github.com/euank/go@v0.0.0-20160829210321-495514729181/src/crypto/rsa/rsa.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package rsa implements RSA encryption as specified in PKCS#1. 6 // 7 // RSA is a single, fundamental operation that is used in this package to 8 // implement either public-key encryption or public-key signatures. 9 // 10 // The original specification for encryption and signatures with RSA is PKCS#1 11 // and the terms "RSA encryption" and "RSA signatures" by default refer to 12 // PKCS#1 version 1.5. However, that specification has flaws and new designs 13 // should use version two, usually called by just OAEP and PSS, where 14 // possible. 15 // 16 // Two sets of interfaces are included in this package. When a more abstract 17 // interface isn't necessary, there are functions for encrypting/decrypting 18 // with v1.5/OAEP and signing/verifying with v1.5/PSS. If one needs to abstract 19 // over the public-key primitive, the PrivateKey struct implements the 20 // Decrypter and Signer interfaces from the crypto package. 21 package rsa 22 23 import ( 24 "crypto" 25 "crypto/rand" 26 "crypto/subtle" 27 "errors" 28 "hash" 29 "io" 30 "math/big" 31 ) 32 33 var bigZero = big.NewInt(0) 34 var bigOne = big.NewInt(1) 35 36 // A PublicKey represents the public part of an RSA key. 37 type PublicKey struct { 38 N *big.Int // modulus 39 E int // public exponent 40 } 41 42 // OAEPOptions is an interface for passing options to OAEP decryption using the 43 // crypto.Decrypter interface. 44 type OAEPOptions struct { 45 // Hash is the hash function that will be used when generating the mask. 46 Hash crypto.Hash 47 // Label is an arbitrary byte string that must be equal to the value 48 // used when encrypting. 49 Label []byte 50 } 51 52 var ( 53 errPublicModulus = errors.New("crypto/rsa: missing public modulus") 54 errPublicExponentSmall = errors.New("crypto/rsa: public exponent too small") 55 errPublicExponentLarge = errors.New("crypto/rsa: public exponent too large") 56 ) 57 58 // checkPub sanity checks the public key before we use it. 59 // We require pub.E to fit into a 32-bit integer so that we 60 // do not have different behavior depending on whether 61 // int is 32 or 64 bits. See also 62 // http://www.imperialviolet.org/2012/03/16/rsae.html. 63 func checkPub(pub *PublicKey) error { 64 if pub.N == nil { 65 return errPublicModulus 66 } 67 if pub.E < 2 { 68 return errPublicExponentSmall 69 } 70 if pub.E > 1<<31-1 { 71 return errPublicExponentLarge 72 } 73 return nil 74 } 75 76 // A PrivateKey represents an RSA key 77 type PrivateKey struct { 78 PublicKey // public part. 79 D *big.Int // private exponent 80 Primes []*big.Int // prime factors of N, has >= 2 elements. 81 82 // Precomputed contains precomputed values that speed up private 83 // operations, if available. 84 Precomputed PrecomputedValues 85 } 86 87 // Public returns the public key corresponding to priv. 88 func (priv *PrivateKey) Public() crypto.PublicKey { 89 return &priv.PublicKey 90 } 91 92 // Sign signs msg with priv, reading randomness from rand. If opts is a 93 // *PSSOptions then the PSS algorithm will be used, otherwise PKCS#1 v1.5 will 94 // be used. This method is intended to support keys where the private part is 95 // kept in, for example, a hardware module. Common uses should use the Sign* 96 // functions in this package. 97 func (priv *PrivateKey) Sign(rand io.Reader, msg []byte, opts crypto.SignerOpts) ([]byte, error) { 98 if pssOpts, ok := opts.(*PSSOptions); ok { 99 return SignPSS(rand, priv, pssOpts.Hash, msg, pssOpts) 100 } 101 102 return SignPKCS1v15(rand, priv, opts.HashFunc(), msg) 103 } 104 105 // Decrypt decrypts ciphertext with priv. If opts is nil or of type 106 // *PKCS1v15DecryptOptions then PKCS#1 v1.5 decryption is performed. Otherwise 107 // opts must have type *OAEPOptions and OAEP decryption is done. 108 func (priv *PrivateKey) Decrypt(rand io.Reader, ciphertext []byte, opts crypto.DecrypterOpts) (plaintext []byte, err error) { 109 if opts == nil { 110 return DecryptPKCS1v15(rand, priv, ciphertext) 111 } 112 113 switch opts := opts.(type) { 114 case *OAEPOptions: 115 return DecryptOAEP(opts.Hash.New(), rand, priv, ciphertext, opts.Label) 116 117 case *PKCS1v15DecryptOptions: 118 if l := opts.SessionKeyLen; l > 0 { 119 plaintext = make([]byte, l) 120 if _, err := io.ReadFull(rand, plaintext); err != nil { 121 return nil, err 122 } 123 if err := DecryptPKCS1v15SessionKey(rand, priv, ciphertext, plaintext); err != nil { 124 return nil, err 125 } 126 return plaintext, nil 127 } else { 128 return DecryptPKCS1v15(rand, priv, ciphertext) 129 } 130 131 default: 132 return nil, errors.New("crypto/rsa: invalid options for Decrypt") 133 } 134 } 135 136 type PrecomputedValues struct { 137 Dp, Dq *big.Int // D mod (P-1) (or mod Q-1) 138 Qinv *big.Int // Q^-1 mod P 139 140 // CRTValues is used for the 3rd and subsequent primes. Due to a 141 // historical accident, the CRT for the first two primes is handled 142 // differently in PKCS#1 and interoperability is sufficiently 143 // important that we mirror this. 144 CRTValues []CRTValue 145 } 146 147 // CRTValue contains the precomputed Chinese remainder theorem values. 148 type CRTValue struct { 149 Exp *big.Int // D mod (prime-1). 150 Coeff *big.Int // R·Coeff ≡ 1 mod Prime. 151 R *big.Int // product of primes prior to this (inc p and q). 152 } 153 154 // Validate performs basic sanity checks on the key. 155 // It returns nil if the key is valid, or else an error describing a problem. 156 func (priv *PrivateKey) Validate() error { 157 if err := checkPub(&priv.PublicKey); err != nil { 158 return err 159 } 160 161 // Check that Πprimes == n. 162 modulus := new(big.Int).Set(bigOne) 163 for _, prime := range priv.Primes { 164 // Any primes ≤ 1 will cause divide-by-zero panics later. 165 if prime.Cmp(bigOne) <= 0 { 166 return errors.New("crypto/rsa: invalid prime value") 167 } 168 modulus.Mul(modulus, prime) 169 } 170 if modulus.Cmp(priv.N) != 0 { 171 return errors.New("crypto/rsa: invalid modulus") 172 } 173 174 // Check that de ≡ 1 mod p-1, for each prime. 175 // This implies that e is coprime to each p-1 as e has a multiplicative 176 // inverse. Therefore e is coprime to lcm(p-1,q-1,r-1,...) = 177 // exponent(ℤ/nℤ). It also implies that a^de ≡ a mod p as a^(p-1) ≡ 1 178 // mod p. Thus a^de ≡ a mod n for all a coprime to n, as required. 179 congruence := new(big.Int) 180 de := new(big.Int).SetInt64(int64(priv.E)) 181 de.Mul(de, priv.D) 182 for _, prime := range priv.Primes { 183 pminus1 := new(big.Int).Sub(prime, bigOne) 184 congruence.Mod(de, pminus1) 185 if congruence.Cmp(bigOne) != 0 { 186 return errors.New("crypto/rsa: invalid exponents") 187 } 188 } 189 return nil 190 } 191 192 // GenerateKey generates an RSA keypair of the given bit size using the 193 // random source random (for example, crypto/rand.Reader). 194 func GenerateKey(random io.Reader, bits int) (*PrivateKey, error) { 195 return GenerateMultiPrimeKey(random, 2, bits) 196 } 197 198 // GenerateMultiPrimeKey generates a multi-prime RSA keypair of the given bit 199 // size and the given random source, as suggested in [1]. Although the public 200 // keys are compatible (actually, indistinguishable) from the 2-prime case, 201 // the private keys are not. Thus it may not be possible to export multi-prime 202 // private keys in certain formats or to subsequently import them into other 203 // code. 204 // 205 // Table 1 in [2] suggests maximum numbers of primes for a given size. 206 // 207 // [1] US patent 4405829 (1972, expired) 208 // [2] http://www.cacr.math.uwaterloo.ca/techreports/2006/cacr2006-16.pdf 209 func GenerateMultiPrimeKey(random io.Reader, nprimes int, bits int) (*PrivateKey, error) { 210 priv := new(PrivateKey) 211 priv.E = 65537 212 213 if nprimes < 2 { 214 return nil, errors.New("crypto/rsa: GenerateMultiPrimeKey: nprimes must be >= 2") 215 } 216 217 primes := make([]*big.Int, nprimes) 218 219 NextSetOfPrimes: 220 for { 221 todo := bits 222 // crypto/rand should set the top two bits in each prime. 223 // Thus each prime has the form 224 // p_i = 2^bitlen(p_i) × 0.11... (in base 2). 225 // And the product is: 226 // P = 2^todo × α 227 // where α is the product of nprimes numbers of the form 0.11... 228 // 229 // If α < 1/2 (which can happen for nprimes > 2), we need to 230 // shift todo to compensate for lost bits: the mean value of 0.11... 231 // is 7/8, so todo + shift - nprimes * log2(7/8) ~= bits - 1/2 232 // will give good results. 233 if nprimes >= 7 { 234 todo += (nprimes - 2) / 5 235 } 236 for i := 0; i < nprimes; i++ { 237 var err error 238 primes[i], err = rand.Prime(random, todo/(nprimes-i)) 239 if err != nil { 240 return nil, err 241 } 242 todo -= primes[i].BitLen() 243 } 244 245 // Make sure that primes is pairwise unequal. 246 for i, prime := range primes { 247 for j := 0; j < i; j++ { 248 if prime.Cmp(primes[j]) == 0 { 249 continue NextSetOfPrimes 250 } 251 } 252 } 253 254 n := new(big.Int).Set(bigOne) 255 totient := new(big.Int).Set(bigOne) 256 pminus1 := new(big.Int) 257 for _, prime := range primes { 258 n.Mul(n, prime) 259 pminus1.Sub(prime, bigOne) 260 totient.Mul(totient, pminus1) 261 } 262 if n.BitLen() != bits { 263 // This should never happen for nprimes == 2 because 264 // crypto/rand should set the top two bits in each prime. 265 // For nprimes > 2 we hope it does not happen often. 266 continue NextSetOfPrimes 267 } 268 269 g := new(big.Int) 270 priv.D = new(big.Int) 271 y := new(big.Int) 272 e := big.NewInt(int64(priv.E)) 273 g.GCD(priv.D, y, e, totient) 274 275 if g.Cmp(bigOne) == 0 { 276 if priv.D.Sign() < 0 { 277 priv.D.Add(priv.D, totient) 278 } 279 priv.Primes = primes 280 priv.N = n 281 282 break 283 } 284 } 285 286 priv.Precompute() 287 return priv, nil 288 } 289 290 // incCounter increments a four byte, big-endian counter. 291 func incCounter(c *[4]byte) { 292 if c[3]++; c[3] != 0 { 293 return 294 } 295 if c[2]++; c[2] != 0 { 296 return 297 } 298 if c[1]++; c[1] != 0 { 299 return 300 } 301 c[0]++ 302 } 303 304 // mgf1XOR XORs the bytes in out with a mask generated using the MGF1 function 305 // specified in PKCS#1 v2.1. 306 func mgf1XOR(out []byte, hash hash.Hash, seed []byte) { 307 var counter [4]byte 308 var digest []byte 309 310 done := 0 311 for done < len(out) { 312 hash.Write(seed) 313 hash.Write(counter[0:4]) 314 digest = hash.Sum(digest[:0]) 315 hash.Reset() 316 317 for i := 0; i < len(digest) && done < len(out); i++ { 318 out[done] ^= digest[i] 319 done++ 320 } 321 incCounter(&counter) 322 } 323 } 324 325 // ErrMessageTooLong is returned when attempting to encrypt a message which is 326 // too large for the size of the public key. 327 var ErrMessageTooLong = errors.New("crypto/rsa: message too long for RSA public key size") 328 329 func encrypt(c *big.Int, pub *PublicKey, m *big.Int) *big.Int { 330 e := big.NewInt(int64(pub.E)) 331 c.Exp(m, e, pub.N) 332 return c 333 } 334 335 // EncryptOAEP encrypts the given message with RSA-OAEP. 336 // 337 // OAEP is parameterised by a hash function that is used as a random oracle. 338 // Encryption and decryption of a given message must use the same hash function 339 // and sha256.New() is a reasonable choice. 340 // 341 // The random parameter is used as a source of entropy to ensure that 342 // encrypting the same message twice doesn't result in the same ciphertext. 343 // 344 // The label parameter may contain arbitrary data that will not be encrypted, 345 // but which gives important context to the message. For example, if a given 346 // public key is used to decrypt two types of messages then distinct label 347 // values could be used to ensure that a ciphertext for one purpose cannot be 348 // used for another by an attacker. If not required it can be empty. 349 // 350 // The message must be no longer than the length of the public modulus less 351 // twice the hash length plus 2. 352 func EncryptOAEP(hash hash.Hash, random io.Reader, pub *PublicKey, msg []byte, label []byte) ([]byte, error) { 353 if err := checkPub(pub); err != nil { 354 return nil, err 355 } 356 hash.Reset() 357 k := (pub.N.BitLen() + 7) / 8 358 if len(msg) > k-2*hash.Size()-2 { 359 return nil, ErrMessageTooLong 360 } 361 362 hash.Write(label) 363 lHash := hash.Sum(nil) 364 hash.Reset() 365 366 em := make([]byte, k) 367 seed := em[1 : 1+hash.Size()] 368 db := em[1+hash.Size():] 369 370 copy(db[0:hash.Size()], lHash) 371 db[len(db)-len(msg)-1] = 1 372 copy(db[len(db)-len(msg):], msg) 373 374 _, err := io.ReadFull(random, seed) 375 if err != nil { 376 return nil, err 377 } 378 379 mgf1XOR(db, hash, seed) 380 mgf1XOR(seed, hash, db) 381 382 m := new(big.Int) 383 m.SetBytes(em) 384 c := encrypt(new(big.Int), pub, m) 385 out := c.Bytes() 386 387 if len(out) < k { 388 // If the output is too small, we need to left-pad with zeros. 389 t := make([]byte, k) 390 copy(t[k-len(out):], out) 391 out = t 392 } 393 394 return out, nil 395 } 396 397 // ErrDecryption represents a failure to decrypt a message. 398 // It is deliberately vague to avoid adaptive attacks. 399 var ErrDecryption = errors.New("crypto/rsa: decryption error") 400 401 // ErrVerification represents a failure to verify a signature. 402 // It is deliberately vague to avoid adaptive attacks. 403 var ErrVerification = errors.New("crypto/rsa: verification error") 404 405 // modInverse returns ia, the inverse of a in the multiplicative group of prime 406 // order n. It requires that a be a member of the group (i.e. less than n). 407 func modInverse(a, n *big.Int) (ia *big.Int, ok bool) { 408 g := new(big.Int) 409 x := new(big.Int) 410 y := new(big.Int) 411 g.GCD(x, y, a, n) 412 if g.Cmp(bigOne) != 0 { 413 // In this case, a and n aren't coprime and we cannot calculate 414 // the inverse. This happens because the values of n are nearly 415 // prime (being the product of two primes) rather than truly 416 // prime. 417 return 418 } 419 420 if x.Cmp(bigOne) < 0 { 421 // 0 is not the multiplicative inverse of any element so, if x 422 // < 1, then x is negative. 423 x.Add(x, n) 424 } 425 426 return x, true 427 } 428 429 // Precompute performs some calculations that speed up private key operations 430 // in the future. 431 func (priv *PrivateKey) Precompute() { 432 if priv.Precomputed.Dp != nil { 433 return 434 } 435 436 priv.Precomputed.Dp = new(big.Int).Sub(priv.Primes[0], bigOne) 437 priv.Precomputed.Dp.Mod(priv.D, priv.Precomputed.Dp) 438 439 priv.Precomputed.Dq = new(big.Int).Sub(priv.Primes[1], bigOne) 440 priv.Precomputed.Dq.Mod(priv.D, priv.Precomputed.Dq) 441 442 priv.Precomputed.Qinv = new(big.Int).ModInverse(priv.Primes[1], priv.Primes[0]) 443 444 r := new(big.Int).Mul(priv.Primes[0], priv.Primes[1]) 445 priv.Precomputed.CRTValues = make([]CRTValue, len(priv.Primes)-2) 446 for i := 2; i < len(priv.Primes); i++ { 447 prime := priv.Primes[i] 448 values := &priv.Precomputed.CRTValues[i-2] 449 450 values.Exp = new(big.Int).Sub(prime, bigOne) 451 values.Exp.Mod(priv.D, values.Exp) 452 453 values.R = new(big.Int).Set(r) 454 values.Coeff = new(big.Int).ModInverse(r, prime) 455 456 r.Mul(r, prime) 457 } 458 } 459 460 // decrypt performs an RSA decryption, resulting in a plaintext integer. If a 461 // random source is given, RSA blinding is used. 462 func decrypt(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) { 463 // TODO(agl): can we get away with reusing blinds? 464 if c.Cmp(priv.N) > 0 { 465 err = ErrDecryption 466 return 467 } 468 if priv.N.Sign() == 0 { 469 return nil, ErrDecryption 470 } 471 472 var ir *big.Int 473 if random != nil { 474 // Blinding enabled. Blinding involves multiplying c by r^e. 475 // Then the decryption operation performs (m^e * r^e)^d mod n 476 // which equals mr mod n. The factor of r can then be removed 477 // by multiplying by the multiplicative inverse of r. 478 479 var r *big.Int 480 481 for { 482 r, err = rand.Int(random, priv.N) 483 if err != nil { 484 return 485 } 486 if r.Cmp(bigZero) == 0 { 487 r = bigOne 488 } 489 var ok bool 490 ir, ok = modInverse(r, priv.N) 491 if ok { 492 break 493 } 494 } 495 bigE := big.NewInt(int64(priv.E)) 496 rpowe := new(big.Int).Exp(r, bigE, priv.N) // N != 0 497 cCopy := new(big.Int).Set(c) 498 cCopy.Mul(cCopy, rpowe) 499 cCopy.Mod(cCopy, priv.N) 500 c = cCopy 501 } 502 503 if priv.Precomputed.Dp == nil { 504 m = new(big.Int).Exp(c, priv.D, priv.N) 505 } else { 506 // We have the precalculated values needed for the CRT. 507 m = new(big.Int).Exp(c, priv.Precomputed.Dp, priv.Primes[0]) 508 m2 := new(big.Int).Exp(c, priv.Precomputed.Dq, priv.Primes[1]) 509 m.Sub(m, m2) 510 if m.Sign() < 0 { 511 m.Add(m, priv.Primes[0]) 512 } 513 m.Mul(m, priv.Precomputed.Qinv) 514 m.Mod(m, priv.Primes[0]) 515 m.Mul(m, priv.Primes[1]) 516 m.Add(m, m2) 517 518 for i, values := range priv.Precomputed.CRTValues { 519 prime := priv.Primes[2+i] 520 m2.Exp(c, values.Exp, prime) 521 m2.Sub(m2, m) 522 m2.Mul(m2, values.Coeff) 523 m2.Mod(m2, prime) 524 if m2.Sign() < 0 { 525 m2.Add(m2, prime) 526 } 527 m2.Mul(m2, values.R) 528 m.Add(m, m2) 529 } 530 } 531 532 if ir != nil { 533 // Unblind. 534 m.Mul(m, ir) 535 m.Mod(m, priv.N) 536 } 537 538 return 539 } 540 541 func decryptAndCheck(random io.Reader, priv *PrivateKey, c *big.Int) (m *big.Int, err error) { 542 m, err = decrypt(random, priv, c) 543 if err != nil { 544 return nil, err 545 } 546 547 // In order to defend against errors in the CRT computation, m^e is 548 // calculated, which should match the original ciphertext. 549 check := encrypt(new(big.Int), &priv.PublicKey, m) 550 if c.Cmp(check) != 0 { 551 return nil, errors.New("rsa: internal error") 552 } 553 return m, nil 554 } 555 556 // DecryptOAEP decrypts ciphertext using RSA-OAEP. 557 558 // OAEP is parameterised by a hash function that is used as a random oracle. 559 // Encryption and decryption of a given message must use the same hash function 560 // and sha256.New() is a reasonable choice. 561 // 562 // The random parameter, if not nil, is used to blind the private-key operation 563 // and avoid timing side-channel attacks. Blinding is purely internal to this 564 // function – the random data need not match that used when encrypting. 565 // 566 // The label parameter must match the value given when encrypting. See 567 // EncryptOAEP for details. 568 func DecryptOAEP(hash hash.Hash, random io.Reader, priv *PrivateKey, ciphertext []byte, label []byte) ([]byte, error) { 569 if err := checkPub(&priv.PublicKey); err != nil { 570 return nil, err 571 } 572 k := (priv.N.BitLen() + 7) / 8 573 if len(ciphertext) > k || 574 k < hash.Size()*2+2 { 575 return nil, ErrDecryption 576 } 577 578 c := new(big.Int).SetBytes(ciphertext) 579 580 m, err := decrypt(random, priv, c) 581 if err != nil { 582 return nil, err 583 } 584 585 hash.Write(label) 586 lHash := hash.Sum(nil) 587 hash.Reset() 588 589 // Converting the plaintext number to bytes will strip any 590 // leading zeros so we may have to left pad. We do this unconditionally 591 // to avoid leaking timing information. (Although we still probably 592 // leak the number of leading zeros. It's not clear that we can do 593 // anything about this.) 594 em := leftPad(m.Bytes(), k) 595 596 firstByteIsZero := subtle.ConstantTimeByteEq(em[0], 0) 597 598 seed := em[1 : hash.Size()+1] 599 db := em[hash.Size()+1:] 600 601 mgf1XOR(seed, hash, db) 602 mgf1XOR(db, hash, seed) 603 604 lHash2 := db[0:hash.Size()] 605 606 // We have to validate the plaintext in constant time in order to avoid 607 // attacks like: J. Manger. A Chosen Ciphertext Attack on RSA Optimal 608 // Asymmetric Encryption Padding (OAEP) as Standardized in PKCS #1 609 // v2.0. In J. Kilian, editor, Advances in Cryptology. 610 lHash2Good := subtle.ConstantTimeCompare(lHash, lHash2) 611 612 // The remainder of the plaintext must be zero or more 0x00, followed 613 // by 0x01, followed by the message. 614 // lookingForIndex: 1 iff we are still looking for the 0x01 615 // index: the offset of the first 0x01 byte 616 // invalid: 1 iff we saw a non-zero byte before the 0x01. 617 var lookingForIndex, index, invalid int 618 lookingForIndex = 1 619 rest := db[hash.Size():] 620 621 for i := 0; i < len(rest); i++ { 622 equals0 := subtle.ConstantTimeByteEq(rest[i], 0) 623 equals1 := subtle.ConstantTimeByteEq(rest[i], 1) 624 index = subtle.ConstantTimeSelect(lookingForIndex&equals1, i, index) 625 lookingForIndex = subtle.ConstantTimeSelect(equals1, 0, lookingForIndex) 626 invalid = subtle.ConstantTimeSelect(lookingForIndex&^equals0, 1, invalid) 627 } 628 629 if firstByteIsZero&lHash2Good&^invalid&^lookingForIndex != 1 { 630 return nil, ErrDecryption 631 } 632 633 return rest[index+1:], nil 634 } 635 636 // leftPad returns a new slice of length size. The contents of input are right 637 // aligned in the new slice. 638 func leftPad(input []byte, size int) (out []byte) { 639 n := len(input) 640 if n > size { 641 n = size 642 } 643 out = make([]byte, size) 644 copy(out[len(out)-n:], input) 645 return 646 }