github.com/eun/go@v0.0.0-20170811110501-92cfd07a6cfd/src/runtime/mbitmap.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Garbage collector: type and heap bitmaps.
     6  //
     7  // Stack, data, and bss bitmaps
     8  //
     9  // Stack frames and global variables in the data and bss sections are described
    10  // by 1-bit bitmaps in which 0 means uninteresting and 1 means live pointer
    11  // to be visited during GC. The bits in each byte are consumed starting with
    12  // the low bit: 1<<0, 1<<1, and so on.
    13  //
    14  // Heap bitmap
    15  //
    16  // The allocated heap comes from a subset of the memory in the range [start, used),
    17  // where start == mheap_.arena_start and used == mheap_.arena_used.
    18  // The heap bitmap comprises 2 bits for each pointer-sized word in that range,
    19  // stored in bytes indexed backward in memory from start.
    20  // That is, the byte at address start-1 holds the 2-bit entries for the four words
    21  // start through start+3*ptrSize, the byte at start-2 holds the entries for
    22  // start+4*ptrSize through start+7*ptrSize, and so on.
    23  //
    24  // In each 2-bit entry, the lower bit holds the same information as in the 1-bit
    25  // bitmaps: 0 means uninteresting and 1 means live pointer to be visited during GC.
    26  // The meaning of the high bit depends on the position of the word being described
    27  // in its allocated object. In all words *except* the second word, the
    28  // high bit indicates that the object is still being described. In
    29  // these words, if a bit pair with a high bit 0 is encountered, the
    30  // low bit can also be assumed to be 0, and the object description is
    31  // over. This 00 is called the ``dead'' encoding: it signals that the
    32  // rest of the words in the object are uninteresting to the garbage
    33  // collector.
    34  //
    35  // In the second word, the high bit is the GC ``checkmarked'' bit (see below).
    36  //
    37  // The 2-bit entries are split when written into the byte, so that the top half
    38  // of the byte contains 4 high bits and the bottom half contains 4 low (pointer)
    39  // bits.
    40  // This form allows a copy from the 1-bit to the 4-bit form to keep the
    41  // pointer bits contiguous, instead of having to space them out.
    42  //
    43  // The code makes use of the fact that the zero value for a heap bitmap
    44  // has no live pointer bit set and is (depending on position), not used,
    45  // not checkmarked, and is the dead encoding.
    46  // These properties must be preserved when modifying the encoding.
    47  //
    48  // The bitmap for noscan spans is not maintained. Code must ensure
    49  // that an object is scannable before consulting its bitmap by
    50  // checking either the noscan bit in the span or by consulting its
    51  // type's information.
    52  //
    53  // Checkmarks
    54  //
    55  // In a concurrent garbage collector, one worries about failing to mark
    56  // a live object due to mutations without write barriers or bugs in the
    57  // collector implementation. As a sanity check, the GC has a 'checkmark'
    58  // mode that retraverses the object graph with the world stopped, to make
    59  // sure that everything that should be marked is marked.
    60  // In checkmark mode, in the heap bitmap, the high bit of the 2-bit entry
    61  // for the second word of the object holds the checkmark bit.
    62  // When not in checkmark mode, this bit is set to 1.
    63  //
    64  // The smallest possible allocation is 8 bytes. On a 32-bit machine, that
    65  // means every allocated object has two words, so there is room for the
    66  // checkmark bit. On a 64-bit machine, however, the 8-byte allocation is
    67  // just one word, so the second bit pair is not available for encoding the
    68  // checkmark. However, because non-pointer allocations are combined
    69  // into larger 16-byte (maxTinySize) allocations, a plain 8-byte allocation
    70  // must be a pointer, so the type bit in the first word is not actually needed.
    71  // It is still used in general, except in checkmark the type bit is repurposed
    72  // as the checkmark bit and then reinitialized (to 1) as the type bit when
    73  // finished.
    74  //
    75  
    76  package runtime
    77  
    78  import (
    79  	"runtime/internal/atomic"
    80  	"runtime/internal/sys"
    81  	"unsafe"
    82  )
    83  
    84  const (
    85  	bitPointer = 1 << 0
    86  	bitScan    = 1 << 4
    87  
    88  	heapBitsShift   = 1                     // shift offset between successive bitPointer or bitScan entries
    89  	heapBitmapScale = sys.PtrSize * (8 / 2) // number of data bytes described by one heap bitmap byte
    90  
    91  	// all scan/pointer bits in a byte
    92  	bitScanAll    = bitScan | bitScan<<heapBitsShift | bitScan<<(2*heapBitsShift) | bitScan<<(3*heapBitsShift)
    93  	bitPointerAll = bitPointer | bitPointer<<heapBitsShift | bitPointer<<(2*heapBitsShift) | bitPointer<<(3*heapBitsShift)
    94  )
    95  
    96  // addb returns the byte pointer p+n.
    97  //go:nowritebarrier
    98  //go:nosplit
    99  func addb(p *byte, n uintptr) *byte {
   100  	// Note: wrote out full expression instead of calling add(p, n)
   101  	// to reduce the number of temporaries generated by the
   102  	// compiler for this trivial expression during inlining.
   103  	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + n))
   104  }
   105  
   106  // subtractb returns the byte pointer p-n.
   107  // subtractb is typically used when traversing the pointer tables referred to by hbits
   108  // which are arranged in reverse order.
   109  //go:nowritebarrier
   110  //go:nosplit
   111  func subtractb(p *byte, n uintptr) *byte {
   112  	// Note: wrote out full expression instead of calling add(p, -n)
   113  	// to reduce the number of temporaries generated by the
   114  	// compiler for this trivial expression during inlining.
   115  	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - n))
   116  }
   117  
   118  // add1 returns the byte pointer p+1.
   119  //go:nowritebarrier
   120  //go:nosplit
   121  func add1(p *byte) *byte {
   122  	// Note: wrote out full expression instead of calling addb(p, 1)
   123  	// to reduce the number of temporaries generated by the
   124  	// compiler for this trivial expression during inlining.
   125  	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) + 1))
   126  }
   127  
   128  // subtract1 returns the byte pointer p-1.
   129  // subtract1 is typically used when traversing the pointer tables referred to by hbits
   130  // which are arranged in reverse order.
   131  //go:nowritebarrier
   132  //
   133  // nosplit because it is used during write barriers and must not be preempted.
   134  //go:nosplit
   135  func subtract1(p *byte) *byte {
   136  	// Note: wrote out full expression instead of calling subtractb(p, 1)
   137  	// to reduce the number of temporaries generated by the
   138  	// compiler for this trivial expression during inlining.
   139  	return (*byte)(unsafe.Pointer(uintptr(unsafe.Pointer(p)) - 1))
   140  }
   141  
   142  // mapBits maps any additional bitmap memory needed for the new arena memory.
   143  //
   144  // Don't call this directly. Call mheap.setArenaUsed.
   145  //
   146  //go:nowritebarrier
   147  func (h *mheap) mapBits(arena_used uintptr) {
   148  	// Caller has added extra mappings to the arena.
   149  	// Add extra mappings of bitmap words as needed.
   150  	// We allocate extra bitmap pieces in chunks of bitmapChunk.
   151  	const bitmapChunk = 8192
   152  
   153  	n := (arena_used - mheap_.arena_start) / heapBitmapScale
   154  	n = round(n, bitmapChunk)
   155  	n = round(n, physPageSize)
   156  	if h.bitmap_mapped >= n {
   157  		return
   158  	}
   159  
   160  	sysMap(unsafe.Pointer(h.bitmap-n), n-h.bitmap_mapped, h.arena_reserved, &memstats.gc_sys)
   161  	h.bitmap_mapped = n
   162  }
   163  
   164  // heapBits provides access to the bitmap bits for a single heap word.
   165  // The methods on heapBits take value receivers so that the compiler
   166  // can more easily inline calls to those methods and registerize the
   167  // struct fields independently.
   168  type heapBits struct {
   169  	bitp  *uint8
   170  	shift uint32
   171  }
   172  
   173  // markBits provides access to the mark bit for an object in the heap.
   174  // bytep points to the byte holding the mark bit.
   175  // mask is a byte with a single bit set that can be &ed with *bytep
   176  // to see if the bit has been set.
   177  // *m.byte&m.mask != 0 indicates the mark bit is set.
   178  // index can be used along with span information to generate
   179  // the address of the object in the heap.
   180  // We maintain one set of mark bits for allocation and one for
   181  // marking purposes.
   182  type markBits struct {
   183  	bytep *uint8
   184  	mask  uint8
   185  	index uintptr
   186  }
   187  
   188  //go:nosplit
   189  func (s *mspan) allocBitsForIndex(allocBitIndex uintptr) markBits {
   190  	bytep, mask := s.allocBits.bitp(allocBitIndex)
   191  	return markBits{bytep, mask, allocBitIndex}
   192  }
   193  
   194  // refillaCache takes 8 bytes s.allocBits starting at whichByte
   195  // and negates them so that ctz (count trailing zeros) instructions
   196  // can be used. It then places these 8 bytes into the cached 64 bit
   197  // s.allocCache.
   198  func (s *mspan) refillAllocCache(whichByte uintptr) {
   199  	bytes := (*[8]uint8)(unsafe.Pointer(s.allocBits.bytep(whichByte)))
   200  	aCache := uint64(0)
   201  	aCache |= uint64(bytes[0])
   202  	aCache |= uint64(bytes[1]) << (1 * 8)
   203  	aCache |= uint64(bytes[2]) << (2 * 8)
   204  	aCache |= uint64(bytes[3]) << (3 * 8)
   205  	aCache |= uint64(bytes[4]) << (4 * 8)
   206  	aCache |= uint64(bytes[5]) << (5 * 8)
   207  	aCache |= uint64(bytes[6]) << (6 * 8)
   208  	aCache |= uint64(bytes[7]) << (7 * 8)
   209  	s.allocCache = ^aCache
   210  }
   211  
   212  // nextFreeIndex returns the index of the next free object in s at
   213  // or after s.freeindex.
   214  // There are hardware instructions that can be used to make this
   215  // faster if profiling warrants it.
   216  func (s *mspan) nextFreeIndex() uintptr {
   217  	sfreeindex := s.freeindex
   218  	snelems := s.nelems
   219  	if sfreeindex == snelems {
   220  		return sfreeindex
   221  	}
   222  	if sfreeindex > snelems {
   223  		throw("s.freeindex > s.nelems")
   224  	}
   225  
   226  	aCache := s.allocCache
   227  
   228  	bitIndex := sys.Ctz64(aCache)
   229  	for bitIndex == 64 {
   230  		// Move index to start of next cached bits.
   231  		sfreeindex = (sfreeindex + 64) &^ (64 - 1)
   232  		if sfreeindex >= snelems {
   233  			s.freeindex = snelems
   234  			return snelems
   235  		}
   236  		whichByte := sfreeindex / 8
   237  		// Refill s.allocCache with the next 64 alloc bits.
   238  		s.refillAllocCache(whichByte)
   239  		aCache = s.allocCache
   240  		bitIndex = sys.Ctz64(aCache)
   241  		// nothing available in cached bits
   242  		// grab the next 8 bytes and try again.
   243  	}
   244  	result := sfreeindex + uintptr(bitIndex)
   245  	if result >= snelems {
   246  		s.freeindex = snelems
   247  		return snelems
   248  	}
   249  
   250  	s.allocCache >>= uint(bitIndex + 1)
   251  	sfreeindex = result + 1
   252  
   253  	if sfreeindex%64 == 0 && sfreeindex != snelems {
   254  		// We just incremented s.freeindex so it isn't 0.
   255  		// As each 1 in s.allocCache was encountered and used for allocation
   256  		// it was shifted away. At this point s.allocCache contains all 0s.
   257  		// Refill s.allocCache so that it corresponds
   258  		// to the bits at s.allocBits starting at s.freeindex.
   259  		whichByte := sfreeindex / 8
   260  		s.refillAllocCache(whichByte)
   261  	}
   262  	s.freeindex = sfreeindex
   263  	return result
   264  }
   265  
   266  // isFree returns whether the index'th object in s is unallocated.
   267  func (s *mspan) isFree(index uintptr) bool {
   268  	if index < s.freeindex {
   269  		return false
   270  	}
   271  	bytep, mask := s.allocBits.bitp(index)
   272  	return *bytep&mask == 0
   273  }
   274  
   275  func (s *mspan) objIndex(p uintptr) uintptr {
   276  	byteOffset := p - s.base()
   277  	if byteOffset == 0 {
   278  		return 0
   279  	}
   280  	if s.baseMask != 0 {
   281  		// s.baseMask is 0, elemsize is a power of two, so shift by s.divShift
   282  		return byteOffset >> s.divShift
   283  	}
   284  	return uintptr(((uint64(byteOffset) >> s.divShift) * uint64(s.divMul)) >> s.divShift2)
   285  }
   286  
   287  func markBitsForAddr(p uintptr) markBits {
   288  	s := spanOf(p)
   289  	objIndex := s.objIndex(p)
   290  	return s.markBitsForIndex(objIndex)
   291  }
   292  
   293  func (s *mspan) markBitsForIndex(objIndex uintptr) markBits {
   294  	bytep, mask := s.gcmarkBits.bitp(objIndex)
   295  	return markBits{bytep, mask, objIndex}
   296  }
   297  
   298  func (s *mspan) markBitsForBase() markBits {
   299  	return markBits{(*uint8)(s.gcmarkBits), uint8(1), 0}
   300  }
   301  
   302  // isMarked reports whether mark bit m is set.
   303  func (m markBits) isMarked() bool {
   304  	return *m.bytep&m.mask != 0
   305  }
   306  
   307  // setMarked sets the marked bit in the markbits, atomically. Some compilers
   308  // are not able to inline atomic.Or8 function so if it appears as a hot spot consider
   309  // inlining it manually.
   310  func (m markBits) setMarked() {
   311  	// Might be racing with other updates, so use atomic update always.
   312  	// We used to be clever here and use a non-atomic update in certain
   313  	// cases, but it's not worth the risk.
   314  	atomic.Or8(m.bytep, m.mask)
   315  }
   316  
   317  // setMarkedNonAtomic sets the marked bit in the markbits, non-atomically.
   318  func (m markBits) setMarkedNonAtomic() {
   319  	*m.bytep |= m.mask
   320  }
   321  
   322  // clearMarked clears the marked bit in the markbits, atomically.
   323  func (m markBits) clearMarked() {
   324  	// Might be racing with other updates, so use atomic update always.
   325  	// We used to be clever here and use a non-atomic update in certain
   326  	// cases, but it's not worth the risk.
   327  	atomic.And8(m.bytep, ^m.mask)
   328  }
   329  
   330  // markBitsForSpan returns the markBits for the span base address base.
   331  func markBitsForSpan(base uintptr) (mbits markBits) {
   332  	if base < mheap_.arena_start || base >= mheap_.arena_used {
   333  		throw("markBitsForSpan: base out of range")
   334  	}
   335  	mbits = markBitsForAddr(base)
   336  	if mbits.mask != 1 {
   337  		throw("markBitsForSpan: unaligned start")
   338  	}
   339  	return mbits
   340  }
   341  
   342  // advance advances the markBits to the next object in the span.
   343  func (m *markBits) advance() {
   344  	if m.mask == 1<<7 {
   345  		m.bytep = (*uint8)(unsafe.Pointer(uintptr(unsafe.Pointer(m.bytep)) + 1))
   346  		m.mask = 1
   347  	} else {
   348  		m.mask = m.mask << 1
   349  	}
   350  	m.index++
   351  }
   352  
   353  // heapBitsForAddr returns the heapBits for the address addr.
   354  // The caller must have already checked that addr is in the range [mheap_.arena_start, mheap_.arena_used).
   355  //
   356  // nosplit because it is used during write barriers and must not be preempted.
   357  //go:nosplit
   358  func heapBitsForAddr(addr uintptr) heapBits {
   359  	// 2 bits per work, 4 pairs per byte, and a mask is hard coded.
   360  	off := (addr - mheap_.arena_start) / sys.PtrSize
   361  	return heapBits{(*uint8)(unsafe.Pointer(mheap_.bitmap - off/4 - 1)), uint32(off & 3)}
   362  }
   363  
   364  // heapBitsForSpan returns the heapBits for the span base address base.
   365  func heapBitsForSpan(base uintptr) (hbits heapBits) {
   366  	if base < mheap_.arena_start || base >= mheap_.arena_used {
   367  		print("runtime: base ", hex(base), " not in range [", hex(mheap_.arena_start), ",", hex(mheap_.arena_used), ")\n")
   368  		throw("heapBitsForSpan: base out of range")
   369  	}
   370  	return heapBitsForAddr(base)
   371  }
   372  
   373  // heapBitsForObject returns the base address for the heap object
   374  // containing the address p, the heapBits for base,
   375  // the object's span, and of the index of the object in s.
   376  // If p does not point into a heap object,
   377  // return base == 0
   378  // otherwise return the base of the object.
   379  //
   380  // refBase and refOff optionally give the base address of the object
   381  // in which the pointer p was found and the byte offset at which it
   382  // was found. These are used for error reporting.
   383  func heapBitsForObject(p, refBase, refOff uintptr) (base uintptr, hbits heapBits, s *mspan, objIndex uintptr) {
   384  	arenaStart := mheap_.arena_start
   385  	if p < arenaStart || p >= mheap_.arena_used {
   386  		return
   387  	}
   388  	off := p - arenaStart
   389  	idx := off >> _PageShift
   390  	// p points into the heap, but possibly to the middle of an object.
   391  	// Consult the span table to find the block beginning.
   392  	s = mheap_.spans[idx]
   393  	if s == nil || p < s.base() || p >= s.limit || s.state != mSpanInUse {
   394  		if s == nil || s.state == _MSpanManual {
   395  			// If s is nil, the virtual address has never been part of the heap.
   396  			// This pointer may be to some mmap'd region, so we allow it.
   397  			// Pointers into stacks are also ok, the runtime manages these explicitly.
   398  			return
   399  		}
   400  
   401  		// The following ensures that we are rigorous about what data
   402  		// structures hold valid pointers.
   403  		if debug.invalidptr != 0 {
   404  			// Typically this indicates an incorrect use
   405  			// of unsafe or cgo to store a bad pointer in
   406  			// the Go heap. It may also indicate a runtime
   407  			// bug.
   408  			//
   409  			// TODO(austin): We could be more aggressive
   410  			// and detect pointers to unallocated objects
   411  			// in allocated spans.
   412  			printlock()
   413  			print("runtime: pointer ", hex(p))
   414  			if s.state != mSpanInUse {
   415  				print(" to unallocated span")
   416  			} else {
   417  				print(" to unused region of span")
   418  			}
   419  			print(" idx=", hex(idx), " span.base()=", hex(s.base()), " span.limit=", hex(s.limit), " span.state=", s.state, "\n")
   420  			if refBase != 0 {
   421  				print("runtime: found in object at *(", hex(refBase), "+", hex(refOff), ")\n")
   422  				gcDumpObject("object", refBase, refOff)
   423  			}
   424  			getg().m.traceback = 2
   425  			throw("found bad pointer in Go heap (incorrect use of unsafe or cgo?)")
   426  		}
   427  		return
   428  	}
   429  	// If this span holds object of a power of 2 size, just mask off the bits to
   430  	// the interior of the object. Otherwise use the size to get the base.
   431  	if s.baseMask != 0 {
   432  		// optimize for power of 2 sized objects.
   433  		base = s.base()
   434  		base = base + (p-base)&uintptr(s.baseMask)
   435  		objIndex = (base - s.base()) >> s.divShift
   436  		// base = p & s.baseMask is faster for small spans,
   437  		// but doesn't work for large spans.
   438  		// Overall, it's faster to use the more general computation above.
   439  	} else {
   440  		base = s.base()
   441  		if p-base >= s.elemsize {
   442  			// n := (p - base) / s.elemsize, using division by multiplication
   443  			objIndex = uintptr(p-base) >> s.divShift * uintptr(s.divMul) >> s.divShift2
   444  			base += objIndex * s.elemsize
   445  		}
   446  	}
   447  	// Now that we know the actual base, compute heapBits to return to caller.
   448  	hbits = heapBitsForAddr(base)
   449  	return
   450  }
   451  
   452  // next returns the heapBits describing the next pointer-sized word in memory.
   453  // That is, if h describes address p, h.next() describes p+ptrSize.
   454  // Note that next does not modify h. The caller must record the result.
   455  //
   456  // nosplit because it is used during write barriers and must not be preempted.
   457  //go:nosplit
   458  func (h heapBits) next() heapBits {
   459  	if h.shift < 3*heapBitsShift {
   460  		return heapBits{h.bitp, h.shift + heapBitsShift}
   461  	}
   462  	return heapBits{subtract1(h.bitp), 0}
   463  }
   464  
   465  // forward returns the heapBits describing n pointer-sized words ahead of h in memory.
   466  // That is, if h describes address p, h.forward(n) describes p+n*ptrSize.
   467  // h.forward(1) is equivalent to h.next(), just slower.
   468  // Note that forward does not modify h. The caller must record the result.
   469  // bits returns the heap bits for the current word.
   470  func (h heapBits) forward(n uintptr) heapBits {
   471  	n += uintptr(h.shift) / heapBitsShift
   472  	return heapBits{subtractb(h.bitp, n/4), uint32(n%4) * heapBitsShift}
   473  }
   474  
   475  // The caller can test morePointers and isPointer by &-ing with bitScan and bitPointer.
   476  // The result includes in its higher bits the bits for subsequent words
   477  // described by the same bitmap byte.
   478  func (h heapBits) bits() uint32 {
   479  	// The (shift & 31) eliminates a test and conditional branch
   480  	// from the generated code.
   481  	return uint32(*h.bitp) >> (h.shift & 31)
   482  }
   483  
   484  // morePointers returns true if this word and all remaining words in this object
   485  // are scalars.
   486  // h must not describe the second word of the object.
   487  func (h heapBits) morePointers() bool {
   488  	return h.bits()&bitScan != 0
   489  }
   490  
   491  // isPointer reports whether the heap bits describe a pointer word.
   492  //
   493  // nosplit because it is used during write barriers and must not be preempted.
   494  //go:nosplit
   495  func (h heapBits) isPointer() bool {
   496  	return h.bits()&bitPointer != 0
   497  }
   498  
   499  // isCheckmarked reports whether the heap bits have the checkmarked bit set.
   500  // It must be told how large the object at h is, because the encoding of the
   501  // checkmark bit varies by size.
   502  // h must describe the initial word of the object.
   503  func (h heapBits) isCheckmarked(size uintptr) bool {
   504  	if size == sys.PtrSize {
   505  		return (*h.bitp>>h.shift)&bitPointer != 0
   506  	}
   507  	// All multiword objects are 2-word aligned,
   508  	// so we know that the initial word's 2-bit pair
   509  	// and the second word's 2-bit pair are in the
   510  	// same heap bitmap byte, *h.bitp.
   511  	return (*h.bitp>>(heapBitsShift+h.shift))&bitScan != 0
   512  }
   513  
   514  // setCheckmarked sets the checkmarked bit.
   515  // It must be told how large the object at h is, because the encoding of the
   516  // checkmark bit varies by size.
   517  // h must describe the initial word of the object.
   518  func (h heapBits) setCheckmarked(size uintptr) {
   519  	if size == sys.PtrSize {
   520  		atomic.Or8(h.bitp, bitPointer<<h.shift)
   521  		return
   522  	}
   523  	atomic.Or8(h.bitp, bitScan<<(heapBitsShift+h.shift))
   524  }
   525  
   526  // bulkBarrierPreWrite executes writebarrierptr_prewrite1
   527  // for every pointer slot in the memory range [src, src+size),
   528  // using pointer/scalar information from [dst, dst+size).
   529  // This executes the write barriers necessary before a memmove.
   530  // src, dst, and size must be pointer-aligned.
   531  // The range [dst, dst+size) must lie within a single object.
   532  //
   533  // As a special case, src == 0 indicates that this is being used for a
   534  // memclr. bulkBarrierPreWrite will pass 0 for the src of each write
   535  // barrier.
   536  //
   537  // Callers should call bulkBarrierPreWrite immediately before
   538  // calling memmove(dst, src, size). This function is marked nosplit
   539  // to avoid being preempted; the GC must not stop the goroutine
   540  // between the memmove and the execution of the barriers.
   541  // The caller is also responsible for cgo pointer checks if this
   542  // may be writing Go pointers into non-Go memory.
   543  //
   544  // The pointer bitmap is not maintained for allocations containing
   545  // no pointers at all; any caller of bulkBarrierPreWrite must first
   546  // make sure the underlying allocation contains pointers, usually
   547  // by checking typ.kind&kindNoPointers.
   548  //
   549  //go:nosplit
   550  func bulkBarrierPreWrite(dst, src, size uintptr) {
   551  	if (dst|src|size)&(sys.PtrSize-1) != 0 {
   552  		throw("bulkBarrierPreWrite: unaligned arguments")
   553  	}
   554  	if !writeBarrier.needed {
   555  		return
   556  	}
   557  	if !inheap(dst) {
   558  		gp := getg().m.curg
   559  		if gp != nil && gp.stack.lo <= dst && dst < gp.stack.hi {
   560  			// Destination is our own stack. No need for barriers.
   561  			return
   562  		}
   563  
   564  		// If dst is a global, use the data or BSS bitmaps to
   565  		// execute write barriers.
   566  		for _, datap := range activeModules() {
   567  			if datap.data <= dst && dst < datap.edata {
   568  				bulkBarrierBitmap(dst, src, size, dst-datap.data, datap.gcdatamask.bytedata)
   569  				return
   570  			}
   571  		}
   572  		for _, datap := range activeModules() {
   573  			if datap.bss <= dst && dst < datap.ebss {
   574  				bulkBarrierBitmap(dst, src, size, dst-datap.bss, datap.gcbssmask.bytedata)
   575  				return
   576  			}
   577  		}
   578  		return
   579  	}
   580  
   581  	h := heapBitsForAddr(dst)
   582  	if src == 0 {
   583  		for i := uintptr(0); i < size; i += sys.PtrSize {
   584  			if h.isPointer() {
   585  				dstx := (*uintptr)(unsafe.Pointer(dst + i))
   586  				writebarrierptr_prewrite1(dstx, 0)
   587  			}
   588  			h = h.next()
   589  		}
   590  	} else {
   591  		for i := uintptr(0); i < size; i += sys.PtrSize {
   592  			if h.isPointer() {
   593  				dstx := (*uintptr)(unsafe.Pointer(dst + i))
   594  				srcx := (*uintptr)(unsafe.Pointer(src + i))
   595  				writebarrierptr_prewrite1(dstx, *srcx)
   596  			}
   597  			h = h.next()
   598  		}
   599  	}
   600  }
   601  
   602  // bulkBarrierBitmap executes write barriers for copying from [src,
   603  // src+size) to [dst, dst+size) using a 1-bit pointer bitmap. src is
   604  // assumed to start maskOffset bytes into the data covered by the
   605  // bitmap in bits (which may not be a multiple of 8).
   606  //
   607  // This is used by bulkBarrierPreWrite for writes to data and BSS.
   608  //
   609  //go:nosplit
   610  func bulkBarrierBitmap(dst, src, size, maskOffset uintptr, bits *uint8) {
   611  	word := maskOffset / sys.PtrSize
   612  	bits = addb(bits, word/8)
   613  	mask := uint8(1) << (word % 8)
   614  
   615  	for i := uintptr(0); i < size; i += sys.PtrSize {
   616  		if mask == 0 {
   617  			bits = addb(bits, 1)
   618  			if *bits == 0 {
   619  				// Skip 8 words.
   620  				i += 7 * sys.PtrSize
   621  				continue
   622  			}
   623  			mask = 1
   624  		}
   625  		if *bits&mask != 0 {
   626  			dstx := (*uintptr)(unsafe.Pointer(dst + i))
   627  			if src == 0 {
   628  				writebarrierptr_prewrite1(dstx, 0)
   629  			} else {
   630  				srcx := (*uintptr)(unsafe.Pointer(src + i))
   631  				writebarrierptr_prewrite1(dstx, *srcx)
   632  			}
   633  		}
   634  		mask <<= 1
   635  	}
   636  }
   637  
   638  // typeBitsBulkBarrier executes writebarrierptr_prewrite for every
   639  // pointer that would be copied from [src, src+size) to [dst,
   640  // dst+size) by a memmove using the type bitmap to locate those
   641  // pointer slots.
   642  //
   643  // The type typ must correspond exactly to [src, src+size) and [dst, dst+size).
   644  // dst, src, and size must be pointer-aligned.
   645  // The type typ must have a plain bitmap, not a GC program.
   646  // The only use of this function is in channel sends, and the
   647  // 64 kB channel element limit takes care of this for us.
   648  //
   649  // Must not be preempted because it typically runs right before memmove,
   650  // and the GC must observe them as an atomic action.
   651  //
   652  //go:nosplit
   653  func typeBitsBulkBarrier(typ *_type, dst, src, size uintptr) {
   654  	if typ == nil {
   655  		throw("runtime: typeBitsBulkBarrier without type")
   656  	}
   657  	if typ.size != size {
   658  		println("runtime: typeBitsBulkBarrier with type ", typ.string(), " of size ", typ.size, " but memory size", size)
   659  		throw("runtime: invalid typeBitsBulkBarrier")
   660  	}
   661  	if typ.kind&kindGCProg != 0 {
   662  		println("runtime: typeBitsBulkBarrier with type ", typ.string(), " with GC prog")
   663  		throw("runtime: invalid typeBitsBulkBarrier")
   664  	}
   665  	if !writeBarrier.needed {
   666  		return
   667  	}
   668  	ptrmask := typ.gcdata
   669  	var bits uint32
   670  	for i := uintptr(0); i < typ.ptrdata; i += sys.PtrSize {
   671  		if i&(sys.PtrSize*8-1) == 0 {
   672  			bits = uint32(*ptrmask)
   673  			ptrmask = addb(ptrmask, 1)
   674  		} else {
   675  			bits = bits >> 1
   676  		}
   677  		if bits&1 != 0 {
   678  			dstx := (*uintptr)(unsafe.Pointer(dst + i))
   679  			srcx := (*uintptr)(unsafe.Pointer(src + i))
   680  			writebarrierptr_prewrite(dstx, *srcx)
   681  		}
   682  	}
   683  }
   684  
   685  // The methods operating on spans all require that h has been returned
   686  // by heapBitsForSpan and that size, n, total are the span layout description
   687  // returned by the mspan's layout method.
   688  // If total > size*n, it means that there is extra leftover memory in the span,
   689  // usually due to rounding.
   690  //
   691  // TODO(rsc): Perhaps introduce a different heapBitsSpan type.
   692  
   693  // initSpan initializes the heap bitmap for a span.
   694  // It clears all checkmark bits.
   695  // If this is a span of pointer-sized objects, it initializes all
   696  // words to pointer/scan.
   697  // Otherwise, it initializes all words to scalar/dead.
   698  func (h heapBits) initSpan(s *mspan) {
   699  	size, n, total := s.layout()
   700  
   701  	// Init the markbit structures
   702  	s.freeindex = 0
   703  	s.allocCache = ^uint64(0) // all 1s indicating all free.
   704  	s.nelems = n
   705  	s.allocBits = nil
   706  	s.gcmarkBits = nil
   707  	s.gcmarkBits = newMarkBits(s.nelems)
   708  	s.allocBits = newAllocBits(s.nelems)
   709  
   710  	// Clear bits corresponding to objects.
   711  	if total%heapBitmapScale != 0 {
   712  		throw("initSpan: unaligned length")
   713  	}
   714  	nbyte := total / heapBitmapScale
   715  	if sys.PtrSize == 8 && size == sys.PtrSize {
   716  		end := h.bitp
   717  		bitp := subtractb(end, nbyte-1)
   718  		for {
   719  			*bitp = bitPointerAll | bitScanAll
   720  			if bitp == end {
   721  				break
   722  			}
   723  			bitp = add1(bitp)
   724  		}
   725  		return
   726  	}
   727  	memclrNoHeapPointers(unsafe.Pointer(subtractb(h.bitp, nbyte-1)), nbyte)
   728  }
   729  
   730  // initCheckmarkSpan initializes a span for being checkmarked.
   731  // It clears the checkmark bits, which are set to 1 in normal operation.
   732  func (h heapBits) initCheckmarkSpan(size, n, total uintptr) {
   733  	// The ptrSize == 8 is a compile-time constant false on 32-bit and eliminates this code entirely.
   734  	if sys.PtrSize == 8 && size == sys.PtrSize {
   735  		// Checkmark bit is type bit, bottom bit of every 2-bit entry.
   736  		// Only possible on 64-bit system, since minimum size is 8.
   737  		// Must clear type bit (checkmark bit) of every word.
   738  		// The type bit is the lower of every two-bit pair.
   739  		bitp := h.bitp
   740  		for i := uintptr(0); i < n; i += 4 {
   741  			*bitp &^= bitPointerAll
   742  			bitp = subtract1(bitp)
   743  		}
   744  		return
   745  	}
   746  	for i := uintptr(0); i < n; i++ {
   747  		*h.bitp &^= bitScan << (heapBitsShift + h.shift)
   748  		h = h.forward(size / sys.PtrSize)
   749  	}
   750  }
   751  
   752  // clearCheckmarkSpan undoes all the checkmarking in a span.
   753  // The actual checkmark bits are ignored, so the only work to do
   754  // is to fix the pointer bits. (Pointer bits are ignored by scanobject
   755  // but consulted by typedmemmove.)
   756  func (h heapBits) clearCheckmarkSpan(size, n, total uintptr) {
   757  	// The ptrSize == 8 is a compile-time constant false on 32-bit and eliminates this code entirely.
   758  	if sys.PtrSize == 8 && size == sys.PtrSize {
   759  		// Checkmark bit is type bit, bottom bit of every 2-bit entry.
   760  		// Only possible on 64-bit system, since minimum size is 8.
   761  		// Must clear type bit (checkmark bit) of every word.
   762  		// The type bit is the lower of every two-bit pair.
   763  		bitp := h.bitp
   764  		for i := uintptr(0); i < n; i += 4 {
   765  			*bitp |= bitPointerAll
   766  			bitp = subtract1(bitp)
   767  		}
   768  	}
   769  }
   770  
   771  // oneBitCount is indexed by byte and produces the
   772  // number of 1 bits in that byte. For example 128 has 1 bit set
   773  // and oneBitCount[128] will holds 1.
   774  var oneBitCount = [256]uint8{
   775  	0, 1, 1, 2, 1, 2, 2, 3,
   776  	1, 2, 2, 3, 2, 3, 3, 4,
   777  	1, 2, 2, 3, 2, 3, 3, 4,
   778  	2, 3, 3, 4, 3, 4, 4, 5,
   779  	1, 2, 2, 3, 2, 3, 3, 4,
   780  	2, 3, 3, 4, 3, 4, 4, 5,
   781  	2, 3, 3, 4, 3, 4, 4, 5,
   782  	3, 4, 4, 5, 4, 5, 5, 6,
   783  	1, 2, 2, 3, 2, 3, 3, 4,
   784  	2, 3, 3, 4, 3, 4, 4, 5,
   785  	2, 3, 3, 4, 3, 4, 4, 5,
   786  	3, 4, 4, 5, 4, 5, 5, 6,
   787  	2, 3, 3, 4, 3, 4, 4, 5,
   788  	3, 4, 4, 5, 4, 5, 5, 6,
   789  	3, 4, 4, 5, 4, 5, 5, 6,
   790  	4, 5, 5, 6, 5, 6, 6, 7,
   791  	1, 2, 2, 3, 2, 3, 3, 4,
   792  	2, 3, 3, 4, 3, 4, 4, 5,
   793  	2, 3, 3, 4, 3, 4, 4, 5,
   794  	3, 4, 4, 5, 4, 5, 5, 6,
   795  	2, 3, 3, 4, 3, 4, 4, 5,
   796  	3, 4, 4, 5, 4, 5, 5, 6,
   797  	3, 4, 4, 5, 4, 5, 5, 6,
   798  	4, 5, 5, 6, 5, 6, 6, 7,
   799  	2, 3, 3, 4, 3, 4, 4, 5,
   800  	3, 4, 4, 5, 4, 5, 5, 6,
   801  	3, 4, 4, 5, 4, 5, 5, 6,
   802  	4, 5, 5, 6, 5, 6, 6, 7,
   803  	3, 4, 4, 5, 4, 5, 5, 6,
   804  	4, 5, 5, 6, 5, 6, 6, 7,
   805  	4, 5, 5, 6, 5, 6, 6, 7,
   806  	5, 6, 6, 7, 6, 7, 7, 8}
   807  
   808  // countAlloc returns the number of objects allocated in span s by
   809  // scanning the allocation bitmap.
   810  // TODO:(rlh) Use popcount intrinsic.
   811  func (s *mspan) countAlloc() int {
   812  	count := 0
   813  	maxIndex := s.nelems / 8
   814  	for i := uintptr(0); i < maxIndex; i++ {
   815  		mrkBits := *s.gcmarkBits.bytep(i)
   816  		count += int(oneBitCount[mrkBits])
   817  	}
   818  	if bitsInLastByte := s.nelems % 8; bitsInLastByte != 0 {
   819  		mrkBits := *s.gcmarkBits.bytep(maxIndex)
   820  		mask := uint8((1 << bitsInLastByte) - 1)
   821  		bits := mrkBits & mask
   822  		count += int(oneBitCount[bits])
   823  	}
   824  	return count
   825  }
   826  
   827  // heapBitsSetType records that the new allocation [x, x+size)
   828  // holds in [x, x+dataSize) one or more values of type typ.
   829  // (The number of values is given by dataSize / typ.size.)
   830  // If dataSize < size, the fragment [x+dataSize, x+size) is
   831  // recorded as non-pointer data.
   832  // It is known that the type has pointers somewhere;
   833  // malloc does not call heapBitsSetType when there are no pointers,
   834  // because all free objects are marked as noscan during
   835  // heapBitsSweepSpan.
   836  //
   837  // There can only be one allocation from a given span active at a time,
   838  // and the bitmap for a span always falls on byte boundaries,
   839  // so there are no write-write races for access to the heap bitmap.
   840  // Hence, heapBitsSetType can access the bitmap without atomics.
   841  //
   842  // There can be read-write races between heapBitsSetType and things
   843  // that read the heap bitmap like scanobject. However, since
   844  // heapBitsSetType is only used for objects that have not yet been
   845  // made reachable, readers will ignore bits being modified by this
   846  // function. This does mean this function cannot transiently modify
   847  // bits that belong to neighboring objects. Also, on weakly-ordered
   848  // machines, callers must execute a store/store (publication) barrier
   849  // between calling this function and making the object reachable.
   850  func heapBitsSetType(x, size, dataSize uintptr, typ *_type) {
   851  	const doubleCheck = false // slow but helpful; enable to test modifications to this code
   852  
   853  	// dataSize is always size rounded up to the next malloc size class,
   854  	// except in the case of allocating a defer block, in which case
   855  	// size is sizeof(_defer{}) (at least 6 words) and dataSize may be
   856  	// arbitrarily larger.
   857  	//
   858  	// The checks for size == sys.PtrSize and size == 2*sys.PtrSize can therefore
   859  	// assume that dataSize == size without checking it explicitly.
   860  
   861  	if sys.PtrSize == 8 && size == sys.PtrSize {
   862  		// It's one word and it has pointers, it must be a pointer.
   863  		// Since all allocated one-word objects are pointers
   864  		// (non-pointers are aggregated into tinySize allocations),
   865  		// initSpan sets the pointer bits for us. Nothing to do here.
   866  		if doubleCheck {
   867  			h := heapBitsForAddr(x)
   868  			if !h.isPointer() {
   869  				throw("heapBitsSetType: pointer bit missing")
   870  			}
   871  			if !h.morePointers() {
   872  				throw("heapBitsSetType: scan bit missing")
   873  			}
   874  		}
   875  		return
   876  	}
   877  
   878  	h := heapBitsForAddr(x)
   879  	ptrmask := typ.gcdata // start of 1-bit pointer mask (or GC program, handled below)
   880  
   881  	// Heap bitmap bits for 2-word object are only 4 bits,
   882  	// so also shared with objects next to it.
   883  	// This is called out as a special case primarily for 32-bit systems,
   884  	// so that on 32-bit systems the code below can assume all objects
   885  	// are 4-word aligned (because they're all 16-byte aligned).
   886  	if size == 2*sys.PtrSize {
   887  		if typ.size == sys.PtrSize {
   888  			// We're allocating a block big enough to hold two pointers.
   889  			// On 64-bit, that means the actual object must be two pointers,
   890  			// or else we'd have used the one-pointer-sized block.
   891  			// On 32-bit, however, this is the 8-byte block, the smallest one.
   892  			// So it could be that we're allocating one pointer and this was
   893  			// just the smallest block available. Distinguish by checking dataSize.
   894  			// (In general the number of instances of typ being allocated is
   895  			// dataSize/typ.size.)
   896  			if sys.PtrSize == 4 && dataSize == sys.PtrSize {
   897  				// 1 pointer object. On 32-bit machines clear the bit for the
   898  				// unused second word.
   899  				*h.bitp &^= (bitPointer | bitScan | ((bitPointer | bitScan) << heapBitsShift)) << h.shift
   900  				*h.bitp |= (bitPointer | bitScan) << h.shift
   901  			} else {
   902  				// 2-element slice of pointer.
   903  				*h.bitp |= (bitPointer | bitScan | bitPointer<<heapBitsShift) << h.shift
   904  			}
   905  			return
   906  		}
   907  		// Otherwise typ.size must be 2*sys.PtrSize,
   908  		// and typ.kind&kindGCProg == 0.
   909  		if doubleCheck {
   910  			if typ.size != 2*sys.PtrSize || typ.kind&kindGCProg != 0 {
   911  				print("runtime: heapBitsSetType size=", size, " but typ.size=", typ.size, " gcprog=", typ.kind&kindGCProg != 0, "\n")
   912  				throw("heapBitsSetType")
   913  			}
   914  		}
   915  		b := uint32(*ptrmask)
   916  		hb := (b & 3) | bitScan
   917  		// bitPointer == 1, bitScan is 1 << 4, heapBitsShift is 1.
   918  		// 110011 is shifted h.shift and complemented.
   919  		// This clears out the bits that are about to be
   920  		// ored into *h.hbitp in the next instructions.
   921  		*h.bitp &^= (bitPointer | bitScan | ((bitPointer | bitScan) << heapBitsShift)) << h.shift
   922  		*h.bitp |= uint8(hb << h.shift)
   923  		return
   924  	}
   925  
   926  	// Copy from 1-bit ptrmask into 2-bit bitmap.
   927  	// The basic approach is to use a single uintptr as a bit buffer,
   928  	// alternating between reloading the buffer and writing bitmap bytes.
   929  	// In general, one load can supply two bitmap byte writes.
   930  	// This is a lot of lines of code, but it compiles into relatively few
   931  	// machine instructions.
   932  
   933  	var (
   934  		// Ptrmask input.
   935  		p     *byte   // last ptrmask byte read
   936  		b     uintptr // ptrmask bits already loaded
   937  		nb    uintptr // number of bits in b at next read
   938  		endp  *byte   // final ptrmask byte to read (then repeat)
   939  		endnb uintptr // number of valid bits in *endp
   940  		pbits uintptr // alternate source of bits
   941  
   942  		// Heap bitmap output.
   943  		w     uintptr // words processed
   944  		nw    uintptr // number of words to process
   945  		hbitp *byte   // next heap bitmap byte to write
   946  		hb    uintptr // bits being prepared for *hbitp
   947  	)
   948  
   949  	hbitp = h.bitp
   950  
   951  	// Handle GC program. Delayed until this part of the code
   952  	// so that we can use the same double-checking mechanism
   953  	// as the 1-bit case. Nothing above could have encountered
   954  	// GC programs: the cases were all too small.
   955  	if typ.kind&kindGCProg != 0 {
   956  		heapBitsSetTypeGCProg(h, typ.ptrdata, typ.size, dataSize, size, addb(typ.gcdata, 4))
   957  		if doubleCheck {
   958  			// Double-check the heap bits written by GC program
   959  			// by running the GC program to create a 1-bit pointer mask
   960  			// and then jumping to the double-check code below.
   961  			// This doesn't catch bugs shared between the 1-bit and 4-bit
   962  			// GC program execution, but it does catch mistakes specific
   963  			// to just one of those and bugs in heapBitsSetTypeGCProg's
   964  			// implementation of arrays.
   965  			lock(&debugPtrmask.lock)
   966  			if debugPtrmask.data == nil {
   967  				debugPtrmask.data = (*byte)(persistentalloc(1<<20, 1, &memstats.other_sys))
   968  			}
   969  			ptrmask = debugPtrmask.data
   970  			runGCProg(addb(typ.gcdata, 4), nil, ptrmask, 1)
   971  			goto Phase4
   972  		}
   973  		return
   974  	}
   975  
   976  	// Note about sizes:
   977  	//
   978  	// typ.size is the number of words in the object,
   979  	// and typ.ptrdata is the number of words in the prefix
   980  	// of the object that contains pointers. That is, the final
   981  	// typ.size - typ.ptrdata words contain no pointers.
   982  	// This allows optimization of a common pattern where
   983  	// an object has a small header followed by a large scalar
   984  	// buffer. If we know the pointers are over, we don't have
   985  	// to scan the buffer's heap bitmap at all.
   986  	// The 1-bit ptrmasks are sized to contain only bits for
   987  	// the typ.ptrdata prefix, zero padded out to a full byte
   988  	// of bitmap. This code sets nw (below) so that heap bitmap
   989  	// bits are only written for the typ.ptrdata prefix; if there is
   990  	// more room in the allocated object, the next heap bitmap
   991  	// entry is a 00, indicating that there are no more pointers
   992  	// to scan. So only the ptrmask for the ptrdata bytes is needed.
   993  	//
   994  	// Replicated copies are not as nice: if there is an array of
   995  	// objects with scalar tails, all but the last tail does have to
   996  	// be initialized, because there is no way to say "skip forward".
   997  	// However, because of the possibility of a repeated type with
   998  	// size not a multiple of 4 pointers (one heap bitmap byte),
   999  	// the code already must handle the last ptrmask byte specially
  1000  	// by treating it as containing only the bits for endnb pointers,
  1001  	// where endnb <= 4. We represent large scalar tails that must
  1002  	// be expanded in the replication by setting endnb larger than 4.
  1003  	// This will have the effect of reading many bits out of b,
  1004  	// but once the real bits are shifted out, b will supply as many
  1005  	// zero bits as we try to read, which is exactly what we need.
  1006  
  1007  	p = ptrmask
  1008  	if typ.size < dataSize {
  1009  		// Filling in bits for an array of typ.
  1010  		// Set up for repetition of ptrmask during main loop.
  1011  		// Note that ptrmask describes only a prefix of
  1012  		const maxBits = sys.PtrSize*8 - 7
  1013  		if typ.ptrdata/sys.PtrSize <= maxBits {
  1014  			// Entire ptrmask fits in uintptr with room for a byte fragment.
  1015  			// Load into pbits and never read from ptrmask again.
  1016  			// This is especially important when the ptrmask has
  1017  			// fewer than 8 bits in it; otherwise the reload in the middle
  1018  			// of the Phase 2 loop would itself need to loop to gather
  1019  			// at least 8 bits.
  1020  
  1021  			// Accumulate ptrmask into b.
  1022  			// ptrmask is sized to describe only typ.ptrdata, but we record
  1023  			// it as describing typ.size bytes, since all the high bits are zero.
  1024  			nb = typ.ptrdata / sys.PtrSize
  1025  			for i := uintptr(0); i < nb; i += 8 {
  1026  				b |= uintptr(*p) << i
  1027  				p = add1(p)
  1028  			}
  1029  			nb = typ.size / sys.PtrSize
  1030  
  1031  			// Replicate ptrmask to fill entire pbits uintptr.
  1032  			// Doubling and truncating is fewer steps than
  1033  			// iterating by nb each time. (nb could be 1.)
  1034  			// Since we loaded typ.ptrdata/sys.PtrSize bits
  1035  			// but are pretending to have typ.size/sys.PtrSize,
  1036  			// there might be no replication necessary/possible.
  1037  			pbits = b
  1038  			endnb = nb
  1039  			if nb+nb <= maxBits {
  1040  				for endnb <= sys.PtrSize*8 {
  1041  					pbits |= pbits << endnb
  1042  					endnb += endnb
  1043  				}
  1044  				// Truncate to a multiple of original ptrmask.
  1045  				// Because nb+nb <= maxBits, nb fits in a byte.
  1046  				// Byte division is cheaper than uintptr division.
  1047  				endnb = uintptr(maxBits/byte(nb)) * nb
  1048  				pbits &= 1<<endnb - 1
  1049  				b = pbits
  1050  				nb = endnb
  1051  			}
  1052  
  1053  			// Clear p and endp as sentinel for using pbits.
  1054  			// Checked during Phase 2 loop.
  1055  			p = nil
  1056  			endp = nil
  1057  		} else {
  1058  			// Ptrmask is larger. Read it multiple times.
  1059  			n := (typ.ptrdata/sys.PtrSize+7)/8 - 1
  1060  			endp = addb(ptrmask, n)
  1061  			endnb = typ.size/sys.PtrSize - n*8
  1062  		}
  1063  	}
  1064  	if p != nil {
  1065  		b = uintptr(*p)
  1066  		p = add1(p)
  1067  		nb = 8
  1068  	}
  1069  
  1070  	if typ.size == dataSize {
  1071  		// Single entry: can stop once we reach the non-pointer data.
  1072  		nw = typ.ptrdata / sys.PtrSize
  1073  	} else {
  1074  		// Repeated instances of typ in an array.
  1075  		// Have to process first N-1 entries in full, but can stop
  1076  		// once we reach the non-pointer data in the final entry.
  1077  		nw = ((dataSize/typ.size-1)*typ.size + typ.ptrdata) / sys.PtrSize
  1078  	}
  1079  	if nw == 0 {
  1080  		// No pointers! Caller was supposed to check.
  1081  		println("runtime: invalid type ", typ.string())
  1082  		throw("heapBitsSetType: called with non-pointer type")
  1083  		return
  1084  	}
  1085  	if nw < 2 {
  1086  		// Must write at least 2 words, because the "no scan"
  1087  		// encoding doesn't take effect until the third word.
  1088  		nw = 2
  1089  	}
  1090  
  1091  	// Phase 1: Special case for leading byte (shift==0) or half-byte (shift==4).
  1092  	// The leading byte is special because it contains the bits for word 1,
  1093  	// which does not have the scan bit set.
  1094  	// The leading half-byte is special because it's a half a byte,
  1095  	// so we have to be careful with the bits already there.
  1096  	switch {
  1097  	default:
  1098  		throw("heapBitsSetType: unexpected shift")
  1099  
  1100  	case h.shift == 0:
  1101  		// Ptrmask and heap bitmap are aligned.
  1102  		// Handle first byte of bitmap specially.
  1103  		//
  1104  		// The first byte we write out covers the first four
  1105  		// words of the object. The scan/dead bit on the first
  1106  		// word must be set to scan since there are pointers
  1107  		// somewhere in the object. The scan/dead bit on the
  1108  		// second word is the checkmark, so we don't set it.
  1109  		// In all following words, we set the scan/dead
  1110  		// appropriately to indicate that the object contains
  1111  		// to the next 2-bit entry in the bitmap.
  1112  		//
  1113  		// TODO: It doesn't matter if we set the checkmark, so
  1114  		// maybe this case isn't needed any more.
  1115  		hb = b & bitPointerAll
  1116  		hb |= bitScan | bitScan<<(2*heapBitsShift) | bitScan<<(3*heapBitsShift)
  1117  		if w += 4; w >= nw {
  1118  			goto Phase3
  1119  		}
  1120  		*hbitp = uint8(hb)
  1121  		hbitp = subtract1(hbitp)
  1122  		b >>= 4
  1123  		nb -= 4
  1124  
  1125  	case sys.PtrSize == 8 && h.shift == 2:
  1126  		// Ptrmask and heap bitmap are misaligned.
  1127  		// The bits for the first two words are in a byte shared
  1128  		// with another object, so we must be careful with the bits
  1129  		// already there.
  1130  		// We took care of 1-word and 2-word objects above,
  1131  		// so this is at least a 6-word object.
  1132  		hb = (b & (bitPointer | bitPointer<<heapBitsShift)) << (2 * heapBitsShift)
  1133  		// This is not noscan, so set the scan bit in the
  1134  		// first word.
  1135  		hb |= bitScan << (2 * heapBitsShift)
  1136  		b >>= 2
  1137  		nb -= 2
  1138  		// Note: no bitScan for second word because that's
  1139  		// the checkmark.
  1140  		*hbitp &^= uint8((bitPointer | bitScan | (bitPointer << heapBitsShift)) << (2 * heapBitsShift))
  1141  		*hbitp |= uint8(hb)
  1142  		hbitp = subtract1(hbitp)
  1143  		if w += 2; w >= nw {
  1144  			// We know that there is more data, because we handled 2-word objects above.
  1145  			// This must be at least a 6-word object. If we're out of pointer words,
  1146  			// mark no scan in next bitmap byte and finish.
  1147  			hb = 0
  1148  			w += 4
  1149  			goto Phase3
  1150  		}
  1151  	}
  1152  
  1153  	// Phase 2: Full bytes in bitmap, up to but not including write to last byte (full or partial) in bitmap.
  1154  	// The loop computes the bits for that last write but does not execute the write;
  1155  	// it leaves the bits in hb for processing by phase 3.
  1156  	// To avoid repeated adjustment of nb, we subtract out the 4 bits we're going to
  1157  	// use in the first half of the loop right now, and then we only adjust nb explicitly
  1158  	// if the 8 bits used by each iteration isn't balanced by 8 bits loaded mid-loop.
  1159  	nb -= 4
  1160  	for {
  1161  		// Emit bitmap byte.
  1162  		// b has at least nb+4 bits, with one exception:
  1163  		// if w+4 >= nw, then b has only nw-w bits,
  1164  		// but we'll stop at the break and then truncate
  1165  		// appropriately in Phase 3.
  1166  		hb = b & bitPointerAll
  1167  		hb |= bitScanAll
  1168  		if w += 4; w >= nw {
  1169  			break
  1170  		}
  1171  		*hbitp = uint8(hb)
  1172  		hbitp = subtract1(hbitp)
  1173  		b >>= 4
  1174  
  1175  		// Load more bits. b has nb right now.
  1176  		if p != endp {
  1177  			// Fast path: keep reading from ptrmask.
  1178  			// nb unmodified: we just loaded 8 bits,
  1179  			// and the next iteration will consume 8 bits,
  1180  			// leaving us with the same nb the next time we're here.
  1181  			if nb < 8 {
  1182  				b |= uintptr(*p) << nb
  1183  				p = add1(p)
  1184  			} else {
  1185  				// Reduce the number of bits in b.
  1186  				// This is important if we skipped
  1187  				// over a scalar tail, since nb could
  1188  				// be larger than the bit width of b.
  1189  				nb -= 8
  1190  			}
  1191  		} else if p == nil {
  1192  			// Almost as fast path: track bit count and refill from pbits.
  1193  			// For short repetitions.
  1194  			if nb < 8 {
  1195  				b |= pbits << nb
  1196  				nb += endnb
  1197  			}
  1198  			nb -= 8 // for next iteration
  1199  		} else {
  1200  			// Slow path: reached end of ptrmask.
  1201  			// Process final partial byte and rewind to start.
  1202  			b |= uintptr(*p) << nb
  1203  			nb += endnb
  1204  			if nb < 8 {
  1205  				b |= uintptr(*ptrmask) << nb
  1206  				p = add1(ptrmask)
  1207  			} else {
  1208  				nb -= 8
  1209  				p = ptrmask
  1210  			}
  1211  		}
  1212  
  1213  		// Emit bitmap byte.
  1214  		hb = b & bitPointerAll
  1215  		hb |= bitScanAll
  1216  		if w += 4; w >= nw {
  1217  			break
  1218  		}
  1219  		*hbitp = uint8(hb)
  1220  		hbitp = subtract1(hbitp)
  1221  		b >>= 4
  1222  	}
  1223  
  1224  Phase3:
  1225  	// Phase 3: Write last byte or partial byte and zero the rest of the bitmap entries.
  1226  	if w > nw {
  1227  		// Counting the 4 entries in hb not yet written to memory,
  1228  		// there are more entries than possible pointer slots.
  1229  		// Discard the excess entries (can't be more than 3).
  1230  		mask := uintptr(1)<<(4-(w-nw)) - 1
  1231  		hb &= mask | mask<<4 // apply mask to both pointer bits and scan bits
  1232  	}
  1233  
  1234  	// Change nw from counting possibly-pointer words to total words in allocation.
  1235  	nw = size / sys.PtrSize
  1236  
  1237  	// Write whole bitmap bytes.
  1238  	// The first is hb, the rest are zero.
  1239  	if w <= nw {
  1240  		*hbitp = uint8(hb)
  1241  		hbitp = subtract1(hbitp)
  1242  		hb = 0 // for possible final half-byte below
  1243  		for w += 4; w <= nw; w += 4 {
  1244  			*hbitp = 0
  1245  			hbitp = subtract1(hbitp)
  1246  		}
  1247  	}
  1248  
  1249  	// Write final partial bitmap byte if any.
  1250  	// We know w > nw, or else we'd still be in the loop above.
  1251  	// It can be bigger only due to the 4 entries in hb that it counts.
  1252  	// If w == nw+4 then there's nothing left to do: we wrote all nw entries
  1253  	// and can discard the 4 sitting in hb.
  1254  	// But if w == nw+2, we need to write first two in hb.
  1255  	// The byte is shared with the next object, so be careful with
  1256  	// existing bits.
  1257  	if w == nw+2 {
  1258  		*hbitp = *hbitp&^(bitPointer|bitScan|(bitPointer|bitScan)<<heapBitsShift) | uint8(hb)
  1259  	}
  1260  
  1261  Phase4:
  1262  	// Phase 4: all done, but perhaps double check.
  1263  	if doubleCheck {
  1264  		end := heapBitsForAddr(x + size)
  1265  		if typ.kind&kindGCProg == 0 && (hbitp != end.bitp || (w == nw+2) != (end.shift == 2)) {
  1266  			println("ended at wrong bitmap byte for", typ.string(), "x", dataSize/typ.size)
  1267  			print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n")
  1268  			print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n")
  1269  			h0 := heapBitsForAddr(x)
  1270  			print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n")
  1271  			print("ended at hbitp=", hbitp, " but next starts at bitp=", end.bitp, " shift=", end.shift, "\n")
  1272  			throw("bad heapBitsSetType")
  1273  		}
  1274  
  1275  		// Double-check that bits to be written were written correctly.
  1276  		// Does not check that other bits were not written, unfortunately.
  1277  		h := heapBitsForAddr(x)
  1278  		nptr := typ.ptrdata / sys.PtrSize
  1279  		ndata := typ.size / sys.PtrSize
  1280  		count := dataSize / typ.size
  1281  		totalptr := ((count-1)*typ.size + typ.ptrdata) / sys.PtrSize
  1282  		for i := uintptr(0); i < size/sys.PtrSize; i++ {
  1283  			j := i % ndata
  1284  			var have, want uint8
  1285  			have = (*h.bitp >> h.shift) & (bitPointer | bitScan)
  1286  			if i >= totalptr {
  1287  				want = 0 // deadmarker
  1288  				if typ.kind&kindGCProg != 0 && i < (totalptr+3)/4*4 {
  1289  					want = bitScan
  1290  				}
  1291  			} else {
  1292  				if j < nptr && (*addb(ptrmask, j/8)>>(j%8))&1 != 0 {
  1293  					want |= bitPointer
  1294  				}
  1295  				if i != 1 {
  1296  					want |= bitScan
  1297  				} else {
  1298  					have &^= bitScan
  1299  				}
  1300  			}
  1301  			if have != want {
  1302  				println("mismatch writing bits for", typ.string(), "x", dataSize/typ.size)
  1303  				print("typ.size=", typ.size, " typ.ptrdata=", typ.ptrdata, " dataSize=", dataSize, " size=", size, "\n")
  1304  				print("kindGCProg=", typ.kind&kindGCProg != 0, "\n")
  1305  				print("w=", w, " nw=", nw, " b=", hex(b), " nb=", nb, " hb=", hex(hb), "\n")
  1306  				h0 := heapBitsForAddr(x)
  1307  				print("initial bits h0.bitp=", h0.bitp, " h0.shift=", h0.shift, "\n")
  1308  				print("current bits h.bitp=", h.bitp, " h.shift=", h.shift, " *h.bitp=", hex(*h.bitp), "\n")
  1309  				print("ptrmask=", ptrmask, " p=", p, " endp=", endp, " endnb=", endnb, " pbits=", hex(pbits), " b=", hex(b), " nb=", nb, "\n")
  1310  				println("at word", i, "offset", i*sys.PtrSize, "have", have, "want", want)
  1311  				if typ.kind&kindGCProg != 0 {
  1312  					println("GC program:")
  1313  					dumpGCProg(addb(typ.gcdata, 4))
  1314  				}
  1315  				throw("bad heapBitsSetType")
  1316  			}
  1317  			h = h.next()
  1318  		}
  1319  		if ptrmask == debugPtrmask.data {
  1320  			unlock(&debugPtrmask.lock)
  1321  		}
  1322  	}
  1323  }
  1324  
  1325  var debugPtrmask struct {
  1326  	lock mutex
  1327  	data *byte
  1328  }
  1329  
  1330  // heapBitsSetTypeGCProg implements heapBitsSetType using a GC program.
  1331  // progSize is the size of the memory described by the program.
  1332  // elemSize is the size of the element that the GC program describes (a prefix of).
  1333  // dataSize is the total size of the intended data, a multiple of elemSize.
  1334  // allocSize is the total size of the allocated memory.
  1335  //
  1336  // GC programs are only used for large allocations.
  1337  // heapBitsSetType requires that allocSize is a multiple of 4 words,
  1338  // so that the relevant bitmap bytes are not shared with surrounding
  1339  // objects.
  1340  func heapBitsSetTypeGCProg(h heapBits, progSize, elemSize, dataSize, allocSize uintptr, prog *byte) {
  1341  	if sys.PtrSize == 8 && allocSize%(4*sys.PtrSize) != 0 {
  1342  		// Alignment will be wrong.
  1343  		throw("heapBitsSetTypeGCProg: small allocation")
  1344  	}
  1345  	var totalBits uintptr
  1346  	if elemSize == dataSize {
  1347  		totalBits = runGCProg(prog, nil, h.bitp, 2)
  1348  		if totalBits*sys.PtrSize != progSize {
  1349  			println("runtime: heapBitsSetTypeGCProg: total bits", totalBits, "but progSize", progSize)
  1350  			throw("heapBitsSetTypeGCProg: unexpected bit count")
  1351  		}
  1352  	} else {
  1353  		count := dataSize / elemSize
  1354  
  1355  		// Piece together program trailer to run after prog that does:
  1356  		//	literal(0)
  1357  		//	repeat(1, elemSize-progSize-1) // zeros to fill element size
  1358  		//	repeat(elemSize, count-1) // repeat that element for count
  1359  		// This zero-pads the data remaining in the first element and then
  1360  		// repeats that first element to fill the array.
  1361  		var trailer [40]byte // 3 varints (max 10 each) + some bytes
  1362  		i := 0
  1363  		if n := elemSize/sys.PtrSize - progSize/sys.PtrSize; n > 0 {
  1364  			// literal(0)
  1365  			trailer[i] = 0x01
  1366  			i++
  1367  			trailer[i] = 0
  1368  			i++
  1369  			if n > 1 {
  1370  				// repeat(1, n-1)
  1371  				trailer[i] = 0x81
  1372  				i++
  1373  				n--
  1374  				for ; n >= 0x80; n >>= 7 {
  1375  					trailer[i] = byte(n | 0x80)
  1376  					i++
  1377  				}
  1378  				trailer[i] = byte(n)
  1379  				i++
  1380  			}
  1381  		}
  1382  		// repeat(elemSize/ptrSize, count-1)
  1383  		trailer[i] = 0x80
  1384  		i++
  1385  		n := elemSize / sys.PtrSize
  1386  		for ; n >= 0x80; n >>= 7 {
  1387  			trailer[i] = byte(n | 0x80)
  1388  			i++
  1389  		}
  1390  		trailer[i] = byte(n)
  1391  		i++
  1392  		n = count - 1
  1393  		for ; n >= 0x80; n >>= 7 {
  1394  			trailer[i] = byte(n | 0x80)
  1395  			i++
  1396  		}
  1397  		trailer[i] = byte(n)
  1398  		i++
  1399  		trailer[i] = 0
  1400  		i++
  1401  
  1402  		runGCProg(prog, &trailer[0], h.bitp, 2)
  1403  
  1404  		// Even though we filled in the full array just now,
  1405  		// record that we only filled in up to the ptrdata of the
  1406  		// last element. This will cause the code below to
  1407  		// memclr the dead section of the final array element,
  1408  		// so that scanobject can stop early in the final element.
  1409  		totalBits = (elemSize*(count-1) + progSize) / sys.PtrSize
  1410  	}
  1411  	endProg := unsafe.Pointer(subtractb(h.bitp, (totalBits+3)/4))
  1412  	endAlloc := unsafe.Pointer(subtractb(h.bitp, allocSize/heapBitmapScale))
  1413  	memclrNoHeapPointers(add(endAlloc, 1), uintptr(endProg)-uintptr(endAlloc))
  1414  }
  1415  
  1416  // progToPointerMask returns the 1-bit pointer mask output by the GC program prog.
  1417  // size the size of the region described by prog, in bytes.
  1418  // The resulting bitvector will have no more than size/sys.PtrSize bits.
  1419  func progToPointerMask(prog *byte, size uintptr) bitvector {
  1420  	n := (size/sys.PtrSize + 7) / 8
  1421  	x := (*[1 << 30]byte)(persistentalloc(n+1, 1, &memstats.buckhash_sys))[:n+1]
  1422  	x[len(x)-1] = 0xa1 // overflow check sentinel
  1423  	n = runGCProg(prog, nil, &x[0], 1)
  1424  	if x[len(x)-1] != 0xa1 {
  1425  		throw("progToPointerMask: overflow")
  1426  	}
  1427  	return bitvector{int32(n), &x[0]}
  1428  }
  1429  
  1430  // Packed GC pointer bitmaps, aka GC programs.
  1431  //
  1432  // For large types containing arrays, the type information has a
  1433  // natural repetition that can be encoded to save space in the
  1434  // binary and in the memory representation of the type information.
  1435  //
  1436  // The encoding is a simple Lempel-Ziv style bytecode machine
  1437  // with the following instructions:
  1438  //
  1439  //	00000000: stop
  1440  //	0nnnnnnn: emit n bits copied from the next (n+7)/8 bytes
  1441  //	10000000 n c: repeat the previous n bits c times; n, c are varints
  1442  //	1nnnnnnn c: repeat the previous n bits c times; c is a varint
  1443  
  1444  // runGCProg executes the GC program prog, and then trailer if non-nil,
  1445  // writing to dst with entries of the given size.
  1446  // If size == 1, dst is a 1-bit pointer mask laid out moving forward from dst.
  1447  // If size == 2, dst is the 2-bit heap bitmap, and writes move backward
  1448  // starting at dst (because the heap bitmap does). In this case, the caller guarantees
  1449  // that only whole bytes in dst need to be written.
  1450  //
  1451  // runGCProg returns the number of 1- or 2-bit entries written to memory.
  1452  func runGCProg(prog, trailer, dst *byte, size int) uintptr {
  1453  	dstStart := dst
  1454  
  1455  	// Bits waiting to be written to memory.
  1456  	var bits uintptr
  1457  	var nbits uintptr
  1458  
  1459  	p := prog
  1460  Run:
  1461  	for {
  1462  		// Flush accumulated full bytes.
  1463  		// The rest of the loop assumes that nbits <= 7.
  1464  		for ; nbits >= 8; nbits -= 8 {
  1465  			if size == 1 {
  1466  				*dst = uint8(bits)
  1467  				dst = add1(dst)
  1468  				bits >>= 8
  1469  			} else {
  1470  				v := bits&bitPointerAll | bitScanAll
  1471  				*dst = uint8(v)
  1472  				dst = subtract1(dst)
  1473  				bits >>= 4
  1474  				v = bits&bitPointerAll | bitScanAll
  1475  				*dst = uint8(v)
  1476  				dst = subtract1(dst)
  1477  				bits >>= 4
  1478  			}
  1479  		}
  1480  
  1481  		// Process one instruction.
  1482  		inst := uintptr(*p)
  1483  		p = add1(p)
  1484  		n := inst & 0x7F
  1485  		if inst&0x80 == 0 {
  1486  			// Literal bits; n == 0 means end of program.
  1487  			if n == 0 {
  1488  				// Program is over; continue in trailer if present.
  1489  				if trailer != nil {
  1490  					//println("trailer")
  1491  					p = trailer
  1492  					trailer = nil
  1493  					continue
  1494  				}
  1495  				//println("done")
  1496  				break Run
  1497  			}
  1498  			//println("lit", n, dst)
  1499  			nbyte := n / 8
  1500  			for i := uintptr(0); i < nbyte; i++ {
  1501  				bits |= uintptr(*p) << nbits
  1502  				p = add1(p)
  1503  				if size == 1 {
  1504  					*dst = uint8(bits)
  1505  					dst = add1(dst)
  1506  					bits >>= 8
  1507  				} else {
  1508  					v := bits&0xf | bitScanAll
  1509  					*dst = uint8(v)
  1510  					dst = subtract1(dst)
  1511  					bits >>= 4
  1512  					v = bits&0xf | bitScanAll
  1513  					*dst = uint8(v)
  1514  					dst = subtract1(dst)
  1515  					bits >>= 4
  1516  				}
  1517  			}
  1518  			if n %= 8; n > 0 {
  1519  				bits |= uintptr(*p) << nbits
  1520  				p = add1(p)
  1521  				nbits += n
  1522  			}
  1523  			continue Run
  1524  		}
  1525  
  1526  		// Repeat. If n == 0, it is encoded in a varint in the next bytes.
  1527  		if n == 0 {
  1528  			for off := uint(0); ; off += 7 {
  1529  				x := uintptr(*p)
  1530  				p = add1(p)
  1531  				n |= (x & 0x7F) << off
  1532  				if x&0x80 == 0 {
  1533  					break
  1534  				}
  1535  			}
  1536  		}
  1537  
  1538  		// Count is encoded in a varint in the next bytes.
  1539  		c := uintptr(0)
  1540  		for off := uint(0); ; off += 7 {
  1541  			x := uintptr(*p)
  1542  			p = add1(p)
  1543  			c |= (x & 0x7F) << off
  1544  			if x&0x80 == 0 {
  1545  				break
  1546  			}
  1547  		}
  1548  		c *= n // now total number of bits to copy
  1549  
  1550  		// If the number of bits being repeated is small, load them
  1551  		// into a register and use that register for the entire loop
  1552  		// instead of repeatedly reading from memory.
  1553  		// Handling fewer than 8 bits here makes the general loop simpler.
  1554  		// The cutoff is sys.PtrSize*8 - 7 to guarantee that when we add
  1555  		// the pattern to a bit buffer holding at most 7 bits (a partial byte)
  1556  		// it will not overflow.
  1557  		src := dst
  1558  		const maxBits = sys.PtrSize*8 - 7
  1559  		if n <= maxBits {
  1560  			// Start with bits in output buffer.
  1561  			pattern := bits
  1562  			npattern := nbits
  1563  
  1564  			// If we need more bits, fetch them from memory.
  1565  			if size == 1 {
  1566  				src = subtract1(src)
  1567  				for npattern < n {
  1568  					pattern <<= 8
  1569  					pattern |= uintptr(*src)
  1570  					src = subtract1(src)
  1571  					npattern += 8
  1572  				}
  1573  			} else {
  1574  				src = add1(src)
  1575  				for npattern < n {
  1576  					pattern <<= 4
  1577  					pattern |= uintptr(*src) & 0xf
  1578  					src = add1(src)
  1579  					npattern += 4
  1580  				}
  1581  			}
  1582  
  1583  			// We started with the whole bit output buffer,
  1584  			// and then we loaded bits from whole bytes.
  1585  			// Either way, we might now have too many instead of too few.
  1586  			// Discard the extra.
  1587  			if npattern > n {
  1588  				pattern >>= npattern - n
  1589  				npattern = n
  1590  			}
  1591  
  1592  			// Replicate pattern to at most maxBits.
  1593  			if npattern == 1 {
  1594  				// One bit being repeated.
  1595  				// If the bit is 1, make the pattern all 1s.
  1596  				// If the bit is 0, the pattern is already all 0s,
  1597  				// but we can claim that the number of bits
  1598  				// in the word is equal to the number we need (c),
  1599  				// because right shift of bits will zero fill.
  1600  				if pattern == 1 {
  1601  					pattern = 1<<maxBits - 1
  1602  					npattern = maxBits
  1603  				} else {
  1604  					npattern = c
  1605  				}
  1606  			} else {
  1607  				b := pattern
  1608  				nb := npattern
  1609  				if nb+nb <= maxBits {
  1610  					// Double pattern until the whole uintptr is filled.
  1611  					for nb <= sys.PtrSize*8 {
  1612  						b |= b << nb
  1613  						nb += nb
  1614  					}
  1615  					// Trim away incomplete copy of original pattern in high bits.
  1616  					// TODO(rsc): Replace with table lookup or loop on systems without divide?
  1617  					nb = maxBits / npattern * npattern
  1618  					b &= 1<<nb - 1
  1619  					pattern = b
  1620  					npattern = nb
  1621  				}
  1622  			}
  1623  
  1624  			// Add pattern to bit buffer and flush bit buffer, c/npattern times.
  1625  			// Since pattern contains >8 bits, there will be full bytes to flush
  1626  			// on each iteration.
  1627  			for ; c >= npattern; c -= npattern {
  1628  				bits |= pattern << nbits
  1629  				nbits += npattern
  1630  				if size == 1 {
  1631  					for nbits >= 8 {
  1632  						*dst = uint8(bits)
  1633  						dst = add1(dst)
  1634  						bits >>= 8
  1635  						nbits -= 8
  1636  					}
  1637  				} else {
  1638  					for nbits >= 4 {
  1639  						*dst = uint8(bits&0xf | bitScanAll)
  1640  						dst = subtract1(dst)
  1641  						bits >>= 4
  1642  						nbits -= 4
  1643  					}
  1644  				}
  1645  			}
  1646  
  1647  			// Add final fragment to bit buffer.
  1648  			if c > 0 {
  1649  				pattern &= 1<<c - 1
  1650  				bits |= pattern << nbits
  1651  				nbits += c
  1652  			}
  1653  			continue Run
  1654  		}
  1655  
  1656  		// Repeat; n too large to fit in a register.
  1657  		// Since nbits <= 7, we know the first few bytes of repeated data
  1658  		// are already written to memory.
  1659  		off := n - nbits // n > nbits because n > maxBits and nbits <= 7
  1660  		if size == 1 {
  1661  			// Leading src fragment.
  1662  			src = subtractb(src, (off+7)/8)
  1663  			if frag := off & 7; frag != 0 {
  1664  				bits |= uintptr(*src) >> (8 - frag) << nbits
  1665  				src = add1(src)
  1666  				nbits += frag
  1667  				c -= frag
  1668  			}
  1669  			// Main loop: load one byte, write another.
  1670  			// The bits are rotating through the bit buffer.
  1671  			for i := c / 8; i > 0; i-- {
  1672  				bits |= uintptr(*src) << nbits
  1673  				src = add1(src)
  1674  				*dst = uint8(bits)
  1675  				dst = add1(dst)
  1676  				bits >>= 8
  1677  			}
  1678  			// Final src fragment.
  1679  			if c %= 8; c > 0 {
  1680  				bits |= (uintptr(*src) & (1<<c - 1)) << nbits
  1681  				nbits += c
  1682  			}
  1683  		} else {
  1684  			// Leading src fragment.
  1685  			src = addb(src, (off+3)/4)
  1686  			if frag := off & 3; frag != 0 {
  1687  				bits |= (uintptr(*src) & 0xf) >> (4 - frag) << nbits
  1688  				src = subtract1(src)
  1689  				nbits += frag
  1690  				c -= frag
  1691  			}
  1692  			// Main loop: load one byte, write another.
  1693  			// The bits are rotating through the bit buffer.
  1694  			for i := c / 4; i > 0; i-- {
  1695  				bits |= (uintptr(*src) & 0xf) << nbits
  1696  				src = subtract1(src)
  1697  				*dst = uint8(bits&0xf | bitScanAll)
  1698  				dst = subtract1(dst)
  1699  				bits >>= 4
  1700  			}
  1701  			// Final src fragment.
  1702  			if c %= 4; c > 0 {
  1703  				bits |= (uintptr(*src) & (1<<c - 1)) << nbits
  1704  				nbits += c
  1705  			}
  1706  		}
  1707  	}
  1708  
  1709  	// Write any final bits out, using full-byte writes, even for the final byte.
  1710  	var totalBits uintptr
  1711  	if size == 1 {
  1712  		totalBits = (uintptr(unsafe.Pointer(dst))-uintptr(unsafe.Pointer(dstStart)))*8 + nbits
  1713  		nbits += -nbits & 7
  1714  		for ; nbits > 0; nbits -= 8 {
  1715  			*dst = uint8(bits)
  1716  			dst = add1(dst)
  1717  			bits >>= 8
  1718  		}
  1719  	} else {
  1720  		totalBits = (uintptr(unsafe.Pointer(dstStart))-uintptr(unsafe.Pointer(dst)))*4 + nbits
  1721  		nbits += -nbits & 3
  1722  		for ; nbits > 0; nbits -= 4 {
  1723  			v := bits&0xf | bitScanAll
  1724  			*dst = uint8(v)
  1725  			dst = subtract1(dst)
  1726  			bits >>= 4
  1727  		}
  1728  	}
  1729  	return totalBits
  1730  }
  1731  
  1732  func dumpGCProg(p *byte) {
  1733  	nptr := 0
  1734  	for {
  1735  		x := *p
  1736  		p = add1(p)
  1737  		if x == 0 {
  1738  			print("\t", nptr, " end\n")
  1739  			break
  1740  		}
  1741  		if x&0x80 == 0 {
  1742  			print("\t", nptr, " lit ", x, ":")
  1743  			n := int(x+7) / 8
  1744  			for i := 0; i < n; i++ {
  1745  				print(" ", hex(*p))
  1746  				p = add1(p)
  1747  			}
  1748  			print("\n")
  1749  			nptr += int(x)
  1750  		} else {
  1751  			nbit := int(x &^ 0x80)
  1752  			if nbit == 0 {
  1753  				for nb := uint(0); ; nb += 7 {
  1754  					x := *p
  1755  					p = add1(p)
  1756  					nbit |= int(x&0x7f) << nb
  1757  					if x&0x80 == 0 {
  1758  						break
  1759  					}
  1760  				}
  1761  			}
  1762  			count := 0
  1763  			for nb := uint(0); ; nb += 7 {
  1764  				x := *p
  1765  				p = add1(p)
  1766  				count |= int(x&0x7f) << nb
  1767  				if x&0x80 == 0 {
  1768  					break
  1769  				}
  1770  			}
  1771  			print("\t", nptr, " repeat ", nbit, " × ", count, "\n")
  1772  			nptr += nbit * count
  1773  		}
  1774  	}
  1775  }
  1776  
  1777  // Testing.
  1778  
  1779  func getgcmaskcb(frame *stkframe, ctxt unsafe.Pointer) bool {
  1780  	target := (*stkframe)(ctxt)
  1781  	if frame.sp <= target.sp && target.sp < frame.varp {
  1782  		*target = *frame
  1783  		return false
  1784  	}
  1785  	return true
  1786  }
  1787  
  1788  // gcbits returns the GC type info for x, for testing.
  1789  // The result is the bitmap entries (0 or 1), one entry per byte.
  1790  //go:linkname reflect_gcbits reflect.gcbits
  1791  func reflect_gcbits(x interface{}) []byte {
  1792  	ret := getgcmask(x)
  1793  	typ := (*ptrtype)(unsafe.Pointer(efaceOf(&x)._type)).elem
  1794  	nptr := typ.ptrdata / sys.PtrSize
  1795  	for uintptr(len(ret)) > nptr && ret[len(ret)-1] == 0 {
  1796  		ret = ret[:len(ret)-1]
  1797  	}
  1798  	return ret
  1799  }
  1800  
  1801  // Returns GC type info for object p for testing.
  1802  func getgcmask(ep interface{}) (mask []byte) {
  1803  	e := *efaceOf(&ep)
  1804  	p := e.data
  1805  	t := e._type
  1806  	// data or bss
  1807  	for _, datap := range activeModules() {
  1808  		// data
  1809  		if datap.data <= uintptr(p) && uintptr(p) < datap.edata {
  1810  			bitmap := datap.gcdatamask.bytedata
  1811  			n := (*ptrtype)(unsafe.Pointer(t)).elem.size
  1812  			mask = make([]byte, n/sys.PtrSize)
  1813  			for i := uintptr(0); i < n; i += sys.PtrSize {
  1814  				off := (uintptr(p) + i - datap.data) / sys.PtrSize
  1815  				mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
  1816  			}
  1817  			return
  1818  		}
  1819  
  1820  		// bss
  1821  		if datap.bss <= uintptr(p) && uintptr(p) < datap.ebss {
  1822  			bitmap := datap.gcbssmask.bytedata
  1823  			n := (*ptrtype)(unsafe.Pointer(t)).elem.size
  1824  			mask = make([]byte, n/sys.PtrSize)
  1825  			for i := uintptr(0); i < n; i += sys.PtrSize {
  1826  				off := (uintptr(p) + i - datap.bss) / sys.PtrSize
  1827  				mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
  1828  			}
  1829  			return
  1830  		}
  1831  	}
  1832  
  1833  	// heap
  1834  	var n uintptr
  1835  	var base uintptr
  1836  	if mlookup(uintptr(p), &base, &n, nil) != 0 {
  1837  		mask = make([]byte, n/sys.PtrSize)
  1838  		for i := uintptr(0); i < n; i += sys.PtrSize {
  1839  			hbits := heapBitsForAddr(base + i)
  1840  			if hbits.isPointer() {
  1841  				mask[i/sys.PtrSize] = 1
  1842  			}
  1843  			if i != 1*sys.PtrSize && !hbits.morePointers() {
  1844  				mask = mask[:i/sys.PtrSize]
  1845  				break
  1846  			}
  1847  		}
  1848  		return
  1849  	}
  1850  
  1851  	// stack
  1852  	if _g_ := getg(); _g_.m.curg.stack.lo <= uintptr(p) && uintptr(p) < _g_.m.curg.stack.hi {
  1853  		var frame stkframe
  1854  		frame.sp = uintptr(p)
  1855  		_g_ := getg()
  1856  		gentraceback(_g_.m.curg.sched.pc, _g_.m.curg.sched.sp, 0, _g_.m.curg, 0, nil, 1000, getgcmaskcb, noescape(unsafe.Pointer(&frame)), 0)
  1857  		if frame.fn.valid() {
  1858  			f := frame.fn
  1859  			targetpc := frame.continpc
  1860  			if targetpc == 0 {
  1861  				return
  1862  			}
  1863  			if targetpc != f.entry {
  1864  				targetpc--
  1865  			}
  1866  			pcdata := pcdatavalue(f, _PCDATA_StackMapIndex, targetpc, nil)
  1867  			if pcdata == -1 {
  1868  				return
  1869  			}
  1870  			stkmap := (*stackmap)(funcdata(f, _FUNCDATA_LocalsPointerMaps))
  1871  			if stkmap == nil || stkmap.n <= 0 {
  1872  				return
  1873  			}
  1874  			bv := stackmapdata(stkmap, pcdata)
  1875  			size := uintptr(bv.n) * sys.PtrSize
  1876  			n := (*ptrtype)(unsafe.Pointer(t)).elem.size
  1877  			mask = make([]byte, n/sys.PtrSize)
  1878  			for i := uintptr(0); i < n; i += sys.PtrSize {
  1879  				bitmap := bv.bytedata
  1880  				off := (uintptr(p) + i - frame.varp + size) / sys.PtrSize
  1881  				mask[i/sys.PtrSize] = (*addb(bitmap, off/8) >> (off % 8)) & 1
  1882  			}
  1883  		}
  1884  		return
  1885  	}
  1886  
  1887  	// otherwise, not something the GC knows about.
  1888  	// possibly read-only data, like malloc(0).
  1889  	// must not have pointers
  1890  	return
  1891  }