {
  4544  	*asm = append(*asm,
  4545  		uint8(op>>8),
  4546  		(uint8(r3)<<4)|(uint8(op)&0x0F),
  4547  		(uint8(b1)<<4)|uint8((d1>>8)&0x0F),
  4548  		uint8(d1),
  4549  		(uint8(b2)<<4)|uint8((d2>>8)&0x0F),
  4550  		uint8(d2))
  4551  }
  4552  
  4553  func rxb(va, vb, vc, vd uint32) uint8 {
  4554  	mask := uint8(0)
  4555  	if va >= REG_V16 && va <= REG_V31 {
  4556  		mask |= 0x8
  4557  	}
  4558  	if vb >= REG_V16 && vb <= REG_V31 {
  4559  		mask |= 0x4
  4560  	}
  4561  	if vc >= REG_V16 && vc <= REG_V31 {
  4562  		mask |= 0x2
  4563  	}
  4564  	if vd >= REG_V16 && vd <= REG_V31 {
  4565  		mask |= 0x1
  4566  	}
  4567  	return mask
  4568  }
  4569  
  4570  func zVRX(op, v1, x2, b2, d2, m3 uint32, asm *[]byte) {
  4571  	*asm = append(*asm,
  4572  		uint8(op>>8),
  4573  		(uint8(v1)<<4)|(uint8(x2)&0xf),
  4574  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4575  		uint8(d2),
  4576  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  4577  		uint8(op))
  4578  }
  4579  
  4580  func zVRV(op, v1, v2, b2, d2, m3 uint32, asm *[]byte) {
  4581  	*asm = append(*asm,
  4582  		uint8(op>>8),
  4583  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4584  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4585  		uint8(d2),
  4586  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4587  		uint8(op))
  4588  }
  4589  
  4590  func zVRS(op, v1, v3_r3, b2, d2, m4 uint32, asm *[]byte) {
  4591  	*asm = append(*asm,
  4592  		uint8(op>>8),
  4593  		(uint8(v1)<<4)|(uint8(v3_r3)&0xf),
  4594  		(uint8(b2)<<4)|(uint8(d2>>8)&0xf),
  4595  		uint8(d2),
  4596  		(uint8(m4)<<4)|rxb(v1, v3_r3, 0, 0),
  4597  		uint8(op))
  4598  }
  4599  
  4600  func zVRRa(op, v1, v2, m5, m4, m3 uint32, asm *[]byte) {
  4601  	*asm = append(*asm,
  4602  		uint8(op>>8),
  4603  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4604  		0,
  4605  		(uint8(m5)<<4)|(uint8(m4)&0xf),
  4606  		(uint8(m3)<<4)|rxb(v1, v2, 0, 0),
  4607  		uint8(op))
  4608  }
  4609  
  4610  func zVRRb(op, v1, v2, v3, m5, m4 uint32, asm *[]byte) {
  4611  	*asm = append(*asm,
  4612  		uint8(op>>8),
  4613  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4614  		uint8(v3)<<4,
  4615  		uint8(m5)<<4,
  4616  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4617  		uint8(op))
  4618  }
  4619  
  4620  func zVRRc(op, v1, v2, v3, m6, m5, m4 uint32, asm *[]byte) {
  4621  	*asm = append(*asm,
  4622  		uint8(op>>8),
  4623  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4624  		uint8(v3)<<4,
  4625  		(uint8(m6)<<4)|(uint8(m5)&0xf),
  4626  		(uint8(m4)<<4)|rxb(v1, v2, v3, 0),
  4627  		uint8(op))
  4628  }
  4629  
  4630  func zVRRd(op, v1, v2, v3, m5, m6, v4 uint32, asm *[]byte) {
  4631  	*asm = append(*asm,
  4632  		uint8(op>>8),
  4633  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4634  		(uint8(v3)<<4)|(uint8(m5)&0xf),
  4635  		uint8(m6)<<4,
  4636  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4637  		uint8(op))
  4638  }
  4639  
  4640  func zVRRe(op, v1, v2, v3, m6, m5, v4 uint32, asm *[]byte) {
  4641  	*asm = append(*asm,
  4642  		uint8(op>>8),
  4643  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4644  		(uint8(v3)<<4)|(uint8(m6)&0xf),
  4645  		uint8(m5),
  4646  		(uint8(v4)<<4)|rxb(v1, v2, v3, v4),
  4647  		uint8(op))
  4648  }
  4649  
  4650  func zVRRf(op, v1, r2, r3 uint32, asm *[]byte) {
  4651  	*asm = append(*asm,
  4652  		uint8(op>>8),
  4653  		(uint8(v1)<<4)|(uint8(r2)&0xf),
  4654  		uint8(r3)<<4,
  4655  		0,
  4656  		rxb(v1, 0, 0, 0),
  4657  		uint8(op))
  4658  }
  4659  
  4660  func zVRIa(op, v1, i2, m3 uint32, asm *[]byte) {
  4661  	*asm = append(*asm,
  4662  		uint8(op>>8),
  4663  		uint8(v1)<<4,
  4664  		uint8(i2>>8),
  4665  		uint8(i2),
  4666  		(uint8(m3)<<4)|rxb(v1, 0, 0, 0),
  4667  		uint8(op))
  4668  }
  4669  
  4670  func zVRIb(op, v1, i2, i3, m4 uint32, asm *[]byte) {
  4671  	*asm = append(*asm,
  4672  		uint8(op>>8),
  4673  		uint8(v1)<<4,
  4674  		uint8(i2),
  4675  		uint8(i3),
  4676  		(uint8(m4)<<4)|rxb(v1, 0, 0, 0),
  4677  		uint8(op))
  4678  }
  4679  
  4680  func zVRIc(op, v1, v3, i2, m4 uint32, asm *[]byte) {
  4681  	*asm = append(*asm,
  4682  		uint8(op>>8),
  4683  		(uint8(v1)<<4)|(uint8(v3)&0xf),
  4684  		uint8(i2>>8),
  4685  		uint8(i2),
  4686  		(uint8(m4)<<4)|rxb(v1, v3, 0, 0),
  4687  		uint8(op))
  4688  }
  4689  
  4690  func zVRId(op, v1, v2, v3, i4, m5 uint32, asm *[]byte) {
  4691  	*asm = append(*asm,
  4692  		uint8(op>>8),
  4693  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4694  		uint8(v3)<<4,
  4695  		uint8(i4),
  4696  		(uint8(m5)<<4)|rxb(v1, v2, v3, 0),
  4697  		uint8(op))
  4698  }
  4699  
  4700  func zVRIe(op, v1, v2, i3, m5, m4 uint32, asm *[]byte) {
  4701  	*asm = append(*asm,
  4702  		uint8(op>>8),
  4703  		(uint8(v1)<<4)|(uint8(v2)&0xf),
  4704  		uint8(i3>>4),
  4705  		(uint8(i3)<<4)|(uint8(m5)&0xf),
  4706  		(uint8(m4)<<4)|rxb(v1, v2, 0, 0),
  4707  		uint8(op))
  4708  }