github.com/euank/go@v0.0.0-20160829210321-495514729181/src/crypto/tls/conn.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // TLS low level connection and record layer 6 7 package tls 8 9 import ( 10 "bytes" 11 "crypto/cipher" 12 "crypto/subtle" 13 "crypto/x509" 14 "errors" 15 "fmt" 16 "io" 17 "net" 18 "sync" 19 "sync/atomic" 20 "time" 21 ) 22 23 // A Conn represents a secured connection. 24 // It implements the net.Conn interface. 25 type Conn struct { 26 // constant 27 conn net.Conn 28 isClient bool 29 30 // constant after handshake; protected by handshakeMutex 31 handshakeMutex sync.Mutex // handshakeMutex < in.Mutex, out.Mutex, errMutex 32 handshakeErr error // error resulting from handshake 33 vers uint16 // TLS version 34 haveVers bool // version has been negotiated 35 config *Config // configuration passed to constructor 36 // handshakeComplete is true if the connection is currently transfering 37 // application data (i.e. is not currently processing a handshake). 38 handshakeComplete bool 39 // handshakes counts the number of handshakes performed on the 40 // connection so far. If renegotiation is disabled then this is either 41 // zero or one. 42 handshakes int 43 didResume bool // whether this connection was a session resumption 44 cipherSuite uint16 45 ocspResponse []byte // stapled OCSP response 46 scts [][]byte // signed certificate timestamps from server 47 peerCertificates []*x509.Certificate 48 // verifiedChains contains the certificate chains that we built, as 49 // opposed to the ones presented by the server. 50 verifiedChains [][]*x509.Certificate 51 // serverName contains the server name indicated by the client, if any. 52 serverName string 53 // secureRenegotiation is true if the server echoed the secure 54 // renegotiation extension. (This is meaningless as a server because 55 // renegotiation is not supported in that case.) 56 secureRenegotiation bool 57 58 // clientFinishedIsFirst is true if the client sent the first Finished 59 // message during the most recent handshake. This is recorded because 60 // the first transmitted Finished message is the tls-unique 61 // channel-binding value. 62 clientFinishedIsFirst bool 63 // clientFinished and serverFinished contain the Finished message sent 64 // by the client or server in the most recent handshake. This is 65 // retained to support the renegotiation extension and tls-unique 66 // channel-binding. 67 clientFinished [12]byte 68 serverFinished [12]byte 69 70 clientProtocol string 71 clientProtocolFallback bool 72 73 // input/output 74 in, out halfConn // in.Mutex < out.Mutex 75 rawInput *block // raw input, right off the wire 76 input *block // application data waiting to be read 77 hand bytes.Buffer // handshake data waiting to be read 78 buffering bool // whether records are buffered in sendBuf 79 sendBuf []byte // a buffer of records waiting to be sent 80 81 // bytesSent counts the bytes of application data sent. 82 // packetsSent counts packets. 83 bytesSent int64 84 packetsSent int64 85 86 // activeCall is an atomic int32; the low bit is whether Close has 87 // been called. the rest of the bits are the number of goroutines 88 // in Conn.Write. 89 activeCall int32 90 91 tmp [16]byte 92 } 93 94 // Access to net.Conn methods. 95 // Cannot just embed net.Conn because that would 96 // export the struct field too. 97 98 // LocalAddr returns the local network address. 99 func (c *Conn) LocalAddr() net.Addr { 100 return c.conn.LocalAddr() 101 } 102 103 // RemoteAddr returns the remote network address. 104 func (c *Conn) RemoteAddr() net.Addr { 105 return c.conn.RemoteAddr() 106 } 107 108 // SetDeadline sets the read and write deadlines associated with the connection. 109 // A zero value for t means Read and Write will not time out. 110 // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. 111 func (c *Conn) SetDeadline(t time.Time) error { 112 return c.conn.SetDeadline(t) 113 } 114 115 // SetReadDeadline sets the read deadline on the underlying connection. 116 // A zero value for t means Read will not time out. 117 func (c *Conn) SetReadDeadline(t time.Time) error { 118 return c.conn.SetReadDeadline(t) 119 } 120 121 // SetWriteDeadline sets the write deadline on the underlying connection. 122 // A zero value for t means Write will not time out. 123 // After a Write has timed out, the TLS state is corrupt and all future writes will return the same error. 124 func (c *Conn) SetWriteDeadline(t time.Time) error { 125 return c.conn.SetWriteDeadline(t) 126 } 127 128 // A halfConn represents one direction of the record layer 129 // connection, either sending or receiving. 130 type halfConn struct { 131 sync.Mutex 132 133 err error // first permanent error 134 version uint16 // protocol version 135 cipher interface{} // cipher algorithm 136 mac macFunction 137 seq [8]byte // 64-bit sequence number 138 bfree *block // list of free blocks 139 additionalData [13]byte // to avoid allocs; interface method args escape 140 141 nextCipher interface{} // next encryption state 142 nextMac macFunction // next MAC algorithm 143 144 // used to save allocating a new buffer for each MAC. 145 inDigestBuf, outDigestBuf []byte 146 } 147 148 func (hc *halfConn) setErrorLocked(err error) error { 149 hc.err = err 150 return err 151 } 152 153 // prepareCipherSpec sets the encryption and MAC states 154 // that a subsequent changeCipherSpec will use. 155 func (hc *halfConn) prepareCipherSpec(version uint16, cipher interface{}, mac macFunction) { 156 hc.version = version 157 hc.nextCipher = cipher 158 hc.nextMac = mac 159 } 160 161 // changeCipherSpec changes the encryption and MAC states 162 // to the ones previously passed to prepareCipherSpec. 163 func (hc *halfConn) changeCipherSpec() error { 164 if hc.nextCipher == nil { 165 return alertInternalError 166 } 167 hc.cipher = hc.nextCipher 168 hc.mac = hc.nextMac 169 hc.nextCipher = nil 170 hc.nextMac = nil 171 for i := range hc.seq { 172 hc.seq[i] = 0 173 } 174 return nil 175 } 176 177 // incSeq increments the sequence number. 178 func (hc *halfConn) incSeq() { 179 for i := 7; i >= 0; i-- { 180 hc.seq[i]++ 181 if hc.seq[i] != 0 { 182 return 183 } 184 } 185 186 // Not allowed to let sequence number wrap. 187 // Instead, must renegotiate before it does. 188 // Not likely enough to bother. 189 panic("TLS: sequence number wraparound") 190 } 191 192 // removePadding returns an unpadded slice, in constant time, which is a prefix 193 // of the input. It also returns a byte which is equal to 255 if the padding 194 // was valid and 0 otherwise. See RFC 2246, section 6.2.3.2 195 func removePadding(payload []byte) ([]byte, byte) { 196 if len(payload) < 1 { 197 return payload, 0 198 } 199 200 paddingLen := payload[len(payload)-1] 201 t := uint(len(payload)-1) - uint(paddingLen) 202 // if len(payload) >= (paddingLen - 1) then the MSB of t is zero 203 good := byte(int32(^t) >> 31) 204 205 toCheck := 255 // the maximum possible padding length 206 // The length of the padded data is public, so we can use an if here 207 if toCheck+1 > len(payload) { 208 toCheck = len(payload) - 1 209 } 210 211 for i := 0; i < toCheck; i++ { 212 t := uint(paddingLen) - uint(i) 213 // if i <= paddingLen then the MSB of t is zero 214 mask := byte(int32(^t) >> 31) 215 b := payload[len(payload)-1-i] 216 good &^= mask&paddingLen ^ mask&b 217 } 218 219 // We AND together the bits of good and replicate the result across 220 // all the bits. 221 good &= good << 4 222 good &= good << 2 223 good &= good << 1 224 good = uint8(int8(good) >> 7) 225 226 toRemove := good&paddingLen + 1 227 return payload[:len(payload)-int(toRemove)], good 228 } 229 230 // removePaddingSSL30 is a replacement for removePadding in the case that the 231 // protocol version is SSLv3. In this version, the contents of the padding 232 // are random and cannot be checked. 233 func removePaddingSSL30(payload []byte) ([]byte, byte) { 234 if len(payload) < 1 { 235 return payload, 0 236 } 237 238 paddingLen := int(payload[len(payload)-1]) + 1 239 if paddingLen > len(payload) { 240 return payload, 0 241 } 242 243 return payload[:len(payload)-paddingLen], 255 244 } 245 246 func roundUp(a, b int) int { 247 return a + (b-a%b)%b 248 } 249 250 // cbcMode is an interface for block ciphers using cipher block chaining. 251 type cbcMode interface { 252 cipher.BlockMode 253 SetIV([]byte) 254 } 255 256 // decrypt checks and strips the mac and decrypts the data in b. Returns a 257 // success boolean, the number of bytes to skip from the start of the record in 258 // order to get the application payload, and an optional alert value. 259 func (hc *halfConn) decrypt(b *block) (ok bool, prefixLen int, alertValue alert) { 260 // pull out payload 261 payload := b.data[recordHeaderLen:] 262 263 macSize := 0 264 if hc.mac != nil { 265 macSize = hc.mac.Size() 266 } 267 268 paddingGood := byte(255) 269 explicitIVLen := 0 270 271 // decrypt 272 if hc.cipher != nil { 273 switch c := hc.cipher.(type) { 274 case cipher.Stream: 275 c.XORKeyStream(payload, payload) 276 case cipher.AEAD: 277 explicitIVLen = 8 278 if len(payload) < explicitIVLen { 279 return false, 0, alertBadRecordMAC 280 } 281 nonce := payload[:8] 282 payload = payload[8:] 283 284 copy(hc.additionalData[:], hc.seq[:]) 285 copy(hc.additionalData[8:], b.data[:3]) 286 n := len(payload) - c.Overhead() 287 hc.additionalData[11] = byte(n >> 8) 288 hc.additionalData[12] = byte(n) 289 var err error 290 payload, err = c.Open(payload[:0], nonce, payload, hc.additionalData[:]) 291 if err != nil { 292 return false, 0, alertBadRecordMAC 293 } 294 b.resize(recordHeaderLen + explicitIVLen + len(payload)) 295 case cbcMode: 296 blockSize := c.BlockSize() 297 if hc.version >= VersionTLS11 { 298 explicitIVLen = blockSize 299 } 300 301 if len(payload)%blockSize != 0 || len(payload) < roundUp(explicitIVLen+macSize+1, blockSize) { 302 return false, 0, alertBadRecordMAC 303 } 304 305 if explicitIVLen > 0 { 306 c.SetIV(payload[:explicitIVLen]) 307 payload = payload[explicitIVLen:] 308 } 309 c.CryptBlocks(payload, payload) 310 if hc.version == VersionSSL30 { 311 payload, paddingGood = removePaddingSSL30(payload) 312 } else { 313 payload, paddingGood = removePadding(payload) 314 } 315 b.resize(recordHeaderLen + explicitIVLen + len(payload)) 316 317 // note that we still have a timing side-channel in the 318 // MAC check, below. An attacker can align the record 319 // so that a correct padding will cause one less hash 320 // block to be calculated. Then they can iteratively 321 // decrypt a record by breaking each byte. See 322 // "Password Interception in a SSL/TLS Channel", Brice 323 // Canvel et al. 324 // 325 // However, our behavior matches OpenSSL, so we leak 326 // only as much as they do. 327 default: 328 panic("unknown cipher type") 329 } 330 } 331 332 // check, strip mac 333 if hc.mac != nil { 334 if len(payload) < macSize { 335 return false, 0, alertBadRecordMAC 336 } 337 338 // strip mac off payload, b.data 339 n := len(payload) - macSize 340 b.data[3] = byte(n >> 8) 341 b.data[4] = byte(n) 342 b.resize(recordHeaderLen + explicitIVLen + n) 343 remoteMAC := payload[n:] 344 localMAC := hc.mac.MAC(hc.inDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], payload[:n]) 345 346 if subtle.ConstantTimeCompare(localMAC, remoteMAC) != 1 || paddingGood != 255 { 347 return false, 0, alertBadRecordMAC 348 } 349 hc.inDigestBuf = localMAC 350 } 351 hc.incSeq() 352 353 return true, recordHeaderLen + explicitIVLen, 0 354 } 355 356 // padToBlockSize calculates the needed padding block, if any, for a payload. 357 // On exit, prefix aliases payload and extends to the end of the last full 358 // block of payload. finalBlock is a fresh slice which contains the contents of 359 // any suffix of payload as well as the needed padding to make finalBlock a 360 // full block. 361 func padToBlockSize(payload []byte, blockSize int) (prefix, finalBlock []byte) { 362 overrun := len(payload) % blockSize 363 paddingLen := blockSize - overrun 364 prefix = payload[:len(payload)-overrun] 365 finalBlock = make([]byte, blockSize) 366 copy(finalBlock, payload[len(payload)-overrun:]) 367 for i := overrun; i < blockSize; i++ { 368 finalBlock[i] = byte(paddingLen - 1) 369 } 370 return 371 } 372 373 // encrypt encrypts and macs the data in b. 374 func (hc *halfConn) encrypt(b *block, explicitIVLen int) (bool, alert) { 375 // mac 376 if hc.mac != nil { 377 mac := hc.mac.MAC(hc.outDigestBuf, hc.seq[0:], b.data[:recordHeaderLen], b.data[recordHeaderLen+explicitIVLen:]) 378 379 n := len(b.data) 380 b.resize(n + len(mac)) 381 copy(b.data[n:], mac) 382 hc.outDigestBuf = mac 383 } 384 385 payload := b.data[recordHeaderLen:] 386 387 // encrypt 388 if hc.cipher != nil { 389 switch c := hc.cipher.(type) { 390 case cipher.Stream: 391 c.XORKeyStream(payload, payload) 392 case cipher.AEAD: 393 payloadLen := len(b.data) - recordHeaderLen - explicitIVLen 394 b.resize(len(b.data) + c.Overhead()) 395 nonce := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] 396 payload := b.data[recordHeaderLen+explicitIVLen:] 397 payload = payload[:payloadLen] 398 399 copy(hc.additionalData[:], hc.seq[:]) 400 copy(hc.additionalData[8:], b.data[:3]) 401 hc.additionalData[11] = byte(payloadLen >> 8) 402 hc.additionalData[12] = byte(payloadLen) 403 404 c.Seal(payload[:0], nonce, payload, hc.additionalData[:]) 405 case cbcMode: 406 blockSize := c.BlockSize() 407 if explicitIVLen > 0 { 408 c.SetIV(payload[:explicitIVLen]) 409 payload = payload[explicitIVLen:] 410 } 411 prefix, finalBlock := padToBlockSize(payload, blockSize) 412 b.resize(recordHeaderLen + explicitIVLen + len(prefix) + len(finalBlock)) 413 c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen:], prefix) 414 c.CryptBlocks(b.data[recordHeaderLen+explicitIVLen+len(prefix):], finalBlock) 415 default: 416 panic("unknown cipher type") 417 } 418 } 419 420 // update length to include MAC and any block padding needed. 421 n := len(b.data) - recordHeaderLen 422 b.data[3] = byte(n >> 8) 423 b.data[4] = byte(n) 424 hc.incSeq() 425 426 return true, 0 427 } 428 429 // A block is a simple data buffer. 430 type block struct { 431 data []byte 432 off int // index for Read 433 link *block 434 } 435 436 // resize resizes block to be n bytes, growing if necessary. 437 func (b *block) resize(n int) { 438 if n > cap(b.data) { 439 b.reserve(n) 440 } 441 b.data = b.data[0:n] 442 } 443 444 // reserve makes sure that block contains a capacity of at least n bytes. 445 func (b *block) reserve(n int) { 446 if cap(b.data) >= n { 447 return 448 } 449 m := cap(b.data) 450 if m == 0 { 451 m = 1024 452 } 453 for m < n { 454 m *= 2 455 } 456 data := make([]byte, len(b.data), m) 457 copy(data, b.data) 458 b.data = data 459 } 460 461 // readFromUntil reads from r into b until b contains at least n bytes 462 // or else returns an error. 463 func (b *block) readFromUntil(r io.Reader, n int) error { 464 // quick case 465 if len(b.data) >= n { 466 return nil 467 } 468 469 // read until have enough. 470 b.reserve(n) 471 for { 472 m, err := r.Read(b.data[len(b.data):cap(b.data)]) 473 b.data = b.data[0 : len(b.data)+m] 474 if len(b.data) >= n { 475 // TODO(bradfitz,agl): slightly suspicious 476 // that we're throwing away r.Read's err here. 477 break 478 } 479 if err != nil { 480 return err 481 } 482 } 483 return nil 484 } 485 486 func (b *block) Read(p []byte) (n int, err error) { 487 n = copy(p, b.data[b.off:]) 488 b.off += n 489 return 490 } 491 492 // newBlock allocates a new block, from hc's free list if possible. 493 func (hc *halfConn) newBlock() *block { 494 b := hc.bfree 495 if b == nil { 496 return new(block) 497 } 498 hc.bfree = b.link 499 b.link = nil 500 b.resize(0) 501 return b 502 } 503 504 // freeBlock returns a block to hc's free list. 505 // The protocol is such that each side only has a block or two on 506 // its free list at a time, so there's no need to worry about 507 // trimming the list, etc. 508 func (hc *halfConn) freeBlock(b *block) { 509 b.link = hc.bfree 510 hc.bfree = b 511 } 512 513 // splitBlock splits a block after the first n bytes, 514 // returning a block with those n bytes and a 515 // block with the remainder. the latter may be nil. 516 func (hc *halfConn) splitBlock(b *block, n int) (*block, *block) { 517 if len(b.data) <= n { 518 return b, nil 519 } 520 bb := hc.newBlock() 521 bb.resize(len(b.data) - n) 522 copy(bb.data, b.data[n:]) 523 b.data = b.data[0:n] 524 return b, bb 525 } 526 527 // RecordHeaderError results when a TLS record header is invalid. 528 type RecordHeaderError struct { 529 // Msg contains a human readable string that describes the error. 530 Msg string 531 // RecordHeader contains the five bytes of TLS record header that 532 // triggered the error. 533 RecordHeader [5]byte 534 } 535 536 func (e RecordHeaderError) Error() string { return "tls: " + e.Msg } 537 538 func (c *Conn) newRecordHeaderError(msg string) (err RecordHeaderError) { 539 err.Msg = msg 540 copy(err.RecordHeader[:], c.rawInput.data) 541 return err 542 } 543 544 // readRecord reads the next TLS record from the connection 545 // and updates the record layer state. 546 // c.in.Mutex <= L; c.input == nil. 547 func (c *Conn) readRecord(want recordType) error { 548 // Caller must be in sync with connection: 549 // handshake data if handshake not yet completed, 550 // else application data. 551 switch want { 552 default: 553 c.sendAlert(alertInternalError) 554 return c.in.setErrorLocked(errors.New("tls: unknown record type requested")) 555 case recordTypeHandshake, recordTypeChangeCipherSpec: 556 if c.handshakeComplete { 557 c.sendAlert(alertInternalError) 558 return c.in.setErrorLocked(errors.New("tls: handshake or ChangeCipherSpec requested while not in handshake")) 559 } 560 case recordTypeApplicationData: 561 if !c.handshakeComplete { 562 c.sendAlert(alertInternalError) 563 return c.in.setErrorLocked(errors.New("tls: application data record requested while in handshake")) 564 } 565 } 566 567 Again: 568 if c.rawInput == nil { 569 c.rawInput = c.in.newBlock() 570 } 571 b := c.rawInput 572 573 // Read header, payload. 574 if err := b.readFromUntil(c.conn, recordHeaderLen); err != nil { 575 // RFC suggests that EOF without an alertCloseNotify is 576 // an error, but popular web sites seem to do this, 577 // so we can't make it an error. 578 // if err == io.EOF { 579 // err = io.ErrUnexpectedEOF 580 // } 581 if e, ok := err.(net.Error); !ok || !e.Temporary() { 582 c.in.setErrorLocked(err) 583 } 584 return err 585 } 586 typ := recordType(b.data[0]) 587 588 // No valid TLS record has a type of 0x80, however SSLv2 handshakes 589 // start with a uint16 length where the MSB is set and the first record 590 // is always < 256 bytes long. Therefore typ == 0x80 strongly suggests 591 // an SSLv2 client. 592 if want == recordTypeHandshake && typ == 0x80 { 593 c.sendAlert(alertProtocolVersion) 594 return c.in.setErrorLocked(c.newRecordHeaderError("unsupported SSLv2 handshake received")) 595 } 596 597 vers := uint16(b.data[1])<<8 | uint16(b.data[2]) 598 n := int(b.data[3])<<8 | int(b.data[4]) 599 if c.haveVers && vers != c.vers { 600 c.sendAlert(alertProtocolVersion) 601 msg := fmt.Sprintf("received record with version %x when expecting version %x", vers, c.vers) 602 return c.in.setErrorLocked(c.newRecordHeaderError(msg)) 603 } 604 if n > maxCiphertext { 605 c.sendAlert(alertRecordOverflow) 606 msg := fmt.Sprintf("oversized record received with length %d", n) 607 return c.in.setErrorLocked(c.newRecordHeaderError(msg)) 608 } 609 if !c.haveVers { 610 // First message, be extra suspicious: this might not be a TLS 611 // client. Bail out before reading a full 'body', if possible. 612 // The current max version is 3.3 so if the version is >= 16.0, 613 // it's probably not real. 614 if (typ != recordTypeAlert && typ != want) || vers >= 0x1000 { 615 c.sendAlert(alertUnexpectedMessage) 616 return c.in.setErrorLocked(c.newRecordHeaderError("first record does not look like a TLS handshake")) 617 } 618 } 619 if err := b.readFromUntil(c.conn, recordHeaderLen+n); err != nil { 620 if err == io.EOF { 621 err = io.ErrUnexpectedEOF 622 } 623 if e, ok := err.(net.Error); !ok || !e.Temporary() { 624 c.in.setErrorLocked(err) 625 } 626 return err 627 } 628 629 // Process message. 630 b, c.rawInput = c.in.splitBlock(b, recordHeaderLen+n) 631 ok, off, err := c.in.decrypt(b) 632 if !ok { 633 c.in.setErrorLocked(c.sendAlert(err)) 634 } 635 b.off = off 636 data := b.data[b.off:] 637 if len(data) > maxPlaintext { 638 err := c.sendAlert(alertRecordOverflow) 639 c.in.freeBlock(b) 640 return c.in.setErrorLocked(err) 641 } 642 643 switch typ { 644 default: 645 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 646 647 case recordTypeAlert: 648 if len(data) != 2 { 649 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 650 break 651 } 652 if alert(data[1]) == alertCloseNotify { 653 c.in.setErrorLocked(io.EOF) 654 break 655 } 656 switch data[0] { 657 case alertLevelWarning: 658 // drop on the floor 659 c.in.freeBlock(b) 660 goto Again 661 case alertLevelError: 662 c.in.setErrorLocked(&net.OpError{Op: "remote error", Err: alert(data[1])}) 663 default: 664 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 665 } 666 667 case recordTypeChangeCipherSpec: 668 if typ != want || len(data) != 1 || data[0] != 1 { 669 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 670 break 671 } 672 err := c.in.changeCipherSpec() 673 if err != nil { 674 c.in.setErrorLocked(c.sendAlert(err.(alert))) 675 } 676 677 case recordTypeApplicationData: 678 if typ != want { 679 c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 680 break 681 } 682 c.input = b 683 b = nil 684 685 case recordTypeHandshake: 686 // TODO(rsc): Should at least pick off connection close. 687 if typ != want && !(c.isClient && c.config.Renegotiation != RenegotiateNever) { 688 return c.in.setErrorLocked(c.sendAlert(alertNoRenegotiation)) 689 } 690 c.hand.Write(data) 691 } 692 693 if b != nil { 694 c.in.freeBlock(b) 695 } 696 return c.in.err 697 } 698 699 // sendAlert sends a TLS alert message. 700 // c.out.Mutex <= L. 701 func (c *Conn) sendAlertLocked(err alert) error { 702 switch err { 703 case alertNoRenegotiation, alertCloseNotify: 704 c.tmp[0] = alertLevelWarning 705 default: 706 c.tmp[0] = alertLevelError 707 } 708 c.tmp[1] = byte(err) 709 710 _, writeErr := c.writeRecordLocked(recordTypeAlert, c.tmp[0:2]) 711 if err == alertCloseNotify { 712 // closeNotify is a special case in that it isn't an error. 713 return writeErr 714 } 715 716 return c.out.setErrorLocked(&net.OpError{Op: "local error", Err: err}) 717 } 718 719 // sendAlert sends a TLS alert message. 720 // L < c.out.Mutex. 721 func (c *Conn) sendAlert(err alert) error { 722 c.out.Lock() 723 defer c.out.Unlock() 724 return c.sendAlertLocked(err) 725 } 726 727 const ( 728 // tcpMSSEstimate is a conservative estimate of the TCP maximum segment 729 // size (MSS). A constant is used, rather than querying the kernel for 730 // the actual MSS, to avoid complexity. The value here is the IPv6 731 // minimum MTU (1280 bytes) minus the overhead of an IPv6 header (40 732 // bytes) and a TCP header with timestamps (32 bytes). 733 tcpMSSEstimate = 1208 734 735 // recordSizeBoostThreshold is the number of bytes of application data 736 // sent after which the TLS record size will be increased to the 737 // maximum. 738 recordSizeBoostThreshold = 128 * 1024 739 ) 740 741 // maxPayloadSizeForWrite returns the maximum TLS payload size to use for the 742 // next application data record. There is the following trade-off: 743 // 744 // - For latency-sensitive applications, such as web browsing, each TLS 745 // record should fit in one TCP segment. 746 // - For throughput-sensitive applications, such as large file transfers, 747 // larger TLS records better amortize framing and encryption overheads. 748 // 749 // A simple heuristic that works well in practice is to use small records for 750 // the first 1MB of data, then use larger records for subsequent data, and 751 // reset back to smaller records after the connection becomes idle. See "High 752 // Performance Web Networking", Chapter 4, or: 753 // https://www.igvita.com/2013/10/24/optimizing-tls-record-size-and-buffering-latency/ 754 // 755 // In the interests of simplicity and determinism, this code does not attempt 756 // to reset the record size once the connection is idle, however. 757 // 758 // c.out.Mutex <= L. 759 func (c *Conn) maxPayloadSizeForWrite(typ recordType, explicitIVLen int) int { 760 if c.config.DynamicRecordSizingDisabled || typ != recordTypeApplicationData { 761 return maxPlaintext 762 } 763 764 if c.bytesSent >= recordSizeBoostThreshold { 765 return maxPlaintext 766 } 767 768 // Subtract TLS overheads to get the maximum payload size. 769 macSize := 0 770 if c.out.mac != nil { 771 macSize = c.out.mac.Size() 772 } 773 774 payloadBytes := tcpMSSEstimate - recordHeaderLen - explicitIVLen 775 if c.out.cipher != nil { 776 switch ciph := c.out.cipher.(type) { 777 case cipher.Stream: 778 payloadBytes -= macSize 779 case cipher.AEAD: 780 payloadBytes -= ciph.Overhead() 781 case cbcMode: 782 blockSize := ciph.BlockSize() 783 // The payload must fit in a multiple of blockSize, with 784 // room for at least one padding byte. 785 payloadBytes = (payloadBytes & ^(blockSize - 1)) - 1 786 // The MAC is appended before padding so affects the 787 // payload size directly. 788 payloadBytes -= macSize 789 default: 790 panic("unknown cipher type") 791 } 792 } 793 794 // Allow packet growth in arithmetic progression up to max. 795 pkt := c.packetsSent 796 c.packetsSent++ 797 if pkt > 1000 { 798 return maxPlaintext // avoid overflow in multiply below 799 } 800 801 n := payloadBytes * int(pkt+1) 802 if n > maxPlaintext { 803 n = maxPlaintext 804 } 805 return n 806 } 807 808 // c.out.Mutex <= L. 809 func (c *Conn) write(data []byte) (int, error) { 810 if c.buffering { 811 c.sendBuf = append(c.sendBuf, data...) 812 return len(data), nil 813 } 814 815 n, err := c.conn.Write(data) 816 c.bytesSent += int64(n) 817 return n, err 818 } 819 820 func (c *Conn) flush() (int, error) { 821 if len(c.sendBuf) == 0 { 822 return 0, nil 823 } 824 825 n, err := c.conn.Write(c.sendBuf) 826 c.bytesSent += int64(n) 827 c.sendBuf = nil 828 c.buffering = false 829 return n, err 830 } 831 832 // writeRecordLocked writes a TLS record with the given type and payload to the 833 // connection and updates the record layer state. 834 // c.out.Mutex <= L. 835 func (c *Conn) writeRecordLocked(typ recordType, data []byte) (int, error) { 836 b := c.out.newBlock() 837 defer c.out.freeBlock(b) 838 839 var n int 840 for len(data) > 0 { 841 explicitIVLen := 0 842 explicitIVIsSeq := false 843 844 var cbc cbcMode 845 if c.out.version >= VersionTLS11 { 846 var ok bool 847 if cbc, ok = c.out.cipher.(cbcMode); ok { 848 explicitIVLen = cbc.BlockSize() 849 } 850 } 851 if explicitIVLen == 0 { 852 if _, ok := c.out.cipher.(cipher.AEAD); ok { 853 explicitIVLen = 8 854 // The AES-GCM construction in TLS has an 855 // explicit nonce so that the nonce can be 856 // random. However, the nonce is only 8 bytes 857 // which is too small for a secure, random 858 // nonce. Therefore we use the sequence number 859 // as the nonce. 860 explicitIVIsSeq = true 861 } 862 } 863 m := len(data) 864 if maxPayload := c.maxPayloadSizeForWrite(typ, explicitIVLen); m > maxPayload { 865 m = maxPayload 866 } 867 b.resize(recordHeaderLen + explicitIVLen + m) 868 b.data[0] = byte(typ) 869 vers := c.vers 870 if vers == 0 { 871 // Some TLS servers fail if the record version is 872 // greater than TLS 1.0 for the initial ClientHello. 873 vers = VersionTLS10 874 } 875 b.data[1] = byte(vers >> 8) 876 b.data[2] = byte(vers) 877 b.data[3] = byte(m >> 8) 878 b.data[4] = byte(m) 879 if explicitIVLen > 0 { 880 explicitIV := b.data[recordHeaderLen : recordHeaderLen+explicitIVLen] 881 if explicitIVIsSeq { 882 copy(explicitIV, c.out.seq[:]) 883 } else { 884 if _, err := io.ReadFull(c.config.rand(), explicitIV); err != nil { 885 return n, err 886 } 887 } 888 } 889 copy(b.data[recordHeaderLen+explicitIVLen:], data) 890 c.out.encrypt(b, explicitIVLen) 891 if _, err := c.write(b.data); err != nil { 892 return n, err 893 } 894 n += m 895 data = data[m:] 896 } 897 898 if typ == recordTypeChangeCipherSpec { 899 if err := c.out.changeCipherSpec(); err != nil { 900 return n, c.sendAlertLocked(err.(alert)) 901 } 902 } 903 904 return n, nil 905 } 906 907 // writeRecord writes a TLS record with the given type and payload to the 908 // connection and updates the record layer state. 909 // L < c.out.Mutex. 910 func (c *Conn) writeRecord(typ recordType, data []byte) (int, error) { 911 c.out.Lock() 912 defer c.out.Unlock() 913 914 return c.writeRecordLocked(typ, data) 915 } 916 917 // readHandshake reads the next handshake message from 918 // the record layer. 919 // c.in.Mutex < L; c.out.Mutex < L. 920 func (c *Conn) readHandshake() (interface{}, error) { 921 for c.hand.Len() < 4 { 922 if err := c.in.err; err != nil { 923 return nil, err 924 } 925 if err := c.readRecord(recordTypeHandshake); err != nil { 926 return nil, err 927 } 928 } 929 930 data := c.hand.Bytes() 931 n := int(data[1])<<16 | int(data[2])<<8 | int(data[3]) 932 if n > maxHandshake { 933 c.sendAlertLocked(alertInternalError) 934 return nil, c.in.setErrorLocked(fmt.Errorf("tls: handshake message of length %d bytes exceeds maximum of %d bytes", n, maxHandshake)) 935 } 936 for c.hand.Len() < 4+n { 937 if err := c.in.err; err != nil { 938 return nil, err 939 } 940 if err := c.readRecord(recordTypeHandshake); err != nil { 941 return nil, err 942 } 943 } 944 data = c.hand.Next(4 + n) 945 var m handshakeMessage 946 switch data[0] { 947 case typeHelloRequest: 948 m = new(helloRequestMsg) 949 case typeClientHello: 950 m = new(clientHelloMsg) 951 case typeServerHello: 952 m = new(serverHelloMsg) 953 case typeNewSessionTicket: 954 m = new(newSessionTicketMsg) 955 case typeCertificate: 956 m = new(certificateMsg) 957 case typeCertificateRequest: 958 m = &certificateRequestMsg{ 959 hasSignatureAndHash: c.vers >= VersionTLS12, 960 } 961 case typeCertificateStatus: 962 m = new(certificateStatusMsg) 963 case typeServerKeyExchange: 964 m = new(serverKeyExchangeMsg) 965 case typeServerHelloDone: 966 m = new(serverHelloDoneMsg) 967 case typeClientKeyExchange: 968 m = new(clientKeyExchangeMsg) 969 case typeCertificateVerify: 970 m = &certificateVerifyMsg{ 971 hasSignatureAndHash: c.vers >= VersionTLS12, 972 } 973 case typeNextProtocol: 974 m = new(nextProtoMsg) 975 case typeFinished: 976 m = new(finishedMsg) 977 default: 978 return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 979 } 980 981 // The handshake message unmarshallers 982 // expect to be able to keep references to data, 983 // so pass in a fresh copy that won't be overwritten. 984 data = append([]byte(nil), data...) 985 986 if !m.unmarshal(data) { 987 return nil, c.in.setErrorLocked(c.sendAlert(alertUnexpectedMessage)) 988 } 989 return m, nil 990 } 991 992 var errClosed = errors.New("tls: use of closed connection") 993 994 // Write writes data to the connection. 995 func (c *Conn) Write(b []byte) (int, error) { 996 // interlock with Close below 997 for { 998 x := atomic.LoadInt32(&c.activeCall) 999 if x&1 != 0 { 1000 return 0, errClosed 1001 } 1002 if atomic.CompareAndSwapInt32(&c.activeCall, x, x+2) { 1003 defer atomic.AddInt32(&c.activeCall, -2) 1004 break 1005 } 1006 } 1007 1008 if err := c.Handshake(); err != nil { 1009 return 0, err 1010 } 1011 1012 c.out.Lock() 1013 defer c.out.Unlock() 1014 1015 if err := c.out.err; err != nil { 1016 return 0, err 1017 } 1018 1019 if !c.handshakeComplete { 1020 return 0, alertInternalError 1021 } 1022 1023 // SSL 3.0 and TLS 1.0 are susceptible to a chosen-plaintext 1024 // attack when using block mode ciphers due to predictable IVs. 1025 // This can be prevented by splitting each Application Data 1026 // record into two records, effectively randomizing the IV. 1027 // 1028 // http://www.openssl.org/~bodo/tls-cbc.txt 1029 // https://bugzilla.mozilla.org/show_bug.cgi?id=665814 1030 // http://www.imperialviolet.org/2012/01/15/beastfollowup.html 1031 1032 var m int 1033 if len(b) > 1 && c.vers <= VersionTLS10 { 1034 if _, ok := c.out.cipher.(cipher.BlockMode); ok { 1035 n, err := c.writeRecordLocked(recordTypeApplicationData, b[:1]) 1036 if err != nil { 1037 return n, c.out.setErrorLocked(err) 1038 } 1039 m, b = 1, b[1:] 1040 } 1041 } 1042 1043 n, err := c.writeRecordLocked(recordTypeApplicationData, b) 1044 return n + m, c.out.setErrorLocked(err) 1045 } 1046 1047 // handleRenegotiation processes a HelloRequest handshake message. 1048 // c.in.Mutex <= L 1049 func (c *Conn) handleRenegotiation() error { 1050 msg, err := c.readHandshake() 1051 if err != nil { 1052 return err 1053 } 1054 1055 _, ok := msg.(*helloRequestMsg) 1056 if !ok { 1057 c.sendAlert(alertUnexpectedMessage) 1058 return alertUnexpectedMessage 1059 } 1060 1061 if !c.isClient { 1062 return c.sendAlert(alertNoRenegotiation) 1063 } 1064 1065 switch c.config.Renegotiation { 1066 case RenegotiateNever: 1067 return c.sendAlert(alertNoRenegotiation) 1068 case RenegotiateOnceAsClient: 1069 if c.handshakes > 1 { 1070 return c.sendAlert(alertNoRenegotiation) 1071 } 1072 case RenegotiateFreelyAsClient: 1073 // Ok. 1074 default: 1075 c.sendAlert(alertInternalError) 1076 return errors.New("tls: unknown Renegotiation value") 1077 } 1078 1079 c.handshakeMutex.Lock() 1080 defer c.handshakeMutex.Unlock() 1081 1082 c.handshakeComplete = false 1083 if c.handshakeErr = c.clientHandshake(); c.handshakeErr == nil { 1084 c.handshakes++ 1085 } 1086 return c.handshakeErr 1087 } 1088 1089 // Read can be made to time out and return a net.Error with Timeout() == true 1090 // after a fixed time limit; see SetDeadline and SetReadDeadline. 1091 func (c *Conn) Read(b []byte) (n int, err error) { 1092 if err = c.Handshake(); err != nil { 1093 return 1094 } 1095 if len(b) == 0 { 1096 // Put this after Handshake, in case people were calling 1097 // Read(nil) for the side effect of the Handshake. 1098 return 1099 } 1100 1101 c.in.Lock() 1102 defer c.in.Unlock() 1103 1104 // Some OpenSSL servers send empty records in order to randomize the 1105 // CBC IV. So this loop ignores a limited number of empty records. 1106 const maxConsecutiveEmptyRecords = 100 1107 for emptyRecordCount := 0; emptyRecordCount <= maxConsecutiveEmptyRecords; emptyRecordCount++ { 1108 for c.input == nil && c.in.err == nil { 1109 if err := c.readRecord(recordTypeApplicationData); err != nil { 1110 // Soft error, like EAGAIN 1111 return 0, err 1112 } 1113 if c.hand.Len() > 0 { 1114 // We received handshake bytes, indicating the 1115 // start of a renegotiation. 1116 if err := c.handleRenegotiation(); err != nil { 1117 return 0, err 1118 } 1119 } 1120 } 1121 if err := c.in.err; err != nil { 1122 return 0, err 1123 } 1124 1125 n, err = c.input.Read(b) 1126 if c.input.off >= len(c.input.data) { 1127 c.in.freeBlock(c.input) 1128 c.input = nil 1129 } 1130 1131 // If a close-notify alert is waiting, read it so that 1132 // we can return (n, EOF) instead of (n, nil), to signal 1133 // to the HTTP response reading goroutine that the 1134 // connection is now closed. This eliminates a race 1135 // where the HTTP response reading goroutine would 1136 // otherwise not observe the EOF until its next read, 1137 // by which time a client goroutine might have already 1138 // tried to reuse the HTTP connection for a new 1139 // request. 1140 // See https://codereview.appspot.com/76400046 1141 // and https://golang.org/issue/3514 1142 if ri := c.rawInput; ri != nil && 1143 n != 0 && err == nil && 1144 c.input == nil && len(ri.data) > 0 && recordType(ri.data[0]) == recordTypeAlert { 1145 if recErr := c.readRecord(recordTypeApplicationData); recErr != nil { 1146 err = recErr // will be io.EOF on closeNotify 1147 } 1148 } 1149 1150 if n != 0 || err != nil { 1151 return n, err 1152 } 1153 } 1154 1155 return 0, io.ErrNoProgress 1156 } 1157 1158 // Close closes the connection. 1159 func (c *Conn) Close() error { 1160 // Interlock with Conn.Write above. 1161 var x int32 1162 for { 1163 x = atomic.LoadInt32(&c.activeCall) 1164 if x&1 != 0 { 1165 return errClosed 1166 } 1167 if atomic.CompareAndSwapInt32(&c.activeCall, x, x|1) { 1168 break 1169 } 1170 } 1171 if x != 0 { 1172 // io.Writer and io.Closer should not be used concurrently. 1173 // If Close is called while a Write is currently in-flight, 1174 // interpret that as a sign that this Close is really just 1175 // being used to break the Write and/or clean up resources and 1176 // avoid sending the alertCloseNotify, which may block 1177 // waiting on handshakeMutex or the c.out mutex. 1178 return c.conn.Close() 1179 } 1180 1181 var alertErr error 1182 1183 c.handshakeMutex.Lock() 1184 defer c.handshakeMutex.Unlock() 1185 if c.handshakeComplete { 1186 alertErr = c.sendAlert(alertCloseNotify) 1187 } 1188 1189 if err := c.conn.Close(); err != nil { 1190 return err 1191 } 1192 return alertErr 1193 } 1194 1195 // Handshake runs the client or server handshake 1196 // protocol if it has not yet been run. 1197 // Most uses of this package need not call Handshake 1198 // explicitly: the first Read or Write will call it automatically. 1199 func (c *Conn) Handshake() error { 1200 // c.handshakeErr and c.handshakeComplete are protected by 1201 // c.handshakeMutex. In order to perform a handshake, we need to lock 1202 // c.in also and c.handshakeMutex must be locked after c.in. 1203 // 1204 // However, if a Read() operation is hanging then it'll be holding the 1205 // lock on c.in and so taking it here would cause all operations that 1206 // need to check whether a handshake is pending (such as Write) to 1207 // block. 1208 // 1209 // Thus we take c.handshakeMutex first and, if we find that a handshake 1210 // is needed, then we unlock, acquire c.in and c.handshakeMutex in the 1211 // correct order, and check again. 1212 c.handshakeMutex.Lock() 1213 defer c.handshakeMutex.Unlock() 1214 1215 for i := 0; i < 2; i++ { 1216 if i == 1 { 1217 c.handshakeMutex.Unlock() 1218 c.in.Lock() 1219 defer c.in.Unlock() 1220 c.handshakeMutex.Lock() 1221 } 1222 1223 if err := c.handshakeErr; err != nil { 1224 return err 1225 } 1226 if c.handshakeComplete { 1227 return nil 1228 } 1229 } 1230 1231 if c.isClient { 1232 c.handshakeErr = c.clientHandshake() 1233 } else { 1234 c.handshakeErr = c.serverHandshake() 1235 } 1236 if c.handshakeErr == nil { 1237 c.handshakes++ 1238 } 1239 return c.handshakeErr 1240 } 1241 1242 // ConnectionState returns basic TLS details about the connection. 1243 func (c *Conn) ConnectionState() ConnectionState { 1244 c.handshakeMutex.Lock() 1245 defer c.handshakeMutex.Unlock() 1246 1247 var state ConnectionState 1248 state.HandshakeComplete = c.handshakeComplete 1249 state.ServerName = c.serverName 1250 1251 if c.handshakeComplete { 1252 state.Version = c.vers 1253 state.NegotiatedProtocol = c.clientProtocol 1254 state.DidResume = c.didResume 1255 state.NegotiatedProtocolIsMutual = !c.clientProtocolFallback 1256 state.CipherSuite = c.cipherSuite 1257 state.PeerCertificates = c.peerCertificates 1258 state.VerifiedChains = c.verifiedChains 1259 state.SignedCertificateTimestamps = c.scts 1260 state.OCSPResponse = c.ocspResponse 1261 if !c.didResume { 1262 if c.clientFinishedIsFirst { 1263 state.TLSUnique = c.clientFinished[:] 1264 } else { 1265 state.TLSUnique = c.serverFinished[:] 1266 } 1267 } 1268 } 1269 1270 return state 1271 } 1272 1273 // OCSPResponse returns the stapled OCSP response from the TLS server, if 1274 // any. (Only valid for client connections.) 1275 func (c *Conn) OCSPResponse() []byte { 1276 c.handshakeMutex.Lock() 1277 defer c.handshakeMutex.Unlock() 1278 1279 return c.ocspResponse 1280 } 1281 1282 // VerifyHostname checks that the peer certificate chain is valid for 1283 // connecting to host. If so, it returns nil; if not, it returns an error 1284 // describing the problem. 1285 func (c *Conn) VerifyHostname(host string) error { 1286 c.handshakeMutex.Lock() 1287 defer c.handshakeMutex.Unlock() 1288 if !c.isClient { 1289 return errors.New("tls: VerifyHostname called on TLS server connection") 1290 } 1291 if !c.handshakeComplete { 1292 return errors.New("tls: handshake has not yet been performed") 1293 } 1294 if len(c.verifiedChains) == 0 { 1295 return errors.New("tls: handshake did not verify certificate chain") 1296 } 1297 return c.peerCertificates[0].VerifyHostname(host) 1298 }