github.com/euank/go@v0.0.0-20160829210321-495514729181/src/net/http/server.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // HTTP server. See RFC 2616. 6 7 package http 8 9 import ( 10 "bufio" 11 "bytes" 12 "context" 13 "crypto/tls" 14 "errors" 15 "fmt" 16 "io" 17 "io/ioutil" 18 "log" 19 "net" 20 "net/textproto" 21 "net/url" 22 "os" 23 "path" 24 "runtime" 25 "strconv" 26 "strings" 27 "sync" 28 "sync/atomic" 29 "time" 30 31 "golang_org/x/net/lex/httplex" 32 ) 33 34 // Errors used by the HTTP server. 35 var ( 36 // ErrBodyNotAllowed is returned by ResponseWriter.Write calls 37 // when the HTTP method or response code does not permit a 38 // body. 39 ErrBodyNotAllowed = errors.New("http: request method or response status code does not allow body") 40 41 // ErrHijacked is returned by ResponseWriter.Write calls when 42 // the underlying connection has been hijacked using the 43 // Hijacker interfaced. 44 ErrHijacked = errors.New("http: connection has been hijacked") 45 46 // ErrContentLength is returned by ResponseWriter.Write calls 47 // when a Handler set a Content-Length response header with a 48 // declared size and then attempted to write more bytes than 49 // declared. 50 ErrContentLength = errors.New("http: wrote more than the declared Content-Length") 51 52 // Deprecated: ErrWriteAfterFlush is no longer used. 53 ErrWriteAfterFlush = errors.New("unused") 54 ) 55 56 // A Handler responds to an HTTP request. 57 // 58 // ServeHTTP should write reply headers and data to the ResponseWriter 59 // and then return. Returning signals that the request is finished; it 60 // is not valid to use the ResponseWriter or read from the 61 // Request.Body after or concurrently with the completion of the 62 // ServeHTTP call. 63 // 64 // Depending on the HTTP client software, HTTP protocol version, and 65 // any intermediaries between the client and the Go server, it may not 66 // be possible to read from the Request.Body after writing to the 67 // ResponseWriter. Cautious handlers should read the Request.Body 68 // first, and then reply. 69 // 70 // Except for reading the body, handlers should not modify the 71 // provided Request. 72 // 73 // If ServeHTTP panics, the server (the caller of ServeHTTP) assumes 74 // that the effect of the panic was isolated to the active request. 75 // It recovers the panic, logs a stack trace to the server error log, 76 // and hangs up the connection. 77 type Handler interface { 78 ServeHTTP(ResponseWriter, *Request) 79 } 80 81 // A ResponseWriter interface is used by an HTTP handler to 82 // construct an HTTP response. 83 // 84 // A ResponseWriter may not be used after the Handler.ServeHTTP method 85 // has returned. 86 type ResponseWriter interface { 87 // Header returns the header map that will be sent by 88 // WriteHeader. Changing the header after a call to 89 // WriteHeader (or Write) has no effect unless the modified 90 // headers were declared as trailers by setting the 91 // "Trailer" header before the call to WriteHeader (see example). 92 // To suppress implicit response headers, set their value to nil. 93 Header() Header 94 95 // Write writes the data to the connection as part of an HTTP reply. 96 // 97 // If WriteHeader has not yet been called, Write calls 98 // WriteHeader(http.StatusOK) before writing the data. If the Header 99 // does not contain a Content-Type line, Write adds a Content-Type set 100 // to the result of passing the initial 512 bytes of written data to 101 // DetectContentType. 102 // 103 // Depending on the HTTP protocol version and the client, calling 104 // Write or WriteHeader may prevent future reads on the 105 // Request.Body. For HTTP/1.x requests, handlers should read any 106 // needed request body data before writing the response. Once the 107 // headers have been flushed (due to either an explicit Flusher.Flush 108 // call or writing enough data to trigger a flush), the request body 109 // may be unavailable. For HTTP/2 requests, the Go HTTP server permits 110 // handlers to continue to read the request body while concurrently 111 // writing the response. However, such behavior may not be supported 112 // by all HTTP/2 clients. Handlers should read before writing if 113 // possible to maximize compatibility. 114 Write([]byte) (int, error) 115 116 // WriteHeader sends an HTTP response header with status code. 117 // If WriteHeader is not called explicitly, the first call to Write 118 // will trigger an implicit WriteHeader(http.StatusOK). 119 // Thus explicit calls to WriteHeader are mainly used to 120 // send error codes. 121 WriteHeader(int) 122 } 123 124 // The Flusher interface is implemented by ResponseWriters that allow 125 // an HTTP handler to flush buffered data to the client. 126 // 127 // The default HTTP/1.x and HTTP/2 ResponseWriter implementations 128 // support Flusher, but ResponseWriter wrappers may not. Handlers 129 // should always test for this ability at runtime. 130 // 131 // Note that even for ResponseWriters that support Flush, 132 // if the client is connected through an HTTP proxy, 133 // the buffered data may not reach the client until the response 134 // completes. 135 type Flusher interface { 136 // Flush sends any buffered data to the client. 137 Flush() 138 } 139 140 // The Hijacker interface is implemented by ResponseWriters that allow 141 // an HTTP handler to take over the connection. 142 // 143 // The default ResponseWriter for HTTP/1.x connections supports 144 // Hijacker, but HTTP/2 connections intentionally do not. 145 // ResponseWriter wrappers may also not support Hijacker. Handlers 146 // should always test for this ability at runtime. 147 type Hijacker interface { 148 // Hijack lets the caller take over the connection. 149 // After a call to Hijack(), the HTTP server library 150 // will not do anything else with the connection. 151 // 152 // It becomes the caller's responsibility to manage 153 // and close the connection. 154 // 155 // The returned net.Conn may have read or write deadlines 156 // already set, depending on the configuration of the 157 // Server. It is the caller's responsibility to set 158 // or clear those deadlines as needed. 159 Hijack() (net.Conn, *bufio.ReadWriter, error) 160 } 161 162 // The CloseNotifier interface is implemented by ResponseWriters which 163 // allow detecting when the underlying connection has gone away. 164 // 165 // This mechanism can be used to cancel long operations on the server 166 // if the client has disconnected before the response is ready. 167 type CloseNotifier interface { 168 // CloseNotify returns a channel that receives at most a 169 // single value (true) when the client connection has gone 170 // away. 171 // 172 // CloseNotify may wait to notify until Request.Body has been 173 // fully read. 174 // 175 // After the Handler has returned, there is no guarantee 176 // that the channel receives a value. 177 // 178 // If the protocol is HTTP/1.1 and CloseNotify is called while 179 // processing an idempotent request (such a GET) while 180 // HTTP/1.1 pipelining is in use, the arrival of a subsequent 181 // pipelined request may cause a value to be sent on the 182 // returned channel. In practice HTTP/1.1 pipelining is not 183 // enabled in browsers and not seen often in the wild. If this 184 // is a problem, use HTTP/2 or only use CloseNotify on methods 185 // such as POST. 186 CloseNotify() <-chan bool 187 } 188 189 var ( 190 // ServerContextKey is a context key. It can be used in HTTP 191 // handlers with context.WithValue to access the server that 192 // started the handler. The associated value will be of 193 // type *Server. 194 ServerContextKey = &contextKey{"http-server"} 195 196 // LocalAddrContextKey is a context key. It can be used in 197 // HTTP handlers with context.WithValue to access the address 198 // the local address the connection arrived on. 199 // The associated value will be of type net.Addr. 200 LocalAddrContextKey = &contextKey{"local-addr"} 201 ) 202 203 // A conn represents the server side of an HTTP connection. 204 type conn struct { 205 // server is the server on which the connection arrived. 206 // Immutable; never nil. 207 server *Server 208 209 // rwc is the underlying network connection. 210 // This is never wrapped by other types and is the value given out 211 // to CloseNotifier callers. It is usually of type *net.TCPConn or 212 // *tls.Conn. 213 rwc net.Conn 214 215 // remoteAddr is rwc.RemoteAddr().String(). It is not populated synchronously 216 // inside the Listener's Accept goroutine, as some implementations block. 217 // It is populated immediately inside the (*conn).serve goroutine. 218 // This is the value of a Handler's (*Request).RemoteAddr. 219 remoteAddr string 220 221 // tlsState is the TLS connection state when using TLS. 222 // nil means not TLS. 223 tlsState *tls.ConnectionState 224 225 // werr is set to the first write error to rwc. 226 // It is set via checkConnErrorWriter{w}, where bufw writes. 227 werr error 228 229 // r is bufr's read source. It's a wrapper around rwc that provides 230 // io.LimitedReader-style limiting (while reading request headers) 231 // and functionality to support CloseNotifier. See *connReader docs. 232 r *connReader 233 234 // bufr reads from r. 235 // Users of bufr must hold mu. 236 bufr *bufio.Reader 237 238 // bufw writes to checkConnErrorWriter{c}, which populates werr on error. 239 bufw *bufio.Writer 240 241 // lastMethod is the method of the most recent request 242 // on this connection, if any. 243 lastMethod string 244 245 // mu guards hijackedv, use of bufr, (*response).closeNotifyCh. 246 mu sync.Mutex 247 248 // hijackedv is whether this connection has been hijacked 249 // by a Handler with the Hijacker interface. 250 // It is guarded by mu. 251 hijackedv bool 252 } 253 254 func (c *conn) hijacked() bool { 255 c.mu.Lock() 256 defer c.mu.Unlock() 257 return c.hijackedv 258 } 259 260 // c.mu must be held. 261 func (c *conn) hijackLocked() (rwc net.Conn, buf *bufio.ReadWriter, err error) { 262 if c.hijackedv { 263 return nil, nil, ErrHijacked 264 } 265 c.hijackedv = true 266 rwc = c.rwc 267 buf = bufio.NewReadWriter(c.bufr, bufio.NewWriter(rwc)) 268 c.setState(rwc, StateHijacked) 269 return 270 } 271 272 // This should be >= 512 bytes for DetectContentType, 273 // but otherwise it's somewhat arbitrary. 274 const bufferBeforeChunkingSize = 2048 275 276 // chunkWriter writes to a response's conn buffer, and is the writer 277 // wrapped by the response.bufw buffered writer. 278 // 279 // chunkWriter also is responsible for finalizing the Header, including 280 // conditionally setting the Content-Type and setting a Content-Length 281 // in cases where the handler's final output is smaller than the buffer 282 // size. It also conditionally adds chunk headers, when in chunking mode. 283 // 284 // See the comment above (*response).Write for the entire write flow. 285 type chunkWriter struct { 286 res *response 287 288 // header is either nil or a deep clone of res.handlerHeader 289 // at the time of res.WriteHeader, if res.WriteHeader is 290 // called and extra buffering is being done to calculate 291 // Content-Type and/or Content-Length. 292 header Header 293 294 // wroteHeader tells whether the header's been written to "the 295 // wire" (or rather: w.conn.buf). this is unlike 296 // (*response).wroteHeader, which tells only whether it was 297 // logically written. 298 wroteHeader bool 299 300 // set by the writeHeader method: 301 chunking bool // using chunked transfer encoding for reply body 302 } 303 304 var ( 305 crlf = []byte("\r\n") 306 colonSpace = []byte(": ") 307 ) 308 309 func (cw *chunkWriter) Write(p []byte) (n int, err error) { 310 if !cw.wroteHeader { 311 cw.writeHeader(p) 312 } 313 if cw.res.req.Method == "HEAD" { 314 // Eat writes. 315 return len(p), nil 316 } 317 if cw.chunking { 318 _, err = fmt.Fprintf(cw.res.conn.bufw, "%x\r\n", len(p)) 319 if err != nil { 320 cw.res.conn.rwc.Close() 321 return 322 } 323 } 324 n, err = cw.res.conn.bufw.Write(p) 325 if cw.chunking && err == nil { 326 _, err = cw.res.conn.bufw.Write(crlf) 327 } 328 if err != nil { 329 cw.res.conn.rwc.Close() 330 } 331 return 332 } 333 334 func (cw *chunkWriter) flush() { 335 if !cw.wroteHeader { 336 cw.writeHeader(nil) 337 } 338 cw.res.conn.bufw.Flush() 339 } 340 341 func (cw *chunkWriter) close() { 342 if !cw.wroteHeader { 343 cw.writeHeader(nil) 344 } 345 if cw.chunking { 346 bw := cw.res.conn.bufw // conn's bufio writer 347 // zero chunk to mark EOF 348 bw.WriteString("0\r\n") 349 if len(cw.res.trailers) > 0 { 350 trailers := make(Header) 351 for _, h := range cw.res.trailers { 352 if vv := cw.res.handlerHeader[h]; len(vv) > 0 { 353 trailers[h] = vv 354 } 355 } 356 trailers.Write(bw) // the writer handles noting errors 357 } 358 // final blank line after the trailers (whether 359 // present or not) 360 bw.WriteString("\r\n") 361 } 362 } 363 364 // A response represents the server side of an HTTP response. 365 type response struct { 366 conn *conn 367 req *Request // request for this response 368 reqBody io.ReadCloser 369 cancelCtx context.CancelFunc // when ServeHTTP exits 370 wroteHeader bool // reply header has been (logically) written 371 wroteContinue bool // 100 Continue response was written 372 wants10KeepAlive bool // HTTP/1.0 w/ Connection "keep-alive" 373 wantsClose bool // HTTP request has Connection "close" 374 375 w *bufio.Writer // buffers output in chunks to chunkWriter 376 cw chunkWriter 377 378 // handlerHeader is the Header that Handlers get access to, 379 // which may be retained and mutated even after WriteHeader. 380 // handlerHeader is copied into cw.header at WriteHeader 381 // time, and privately mutated thereafter. 382 handlerHeader Header 383 calledHeader bool // handler accessed handlerHeader via Header 384 385 written int64 // number of bytes written in body 386 contentLength int64 // explicitly-declared Content-Length; or -1 387 status int // status code passed to WriteHeader 388 389 // close connection after this reply. set on request and 390 // updated after response from handler if there's a 391 // "Connection: keep-alive" response header and a 392 // Content-Length. 393 closeAfterReply bool 394 395 // requestBodyLimitHit is set by requestTooLarge when 396 // maxBytesReader hits its max size. It is checked in 397 // WriteHeader, to make sure we don't consume the 398 // remaining request body to try to advance to the next HTTP 399 // request. Instead, when this is set, we stop reading 400 // subsequent requests on this connection and stop reading 401 // input from it. 402 requestBodyLimitHit bool 403 404 // trailers are the headers to be sent after the handler 405 // finishes writing the body. This field is initialized from 406 // the Trailer response header when the response header is 407 // written. 408 trailers []string 409 410 handlerDone atomicBool // set true when the handler exits 411 412 // Buffers for Date and Content-Length 413 dateBuf [len(TimeFormat)]byte 414 clenBuf [10]byte 415 416 // closeNotifyCh is non-nil once CloseNotify is called. 417 // Guarded by conn.mu 418 closeNotifyCh <-chan bool 419 } 420 421 type atomicBool int32 422 423 func (b *atomicBool) isSet() bool { return atomic.LoadInt32((*int32)(b)) != 0 } 424 func (b *atomicBool) setTrue() { atomic.StoreInt32((*int32)(b), 1) } 425 426 // declareTrailer is called for each Trailer header when the 427 // response header is written. It notes that a header will need to be 428 // written in the trailers at the end of the response. 429 func (w *response) declareTrailer(k string) { 430 k = CanonicalHeaderKey(k) 431 switch k { 432 case "Transfer-Encoding", "Content-Length", "Trailer": 433 // Forbidden by RFC 2616 14.40. 434 return 435 } 436 w.trailers = append(w.trailers, k) 437 } 438 439 // requestTooLarge is called by maxBytesReader when too much input has 440 // been read from the client. 441 func (w *response) requestTooLarge() { 442 w.closeAfterReply = true 443 w.requestBodyLimitHit = true 444 if !w.wroteHeader { 445 w.Header().Set("Connection", "close") 446 } 447 } 448 449 // needsSniff reports whether a Content-Type still needs to be sniffed. 450 func (w *response) needsSniff() bool { 451 _, haveType := w.handlerHeader["Content-Type"] 452 return !w.cw.wroteHeader && !haveType && w.written < sniffLen 453 } 454 455 // writerOnly hides an io.Writer value's optional ReadFrom method 456 // from io.Copy. 457 type writerOnly struct { 458 io.Writer 459 } 460 461 func srcIsRegularFile(src io.Reader) (isRegular bool, err error) { 462 switch v := src.(type) { 463 case *os.File: 464 fi, err := v.Stat() 465 if err != nil { 466 return false, err 467 } 468 return fi.Mode().IsRegular(), nil 469 case *io.LimitedReader: 470 return srcIsRegularFile(v.R) 471 default: 472 return 473 } 474 } 475 476 // ReadFrom is here to optimize copying from an *os.File regular file 477 // to a *net.TCPConn with sendfile. 478 func (w *response) ReadFrom(src io.Reader) (n int64, err error) { 479 // Our underlying w.conn.rwc is usually a *TCPConn (with its 480 // own ReadFrom method). If not, or if our src isn't a regular 481 // file, just fall back to the normal copy method. 482 rf, ok := w.conn.rwc.(io.ReaderFrom) 483 regFile, err := srcIsRegularFile(src) 484 if err != nil { 485 return 0, err 486 } 487 if !ok || !regFile { 488 bufp := copyBufPool.Get().(*[]byte) 489 defer copyBufPool.Put(bufp) 490 return io.CopyBuffer(writerOnly{w}, src, *bufp) 491 } 492 493 // sendfile path: 494 495 if !w.wroteHeader { 496 w.WriteHeader(StatusOK) 497 } 498 499 if w.needsSniff() { 500 n0, err := io.Copy(writerOnly{w}, io.LimitReader(src, sniffLen)) 501 n += n0 502 if err != nil { 503 return n, err 504 } 505 } 506 507 w.w.Flush() // get rid of any previous writes 508 w.cw.flush() // make sure Header is written; flush data to rwc 509 510 // Now that cw has been flushed, its chunking field is guaranteed initialized. 511 if !w.cw.chunking && w.bodyAllowed() { 512 n0, err := rf.ReadFrom(src) 513 n += n0 514 w.written += n0 515 return n, err 516 } 517 518 n0, err := io.Copy(writerOnly{w}, src) 519 n += n0 520 return n, err 521 } 522 523 // debugServerConnections controls whether all server connections are wrapped 524 // with a verbose logging wrapper. 525 const debugServerConnections = false 526 527 // Create new connection from rwc. 528 func (srv *Server) newConn(rwc net.Conn) *conn { 529 c := &conn{ 530 server: srv, 531 rwc: rwc, 532 } 533 if debugServerConnections { 534 c.rwc = newLoggingConn("server", c.rwc) 535 } 536 return c 537 } 538 539 type readResult struct { 540 n int 541 err error 542 b byte // byte read, if n == 1 543 } 544 545 // connReader is the io.Reader wrapper used by *conn. It combines a 546 // selectively-activated io.LimitedReader (to bound request header 547 // read sizes) with support for selectively keeping an io.Reader.Read 548 // call blocked in a background goroutine to wait for activity and 549 // trigger a CloseNotifier channel. 550 type connReader struct { 551 r io.Reader 552 remain int64 // bytes remaining 553 554 // ch is non-nil if a background read is in progress. 555 // It is guarded by conn.mu. 556 ch chan readResult 557 } 558 559 func (cr *connReader) setReadLimit(remain int64) { cr.remain = remain } 560 func (cr *connReader) setInfiniteReadLimit() { cr.remain = maxInt64 } 561 func (cr *connReader) hitReadLimit() bool { return cr.remain <= 0 } 562 563 func (cr *connReader) Read(p []byte) (n int, err error) { 564 if cr.hitReadLimit() { 565 return 0, io.EOF 566 } 567 if len(p) == 0 { 568 return 569 } 570 if int64(len(p)) > cr.remain { 571 p = p[:cr.remain] 572 } 573 574 // Is a background read (started by CloseNotifier) already in 575 // flight? If so, wait for it and use its result. 576 ch := cr.ch 577 if ch != nil { 578 cr.ch = nil 579 res := <-ch 580 if res.n == 1 { 581 p[0] = res.b 582 cr.remain -= 1 583 } 584 return res.n, res.err 585 } 586 n, err = cr.r.Read(p) 587 cr.remain -= int64(n) 588 return 589 } 590 591 func (cr *connReader) startBackgroundRead(onReadComplete func()) { 592 if cr.ch != nil { 593 // Background read already started. 594 return 595 } 596 cr.ch = make(chan readResult, 1) 597 go cr.closeNotifyAwaitActivityRead(cr.ch, onReadComplete) 598 } 599 600 func (cr *connReader) closeNotifyAwaitActivityRead(ch chan<- readResult, onReadComplete func()) { 601 var buf [1]byte 602 n, err := cr.r.Read(buf[:1]) 603 onReadComplete() 604 ch <- readResult{n, err, buf[0]} 605 } 606 607 var ( 608 bufioReaderPool sync.Pool 609 bufioWriter2kPool sync.Pool 610 bufioWriter4kPool sync.Pool 611 ) 612 613 var copyBufPool = sync.Pool{ 614 New: func() interface{} { 615 b := make([]byte, 32*1024) 616 return &b 617 }, 618 } 619 620 func bufioWriterPool(size int) *sync.Pool { 621 switch size { 622 case 2 << 10: 623 return &bufioWriter2kPool 624 case 4 << 10: 625 return &bufioWriter4kPool 626 } 627 return nil 628 } 629 630 func newBufioReader(r io.Reader) *bufio.Reader { 631 if v := bufioReaderPool.Get(); v != nil { 632 br := v.(*bufio.Reader) 633 br.Reset(r) 634 return br 635 } 636 // Note: if this reader size is every changed, update 637 // TestHandlerBodyClose's assumptions. 638 return bufio.NewReader(r) 639 } 640 641 func putBufioReader(br *bufio.Reader) { 642 br.Reset(nil) 643 bufioReaderPool.Put(br) 644 } 645 646 func newBufioWriterSize(w io.Writer, size int) *bufio.Writer { 647 pool := bufioWriterPool(size) 648 if pool != nil { 649 if v := pool.Get(); v != nil { 650 bw := v.(*bufio.Writer) 651 bw.Reset(w) 652 return bw 653 } 654 } 655 return bufio.NewWriterSize(w, size) 656 } 657 658 func putBufioWriter(bw *bufio.Writer) { 659 bw.Reset(nil) 660 if pool := bufioWriterPool(bw.Available()); pool != nil { 661 pool.Put(bw) 662 } 663 } 664 665 // DefaultMaxHeaderBytes is the maximum permitted size of the headers 666 // in an HTTP request. 667 // This can be overridden by setting Server.MaxHeaderBytes. 668 const DefaultMaxHeaderBytes = 1 << 20 // 1 MB 669 670 func (srv *Server) maxHeaderBytes() int { 671 if srv.MaxHeaderBytes > 0 { 672 return srv.MaxHeaderBytes 673 } 674 return DefaultMaxHeaderBytes 675 } 676 677 func (srv *Server) initialReadLimitSize() int64 { 678 return int64(srv.maxHeaderBytes()) + 4096 // bufio slop 679 } 680 681 // wrapper around io.ReaderCloser which on first read, sends an 682 // HTTP/1.1 100 Continue header 683 type expectContinueReader struct { 684 resp *response 685 readCloser io.ReadCloser 686 closed bool 687 sawEOF bool 688 } 689 690 func (ecr *expectContinueReader) Read(p []byte) (n int, err error) { 691 if ecr.closed { 692 return 0, ErrBodyReadAfterClose 693 } 694 if !ecr.resp.wroteContinue && !ecr.resp.conn.hijacked() { 695 ecr.resp.wroteContinue = true 696 ecr.resp.conn.bufw.WriteString("HTTP/1.1 100 Continue\r\n\r\n") 697 ecr.resp.conn.bufw.Flush() 698 } 699 n, err = ecr.readCloser.Read(p) 700 if err == io.EOF { 701 ecr.sawEOF = true 702 } 703 return 704 } 705 706 func (ecr *expectContinueReader) Close() error { 707 ecr.closed = true 708 return ecr.readCloser.Close() 709 } 710 711 // TimeFormat is the time format to use when generating times in HTTP 712 // headers. It is like time.RFC1123 but hard-codes GMT as the time 713 // zone. The time being formatted must be in UTC for Format to 714 // generate the correct format. 715 // 716 // For parsing this time format, see ParseTime. 717 const TimeFormat = "Mon, 02 Jan 2006 15:04:05 GMT" 718 719 // appendTime is a non-allocating version of []byte(t.UTC().Format(TimeFormat)) 720 func appendTime(b []byte, t time.Time) []byte { 721 const days = "SunMonTueWedThuFriSat" 722 const months = "JanFebMarAprMayJunJulAugSepOctNovDec" 723 724 t = t.UTC() 725 yy, mm, dd := t.Date() 726 hh, mn, ss := t.Clock() 727 day := days[3*t.Weekday():] 728 mon := months[3*(mm-1):] 729 730 return append(b, 731 day[0], day[1], day[2], ',', ' ', 732 byte('0'+dd/10), byte('0'+dd%10), ' ', 733 mon[0], mon[1], mon[2], ' ', 734 byte('0'+yy/1000), byte('0'+(yy/100)%10), byte('0'+(yy/10)%10), byte('0'+yy%10), ' ', 735 byte('0'+hh/10), byte('0'+hh%10), ':', 736 byte('0'+mn/10), byte('0'+mn%10), ':', 737 byte('0'+ss/10), byte('0'+ss%10), ' ', 738 'G', 'M', 'T') 739 } 740 741 var errTooLarge = errors.New("http: request too large") 742 743 // Read next request from connection. 744 func (c *conn) readRequest(ctx context.Context) (w *response, err error) { 745 if c.hijacked() { 746 return nil, ErrHijacked 747 } 748 749 if d := c.server.ReadTimeout; d != 0 { 750 c.rwc.SetReadDeadline(time.Now().Add(d)) 751 } 752 if d := c.server.WriteTimeout; d != 0 { 753 defer func() { 754 c.rwc.SetWriteDeadline(time.Now().Add(d)) 755 }() 756 } 757 758 c.r.setReadLimit(c.server.initialReadLimitSize()) 759 c.mu.Lock() // while using bufr 760 if c.lastMethod == "POST" { 761 // RFC 2616 section 4.1 tolerance for old buggy clients. 762 peek, _ := c.bufr.Peek(4) // ReadRequest will get err below 763 c.bufr.Discard(numLeadingCRorLF(peek)) 764 } 765 req, err := readRequest(c.bufr, keepHostHeader) 766 c.mu.Unlock() 767 if err != nil { 768 if c.r.hitReadLimit() { 769 return nil, errTooLarge 770 } 771 return nil, err 772 } 773 774 if !http1ServerSupportsRequest(req) { 775 return nil, badRequestError("unsupported protocol version") 776 } 777 778 c.lastMethod = req.Method 779 c.r.setInfiniteReadLimit() 780 781 hosts, haveHost := req.Header["Host"] 782 isH2Upgrade := req.isH2Upgrade() 783 if req.ProtoAtLeast(1, 1) && (!haveHost || len(hosts) == 0) && !isH2Upgrade { 784 return nil, badRequestError("missing required Host header") 785 } 786 if len(hosts) > 1 { 787 return nil, badRequestError("too many Host headers") 788 } 789 if len(hosts) == 1 && !httplex.ValidHostHeader(hosts[0]) { 790 return nil, badRequestError("malformed Host header") 791 } 792 for k, vv := range req.Header { 793 if !httplex.ValidHeaderFieldName(k) { 794 return nil, badRequestError("invalid header name") 795 } 796 for _, v := range vv { 797 if !httplex.ValidHeaderFieldValue(v) { 798 return nil, badRequestError("invalid header value") 799 } 800 } 801 } 802 delete(req.Header, "Host") 803 804 ctx, cancelCtx := context.WithCancel(ctx) 805 req.ctx = ctx 806 req.RemoteAddr = c.remoteAddr 807 req.TLS = c.tlsState 808 if body, ok := req.Body.(*body); ok { 809 body.doEarlyClose = true 810 } 811 812 w = &response{ 813 conn: c, 814 cancelCtx: cancelCtx, 815 req: req, 816 reqBody: req.Body, 817 handlerHeader: make(Header), 818 contentLength: -1, 819 820 // We populate these ahead of time so we're not 821 // reading from req.Header after their Handler starts 822 // and maybe mutates it (Issue 14940) 823 wants10KeepAlive: req.wantsHttp10KeepAlive(), 824 wantsClose: req.wantsClose(), 825 } 826 if isH2Upgrade { 827 w.closeAfterReply = true 828 } 829 w.cw.res = w 830 w.w = newBufioWriterSize(&w.cw, bufferBeforeChunkingSize) 831 return w, nil 832 } 833 834 // http1ServerSupportsRequest reports whether Go's HTTP/1.x server 835 // supports the given request. 836 func http1ServerSupportsRequest(req *Request) bool { 837 if req.ProtoMajor == 1 { 838 return true 839 } 840 // Accept "PRI * HTTP/2.0" upgrade requests, so Handlers can 841 // wire up their own HTTP/2 upgrades. 842 if req.ProtoMajor == 2 && req.ProtoMinor == 0 && 843 req.Method == "PRI" && req.RequestURI == "*" { 844 return true 845 } 846 // Reject HTTP/0.x, and all other HTTP/2+ requests (which 847 // aren't encoded in ASCII anyway). 848 return false 849 } 850 851 func (w *response) Header() Header { 852 if w.cw.header == nil && w.wroteHeader && !w.cw.wroteHeader { 853 // Accessing the header between logically writing it 854 // and physically writing it means we need to allocate 855 // a clone to snapshot the logically written state. 856 w.cw.header = w.handlerHeader.clone() 857 } 858 w.calledHeader = true 859 return w.handlerHeader 860 } 861 862 // maxPostHandlerReadBytes is the max number of Request.Body bytes not 863 // consumed by a handler that the server will read from the client 864 // in order to keep a connection alive. If there are more bytes than 865 // this then the server to be paranoid instead sends a "Connection: 866 // close" response. 867 // 868 // This number is approximately what a typical machine's TCP buffer 869 // size is anyway. (if we have the bytes on the machine, we might as 870 // well read them) 871 const maxPostHandlerReadBytes = 256 << 10 872 873 func (w *response) WriteHeader(code int) { 874 if w.conn.hijacked() { 875 w.conn.server.logf("http: response.WriteHeader on hijacked connection") 876 return 877 } 878 if w.wroteHeader { 879 w.conn.server.logf("http: multiple response.WriteHeader calls") 880 return 881 } 882 w.wroteHeader = true 883 w.status = code 884 885 if w.calledHeader && w.cw.header == nil { 886 w.cw.header = w.handlerHeader.clone() 887 } 888 889 if cl := w.handlerHeader.get("Content-Length"); cl != "" { 890 v, err := strconv.ParseInt(cl, 10, 64) 891 if err == nil && v >= 0 { 892 w.contentLength = v 893 } else { 894 w.conn.server.logf("http: invalid Content-Length of %q", cl) 895 w.handlerHeader.Del("Content-Length") 896 } 897 } 898 } 899 900 // extraHeader is the set of headers sometimes added by chunkWriter.writeHeader. 901 // This type is used to avoid extra allocations from cloning and/or populating 902 // the response Header map and all its 1-element slices. 903 type extraHeader struct { 904 contentType string 905 connection string 906 transferEncoding string 907 date []byte // written if not nil 908 contentLength []byte // written if not nil 909 } 910 911 // Sorted the same as extraHeader.Write's loop. 912 var extraHeaderKeys = [][]byte{ 913 []byte("Content-Type"), 914 []byte("Connection"), 915 []byte("Transfer-Encoding"), 916 } 917 918 var ( 919 headerContentLength = []byte("Content-Length: ") 920 headerDate = []byte("Date: ") 921 ) 922 923 // Write writes the headers described in h to w. 924 // 925 // This method has a value receiver, despite the somewhat large size 926 // of h, because it prevents an allocation. The escape analysis isn't 927 // smart enough to realize this function doesn't mutate h. 928 func (h extraHeader) Write(w *bufio.Writer) { 929 if h.date != nil { 930 w.Write(headerDate) 931 w.Write(h.date) 932 w.Write(crlf) 933 } 934 if h.contentLength != nil { 935 w.Write(headerContentLength) 936 w.Write(h.contentLength) 937 w.Write(crlf) 938 } 939 for i, v := range []string{h.contentType, h.connection, h.transferEncoding} { 940 if v != "" { 941 w.Write(extraHeaderKeys[i]) 942 w.Write(colonSpace) 943 w.WriteString(v) 944 w.Write(crlf) 945 } 946 } 947 } 948 949 // writeHeader finalizes the header sent to the client and writes it 950 // to cw.res.conn.bufw. 951 // 952 // p is not written by writeHeader, but is the first chunk of the body 953 // that will be written. It is sniffed for a Content-Type if none is 954 // set explicitly. It's also used to set the Content-Length, if the 955 // total body size was small and the handler has already finished 956 // running. 957 func (cw *chunkWriter) writeHeader(p []byte) { 958 if cw.wroteHeader { 959 return 960 } 961 cw.wroteHeader = true 962 963 w := cw.res 964 keepAlivesEnabled := w.conn.server.doKeepAlives() 965 isHEAD := w.req.Method == "HEAD" 966 967 // header is written out to w.conn.buf below. Depending on the 968 // state of the handler, we either own the map or not. If we 969 // don't own it, the exclude map is created lazily for 970 // WriteSubset to remove headers. The setHeader struct holds 971 // headers we need to add. 972 header := cw.header 973 owned := header != nil 974 if !owned { 975 header = w.handlerHeader 976 } 977 var excludeHeader map[string]bool 978 delHeader := func(key string) { 979 if owned { 980 header.Del(key) 981 return 982 } 983 if _, ok := header[key]; !ok { 984 return 985 } 986 if excludeHeader == nil { 987 excludeHeader = make(map[string]bool) 988 } 989 excludeHeader[key] = true 990 } 991 var setHeader extraHeader 992 993 trailers := false 994 for _, v := range cw.header["Trailer"] { 995 trailers = true 996 foreachHeaderElement(v, cw.res.declareTrailer) 997 } 998 999 te := header.get("Transfer-Encoding") 1000 hasTE := te != "" 1001 1002 // If the handler is done but never sent a Content-Length 1003 // response header and this is our first (and last) write, set 1004 // it, even to zero. This helps HTTP/1.0 clients keep their 1005 // "keep-alive" connections alive. 1006 // Exceptions: 304/204/1xx responses never get Content-Length, and if 1007 // it was a HEAD request, we don't know the difference between 1008 // 0 actual bytes and 0 bytes because the handler noticed it 1009 // was a HEAD request and chose not to write anything. So for 1010 // HEAD, the handler should either write the Content-Length or 1011 // write non-zero bytes. If it's actually 0 bytes and the 1012 // handler never looked at the Request.Method, we just don't 1013 // send a Content-Length header. 1014 // Further, we don't send an automatic Content-Length if they 1015 // set a Transfer-Encoding, because they're generally incompatible. 1016 if w.handlerDone.isSet() && !trailers && !hasTE && bodyAllowedForStatus(w.status) && header.get("Content-Length") == "" && (!isHEAD || len(p) > 0) { 1017 w.contentLength = int64(len(p)) 1018 setHeader.contentLength = strconv.AppendInt(cw.res.clenBuf[:0], int64(len(p)), 10) 1019 } 1020 1021 // If this was an HTTP/1.0 request with keep-alive and we sent a 1022 // Content-Length back, we can make this a keep-alive response ... 1023 if w.wants10KeepAlive && keepAlivesEnabled { 1024 sentLength := header.get("Content-Length") != "" 1025 if sentLength && header.get("Connection") == "keep-alive" { 1026 w.closeAfterReply = false 1027 } 1028 } 1029 1030 // Check for a explicit (and valid) Content-Length header. 1031 hasCL := w.contentLength != -1 1032 1033 if w.wants10KeepAlive && (isHEAD || hasCL || !bodyAllowedForStatus(w.status)) { 1034 _, connectionHeaderSet := header["Connection"] 1035 if !connectionHeaderSet { 1036 setHeader.connection = "keep-alive" 1037 } 1038 } else if !w.req.ProtoAtLeast(1, 1) || w.wantsClose { 1039 w.closeAfterReply = true 1040 } 1041 1042 if header.get("Connection") == "close" || !keepAlivesEnabled { 1043 w.closeAfterReply = true 1044 } 1045 1046 // If the client wanted a 100-continue but we never sent it to 1047 // them (or, more strictly: we never finished reading their 1048 // request body), don't reuse this connection because it's now 1049 // in an unknown state: we might be sending this response at 1050 // the same time the client is now sending its request body 1051 // after a timeout. (Some HTTP clients send Expect: 1052 // 100-continue but knowing that some servers don't support 1053 // it, the clients set a timer and send the body later anyway) 1054 // If we haven't seen EOF, we can't skip over the unread body 1055 // because we don't know if the next bytes on the wire will be 1056 // the body-following-the-timer or the subsequent request. 1057 // See Issue 11549. 1058 if ecr, ok := w.req.Body.(*expectContinueReader); ok && !ecr.sawEOF { 1059 w.closeAfterReply = true 1060 } 1061 1062 // Per RFC 2616, we should consume the request body before 1063 // replying, if the handler hasn't already done so. But we 1064 // don't want to do an unbounded amount of reading here for 1065 // DoS reasons, so we only try up to a threshold. 1066 // TODO(bradfitz): where does RFC 2616 say that? See Issue 15527 1067 // about HTTP/1.x Handlers concurrently reading and writing, like 1068 // HTTP/2 handlers can do. Maybe this code should be relaxed? 1069 if w.req.ContentLength != 0 && !w.closeAfterReply { 1070 var discard, tooBig bool 1071 1072 switch bdy := w.req.Body.(type) { 1073 case *expectContinueReader: 1074 if bdy.resp.wroteContinue { 1075 discard = true 1076 } 1077 case *body: 1078 bdy.mu.Lock() 1079 switch { 1080 case bdy.closed: 1081 if !bdy.sawEOF { 1082 // Body was closed in handler with non-EOF error. 1083 w.closeAfterReply = true 1084 } 1085 case bdy.unreadDataSizeLocked() >= maxPostHandlerReadBytes: 1086 tooBig = true 1087 default: 1088 discard = true 1089 } 1090 bdy.mu.Unlock() 1091 default: 1092 discard = true 1093 } 1094 1095 if discard { 1096 _, err := io.CopyN(ioutil.Discard, w.reqBody, maxPostHandlerReadBytes+1) 1097 switch err { 1098 case nil: 1099 // There must be even more data left over. 1100 tooBig = true 1101 case ErrBodyReadAfterClose: 1102 // Body was already consumed and closed. 1103 case io.EOF: 1104 // The remaining body was just consumed, close it. 1105 err = w.reqBody.Close() 1106 if err != nil { 1107 w.closeAfterReply = true 1108 } 1109 default: 1110 // Some other kind of error occurred, like a read timeout, or 1111 // corrupt chunked encoding. In any case, whatever remains 1112 // on the wire must not be parsed as another HTTP request. 1113 w.closeAfterReply = true 1114 } 1115 } 1116 1117 if tooBig { 1118 w.requestTooLarge() 1119 delHeader("Connection") 1120 setHeader.connection = "close" 1121 } 1122 } 1123 1124 code := w.status 1125 if bodyAllowedForStatus(code) { 1126 // If no content type, apply sniffing algorithm to body. 1127 _, haveType := header["Content-Type"] 1128 if !haveType && !hasTE { 1129 setHeader.contentType = DetectContentType(p) 1130 } 1131 } else { 1132 for _, k := range suppressedHeaders(code) { 1133 delHeader(k) 1134 } 1135 } 1136 1137 if _, ok := header["Date"]; !ok { 1138 setHeader.date = appendTime(cw.res.dateBuf[:0], time.Now()) 1139 } 1140 1141 if hasCL && hasTE && te != "identity" { 1142 // TODO: return an error if WriteHeader gets a return parameter 1143 // For now just ignore the Content-Length. 1144 w.conn.server.logf("http: WriteHeader called with both Transfer-Encoding of %q and a Content-Length of %d", 1145 te, w.contentLength) 1146 delHeader("Content-Length") 1147 hasCL = false 1148 } 1149 1150 if w.req.Method == "HEAD" || !bodyAllowedForStatus(code) { 1151 // do nothing 1152 } else if code == StatusNoContent { 1153 delHeader("Transfer-Encoding") 1154 } else if hasCL { 1155 delHeader("Transfer-Encoding") 1156 } else if w.req.ProtoAtLeast(1, 1) { 1157 // HTTP/1.1 or greater: Transfer-Encoding has been set to identity, and no 1158 // content-length has been provided. The connection must be closed after the 1159 // reply is written, and no chunking is to be done. This is the setup 1160 // recommended in the Server-Sent Events candidate recommendation 11, 1161 // section 8. 1162 if hasTE && te == "identity" { 1163 cw.chunking = false 1164 w.closeAfterReply = true 1165 } else { 1166 // HTTP/1.1 or greater: use chunked transfer encoding 1167 // to avoid closing the connection at EOF. 1168 cw.chunking = true 1169 setHeader.transferEncoding = "chunked" 1170 if hasTE && te == "chunked" { 1171 // We will send the chunked Transfer-Encoding header later. 1172 delHeader("Transfer-Encoding") 1173 } 1174 } 1175 } else { 1176 // HTTP version < 1.1: cannot do chunked transfer 1177 // encoding and we don't know the Content-Length so 1178 // signal EOF by closing connection. 1179 w.closeAfterReply = true 1180 delHeader("Transfer-Encoding") // in case already set 1181 } 1182 1183 // Cannot use Content-Length with non-identity Transfer-Encoding. 1184 if cw.chunking { 1185 delHeader("Content-Length") 1186 } 1187 if !w.req.ProtoAtLeast(1, 0) { 1188 return 1189 } 1190 1191 if w.closeAfterReply && (!keepAlivesEnabled || !hasToken(cw.header.get("Connection"), "close")) { 1192 delHeader("Connection") 1193 if w.req.ProtoAtLeast(1, 1) { 1194 setHeader.connection = "close" 1195 } 1196 } 1197 1198 w.conn.bufw.WriteString(statusLine(w.req, code)) 1199 cw.header.WriteSubset(w.conn.bufw, excludeHeader) 1200 setHeader.Write(w.conn.bufw) 1201 w.conn.bufw.Write(crlf) 1202 } 1203 1204 // foreachHeaderElement splits v according to the "#rule" construction 1205 // in RFC 2616 section 2.1 and calls fn for each non-empty element. 1206 func foreachHeaderElement(v string, fn func(string)) { 1207 v = textproto.TrimString(v) 1208 if v == "" { 1209 return 1210 } 1211 if !strings.Contains(v, ",") { 1212 fn(v) 1213 return 1214 } 1215 for _, f := range strings.Split(v, ",") { 1216 if f = textproto.TrimString(f); f != "" { 1217 fn(f) 1218 } 1219 } 1220 } 1221 1222 // statusLines is a cache of Status-Line strings, keyed by code (for 1223 // HTTP/1.1) or negative code (for HTTP/1.0). This is faster than a 1224 // map keyed by struct of two fields. This map's max size is bounded 1225 // by 2*len(statusText), two protocol types for each known official 1226 // status code in the statusText map. 1227 var ( 1228 statusMu sync.RWMutex 1229 statusLines = make(map[int]string) 1230 ) 1231 1232 // statusLine returns a response Status-Line (RFC 2616 Section 6.1) 1233 // for the given request and response status code. 1234 func statusLine(req *Request, code int) string { 1235 // Fast path: 1236 key := code 1237 proto11 := req.ProtoAtLeast(1, 1) 1238 if !proto11 { 1239 key = -key 1240 } 1241 statusMu.RLock() 1242 line, ok := statusLines[key] 1243 statusMu.RUnlock() 1244 if ok { 1245 return line 1246 } 1247 1248 // Slow path: 1249 proto := "HTTP/1.0" 1250 if proto11 { 1251 proto = "HTTP/1.1" 1252 } 1253 codestring := fmt.Sprintf("%03d", code) 1254 text, ok := statusText[code] 1255 if !ok { 1256 text = "status code " + codestring 1257 } 1258 line = proto + " " + codestring + " " + text + "\r\n" 1259 if ok { 1260 statusMu.Lock() 1261 defer statusMu.Unlock() 1262 statusLines[key] = line 1263 } 1264 return line 1265 } 1266 1267 // bodyAllowed reports whether a Write is allowed for this response type. 1268 // It's illegal to call this before the header has been flushed. 1269 func (w *response) bodyAllowed() bool { 1270 if !w.wroteHeader { 1271 panic("") 1272 } 1273 return bodyAllowedForStatus(w.status) 1274 } 1275 1276 // The Life Of A Write is like this: 1277 // 1278 // Handler starts. No header has been sent. The handler can either 1279 // write a header, or just start writing. Writing before sending a header 1280 // sends an implicitly empty 200 OK header. 1281 // 1282 // If the handler didn't declare a Content-Length up front, we either 1283 // go into chunking mode or, if the handler finishes running before 1284 // the chunking buffer size, we compute a Content-Length and send that 1285 // in the header instead. 1286 // 1287 // Likewise, if the handler didn't set a Content-Type, we sniff that 1288 // from the initial chunk of output. 1289 // 1290 // The Writers are wired together like: 1291 // 1292 // 1. *response (the ResponseWriter) -> 1293 // 2. (*response).w, a *bufio.Writer of bufferBeforeChunkingSize bytes 1294 // 3. chunkWriter.Writer (whose writeHeader finalizes Content-Length/Type) 1295 // and which writes the chunk headers, if needed. 1296 // 4. conn.buf, a bufio.Writer of default (4kB) bytes, writing to -> 1297 // 5. checkConnErrorWriter{c}, which notes any non-nil error on Write 1298 // and populates c.werr with it if so. but otherwise writes to: 1299 // 6. the rwc, the net.Conn. 1300 // 1301 // TODO(bradfitz): short-circuit some of the buffering when the 1302 // initial header contains both a Content-Type and Content-Length. 1303 // Also short-circuit in (1) when the header's been sent and not in 1304 // chunking mode, writing directly to (4) instead, if (2) has no 1305 // buffered data. More generally, we could short-circuit from (1) to 1306 // (3) even in chunking mode if the write size from (1) is over some 1307 // threshold and nothing is in (2). The answer might be mostly making 1308 // bufferBeforeChunkingSize smaller and having bufio's fast-paths deal 1309 // with this instead. 1310 func (w *response) Write(data []byte) (n int, err error) { 1311 return w.write(len(data), data, "") 1312 } 1313 1314 func (w *response) WriteString(data string) (n int, err error) { 1315 return w.write(len(data), nil, data) 1316 } 1317 1318 // either dataB or dataS is non-zero. 1319 func (w *response) write(lenData int, dataB []byte, dataS string) (n int, err error) { 1320 if w.conn.hijacked() { 1321 w.conn.server.logf("http: response.Write on hijacked connection") 1322 return 0, ErrHijacked 1323 } 1324 if !w.wroteHeader { 1325 w.WriteHeader(StatusOK) 1326 } 1327 if lenData == 0 { 1328 return 0, nil 1329 } 1330 if !w.bodyAllowed() { 1331 return 0, ErrBodyNotAllowed 1332 } 1333 1334 w.written += int64(lenData) // ignoring errors, for errorKludge 1335 if w.contentLength != -1 && w.written > w.contentLength { 1336 return 0, ErrContentLength 1337 } 1338 if dataB != nil { 1339 return w.w.Write(dataB) 1340 } else { 1341 return w.w.WriteString(dataS) 1342 } 1343 } 1344 1345 func (w *response) finishRequest() { 1346 w.handlerDone.setTrue() 1347 1348 if !w.wroteHeader { 1349 w.WriteHeader(StatusOK) 1350 } 1351 1352 w.w.Flush() 1353 putBufioWriter(w.w) 1354 w.cw.close() 1355 w.conn.bufw.Flush() 1356 1357 // Close the body (regardless of w.closeAfterReply) so we can 1358 // re-use its bufio.Reader later safely. 1359 w.reqBody.Close() 1360 1361 if w.req.MultipartForm != nil { 1362 w.req.MultipartForm.RemoveAll() 1363 } 1364 } 1365 1366 // shouldReuseConnection reports whether the underlying TCP connection can be reused. 1367 // It must only be called after the handler is done executing. 1368 func (w *response) shouldReuseConnection() bool { 1369 if w.closeAfterReply { 1370 // The request or something set while executing the 1371 // handler indicated we shouldn't reuse this 1372 // connection. 1373 return false 1374 } 1375 1376 if w.req.Method != "HEAD" && w.contentLength != -1 && w.bodyAllowed() && w.contentLength != w.written { 1377 // Did not write enough. Avoid getting out of sync. 1378 return false 1379 } 1380 1381 // There was some error writing to the underlying connection 1382 // during the request, so don't re-use this conn. 1383 if w.conn.werr != nil { 1384 return false 1385 } 1386 1387 if w.closedRequestBodyEarly() { 1388 return false 1389 } 1390 1391 return true 1392 } 1393 1394 func (w *response) closedRequestBodyEarly() bool { 1395 body, ok := w.req.Body.(*body) 1396 return ok && body.didEarlyClose() 1397 } 1398 1399 func (w *response) Flush() { 1400 if !w.wroteHeader { 1401 w.WriteHeader(StatusOK) 1402 } 1403 w.w.Flush() 1404 w.cw.flush() 1405 } 1406 1407 func (c *conn) finalFlush() { 1408 if c.bufr != nil { 1409 // Steal the bufio.Reader (~4KB worth of memory) and its associated 1410 // reader for a future connection. 1411 putBufioReader(c.bufr) 1412 c.bufr = nil 1413 } 1414 1415 if c.bufw != nil { 1416 c.bufw.Flush() 1417 // Steal the bufio.Writer (~4KB worth of memory) and its associated 1418 // writer for a future connection. 1419 putBufioWriter(c.bufw) 1420 c.bufw = nil 1421 } 1422 } 1423 1424 // Close the connection. 1425 func (c *conn) close() { 1426 c.finalFlush() 1427 c.rwc.Close() 1428 } 1429 1430 // rstAvoidanceDelay is the amount of time we sleep after closing the 1431 // write side of a TCP connection before closing the entire socket. 1432 // By sleeping, we increase the chances that the client sees our FIN 1433 // and processes its final data before they process the subsequent RST 1434 // from closing a connection with known unread data. 1435 // This RST seems to occur mostly on BSD systems. (And Windows?) 1436 // This timeout is somewhat arbitrary (~latency around the planet). 1437 const rstAvoidanceDelay = 500 * time.Millisecond 1438 1439 type closeWriter interface { 1440 CloseWrite() error 1441 } 1442 1443 var _ closeWriter = (*net.TCPConn)(nil) 1444 1445 // closeWrite flushes any outstanding data and sends a FIN packet (if 1446 // client is connected via TCP), signalling that we're done. We then 1447 // pause for a bit, hoping the client processes it before any 1448 // subsequent RST. 1449 // 1450 // See https://golang.org/issue/3595 1451 func (c *conn) closeWriteAndWait() { 1452 c.finalFlush() 1453 if tcp, ok := c.rwc.(closeWriter); ok { 1454 tcp.CloseWrite() 1455 } 1456 time.Sleep(rstAvoidanceDelay) 1457 } 1458 1459 // validNPN reports whether the proto is not a blacklisted Next 1460 // Protocol Negotiation protocol. Empty and built-in protocol types 1461 // are blacklisted and can't be overridden with alternate 1462 // implementations. 1463 func validNPN(proto string) bool { 1464 switch proto { 1465 case "", "http/1.1", "http/1.0": 1466 return false 1467 } 1468 return true 1469 } 1470 1471 func (c *conn) setState(nc net.Conn, state ConnState) { 1472 if hook := c.server.ConnState; hook != nil { 1473 hook(nc, state) 1474 } 1475 } 1476 1477 // badRequestError is a literal string (used by in the server in HTML, 1478 // unescaped) to tell the user why their request was bad. It should 1479 // be plain text without user info or other embedded errors. 1480 type badRequestError string 1481 1482 func (e badRequestError) Error() string { return "Bad Request: " + string(e) } 1483 1484 // Serve a new connection. 1485 func (c *conn) serve(ctx context.Context) { 1486 c.remoteAddr = c.rwc.RemoteAddr().String() 1487 defer func() { 1488 if err := recover(); err != nil { 1489 const size = 64 << 10 1490 buf := make([]byte, size) 1491 buf = buf[:runtime.Stack(buf, false)] 1492 c.server.logf("http: panic serving %v: %v\n%s", c.remoteAddr, err, buf) 1493 } 1494 if !c.hijacked() { 1495 c.close() 1496 c.setState(c.rwc, StateClosed) 1497 } 1498 }() 1499 1500 if tlsConn, ok := c.rwc.(*tls.Conn); ok { 1501 if d := c.server.ReadTimeout; d != 0 { 1502 c.rwc.SetReadDeadline(time.Now().Add(d)) 1503 } 1504 if d := c.server.WriteTimeout; d != 0 { 1505 c.rwc.SetWriteDeadline(time.Now().Add(d)) 1506 } 1507 if err := tlsConn.Handshake(); err != nil { 1508 c.server.logf("http: TLS handshake error from %s: %v", c.rwc.RemoteAddr(), err) 1509 return 1510 } 1511 c.tlsState = new(tls.ConnectionState) 1512 *c.tlsState = tlsConn.ConnectionState() 1513 if proto := c.tlsState.NegotiatedProtocol; validNPN(proto) { 1514 if fn := c.server.TLSNextProto[proto]; fn != nil { 1515 h := initNPNRequest{tlsConn, serverHandler{c.server}} 1516 fn(c.server, tlsConn, h) 1517 } 1518 return 1519 } 1520 } 1521 1522 // HTTP/1.x from here on. 1523 1524 c.r = &connReader{r: c.rwc} 1525 c.bufr = newBufioReader(c.r) 1526 c.bufw = newBufioWriterSize(checkConnErrorWriter{c}, 4<<10) 1527 1528 ctx, cancelCtx := context.WithCancel(ctx) 1529 defer cancelCtx() 1530 1531 for { 1532 w, err := c.readRequest(ctx) 1533 if c.r.remain != c.server.initialReadLimitSize() { 1534 // If we read any bytes off the wire, we're active. 1535 c.setState(c.rwc, StateActive) 1536 } 1537 if err != nil { 1538 if err == errTooLarge { 1539 // Their HTTP client may or may not be 1540 // able to read this if we're 1541 // responding to them and hanging up 1542 // while they're still writing their 1543 // request. Undefined behavior. 1544 io.WriteString(c.rwc, "HTTP/1.1 431 Request Header Fields Too Large\r\nContent-Type: text/plain\r\nConnection: close\r\n\r\n431 Request Header Fields Too Large") 1545 c.closeWriteAndWait() 1546 return 1547 } 1548 if err == io.EOF { 1549 return // don't reply 1550 } 1551 if neterr, ok := err.(net.Error); ok && neterr.Timeout() { 1552 return // don't reply 1553 } 1554 var publicErr string 1555 if v, ok := err.(badRequestError); ok { 1556 publicErr = ": " + string(v) 1557 } 1558 io.WriteString(c.rwc, "HTTP/1.1 400 Bad Request\r\nContent-Type: text/plain\r\nConnection: close\r\n\r\n400 Bad Request"+publicErr) 1559 return 1560 } 1561 1562 // Expect 100 Continue support 1563 req := w.req 1564 if req.expectsContinue() { 1565 if req.ProtoAtLeast(1, 1) && req.ContentLength != 0 { 1566 // Wrap the Body reader with one that replies on the connection 1567 req.Body = &expectContinueReader{readCloser: req.Body, resp: w} 1568 } 1569 } else if req.Header.get("Expect") != "" { 1570 w.sendExpectationFailed() 1571 return 1572 } 1573 1574 // HTTP cannot have multiple simultaneous active requests.[*] 1575 // Until the server replies to this request, it can't read another, 1576 // so we might as well run the handler in this goroutine. 1577 // [*] Not strictly true: HTTP pipelining. We could let them all process 1578 // in parallel even if their responses need to be serialized. 1579 serverHandler{c.server}.ServeHTTP(w, w.req) 1580 w.cancelCtx() 1581 if c.hijacked() { 1582 return 1583 } 1584 w.finishRequest() 1585 if !w.shouldReuseConnection() { 1586 if w.requestBodyLimitHit || w.closedRequestBodyEarly() { 1587 c.closeWriteAndWait() 1588 } 1589 return 1590 } 1591 c.setState(c.rwc, StateIdle) 1592 } 1593 } 1594 1595 func (w *response) sendExpectationFailed() { 1596 // TODO(bradfitz): let ServeHTTP handlers handle 1597 // requests with non-standard expectation[s]? Seems 1598 // theoretical at best, and doesn't fit into the 1599 // current ServeHTTP model anyway. We'd need to 1600 // make the ResponseWriter an optional 1601 // "ExpectReplier" interface or something. 1602 // 1603 // For now we'll just obey RFC 2616 14.20 which says 1604 // "If a server receives a request containing an 1605 // Expect field that includes an expectation- 1606 // extension that it does not support, it MUST 1607 // respond with a 417 (Expectation Failed) status." 1608 w.Header().Set("Connection", "close") 1609 w.WriteHeader(StatusExpectationFailed) 1610 w.finishRequest() 1611 } 1612 1613 // Hijack implements the Hijacker.Hijack method. Our response is both a ResponseWriter 1614 // and a Hijacker. 1615 func (w *response) Hijack() (rwc net.Conn, buf *bufio.ReadWriter, err error) { 1616 if w.handlerDone.isSet() { 1617 panic("net/http: Hijack called after ServeHTTP finished") 1618 } 1619 if w.wroteHeader { 1620 w.cw.flush() 1621 } 1622 1623 c := w.conn 1624 c.mu.Lock() 1625 defer c.mu.Unlock() 1626 1627 if w.closeNotifyCh != nil { 1628 return nil, nil, errors.New("http: Hijack is incompatible with use of CloseNotifier in same ServeHTTP call") 1629 } 1630 1631 // Release the bufioWriter that writes to the chunk writer, it is not 1632 // used after a connection has been hijacked. 1633 rwc, buf, err = c.hijackLocked() 1634 if err == nil { 1635 putBufioWriter(w.w) 1636 w.w = nil 1637 } 1638 return rwc, buf, err 1639 } 1640 1641 func (w *response) CloseNotify() <-chan bool { 1642 if w.handlerDone.isSet() { 1643 panic("net/http: CloseNotify called after ServeHTTP finished") 1644 } 1645 c := w.conn 1646 c.mu.Lock() 1647 defer c.mu.Unlock() 1648 1649 if w.closeNotifyCh != nil { 1650 return w.closeNotifyCh 1651 } 1652 ch := make(chan bool, 1) 1653 w.closeNotifyCh = ch 1654 1655 if w.conn.hijackedv { 1656 // CloseNotify is undefined after a hijack, but we have 1657 // no place to return an error, so just return a channel, 1658 // even though it'll never receive a value. 1659 return ch 1660 } 1661 1662 var once sync.Once 1663 notify := func() { once.Do(func() { ch <- true }) } 1664 1665 if requestBodyRemains(w.reqBody) { 1666 // They're still consuming the request body, so we 1667 // shouldn't notify yet. 1668 registerOnHitEOF(w.reqBody, func() { 1669 c.mu.Lock() 1670 defer c.mu.Unlock() 1671 startCloseNotifyBackgroundRead(c, notify) 1672 }) 1673 } else { 1674 startCloseNotifyBackgroundRead(c, notify) 1675 } 1676 return ch 1677 } 1678 1679 // c.mu must be held. 1680 func startCloseNotifyBackgroundRead(c *conn, notify func()) { 1681 if c.bufr.Buffered() > 0 { 1682 // They've consumed the request body, so anything 1683 // remaining is a pipelined request, which we 1684 // document as firing on. 1685 notify() 1686 } else { 1687 c.r.startBackgroundRead(notify) 1688 } 1689 } 1690 1691 func registerOnHitEOF(rc io.ReadCloser, fn func()) { 1692 switch v := rc.(type) { 1693 case *expectContinueReader: 1694 registerOnHitEOF(v.readCloser, fn) 1695 case *body: 1696 v.registerOnHitEOF(fn) 1697 default: 1698 panic("unexpected type " + fmt.Sprintf("%T", rc)) 1699 } 1700 } 1701 1702 // requestBodyRemains reports whether future calls to Read 1703 // on rc might yield more data. 1704 func requestBodyRemains(rc io.ReadCloser) bool { 1705 if rc == eofReader { 1706 return false 1707 } 1708 switch v := rc.(type) { 1709 case *expectContinueReader: 1710 return requestBodyRemains(v.readCloser) 1711 case *body: 1712 return v.bodyRemains() 1713 default: 1714 panic("unexpected type " + fmt.Sprintf("%T", rc)) 1715 } 1716 } 1717 1718 // The HandlerFunc type is an adapter to allow the use of 1719 // ordinary functions as HTTP handlers. If f is a function 1720 // with the appropriate signature, HandlerFunc(f) is a 1721 // Handler that calls f. 1722 type HandlerFunc func(ResponseWriter, *Request) 1723 1724 // ServeHTTP calls f(w, r). 1725 func (f HandlerFunc) ServeHTTP(w ResponseWriter, r *Request) { 1726 f(w, r) 1727 } 1728 1729 // Helper handlers 1730 1731 // Error replies to the request with the specified error message and HTTP code. 1732 // It does not otherwise end the request; the caller should ensure no further 1733 // writes are done to w. 1734 // The error message should be plain text. 1735 func Error(w ResponseWriter, error string, code int) { 1736 w.Header().Set("Content-Type", "text/plain; charset=utf-8") 1737 w.Header().Set("X-Content-Type-Options", "nosniff") 1738 w.WriteHeader(code) 1739 fmt.Fprintln(w, error) 1740 } 1741 1742 // NotFound replies to the request with an HTTP 404 not found error. 1743 func NotFound(w ResponseWriter, r *Request) { Error(w, "404 page not found", StatusNotFound) } 1744 1745 // NotFoundHandler returns a simple request handler 1746 // that replies to each request with a ``404 page not found'' reply. 1747 func NotFoundHandler() Handler { return HandlerFunc(NotFound) } 1748 1749 // StripPrefix returns a handler that serves HTTP requests 1750 // by removing the given prefix from the request URL's Path 1751 // and invoking the handler h. StripPrefix handles a 1752 // request for a path that doesn't begin with prefix by 1753 // replying with an HTTP 404 not found error. 1754 func StripPrefix(prefix string, h Handler) Handler { 1755 if prefix == "" { 1756 return h 1757 } 1758 return HandlerFunc(func(w ResponseWriter, r *Request) { 1759 if p := strings.TrimPrefix(r.URL.Path, prefix); len(p) < len(r.URL.Path) { 1760 r.URL.Path = p 1761 h.ServeHTTP(w, r) 1762 } else { 1763 NotFound(w, r) 1764 } 1765 }) 1766 } 1767 1768 // Redirect replies to the request with a redirect to url, 1769 // which may be a path relative to the request path. 1770 // 1771 // The provided code should be in the 3xx range and is usually 1772 // StatusMovedPermanently, StatusFound or StatusSeeOther. 1773 func Redirect(w ResponseWriter, r *Request, urlStr string, code int) { 1774 if u, err := url.Parse(urlStr); err == nil { 1775 // If url was relative, make absolute by 1776 // combining with request path. 1777 // The browser would probably do this for us, 1778 // but doing it ourselves is more reliable. 1779 1780 // NOTE(rsc): RFC 2616 says that the Location 1781 // line must be an absolute URI, like 1782 // "http://www.google.com/redirect/", 1783 // not a path like "/redirect/". 1784 // Unfortunately, we don't know what to 1785 // put in the host name section to get the 1786 // client to connect to us again, so we can't 1787 // know the right absolute URI to send back. 1788 // Because of this problem, no one pays attention 1789 // to the RFC; they all send back just a new path. 1790 // So do we. 1791 if u.Scheme == "" && u.Host == "" { 1792 oldpath := r.URL.Path 1793 if oldpath == "" { // should not happen, but avoid a crash if it does 1794 oldpath = "/" 1795 } 1796 1797 // no leading http://server 1798 if urlStr == "" || urlStr[0] != '/' { 1799 // make relative path absolute 1800 olddir, _ := path.Split(oldpath) 1801 urlStr = olddir + urlStr 1802 } 1803 1804 var query string 1805 if i := strings.Index(urlStr, "?"); i != -1 { 1806 urlStr, query = urlStr[:i], urlStr[i:] 1807 } 1808 1809 // clean up but preserve trailing slash 1810 trailing := strings.HasSuffix(urlStr, "/") 1811 urlStr = path.Clean(urlStr) 1812 if trailing && !strings.HasSuffix(urlStr, "/") { 1813 urlStr += "/" 1814 } 1815 urlStr += query 1816 } 1817 } 1818 1819 w.Header().Set("Location", urlStr) 1820 w.WriteHeader(code) 1821 1822 // RFC 2616 recommends that a short note "SHOULD" be included in the 1823 // response because older user agents may not understand 301/307. 1824 // Shouldn't send the response for POST or HEAD; that leaves GET. 1825 if r.Method == "GET" { 1826 note := "<a href=\"" + htmlEscape(urlStr) + "\">" + statusText[code] + "</a>.\n" 1827 fmt.Fprintln(w, note) 1828 } 1829 } 1830 1831 var htmlReplacer = strings.NewReplacer( 1832 "&", "&", 1833 "<", "<", 1834 ">", ">", 1835 // """ is shorter than """. 1836 `"`, """, 1837 // "'" is shorter than "'" and apos was not in HTML until HTML5. 1838 "'", "'", 1839 ) 1840 1841 func htmlEscape(s string) string { 1842 return htmlReplacer.Replace(s) 1843 } 1844 1845 // Redirect to a fixed URL 1846 type redirectHandler struct { 1847 url string 1848 code int 1849 } 1850 1851 func (rh *redirectHandler) ServeHTTP(w ResponseWriter, r *Request) { 1852 Redirect(w, r, rh.url, rh.code) 1853 } 1854 1855 // RedirectHandler returns a request handler that redirects 1856 // each request it receives to the given url using the given 1857 // status code. 1858 // 1859 // The provided code should be in the 3xx range and is usually 1860 // StatusMovedPermanently, StatusFound or StatusSeeOther. 1861 func RedirectHandler(url string, code int) Handler { 1862 return &redirectHandler{url, code} 1863 } 1864 1865 // ServeMux is an HTTP request multiplexer. 1866 // It matches the URL of each incoming request against a list of registered 1867 // patterns and calls the handler for the pattern that 1868 // most closely matches the URL. 1869 // 1870 // Patterns name fixed, rooted paths, like "/favicon.ico", 1871 // or rooted subtrees, like "/images/" (note the trailing slash). 1872 // Longer patterns take precedence over shorter ones, so that 1873 // if there are handlers registered for both "/images/" 1874 // and "/images/thumbnails/", the latter handler will be 1875 // called for paths beginning "/images/thumbnails/" and the 1876 // former will receive requests for any other paths in the 1877 // "/images/" subtree. 1878 // 1879 // Note that since a pattern ending in a slash names a rooted subtree, 1880 // the pattern "/" matches all paths not matched by other registered 1881 // patterns, not just the URL with Path == "/". 1882 // 1883 // If a subtree has been registered and a request is received naming the 1884 // subtree root without its trailing slash, ServeMux redirects that 1885 // request to the subtree root (adding the trailing slash). This behavior can 1886 // be overridden with a separate registration for the path without 1887 // the trailing slash. For example, registering "/images/" causes ServeMux 1888 // to redirect a request for "/images" to "/images/", unless "/images" has 1889 // been registered separately. 1890 // 1891 // Patterns may optionally begin with a host name, restricting matches to 1892 // URLs on that host only. Host-specific patterns take precedence over 1893 // general patterns, so that a handler might register for the two patterns 1894 // "/codesearch" and "codesearch.google.com/" without also taking over 1895 // requests for "http://www.google.com/". 1896 // 1897 // ServeMux also takes care of sanitizing the URL request path, 1898 // redirecting any request containing . or .. elements or repeated slashes 1899 // to an equivalent, cleaner URL. 1900 type ServeMux struct { 1901 mu sync.RWMutex 1902 m map[string]muxEntry 1903 hosts bool // whether any patterns contain hostnames 1904 } 1905 1906 type muxEntry struct { 1907 explicit bool 1908 h Handler 1909 pattern string 1910 } 1911 1912 // NewServeMux allocates and returns a new ServeMux. 1913 func NewServeMux() *ServeMux { return new(ServeMux) } 1914 1915 // DefaultServeMux is the default ServeMux used by Serve. 1916 var DefaultServeMux = &defaultServeMux 1917 1918 var defaultServeMux ServeMux 1919 1920 // Does path match pattern? 1921 func pathMatch(pattern, path string) bool { 1922 if len(pattern) == 0 { 1923 // should not happen 1924 return false 1925 } 1926 n := len(pattern) 1927 if pattern[n-1] != '/' { 1928 return pattern == path 1929 } 1930 return len(path) >= n && path[0:n] == pattern 1931 } 1932 1933 // Return the canonical path for p, eliminating . and .. elements. 1934 func cleanPath(p string) string { 1935 if p == "" { 1936 return "/" 1937 } 1938 if p[0] != '/' { 1939 p = "/" + p 1940 } 1941 np := path.Clean(p) 1942 // path.Clean removes trailing slash except for root; 1943 // put the trailing slash back if necessary. 1944 if p[len(p)-1] == '/' && np != "/" { 1945 np += "/" 1946 } 1947 return np 1948 } 1949 1950 // Find a handler on a handler map given a path string 1951 // Most-specific (longest) pattern wins 1952 func (mux *ServeMux) match(path string) (h Handler, pattern string) { 1953 var n = 0 1954 for k, v := range mux.m { 1955 if !pathMatch(k, path) { 1956 continue 1957 } 1958 if h == nil || len(k) > n { 1959 n = len(k) 1960 h = v.h 1961 pattern = v.pattern 1962 } 1963 } 1964 return 1965 } 1966 1967 // Handler returns the handler to use for the given request, 1968 // consulting r.Method, r.Host, and r.URL.Path. It always returns 1969 // a non-nil handler. If the path is not in its canonical form, the 1970 // handler will be an internally-generated handler that redirects 1971 // to the canonical path. 1972 // 1973 // Handler also returns the registered pattern that matches the 1974 // request or, in the case of internally-generated redirects, 1975 // the pattern that will match after following the redirect. 1976 // 1977 // If there is no registered handler that applies to the request, 1978 // Handler returns a ``page not found'' handler and an empty pattern. 1979 func (mux *ServeMux) Handler(r *Request) (h Handler, pattern string) { 1980 if r.Method != "CONNECT" { 1981 if p := cleanPath(r.URL.Path); p != r.URL.Path { 1982 _, pattern = mux.handler(r.Host, p) 1983 url := *r.URL 1984 url.Path = p 1985 return RedirectHandler(url.String(), StatusMovedPermanently), pattern 1986 } 1987 } 1988 1989 return mux.handler(r.Host, r.URL.Path) 1990 } 1991 1992 // handler is the main implementation of Handler. 1993 // The path is known to be in canonical form, except for CONNECT methods. 1994 func (mux *ServeMux) handler(host, path string) (h Handler, pattern string) { 1995 mux.mu.RLock() 1996 defer mux.mu.RUnlock() 1997 1998 // Host-specific pattern takes precedence over generic ones 1999 if mux.hosts { 2000 h, pattern = mux.match(host + path) 2001 } 2002 if h == nil { 2003 h, pattern = mux.match(path) 2004 } 2005 if h == nil { 2006 h, pattern = NotFoundHandler(), "" 2007 } 2008 return 2009 } 2010 2011 // ServeHTTP dispatches the request to the handler whose 2012 // pattern most closely matches the request URL. 2013 func (mux *ServeMux) ServeHTTP(w ResponseWriter, r *Request) { 2014 if r.RequestURI == "*" { 2015 if r.ProtoAtLeast(1, 1) { 2016 w.Header().Set("Connection", "close") 2017 } 2018 w.WriteHeader(StatusBadRequest) 2019 return 2020 } 2021 h, _ := mux.Handler(r) 2022 h.ServeHTTP(w, r) 2023 } 2024 2025 // Handle registers the handler for the given pattern. 2026 // If a handler already exists for pattern, Handle panics. 2027 func (mux *ServeMux) Handle(pattern string, handler Handler) { 2028 mux.mu.Lock() 2029 defer mux.mu.Unlock() 2030 2031 if pattern == "" { 2032 panic("http: invalid pattern " + pattern) 2033 } 2034 if handler == nil { 2035 panic("http: nil handler") 2036 } 2037 if mux.m[pattern].explicit { 2038 panic("http: multiple registrations for " + pattern) 2039 } 2040 2041 if mux.m == nil { 2042 mux.m = make(map[string]muxEntry) 2043 } 2044 mux.m[pattern] = muxEntry{explicit: true, h: handler, pattern: pattern} 2045 2046 if pattern[0] != '/' { 2047 mux.hosts = true 2048 } 2049 2050 // Helpful behavior: 2051 // If pattern is /tree/, insert an implicit permanent redirect for /tree. 2052 // It can be overridden by an explicit registration. 2053 n := len(pattern) 2054 if n > 0 && pattern[n-1] == '/' && !mux.m[pattern[0:n-1]].explicit { 2055 // If pattern contains a host name, strip it and use remaining 2056 // path for redirect. 2057 path := pattern 2058 if pattern[0] != '/' { 2059 // In pattern, at least the last character is a '/', so 2060 // strings.Index can't be -1. 2061 path = pattern[strings.Index(pattern, "/"):] 2062 } 2063 url := &url.URL{Path: path} 2064 mux.m[pattern[0:n-1]] = muxEntry{h: RedirectHandler(url.String(), StatusMovedPermanently), pattern: pattern} 2065 } 2066 } 2067 2068 // HandleFunc registers the handler function for the given pattern. 2069 func (mux *ServeMux) HandleFunc(pattern string, handler func(ResponseWriter, *Request)) { 2070 mux.Handle(pattern, HandlerFunc(handler)) 2071 } 2072 2073 // Handle registers the handler for the given pattern 2074 // in the DefaultServeMux. 2075 // The documentation for ServeMux explains how patterns are matched. 2076 func Handle(pattern string, handler Handler) { DefaultServeMux.Handle(pattern, handler) } 2077 2078 // HandleFunc registers the handler function for the given pattern 2079 // in the DefaultServeMux. 2080 // The documentation for ServeMux explains how patterns are matched. 2081 func HandleFunc(pattern string, handler func(ResponseWriter, *Request)) { 2082 DefaultServeMux.HandleFunc(pattern, handler) 2083 } 2084 2085 // Serve accepts incoming HTTP connections on the listener l, 2086 // creating a new service goroutine for each. The service goroutines 2087 // read requests and then call handler to reply to them. 2088 // Handler is typically nil, in which case the DefaultServeMux is used. 2089 func Serve(l net.Listener, handler Handler) error { 2090 srv := &Server{Handler: handler} 2091 return srv.Serve(l) 2092 } 2093 2094 // A Server defines parameters for running an HTTP server. 2095 // The zero value for Server is a valid configuration. 2096 type Server struct { 2097 Addr string // TCP address to listen on, ":http" if empty 2098 Handler Handler // handler to invoke, http.DefaultServeMux if nil 2099 ReadTimeout time.Duration // maximum duration before timing out read of the request 2100 WriteTimeout time.Duration // maximum duration before timing out write of the response 2101 TLSConfig *tls.Config // optional TLS config, used by ListenAndServeTLS 2102 2103 // MaxHeaderBytes controls the maximum number of bytes the 2104 // server will read parsing the request header's keys and 2105 // values, including the request line. It does not limit the 2106 // size of the request body. 2107 // If zero, DefaultMaxHeaderBytes is used. 2108 MaxHeaderBytes int 2109 2110 // TLSNextProto optionally specifies a function to take over 2111 // ownership of the provided TLS connection when an NPN/ALPN 2112 // protocol upgrade has occurred. The map key is the protocol 2113 // name negotiated. The Handler argument should be used to 2114 // handle HTTP requests and will initialize the Request's TLS 2115 // and RemoteAddr if not already set. The connection is 2116 // automatically closed when the function returns. 2117 // If TLSNextProto is nil, HTTP/2 support is enabled automatically. 2118 TLSNextProto map[string]func(*Server, *tls.Conn, Handler) 2119 2120 // ConnState specifies an optional callback function that is 2121 // called when a client connection changes state. See the 2122 // ConnState type and associated constants for details. 2123 ConnState func(net.Conn, ConnState) 2124 2125 // ErrorLog specifies an optional logger for errors accepting 2126 // connections and unexpected behavior from handlers. 2127 // If nil, logging goes to os.Stderr via the log package's 2128 // standard logger. 2129 ErrorLog *log.Logger 2130 2131 disableKeepAlives int32 // accessed atomically. 2132 nextProtoOnce sync.Once // guards setupHTTP2_* init 2133 nextProtoErr error // result of http2.ConfigureServer if used 2134 } 2135 2136 // A ConnState represents the state of a client connection to a server. 2137 // It's used by the optional Server.ConnState hook. 2138 type ConnState int 2139 2140 const ( 2141 // StateNew represents a new connection that is expected to 2142 // send a request immediately. Connections begin at this 2143 // state and then transition to either StateActive or 2144 // StateClosed. 2145 StateNew ConnState = iota 2146 2147 // StateActive represents a connection that has read 1 or more 2148 // bytes of a request. The Server.ConnState hook for 2149 // StateActive fires before the request has entered a handler 2150 // and doesn't fire again until the request has been 2151 // handled. After the request is handled, the state 2152 // transitions to StateClosed, StateHijacked, or StateIdle. 2153 // For HTTP/2, StateActive fires on the transition from zero 2154 // to one active request, and only transitions away once all 2155 // active requests are complete. That means that ConnState 2156 // cannot be used to do per-request work; ConnState only notes 2157 // the overall state of the connection. 2158 StateActive 2159 2160 // StateIdle represents a connection that has finished 2161 // handling a request and is in the keep-alive state, waiting 2162 // for a new request. Connections transition from StateIdle 2163 // to either StateActive or StateClosed. 2164 StateIdle 2165 2166 // StateHijacked represents a hijacked connection. 2167 // This is a terminal state. It does not transition to StateClosed. 2168 StateHijacked 2169 2170 // StateClosed represents a closed connection. 2171 // This is a terminal state. Hijacked connections do not 2172 // transition to StateClosed. 2173 StateClosed 2174 ) 2175 2176 var stateName = map[ConnState]string{ 2177 StateNew: "new", 2178 StateActive: "active", 2179 StateIdle: "idle", 2180 StateHijacked: "hijacked", 2181 StateClosed: "closed", 2182 } 2183 2184 func (c ConnState) String() string { 2185 return stateName[c] 2186 } 2187 2188 // serverHandler delegates to either the server's Handler or 2189 // DefaultServeMux and also handles "OPTIONS *" requests. 2190 type serverHandler struct { 2191 srv *Server 2192 } 2193 2194 func (sh serverHandler) ServeHTTP(rw ResponseWriter, req *Request) { 2195 handler := sh.srv.Handler 2196 if handler == nil { 2197 handler = DefaultServeMux 2198 } 2199 if req.RequestURI == "*" && req.Method == "OPTIONS" { 2200 handler = globalOptionsHandler{} 2201 } 2202 handler.ServeHTTP(rw, req) 2203 } 2204 2205 // ListenAndServe listens on the TCP network address srv.Addr and then 2206 // calls Serve to handle requests on incoming connections. 2207 // Accepted connections are configured to enable TCP keep-alives. 2208 // If srv.Addr is blank, ":http" is used. 2209 // ListenAndServe always returns a non-nil error. 2210 func (srv *Server) ListenAndServe() error { 2211 addr := srv.Addr 2212 if addr == "" { 2213 addr = ":http" 2214 } 2215 ln, err := net.Listen("tcp", addr) 2216 if err != nil { 2217 return err 2218 } 2219 return srv.Serve(tcpKeepAliveListener{ln.(*net.TCPListener)}) 2220 } 2221 2222 var testHookServerServe func(*Server, net.Listener) // used if non-nil 2223 2224 // shouldDoServeHTTP2 reports whether Server.Serve should configure 2225 // automatic HTTP/2. (which sets up the srv.TLSNextProto map) 2226 func (srv *Server) shouldConfigureHTTP2ForServe() bool { 2227 if srv.TLSConfig == nil { 2228 // Compatibility with Go 1.6: 2229 // If there's no TLSConfig, it's possible that the user just 2230 // didn't set it on the http.Server, but did pass it to 2231 // tls.NewListener and passed that listener to Serve. 2232 // So we should configure HTTP/2 (to set up srv.TLSNextProto) 2233 // in case the listener returns an "h2" *tls.Conn. 2234 return true 2235 } 2236 // The user specified a TLSConfig on their http.Server. 2237 // In this, case, only configure HTTP/2 if their tls.Config 2238 // explicitly mentions "h2". Otherwise http2.ConfigureServer 2239 // would modify the tls.Config to add it, but they probably already 2240 // passed this tls.Config to tls.NewListener. And if they did, 2241 // it's too late anyway to fix it. It would only be potentially racy. 2242 // See Issue 15908. 2243 return strSliceContains(srv.TLSConfig.NextProtos, http2NextProtoTLS) 2244 } 2245 2246 // Serve accepts incoming connections on the Listener l, creating a 2247 // new service goroutine for each. The service goroutines read requests and 2248 // then call srv.Handler to reply to them. 2249 // 2250 // For HTTP/2 support, srv.TLSConfig should be initialized to the 2251 // provided listener's TLS Config before calling Serve. If 2252 // srv.TLSConfig is non-nil and doesn't include the string "h2" in 2253 // Config.NextProtos, HTTP/2 support is not enabled. 2254 // 2255 // Serve always returns a non-nil error. 2256 func (srv *Server) Serve(l net.Listener) error { 2257 defer l.Close() 2258 if fn := testHookServerServe; fn != nil { 2259 fn(srv, l) 2260 } 2261 var tempDelay time.Duration // how long to sleep on accept failure 2262 2263 if err := srv.setupHTTP2_Serve(); err != nil { 2264 return err 2265 } 2266 2267 // TODO: allow changing base context? can't imagine concrete 2268 // use cases yet. 2269 baseCtx := context.Background() 2270 ctx := context.WithValue(baseCtx, ServerContextKey, srv) 2271 ctx = context.WithValue(ctx, LocalAddrContextKey, l.Addr()) 2272 for { 2273 rw, e := l.Accept() 2274 if e != nil { 2275 if ne, ok := e.(net.Error); ok && ne.Temporary() { 2276 if tempDelay == 0 { 2277 tempDelay = 5 * time.Millisecond 2278 } else { 2279 tempDelay *= 2 2280 } 2281 if max := 1 * time.Second; tempDelay > max { 2282 tempDelay = max 2283 } 2284 srv.logf("http: Accept error: %v; retrying in %v", e, tempDelay) 2285 time.Sleep(tempDelay) 2286 continue 2287 } 2288 return e 2289 } 2290 tempDelay = 0 2291 c := srv.newConn(rw) 2292 c.setState(c.rwc, StateNew) // before Serve can return 2293 go c.serve(ctx) 2294 } 2295 } 2296 2297 func (s *Server) doKeepAlives() bool { 2298 return atomic.LoadInt32(&s.disableKeepAlives) == 0 2299 } 2300 2301 // SetKeepAlivesEnabled controls whether HTTP keep-alives are enabled. 2302 // By default, keep-alives are always enabled. Only very 2303 // resource-constrained environments or servers in the process of 2304 // shutting down should disable them. 2305 func (srv *Server) SetKeepAlivesEnabled(v bool) { 2306 if v { 2307 atomic.StoreInt32(&srv.disableKeepAlives, 0) 2308 } else { 2309 atomic.StoreInt32(&srv.disableKeepAlives, 1) 2310 } 2311 } 2312 2313 func (s *Server) logf(format string, args ...interface{}) { 2314 if s.ErrorLog != nil { 2315 s.ErrorLog.Printf(format, args...) 2316 } else { 2317 log.Printf(format, args...) 2318 } 2319 } 2320 2321 // ListenAndServe listens on the TCP network address addr 2322 // and then calls Serve with handler to handle requests 2323 // on incoming connections. 2324 // Accepted connections are configured to enable TCP keep-alives. 2325 // Handler is typically nil, in which case the DefaultServeMux is 2326 // used. 2327 // 2328 // A trivial example server is: 2329 // 2330 // package main 2331 // 2332 // import ( 2333 // "io" 2334 // "net/http" 2335 // "log" 2336 // ) 2337 // 2338 // // hello world, the web server 2339 // func HelloServer(w http.ResponseWriter, req *http.Request) { 2340 // io.WriteString(w, "hello, world!\n") 2341 // } 2342 // 2343 // func main() { 2344 // http.HandleFunc("/hello", HelloServer) 2345 // log.Fatal(http.ListenAndServe(":12345", nil)) 2346 // } 2347 // 2348 // ListenAndServe always returns a non-nil error. 2349 func ListenAndServe(addr string, handler Handler) error { 2350 server := &Server{Addr: addr, Handler: handler} 2351 return server.ListenAndServe() 2352 } 2353 2354 // ListenAndServeTLS acts identically to ListenAndServe, except that it 2355 // expects HTTPS connections. Additionally, files containing a certificate and 2356 // matching private key for the server must be provided. If the certificate 2357 // is signed by a certificate authority, the certFile should be the concatenation 2358 // of the server's certificate, any intermediates, and the CA's certificate. 2359 // 2360 // A trivial example server is: 2361 // 2362 // import ( 2363 // "log" 2364 // "net/http" 2365 // ) 2366 // 2367 // func handler(w http.ResponseWriter, req *http.Request) { 2368 // w.Header().Set("Content-Type", "text/plain") 2369 // w.Write([]byte("This is an example server.\n")) 2370 // } 2371 // 2372 // func main() { 2373 // http.HandleFunc("/", handler) 2374 // log.Printf("About to listen on 10443. Go to https://127.0.0.1:10443/") 2375 // err := http.ListenAndServeTLS(":10443", "cert.pem", "key.pem", nil) 2376 // log.Fatal(err) 2377 // } 2378 // 2379 // One can use generate_cert.go in crypto/tls to generate cert.pem and key.pem. 2380 // 2381 // ListenAndServeTLS always returns a non-nil error. 2382 func ListenAndServeTLS(addr, certFile, keyFile string, handler Handler) error { 2383 server := &Server{Addr: addr, Handler: handler} 2384 return server.ListenAndServeTLS(certFile, keyFile) 2385 } 2386 2387 // ListenAndServeTLS listens on the TCP network address srv.Addr and 2388 // then calls Serve to handle requests on incoming TLS connections. 2389 // Accepted connections are configured to enable TCP keep-alives. 2390 // 2391 // Filenames containing a certificate and matching private key for the 2392 // server must be provided if neither the Server's TLSConfig.Certificates 2393 // nor TLSConfig.GetCertificate are populated. If the certificate is 2394 // signed by a certificate authority, the certFile should be the 2395 // concatenation of the server's certificate, any intermediates, and 2396 // the CA's certificate. 2397 // 2398 // If srv.Addr is blank, ":https" is used. 2399 // 2400 // ListenAndServeTLS always returns a non-nil error. 2401 func (srv *Server) ListenAndServeTLS(certFile, keyFile string) error { 2402 addr := srv.Addr 2403 if addr == "" { 2404 addr = ":https" 2405 } 2406 2407 // Setup HTTP/2 before srv.Serve, to initialize srv.TLSConfig 2408 // before we clone it and create the TLS Listener. 2409 if err := srv.setupHTTP2_ListenAndServeTLS(); err != nil { 2410 return err 2411 } 2412 2413 config := cloneTLSConfig(srv.TLSConfig) 2414 if !strSliceContains(config.NextProtos, "http/1.1") { 2415 config.NextProtos = append(config.NextProtos, "http/1.1") 2416 } 2417 2418 configHasCert := len(config.Certificates) > 0 || config.GetCertificate != nil 2419 if !configHasCert || certFile != "" || keyFile != "" { 2420 var err error 2421 config.Certificates = make([]tls.Certificate, 1) 2422 config.Certificates[0], err = tls.LoadX509KeyPair(certFile, keyFile) 2423 if err != nil { 2424 return err 2425 } 2426 } 2427 2428 ln, err := net.Listen("tcp", addr) 2429 if err != nil { 2430 return err 2431 } 2432 2433 tlsListener := tls.NewListener(tcpKeepAliveListener{ln.(*net.TCPListener)}, config) 2434 return srv.Serve(tlsListener) 2435 } 2436 2437 // setupHTTP2_ListenAndServeTLS conditionally configures HTTP/2 on 2438 // srv and returns whether there was an error setting it up. If it is 2439 // not configured for policy reasons, nil is returned. 2440 func (srv *Server) setupHTTP2_ListenAndServeTLS() error { 2441 srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults) 2442 return srv.nextProtoErr 2443 } 2444 2445 // setupHTTP2_Serve is called from (*Server).Serve and conditionally 2446 // configures HTTP/2 on srv using a more conservative policy than 2447 // setupHTTP2_ListenAndServeTLS because Serve may be called 2448 // concurrently. 2449 // 2450 // The tests named TestTransportAutomaticHTTP2* and 2451 // TestConcurrentServerServe in server_test.go demonstrate some 2452 // of the supported use cases and motivations. 2453 func (srv *Server) setupHTTP2_Serve() error { 2454 srv.nextProtoOnce.Do(srv.onceSetNextProtoDefaults_Serve) 2455 return srv.nextProtoErr 2456 } 2457 2458 func (srv *Server) onceSetNextProtoDefaults_Serve() { 2459 if srv.shouldConfigureHTTP2ForServe() { 2460 srv.onceSetNextProtoDefaults() 2461 } 2462 } 2463 2464 // onceSetNextProtoDefaults configures HTTP/2, if the user hasn't 2465 // configured otherwise. (by setting srv.TLSNextProto non-nil) 2466 // It must only be called via srv.nextProtoOnce (use srv.setupHTTP2_*). 2467 func (srv *Server) onceSetNextProtoDefaults() { 2468 if strings.Contains(os.Getenv("GODEBUG"), "http2server=0") { 2469 return 2470 } 2471 // Enable HTTP/2 by default if the user hasn't otherwise 2472 // configured their TLSNextProto map. 2473 if srv.TLSNextProto == nil { 2474 srv.nextProtoErr = http2ConfigureServer(srv, nil) 2475 } 2476 } 2477 2478 // TimeoutHandler returns a Handler that runs h with the given time limit. 2479 // 2480 // The new Handler calls h.ServeHTTP to handle each request, but if a 2481 // call runs for longer than its time limit, the handler responds with 2482 // a 503 Service Unavailable error and the given message in its body. 2483 // (If msg is empty, a suitable default message will be sent.) 2484 // After such a timeout, writes by h to its ResponseWriter will return 2485 // ErrHandlerTimeout. 2486 // 2487 // TimeoutHandler buffers all Handler writes to memory and does not 2488 // support the Hijacker or Flusher interfaces. 2489 func TimeoutHandler(h Handler, dt time.Duration, msg string) Handler { 2490 return &timeoutHandler{ 2491 handler: h, 2492 body: msg, 2493 dt: dt, 2494 } 2495 } 2496 2497 // ErrHandlerTimeout is returned on ResponseWriter Write calls 2498 // in handlers which have timed out. 2499 var ErrHandlerTimeout = errors.New("http: Handler timeout") 2500 2501 type timeoutHandler struct { 2502 handler Handler 2503 body string 2504 dt time.Duration 2505 2506 // When set, no timer will be created and this channel will 2507 // be used instead. 2508 testTimeout <-chan time.Time 2509 } 2510 2511 func (h *timeoutHandler) errorBody() string { 2512 if h.body != "" { 2513 return h.body 2514 } 2515 return "<html><head><title>Timeout</title></head><body><h1>Timeout</h1></body></html>" 2516 } 2517 2518 func (h *timeoutHandler) ServeHTTP(w ResponseWriter, r *Request) { 2519 var t *time.Timer 2520 timeout := h.testTimeout 2521 if timeout == nil { 2522 t = time.NewTimer(h.dt) 2523 timeout = t.C 2524 } 2525 done := make(chan struct{}) 2526 tw := &timeoutWriter{ 2527 w: w, 2528 h: make(Header), 2529 } 2530 go func() { 2531 h.handler.ServeHTTP(tw, r) 2532 close(done) 2533 }() 2534 select { 2535 case <-done: 2536 tw.mu.Lock() 2537 defer tw.mu.Unlock() 2538 dst := w.Header() 2539 for k, vv := range tw.h { 2540 dst[k] = vv 2541 } 2542 if !tw.wroteHeader { 2543 tw.code = StatusOK 2544 } 2545 w.WriteHeader(tw.code) 2546 w.Write(tw.wbuf.Bytes()) 2547 if t != nil { 2548 t.Stop() 2549 } 2550 case <-timeout: 2551 tw.mu.Lock() 2552 defer tw.mu.Unlock() 2553 w.WriteHeader(StatusServiceUnavailable) 2554 io.WriteString(w, h.errorBody()) 2555 tw.timedOut = true 2556 return 2557 } 2558 } 2559 2560 type timeoutWriter struct { 2561 w ResponseWriter 2562 h Header 2563 wbuf bytes.Buffer 2564 2565 mu sync.Mutex 2566 timedOut bool 2567 wroteHeader bool 2568 code int 2569 } 2570 2571 func (tw *timeoutWriter) Header() Header { return tw.h } 2572 2573 func (tw *timeoutWriter) Write(p []byte) (int, error) { 2574 tw.mu.Lock() 2575 defer tw.mu.Unlock() 2576 if tw.timedOut { 2577 return 0, ErrHandlerTimeout 2578 } 2579 if !tw.wroteHeader { 2580 tw.writeHeader(StatusOK) 2581 } 2582 return tw.wbuf.Write(p) 2583 } 2584 2585 func (tw *timeoutWriter) WriteHeader(code int) { 2586 tw.mu.Lock() 2587 defer tw.mu.Unlock() 2588 if tw.timedOut || tw.wroteHeader { 2589 return 2590 } 2591 tw.writeHeader(code) 2592 } 2593 2594 func (tw *timeoutWriter) writeHeader(code int) { 2595 tw.wroteHeader = true 2596 tw.code = code 2597 } 2598 2599 // tcpKeepAliveListener sets TCP keep-alive timeouts on accepted 2600 // connections. It's used by ListenAndServe and ListenAndServeTLS so 2601 // dead TCP connections (e.g. closing laptop mid-download) eventually 2602 // go away. 2603 type tcpKeepAliveListener struct { 2604 *net.TCPListener 2605 } 2606 2607 func (ln tcpKeepAliveListener) Accept() (c net.Conn, err error) { 2608 tc, err := ln.AcceptTCP() 2609 if err != nil { 2610 return 2611 } 2612 tc.SetKeepAlive(true) 2613 tc.SetKeepAlivePeriod(3 * time.Minute) 2614 return tc, nil 2615 } 2616 2617 // globalOptionsHandler responds to "OPTIONS *" requests. 2618 type globalOptionsHandler struct{} 2619 2620 func (globalOptionsHandler) ServeHTTP(w ResponseWriter, r *Request) { 2621 w.Header().Set("Content-Length", "0") 2622 if r.ContentLength != 0 { 2623 // Read up to 4KB of OPTIONS body (as mentioned in the 2624 // spec as being reserved for future use), but anything 2625 // over that is considered a waste of server resources 2626 // (or an attack) and we abort and close the connection, 2627 // courtesy of MaxBytesReader's EOF behavior. 2628 mb := MaxBytesReader(w, r.Body, 4<<10) 2629 io.Copy(ioutil.Discard, mb) 2630 } 2631 } 2632 2633 type eofReaderWithWriteTo struct{} 2634 2635 func (eofReaderWithWriteTo) WriteTo(io.Writer) (int64, error) { return 0, nil } 2636 func (eofReaderWithWriteTo) Read([]byte) (int, error) { return 0, io.EOF } 2637 2638 // eofReader is a non-nil io.ReadCloser that always returns EOF. 2639 // It has a WriteTo method so io.Copy won't need a buffer. 2640 var eofReader = &struct { 2641 eofReaderWithWriteTo 2642 io.Closer 2643 }{ 2644 eofReaderWithWriteTo{}, 2645 ioutil.NopCloser(nil), 2646 } 2647 2648 // Verify that an io.Copy from an eofReader won't require a buffer. 2649 var _ io.WriterTo = eofReader 2650 2651 // initNPNRequest is an HTTP handler that initializes certain 2652 // uninitialized fields in its *Request. Such partially-initialized 2653 // Requests come from NPN protocol handlers. 2654 type initNPNRequest struct { 2655 c *tls.Conn 2656 h serverHandler 2657 } 2658 2659 func (h initNPNRequest) ServeHTTP(rw ResponseWriter, req *Request) { 2660 if req.TLS == nil { 2661 req.TLS = &tls.ConnectionState{} 2662 *req.TLS = h.c.ConnectionState() 2663 } 2664 if req.Body == nil { 2665 req.Body = eofReader 2666 } 2667 if req.RemoteAddr == "" { 2668 req.RemoteAddr = h.c.RemoteAddr().String() 2669 } 2670 h.h.ServeHTTP(rw, req) 2671 } 2672 2673 // loggingConn is used for debugging. 2674 type loggingConn struct { 2675 name string 2676 net.Conn 2677 } 2678 2679 var ( 2680 uniqNameMu sync.Mutex 2681 uniqNameNext = make(map[string]int) 2682 ) 2683 2684 func newLoggingConn(baseName string, c net.Conn) net.Conn { 2685 uniqNameMu.Lock() 2686 defer uniqNameMu.Unlock() 2687 uniqNameNext[baseName]++ 2688 return &loggingConn{ 2689 name: fmt.Sprintf("%s-%d", baseName, uniqNameNext[baseName]), 2690 Conn: c, 2691 } 2692 } 2693 2694 func (c *loggingConn) Write(p []byte) (n int, err error) { 2695 log.Printf("%s.Write(%d) = ....", c.name, len(p)) 2696 n, err = c.Conn.Write(p) 2697 log.Printf("%s.Write(%d) = %d, %v", c.name, len(p), n, err) 2698 return 2699 } 2700 2701 func (c *loggingConn) Read(p []byte) (n int, err error) { 2702 log.Printf("%s.Read(%d) = ....", c.name, len(p)) 2703 n, err = c.Conn.Read(p) 2704 log.Printf("%s.Read(%d) = %d, %v", c.name, len(p), n, err) 2705 return 2706 } 2707 2708 func (c *loggingConn) Close() (err error) { 2709 log.Printf("%s.Close() = ...", c.name) 2710 err = c.Conn.Close() 2711 log.Printf("%s.Close() = %v", c.name, err) 2712 return 2713 } 2714 2715 // checkConnErrorWriter writes to c.rwc and records any write errors to c.werr. 2716 // It only contains one field (and a pointer field at that), so it 2717 // fits in an interface value without an extra allocation. 2718 type checkConnErrorWriter struct { 2719 c *conn 2720 } 2721 2722 func (w checkConnErrorWriter) Write(p []byte) (n int, err error) { 2723 n, err = w.c.rwc.Write(p) 2724 if err != nil && w.c.werr == nil { 2725 w.c.werr = err 2726 } 2727 return 2728 } 2729 2730 func numLeadingCRorLF(v []byte) (n int) { 2731 for _, b := range v { 2732 if b == '\r' || b == '\n' { 2733 n++ 2734 continue 2735 } 2736 break 2737 } 2738 return 2739 2740 } 2741 2742 func strSliceContains(ss []string, s string) bool { 2743 for _, v := range ss { 2744 if v == s { 2745 return true 2746 } 2747 } 2748 return false 2749 }