github.com/eun/go@v0.0.0-20170811110501-92cfd07a6cfd/src/runtime/mbarrier.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Garbage collector: write barriers.
     6  //
     7  // For the concurrent garbage collector, the Go compiler implements
     8  // updates to pointer-valued fields that may be in heap objects by
     9  // emitting calls to write barriers. This file contains the actual write barrier
    10  // implementation, gcmarkwb_m, and the various wrappers called by the
    11  // compiler to implement pointer assignment, slice assignment,
    12  // typed memmove, and so on.
    13  
    14  package runtime
    15  
    16  import (
    17  	"runtime/internal/sys"
    18  	"unsafe"
    19  )
    20  
    21  // gcmarkwb_m is the mark-phase write barrier, the only barrier we have.
    22  // The rest of this file exists only to make calls to this function.
    23  //
    24  // This is a hybrid barrier that combines a Yuasa-style deletion
    25  // barrier—which shades the object whose reference is being
    26  // overwritten—with Dijkstra insertion barrier—which shades the object
    27  // whose reference is being written. The insertion part of the barrier
    28  // is necessary while the calling goroutine's stack is grey. In
    29  // pseudocode, the barrier is:
    30  //
    31  //     writePointer(slot, ptr):
    32  //         shade(*slot)
    33  //         if current stack is grey:
    34  //             shade(ptr)
    35  //         *slot = ptr
    36  //
    37  // slot is the destination in Go code.
    38  // ptr is the value that goes into the slot in Go code.
    39  //
    40  // Shade indicates that it has seen a white pointer by adding the referent
    41  // to wbuf as well as marking it.
    42  //
    43  // The two shades and the condition work together to prevent a mutator
    44  // from hiding an object from the garbage collector:
    45  //
    46  // 1. shade(*slot) prevents a mutator from hiding an object by moving
    47  // the sole pointer to it from the heap to its stack. If it attempts
    48  // to unlink an object from the heap, this will shade it.
    49  //
    50  // 2. shade(ptr) prevents a mutator from hiding an object by moving
    51  // the sole pointer to it from its stack into a black object in the
    52  // heap. If it attempts to install the pointer into a black object,
    53  // this will shade it.
    54  //
    55  // 3. Once a goroutine's stack is black, the shade(ptr) becomes
    56  // unnecessary. shade(ptr) prevents hiding an object by moving it from
    57  // the stack to the heap, but this requires first having a pointer
    58  // hidden on the stack. Immediately after a stack is scanned, it only
    59  // points to shaded objects, so it's not hiding anything, and the
    60  // shade(*slot) prevents it from hiding any other pointers on its
    61  // stack.
    62  //
    63  // For a detailed description of this barrier and proof of
    64  // correctness, see https://github.com/golang/proposal/blob/master/design/17503-eliminate-rescan.md
    65  //
    66  //
    67  //
    68  // Dealing with memory ordering:
    69  //
    70  // Both the Yuasa and Dijkstra barriers can be made conditional on the
    71  // color of the object containing the slot. We chose not to make these
    72  // conditional because the cost of ensuring that the object holding
    73  // the slot doesn't concurrently change color without the mutator
    74  // noticing seems prohibitive.
    75  //
    76  // Consider the following example where the mutator writes into
    77  // a slot and then loads the slot's mark bit while the GC thread
    78  // writes to the slot's mark bit and then as part of scanning reads
    79  // the slot.
    80  //
    81  // Initially both [slot] and [slotmark] are 0 (nil)
    82  // Mutator thread          GC thread
    83  // st [slot], ptr          st [slotmark], 1
    84  //
    85  // ld r1, [slotmark]       ld r2, [slot]
    86  //
    87  // Without an expensive memory barrier between the st and the ld, the final
    88  // result on most HW (including 386/amd64) can be r1==r2==0. This is a classic
    89  // example of what can happen when loads are allowed to be reordered with older
    90  // stores (avoiding such reorderings lies at the heart of the classic
    91  // Peterson/Dekker algorithms for mutual exclusion). Rather than require memory
    92  // barriers, which will slow down both the mutator and the GC, we always grey
    93  // the ptr object regardless of the slot's color.
    94  //
    95  // Another place where we intentionally omit memory barriers is when
    96  // accessing mheap_.arena_used to check if a pointer points into the
    97  // heap. On relaxed memory machines, it's possible for a mutator to
    98  // extend the size of the heap by updating arena_used, allocate an
    99  // object from this new region, and publish a pointer to that object,
   100  // but for tracing running on another processor to observe the pointer
   101  // but use the old value of arena_used. In this case, tracing will not
   102  // mark the object, even though it's reachable. However, the mutator
   103  // is guaranteed to execute a write barrier when it publishes the
   104  // pointer, so it will take care of marking the object. A general
   105  // consequence of this is that the garbage collector may cache the
   106  // value of mheap_.arena_used. (See issue #9984.)
   107  //
   108  //
   109  // Stack writes:
   110  //
   111  // The compiler omits write barriers for writes to the current frame,
   112  // but if a stack pointer has been passed down the call stack, the
   113  // compiler will generate a write barrier for writes through that
   114  // pointer (because it doesn't know it's not a heap pointer).
   115  //
   116  // One might be tempted to ignore the write barrier if slot points
   117  // into to the stack. Don't do it! Mark termination only re-scans
   118  // frames that have potentially been active since the concurrent scan,
   119  // so it depends on write barriers to track changes to pointers in
   120  // stack frames that have not been active.
   121  //
   122  //
   123  // Global writes:
   124  //
   125  // The Go garbage collector requires write barriers when heap pointers
   126  // are stored in globals. Many garbage collectors ignore writes to
   127  // globals and instead pick up global -> heap pointers during
   128  // termination. This increases pause time, so we instead rely on write
   129  // barriers for writes to globals so that we don't have to rescan
   130  // global during mark termination.
   131  //
   132  //
   133  // Publication ordering:
   134  //
   135  // The write barrier is *pre-publication*, meaning that the write
   136  // barrier happens prior to the *slot = ptr write that may make ptr
   137  // reachable by some goroutine that currently cannot reach it.
   138  //
   139  //
   140  //go:nowritebarrierrec
   141  //go:systemstack
   142  func gcmarkwb_m(slot *uintptr, ptr uintptr) {
   143  	if writeBarrier.needed {
   144  		// Note: This turns bad pointer writes into bad
   145  		// pointer reads, which could be confusing. We avoid
   146  		// reading from obviously bad pointers, which should
   147  		// take care of the vast majority of these. We could
   148  		// patch this up in the signal handler, or use XCHG to
   149  		// combine the read and the write. Checking inheap is
   150  		// insufficient since we need to track changes to
   151  		// roots outside the heap.
   152  		//
   153  		// Note: profbuf.go omits a barrier during signal handler
   154  		// profile logging; that's safe only because this deletion barrier exists.
   155  		// If we remove the deletion barrier, we'll have to work out
   156  		// a new way to handle the profile logging.
   157  		if slot1 := uintptr(unsafe.Pointer(slot)); slot1 >= minPhysPageSize {
   158  			if optr := *slot; optr != 0 {
   159  				shade(optr)
   160  			}
   161  		}
   162  		// TODO: Make this conditional on the caller's stack color.
   163  		if ptr != 0 && inheap(ptr) {
   164  			shade(ptr)
   165  		}
   166  	}
   167  }
   168  
   169  // writebarrierptr_prewrite1 invokes a write barrier for *dst = src
   170  // prior to the write happening.
   171  //
   172  // Write barrier calls must not happen during critical GC and scheduler
   173  // related operations. In particular there are times when the GC assumes
   174  // that the world is stopped but scheduler related code is still being
   175  // executed, dealing with syscalls, dealing with putting gs on runnable
   176  // queues and so forth. This code cannot execute write barriers because
   177  // the GC might drop them on the floor. Stopping the world involves removing
   178  // the p associated with an m. We use the fact that m.p == nil to indicate
   179  // that we are in one these critical section and throw if the write is of
   180  // a pointer to a heap object.
   181  //go:nosplit
   182  func writebarrierptr_prewrite1(dst *uintptr, src uintptr) {
   183  	mp := acquirem()
   184  	if mp.inwb || mp.dying > 0 {
   185  		releasem(mp)
   186  		return
   187  	}
   188  	systemstack(func() {
   189  		if mp.p == 0 && memstats.enablegc && !mp.inwb && inheap(src) {
   190  			throw("writebarrierptr_prewrite1 called with mp.p == nil")
   191  		}
   192  		mp.inwb = true
   193  		gcmarkwb_m(dst, src)
   194  	})
   195  	mp.inwb = false
   196  	releasem(mp)
   197  }
   198  
   199  // NOTE: Really dst *unsafe.Pointer, src unsafe.Pointer,
   200  // but if we do that, Go inserts a write barrier on *dst = src.
   201  //go:nosplit
   202  func writebarrierptr(dst *uintptr, src uintptr) {
   203  	if writeBarrier.cgo {
   204  		cgoCheckWriteBarrier(dst, src)
   205  	}
   206  	if !writeBarrier.needed {
   207  		*dst = src
   208  		return
   209  	}
   210  	if src != 0 && src < minPhysPageSize {
   211  		systemstack(func() {
   212  			print("runtime: writebarrierptr *", dst, " = ", hex(src), "\n")
   213  			throw("bad pointer in write barrier")
   214  		})
   215  	}
   216  	writebarrierptr_prewrite1(dst, src)
   217  	*dst = src
   218  }
   219  
   220  // writebarrierptr_prewrite is like writebarrierptr, but the store
   221  // will be performed by the caller after this call. The caller must
   222  // not allow preemption between this call and the write.
   223  //
   224  //go:nosplit
   225  func writebarrierptr_prewrite(dst *uintptr, src uintptr) {
   226  	if writeBarrier.cgo {
   227  		cgoCheckWriteBarrier(dst, src)
   228  	}
   229  	if !writeBarrier.needed {
   230  		return
   231  	}
   232  	if src != 0 && src < minPhysPageSize {
   233  		systemstack(func() { throw("bad pointer in write barrier") })
   234  	}
   235  	writebarrierptr_prewrite1(dst, src)
   236  }
   237  
   238  // typedmemmove copies a value of type t to dst from src.
   239  // Must be nosplit, see #16026.
   240  //go:nosplit
   241  func typedmemmove(typ *_type, dst, src unsafe.Pointer) {
   242  	if typ.kind&kindNoPointers == 0 {
   243  		bulkBarrierPreWrite(uintptr(dst), uintptr(src), typ.size)
   244  	}
   245  	// There's a race here: if some other goroutine can write to
   246  	// src, it may change some pointer in src after we've
   247  	// performed the write barrier but before we perform the
   248  	// memory copy. This safe because the write performed by that
   249  	// other goroutine must also be accompanied by a write
   250  	// barrier, so at worst we've unnecessarily greyed the old
   251  	// pointer that was in src.
   252  	memmove(dst, src, typ.size)
   253  	if writeBarrier.cgo {
   254  		cgoCheckMemmove(typ, dst, src, 0, typ.size)
   255  	}
   256  }
   257  
   258  //go:linkname reflect_typedmemmove reflect.typedmemmove
   259  func reflect_typedmemmove(typ *_type, dst, src unsafe.Pointer) {
   260  	if raceenabled {
   261  		raceWriteObjectPC(typ, dst, getcallerpc(unsafe.Pointer(&typ)), funcPC(reflect_typedmemmove))
   262  		raceReadObjectPC(typ, src, getcallerpc(unsafe.Pointer(&typ)), funcPC(reflect_typedmemmove))
   263  	}
   264  	if msanenabled {
   265  		msanwrite(dst, typ.size)
   266  		msanread(src, typ.size)
   267  	}
   268  	typedmemmove(typ, dst, src)
   269  }
   270  
   271  // typedmemmovepartial is like typedmemmove but assumes that
   272  // dst and src point off bytes into the value and only copies size bytes.
   273  //go:linkname reflect_typedmemmovepartial reflect.typedmemmovepartial
   274  func reflect_typedmemmovepartial(typ *_type, dst, src unsafe.Pointer, off, size uintptr) {
   275  	if writeBarrier.needed && typ.kind&kindNoPointers == 0 && size >= sys.PtrSize {
   276  		// Pointer-align start address for bulk barrier.
   277  		adst, asrc, asize := dst, src, size
   278  		if frag := -off & (sys.PtrSize - 1); frag != 0 {
   279  			adst = add(dst, frag)
   280  			asrc = add(src, frag)
   281  			asize -= frag
   282  		}
   283  		bulkBarrierPreWrite(uintptr(adst), uintptr(asrc), asize&^(sys.PtrSize-1))
   284  	}
   285  
   286  	memmove(dst, src, size)
   287  	if writeBarrier.cgo {
   288  		cgoCheckMemmove(typ, dst, src, off, size)
   289  	}
   290  }
   291  
   292  // reflectcallmove is invoked by reflectcall to copy the return values
   293  // out of the stack and into the heap, invoking the necessary write
   294  // barriers. dst, src, and size describe the return value area to
   295  // copy. typ describes the entire frame (not just the return values).
   296  // typ may be nil, which indicates write barriers are not needed.
   297  //
   298  // It must be nosplit and must only call nosplit functions because the
   299  // stack map of reflectcall is wrong.
   300  //
   301  //go:nosplit
   302  func reflectcallmove(typ *_type, dst, src unsafe.Pointer, size uintptr) {
   303  	if writeBarrier.needed && typ != nil && typ.kind&kindNoPointers == 0 && size >= sys.PtrSize {
   304  		bulkBarrierPreWrite(uintptr(dst), uintptr(src), size)
   305  	}
   306  	memmove(dst, src, size)
   307  }
   308  
   309  //go:nosplit
   310  func typedslicecopy(typ *_type, dst, src slice) int {
   311  	// TODO(rsc): If typedslicecopy becomes faster than calling
   312  	// typedmemmove repeatedly, consider using during func growslice.
   313  	n := dst.len
   314  	if n > src.len {
   315  		n = src.len
   316  	}
   317  	if n == 0 {
   318  		return 0
   319  	}
   320  	dstp := dst.array
   321  	srcp := src.array
   322  
   323  	if raceenabled {
   324  		callerpc := getcallerpc(unsafe.Pointer(&typ))
   325  		pc := funcPC(slicecopy)
   326  		racewriterangepc(dstp, uintptr(n)*typ.size, callerpc, pc)
   327  		racereadrangepc(srcp, uintptr(n)*typ.size, callerpc, pc)
   328  	}
   329  	if msanenabled {
   330  		msanwrite(dstp, uintptr(n)*typ.size)
   331  		msanread(srcp, uintptr(n)*typ.size)
   332  	}
   333  
   334  	if writeBarrier.cgo {
   335  		cgoCheckSliceCopy(typ, dst, src, n)
   336  	}
   337  
   338  	// Note: No point in checking typ.kind&kindNoPointers here:
   339  	// compiler only emits calls to typedslicecopy for types with pointers,
   340  	// and growslice and reflect_typedslicecopy check for pointers
   341  	// before calling typedslicecopy.
   342  	if !writeBarrier.needed {
   343  		memmove(dstp, srcp, uintptr(n)*typ.size)
   344  		return n
   345  	}
   346  
   347  	systemstack(func() {
   348  		if uintptr(srcp) < uintptr(dstp) && uintptr(srcp)+uintptr(n)*typ.size > uintptr(dstp) {
   349  			// Overlap with src before dst.
   350  			// Copy backward, being careful not to move dstp/srcp
   351  			// out of the array they point into.
   352  			dstp = add(dstp, uintptr(n-1)*typ.size)
   353  			srcp = add(srcp, uintptr(n-1)*typ.size)
   354  			i := 0
   355  			for {
   356  				typedmemmove(typ, dstp, srcp)
   357  				if i++; i >= n {
   358  					break
   359  				}
   360  				dstp = add(dstp, -typ.size)
   361  				srcp = add(srcp, -typ.size)
   362  			}
   363  		} else {
   364  			// Copy forward, being careful not to move dstp/srcp
   365  			// out of the array they point into.
   366  			i := 0
   367  			for {
   368  				typedmemmove(typ, dstp, srcp)
   369  				if i++; i >= n {
   370  					break
   371  				}
   372  				dstp = add(dstp, typ.size)
   373  				srcp = add(srcp, typ.size)
   374  			}
   375  		}
   376  	})
   377  	return n
   378  }
   379  
   380  //go:linkname reflect_typedslicecopy reflect.typedslicecopy
   381  func reflect_typedslicecopy(elemType *_type, dst, src slice) int {
   382  	if elemType.kind&kindNoPointers != 0 {
   383  		n := dst.len
   384  		if n > src.len {
   385  			n = src.len
   386  		}
   387  		if n == 0 {
   388  			return 0
   389  		}
   390  
   391  		size := uintptr(n) * elemType.size
   392  		if raceenabled {
   393  			callerpc := getcallerpc(unsafe.Pointer(&elemType))
   394  			pc := funcPC(reflect_typedslicecopy)
   395  			racewriterangepc(dst.array, size, callerpc, pc)
   396  			racereadrangepc(src.array, size, callerpc, pc)
   397  		}
   398  		if msanenabled {
   399  			msanwrite(dst.array, size)
   400  			msanread(src.array, size)
   401  		}
   402  
   403  		memmove(dst.array, src.array, size)
   404  		return n
   405  	}
   406  	return typedslicecopy(elemType, dst, src)
   407  }
   408  
   409  // typedmemclr clears the typed memory at ptr with type typ. The
   410  // memory at ptr must already be initialized (and hence in type-safe
   411  // state). If the memory is being initialized for the first time, see
   412  // memclrNoHeapPointers.
   413  //
   414  // If the caller knows that typ has pointers, it can alternatively
   415  // call memclrHasPointers.
   416  //
   417  //go:nosplit
   418  func typedmemclr(typ *_type, ptr unsafe.Pointer) {
   419  	if typ.kind&kindNoPointers == 0 {
   420  		bulkBarrierPreWrite(uintptr(ptr), 0, typ.size)
   421  	}
   422  	memclrNoHeapPointers(ptr, typ.size)
   423  }
   424  
   425  // memclrHasPointers clears n bytes of typed memory starting at ptr.
   426  // The caller must ensure that the type of the object at ptr has
   427  // pointers, usually by checking typ.kind&kindNoPointers. However, ptr
   428  // does not have to point to the start of the allocation.
   429  //
   430  //go:nosplit
   431  func memclrHasPointers(ptr unsafe.Pointer, n uintptr) {
   432  	bulkBarrierPreWrite(uintptr(ptr), 0, n)
   433  	memclrNoHeapPointers(ptr, n)
   434  }