github.com/eun/go@v0.0.0-20170811110501-92cfd07a6cfd/src/runtime/mstats.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Memory statistics
     6  
     7  package runtime
     8  
     9  import (
    10  	"runtime/internal/atomic"
    11  	"runtime/internal/sys"
    12  	"unsafe"
    13  )
    14  
    15  // Statistics.
    16  // If you edit this structure, also edit type MemStats below.
    17  // Their layouts must match exactly.
    18  //
    19  // For detailed descriptions see the documentation for MemStats.
    20  // Fields that differ from MemStats are further documented here.
    21  //
    22  // Many of these fields are updated on the fly, while others are only
    23  // updated when updatememstats is called.
    24  type mstats struct {
    25  	// General statistics.
    26  	alloc       uint64 // bytes allocated and not yet freed
    27  	total_alloc uint64 // bytes allocated (even if freed)
    28  	sys         uint64 // bytes obtained from system (should be sum of xxx_sys below, no locking, approximate)
    29  	nlookup     uint64 // number of pointer lookups
    30  	nmalloc     uint64 // number of mallocs
    31  	nfree       uint64 // number of frees
    32  
    33  	// Statistics about malloc heap.
    34  	// Protected by mheap.lock
    35  	//
    36  	// Like MemStats, heap_sys and heap_inuse do not count memory
    37  	// in manually-managed spans.
    38  	heap_alloc    uint64 // bytes allocated and not yet freed (same as alloc above)
    39  	heap_sys      uint64 // virtual address space obtained from system for GC'd heap
    40  	heap_idle     uint64 // bytes in idle spans
    41  	heap_inuse    uint64 // bytes in _MSpanInUse spans
    42  	heap_released uint64 // bytes released to the os
    43  	heap_objects  uint64 // total number of allocated objects
    44  
    45  	// TODO(austin): heap_released is both useless and inaccurate
    46  	// in its current form. It's useless because, from the user's
    47  	// and OS's perspectives, there's no difference between a page
    48  	// that has not yet been faulted in and a page that has been
    49  	// released back to the OS. We could fix this by considering
    50  	// newly mapped spans to be "released". It's inaccurate
    51  	// because when we split a large span for allocation, we
    52  	// "unrelease" all pages in the large span and not just the
    53  	// ones we split off for use. This is trickier to fix because
    54  	// we currently don't know which pages of a span we've
    55  	// released. We could fix it by separating "free" and
    56  	// "released" spans, but then we have to allocate from runs of
    57  	// free and released spans.
    58  
    59  	// Statistics about allocation of low-level fixed-size structures.
    60  	// Protected by FixAlloc locks.
    61  	stacks_inuse uint64 // bytes in manually-managed stack spans
    62  	stacks_sys   uint64 // only counts newosproc0 stack in mstats; differs from MemStats.StackSys
    63  	mspan_inuse  uint64 // mspan structures
    64  	mspan_sys    uint64
    65  	mcache_inuse uint64 // mcache structures
    66  	mcache_sys   uint64
    67  	buckhash_sys uint64 // profiling bucket hash table
    68  	gc_sys       uint64
    69  	other_sys    uint64
    70  
    71  	// Statistics about garbage collector.
    72  	// Protected by mheap or stopping the world during GC.
    73  	next_gc         uint64 // goal heap_live for when next GC ends; ^0 if disabled
    74  	last_gc_unix    uint64 // last gc (in unix time)
    75  	pause_total_ns  uint64
    76  	pause_ns        [256]uint64 // circular buffer of recent gc pause lengths
    77  	pause_end       [256]uint64 // circular buffer of recent gc end times (nanoseconds since 1970)
    78  	numgc           uint32
    79  	numforcedgc     uint32  // number of user-forced GCs
    80  	gc_cpu_fraction float64 // fraction of CPU time used by GC
    81  	enablegc        bool
    82  	debuggc         bool
    83  
    84  	// Statistics about allocation size classes.
    85  
    86  	by_size [_NumSizeClasses]struct {
    87  		size    uint32
    88  		nmalloc uint64
    89  		nfree   uint64
    90  	}
    91  
    92  	// Statistics below here are not exported to MemStats directly.
    93  
    94  	last_gc_nanotime uint64 // last gc (monotonic time)
    95  	tinyallocs       uint64 // number of tiny allocations that didn't cause actual allocation; not exported to go directly
    96  
    97  	// triggerRatio is the heap growth ratio that triggers marking.
    98  	//
    99  	// E.g., if this is 0.6, then GC should start when the live
   100  	// heap has reached 1.6 times the heap size marked by the
   101  	// previous cycle. This should be ≤ GOGC/100 so the trigger
   102  	// heap size is less than the goal heap size. This is set
   103  	// during mark termination for the next cycle's trigger.
   104  	triggerRatio float64
   105  
   106  	// gc_trigger is the heap size that triggers marking.
   107  	//
   108  	// When heap_live ≥ gc_trigger, the mark phase will start.
   109  	// This is also the heap size by which proportional sweeping
   110  	// must be complete.
   111  	//
   112  	// This is computed from triggerRatio during mark termination
   113  	// for the next cycle's trigger.
   114  	gc_trigger uint64
   115  
   116  	// heap_live is the number of bytes considered live by the GC.
   117  	// That is: retained by the most recent GC plus allocated
   118  	// since then. heap_live <= heap_alloc, since heap_alloc
   119  	// includes unmarked objects that have not yet been swept (and
   120  	// hence goes up as we allocate and down as we sweep) while
   121  	// heap_live excludes these objects (and hence only goes up
   122  	// between GCs).
   123  	//
   124  	// This is updated atomically without locking. To reduce
   125  	// contention, this is updated only when obtaining a span from
   126  	// an mcentral and at this point it counts all of the
   127  	// unallocated slots in that span (which will be allocated
   128  	// before that mcache obtains another span from that
   129  	// mcentral). Hence, it slightly overestimates the "true" live
   130  	// heap size. It's better to overestimate than to
   131  	// underestimate because 1) this triggers the GC earlier than
   132  	// necessary rather than potentially too late and 2) this
   133  	// leads to a conservative GC rate rather than a GC rate that
   134  	// is potentially too low.
   135  	//
   136  	// Reads should likewise be atomic (or during STW).
   137  	//
   138  	// Whenever this is updated, call traceHeapAlloc() and
   139  	// gcController.revise().
   140  	heap_live uint64
   141  
   142  	// heap_scan is the number of bytes of "scannable" heap. This
   143  	// is the live heap (as counted by heap_live), but omitting
   144  	// no-scan objects and no-scan tails of objects.
   145  	//
   146  	// Whenever this is updated, call gcController.revise().
   147  	heap_scan uint64
   148  
   149  	// heap_marked is the number of bytes marked by the previous
   150  	// GC. After mark termination, heap_live == heap_marked, but
   151  	// unlike heap_live, heap_marked does not change until the
   152  	// next mark termination.
   153  	heap_marked uint64
   154  }
   155  
   156  var memstats mstats
   157  
   158  // A MemStats records statistics about the memory allocator.
   159  type MemStats struct {
   160  	// General statistics.
   161  
   162  	// Alloc is bytes of allocated heap objects.
   163  	//
   164  	// This is the same as HeapAlloc (see below).
   165  	Alloc uint64
   166  
   167  	// TotalAlloc is cumulative bytes allocated for heap objects.
   168  	//
   169  	// TotalAlloc increases as heap objects are allocated, but
   170  	// unlike Alloc and HeapAlloc, it does not decrease when
   171  	// objects are freed.
   172  	TotalAlloc uint64
   173  
   174  	// Sys is the total bytes of memory obtained from the OS.
   175  	//
   176  	// Sys is the sum of the XSys fields below. Sys measures the
   177  	// virtual address space reserved by the Go runtime for the
   178  	// heap, stacks, and other internal data structures. It's
   179  	// likely that not all of the virtual address space is backed
   180  	// by physical memory at any given moment, though in general
   181  	// it all was at some point.
   182  	Sys uint64
   183  
   184  	// Lookups is the number of pointer lookups performed by the
   185  	// runtime.
   186  	//
   187  	// This is primarily useful for debugging runtime internals.
   188  	Lookups uint64
   189  
   190  	// Mallocs is the cumulative count of heap objects allocated.
   191  	// The number of live objects is Mallocs - Frees.
   192  	Mallocs uint64
   193  
   194  	// Frees is the cumulative count of heap objects freed.
   195  	Frees uint64
   196  
   197  	// Heap memory statistics.
   198  	//
   199  	// Interpreting the heap statistics requires some knowledge of
   200  	// how Go organizes memory. Go divides the virtual address
   201  	// space of the heap into "spans", which are contiguous
   202  	// regions of memory 8K or larger. A span may be in one of
   203  	// three states:
   204  	//
   205  	// An "idle" span contains no objects or other data. The
   206  	// physical memory backing an idle span can be released back
   207  	// to the OS (but the virtual address space never is), or it
   208  	// can be converted into an "in use" or "stack" span.
   209  	//
   210  	// An "in use" span contains at least one heap object and may
   211  	// have free space available to allocate more heap objects.
   212  	//
   213  	// A "stack" span is used for goroutine stacks. Stack spans
   214  	// are not considered part of the heap. A span can change
   215  	// between heap and stack memory; it is never used for both
   216  	// simultaneously.
   217  
   218  	// HeapAlloc is bytes of allocated heap objects.
   219  	//
   220  	// "Allocated" heap objects include all reachable objects, as
   221  	// well as unreachable objects that the garbage collector has
   222  	// not yet freed. Specifically, HeapAlloc increases as heap
   223  	// objects are allocated and decreases as the heap is swept
   224  	// and unreachable objects are freed. Sweeping occurs
   225  	// incrementally between GC cycles, so these two processes
   226  	// occur simultaneously, and as a result HeapAlloc tends to
   227  	// change smoothly (in contrast with the sawtooth that is
   228  	// typical of stop-the-world garbage collectors).
   229  	HeapAlloc uint64
   230  
   231  	// HeapSys is bytes of heap memory obtained from the OS.
   232  	//
   233  	// HeapSys measures the amount of virtual address space
   234  	// reserved for the heap. This includes virtual address space
   235  	// that has been reserved but not yet used, which consumes no
   236  	// physical memory, but tends to be small, as well as virtual
   237  	// address space for which the physical memory has been
   238  	// returned to the OS after it became unused (see HeapReleased
   239  	// for a measure of the latter).
   240  	//
   241  	// HeapSys estimates the largest size the heap has had.
   242  	HeapSys uint64
   243  
   244  	// HeapIdle is bytes in idle (unused) spans.
   245  	//
   246  	// Idle spans have no objects in them. These spans could be
   247  	// (and may already have been) returned to the OS, or they can
   248  	// be reused for heap allocations, or they can be reused as
   249  	// stack memory.
   250  	//
   251  	// HeapIdle minus HeapReleased estimates the amount of memory
   252  	// that could be returned to the OS, but is being retained by
   253  	// the runtime so it can grow the heap without requesting more
   254  	// memory from the OS. If this difference is significantly
   255  	// larger than the heap size, it indicates there was a recent
   256  	// transient spike in live heap size.
   257  	HeapIdle uint64
   258  
   259  	// HeapInuse is bytes in in-use spans.
   260  	//
   261  	// In-use spans have at least one object in them. These spans
   262  	// can only be used for other objects of roughly the same
   263  	// size.
   264  	//
   265  	// HeapInuse minus HeapAlloc esimates the amount of memory
   266  	// that has been dedicated to particular size classes, but is
   267  	// not currently being used. This is an upper bound on
   268  	// fragmentation, but in general this memory can be reused
   269  	// efficiently.
   270  	HeapInuse uint64
   271  
   272  	// HeapReleased is bytes of physical memory returned to the OS.
   273  	//
   274  	// This counts heap memory from idle spans that was returned
   275  	// to the OS and has not yet been reacquired for the heap.
   276  	HeapReleased uint64
   277  
   278  	// HeapObjects is the number of allocated heap objects.
   279  	//
   280  	// Like HeapAlloc, this increases as objects are allocated and
   281  	// decreases as the heap is swept and unreachable objects are
   282  	// freed.
   283  	HeapObjects uint64
   284  
   285  	// Stack memory statistics.
   286  	//
   287  	// Stacks are not considered part of the heap, but the runtime
   288  	// can reuse a span of heap memory for stack memory, and
   289  	// vice-versa.
   290  
   291  	// StackInuse is bytes in stack spans.
   292  	//
   293  	// In-use stack spans have at least one stack in them. These
   294  	// spans can only be used for other stacks of the same size.
   295  	//
   296  	// There is no StackIdle because unused stack spans are
   297  	// returned to the heap (and hence counted toward HeapIdle).
   298  	StackInuse uint64
   299  
   300  	// StackSys is bytes of stack memory obtained from the OS.
   301  	//
   302  	// StackSys is StackInuse, plus any memory obtained directly
   303  	// from the OS for OS thread stacks (which should be minimal).
   304  	StackSys uint64
   305  
   306  	// Off-heap memory statistics.
   307  	//
   308  	// The following statistics measure runtime-internal
   309  	// structures that are not allocated from heap memory (usually
   310  	// because they are part of implementing the heap). Unlike
   311  	// heap or stack memory, any memory allocated to these
   312  	// structures is dedicated to these structures.
   313  	//
   314  	// These are primarily useful for debugging runtime memory
   315  	// overheads.
   316  
   317  	// MSpanInuse is bytes of allocated mspan structures.
   318  	MSpanInuse uint64
   319  
   320  	// MSpanSys is bytes of memory obtained from the OS for mspan
   321  	// structures.
   322  	MSpanSys uint64
   323  
   324  	// MCacheInuse is bytes of allocated mcache structures.
   325  	MCacheInuse uint64
   326  
   327  	// MCacheSys is bytes of memory obtained from the OS for
   328  	// mcache structures.
   329  	MCacheSys uint64
   330  
   331  	// BuckHashSys is bytes of memory in profiling bucket hash tables.
   332  	BuckHashSys uint64
   333  
   334  	// GCSys is bytes of memory in garbage collection metadata.
   335  	GCSys uint64
   336  
   337  	// OtherSys is bytes of memory in miscellaneous off-heap
   338  	// runtime allocations.
   339  	OtherSys uint64
   340  
   341  	// Garbage collector statistics.
   342  
   343  	// NextGC is the target heap size of the next GC cycle.
   344  	//
   345  	// The garbage collector's goal is to keep HeapAlloc ≤ NextGC.
   346  	// At the end of each GC cycle, the target for the next cycle
   347  	// is computed based on the amount of reachable data and the
   348  	// value of GOGC.
   349  	NextGC uint64
   350  
   351  	// LastGC is the time the last garbage collection finished, as
   352  	// nanoseconds since 1970 (the UNIX epoch).
   353  	LastGC uint64
   354  
   355  	// PauseTotalNs is the cumulative nanoseconds in GC
   356  	// stop-the-world pauses since the program started.
   357  	//
   358  	// During a stop-the-world pause, all goroutines are paused
   359  	// and only the garbage collector can run.
   360  	PauseTotalNs uint64
   361  
   362  	// PauseNs is a circular buffer of recent GC stop-the-world
   363  	// pause times in nanoseconds.
   364  	//
   365  	// The most recent pause is at PauseNs[(NumGC+255)%256]. In
   366  	// general, PauseNs[N%256] records the time paused in the most
   367  	// recent N%256th GC cycle. There may be multiple pauses per
   368  	// GC cycle; this is the sum of all pauses during a cycle.
   369  	PauseNs [256]uint64
   370  
   371  	// PauseEnd is a circular buffer of recent GC pause end times,
   372  	// as nanoseconds since 1970 (the UNIX epoch).
   373  	//
   374  	// This buffer is filled the same way as PauseNs. There may be
   375  	// multiple pauses per GC cycle; this records the end of the
   376  	// last pause in a cycle.
   377  	PauseEnd [256]uint64
   378  
   379  	// NumGC is the number of completed GC cycles.
   380  	NumGC uint32
   381  
   382  	// NumForcedGC is the number of GC cycles that were forced by
   383  	// the application calling the GC function.
   384  	NumForcedGC uint32
   385  
   386  	// GCCPUFraction is the fraction of this program's available
   387  	// CPU time used by the GC since the program started.
   388  	//
   389  	// GCCPUFraction is expressed as a number between 0 and 1,
   390  	// where 0 means GC has consumed none of this program's CPU. A
   391  	// program's available CPU time is defined as the integral of
   392  	// GOMAXPROCS since the program started. That is, if
   393  	// GOMAXPROCS is 2 and a program has been running for 10
   394  	// seconds, its "available CPU" is 20 seconds. GCCPUFraction
   395  	// does not include CPU time used for write barrier activity.
   396  	//
   397  	// This is the same as the fraction of CPU reported by
   398  	// GODEBUG=gctrace=1.
   399  	GCCPUFraction float64
   400  
   401  	// EnableGC indicates that GC is enabled. It is always true,
   402  	// even if GOGC=off.
   403  	EnableGC bool
   404  
   405  	// DebugGC is currently unused.
   406  	DebugGC bool
   407  
   408  	// BySize reports per-size class allocation statistics.
   409  	//
   410  	// BySize[N] gives statistics for allocations of size S where
   411  	// BySize[N-1].Size < S ≤ BySize[N].Size.
   412  	//
   413  	// This does not report allocations larger than BySize[60].Size.
   414  	BySize [61]struct {
   415  		// Size is the maximum byte size of an object in this
   416  		// size class.
   417  		Size uint32
   418  
   419  		// Mallocs is the cumulative count of heap objects
   420  		// allocated in this size class. The cumulative bytes
   421  		// of allocation is Size*Mallocs. The number of live
   422  		// objects in this size class is Mallocs - Frees.
   423  		Mallocs uint64
   424  
   425  		// Frees is the cumulative count of heap objects freed
   426  		// in this size class.
   427  		Frees uint64
   428  	}
   429  }
   430  
   431  // Size of the trailing by_size array differs between mstats and MemStats,
   432  // and all data after by_size is local to runtime, not exported.
   433  // NumSizeClasses was changed, but we cannot change MemStats because of backward compatibility.
   434  // sizeof_C_MStats is the size of the prefix of mstats that
   435  // corresponds to MemStats. It should match Sizeof(MemStats{}).
   436  var sizeof_C_MStats = unsafe.Offsetof(memstats.by_size) + 61*unsafe.Sizeof(memstats.by_size[0])
   437  
   438  func init() {
   439  	var memStats MemStats
   440  	if sizeof_C_MStats != unsafe.Sizeof(memStats) {
   441  		println(sizeof_C_MStats, unsafe.Sizeof(memStats))
   442  		throw("MStats vs MemStatsType size mismatch")
   443  	}
   444  
   445  	if unsafe.Offsetof(memstats.heap_live)%8 != 0 {
   446  		println(unsafe.Offsetof(memstats.heap_live))
   447  		throw("memstats.heap_live not aligned to 8 bytes")
   448  	}
   449  }
   450  
   451  // ReadMemStats populates m with memory allocator statistics.
   452  //
   453  // The returned memory allocator statistics are up to date as of the
   454  // call to ReadMemStats. This is in contrast with a heap profile,
   455  // which is a snapshot as of the most recently completed garbage
   456  // collection cycle.
   457  func ReadMemStats(m *MemStats) {
   458  	stopTheWorld("read mem stats")
   459  
   460  	systemstack(func() {
   461  		readmemstats_m(m)
   462  	})
   463  
   464  	startTheWorld()
   465  }
   466  
   467  func readmemstats_m(stats *MemStats) {
   468  	updatememstats()
   469  
   470  	// The size of the trailing by_size array differs between
   471  	// mstats and MemStats. NumSizeClasses was changed, but we
   472  	// cannot change MemStats because of backward compatibility.
   473  	memmove(unsafe.Pointer(stats), unsafe.Pointer(&memstats), sizeof_C_MStats)
   474  
   475  	// memstats.stacks_sys is only memory mapped directly for OS stacks.
   476  	// Add in heap-allocated stack memory for user consumption.
   477  	stats.StackSys += stats.StackInuse
   478  }
   479  
   480  //go:linkname readGCStats runtime/debug.readGCStats
   481  func readGCStats(pauses *[]uint64) {
   482  	systemstack(func() {
   483  		readGCStats_m(pauses)
   484  	})
   485  }
   486  
   487  func readGCStats_m(pauses *[]uint64) {
   488  	p := *pauses
   489  	// Calling code in runtime/debug should make the slice large enough.
   490  	if cap(p) < len(memstats.pause_ns)+3 {
   491  		throw("short slice passed to readGCStats")
   492  	}
   493  
   494  	// Pass back: pauses, pause ends, last gc (absolute time), number of gc, total pause ns.
   495  	lock(&mheap_.lock)
   496  
   497  	n := memstats.numgc
   498  	if n > uint32(len(memstats.pause_ns)) {
   499  		n = uint32(len(memstats.pause_ns))
   500  	}
   501  
   502  	// The pause buffer is circular. The most recent pause is at
   503  	// pause_ns[(numgc-1)%len(pause_ns)], and then backward
   504  	// from there to go back farther in time. We deliver the times
   505  	// most recent first (in p[0]).
   506  	p = p[:cap(p)]
   507  	for i := uint32(0); i < n; i++ {
   508  		j := (memstats.numgc - 1 - i) % uint32(len(memstats.pause_ns))
   509  		p[i] = memstats.pause_ns[j]
   510  		p[n+i] = memstats.pause_end[j]
   511  	}
   512  
   513  	p[n+n] = memstats.last_gc_unix
   514  	p[n+n+1] = uint64(memstats.numgc)
   515  	p[n+n+2] = memstats.pause_total_ns
   516  	unlock(&mheap_.lock)
   517  	*pauses = p[:n+n+3]
   518  }
   519  
   520  //go:nowritebarrier
   521  func updatememstats() {
   522  	memstats.mcache_inuse = uint64(mheap_.cachealloc.inuse)
   523  	memstats.mspan_inuse = uint64(mheap_.spanalloc.inuse)
   524  	memstats.sys = memstats.heap_sys + memstats.stacks_sys + memstats.mspan_sys +
   525  		memstats.mcache_sys + memstats.buckhash_sys + memstats.gc_sys + memstats.other_sys
   526  
   527  	// We also count stacks_inuse as sys memory.
   528  	memstats.sys += memstats.stacks_inuse
   529  
   530  	// Calculate memory allocator stats.
   531  	// During program execution we only count number of frees and amount of freed memory.
   532  	// Current number of alive object in the heap and amount of alive heap memory
   533  	// are calculated by scanning all spans.
   534  	// Total number of mallocs is calculated as number of frees plus number of alive objects.
   535  	// Similarly, total amount of allocated memory is calculated as amount of freed memory
   536  	// plus amount of alive heap memory.
   537  	memstats.alloc = 0
   538  	memstats.total_alloc = 0
   539  	memstats.nmalloc = 0
   540  	memstats.nfree = 0
   541  	for i := 0; i < len(memstats.by_size); i++ {
   542  		memstats.by_size[i].nmalloc = 0
   543  		memstats.by_size[i].nfree = 0
   544  	}
   545  
   546  	// Flush MCache's to MCentral.
   547  	systemstack(flushallmcaches)
   548  
   549  	// Aggregate local stats.
   550  	cachestats()
   551  
   552  	// Collect allocation stats. This is safe and consistent
   553  	// because the world is stopped.
   554  	var smallFree, totalAlloc, totalFree uint64
   555  	// Collect per-spanclass stats.
   556  	for spc := range mheap_.central {
   557  		// The mcaches are now empty, so mcentral stats are
   558  		// up-to-date.
   559  		c := &mheap_.central[spc].mcentral
   560  		memstats.nmalloc += c.nmalloc
   561  		i := spanClass(spc).sizeclass()
   562  		memstats.by_size[i].nmalloc += c.nmalloc
   563  		totalAlloc += c.nmalloc * uint64(class_to_size[i])
   564  	}
   565  	// Collect per-sizeclass stats.
   566  	for i := 0; i < _NumSizeClasses; i++ {
   567  		if i == 0 {
   568  			memstats.nmalloc += mheap_.nlargealloc
   569  			totalAlloc += mheap_.largealloc
   570  			totalFree += mheap_.largefree
   571  			memstats.nfree += mheap_.nlargefree
   572  			continue
   573  		}
   574  
   575  		// The mcache stats have been flushed to mheap_.
   576  		memstats.nfree += mheap_.nsmallfree[i]
   577  		memstats.by_size[i].nfree = mheap_.nsmallfree[i]
   578  		smallFree += mheap_.nsmallfree[i] * uint64(class_to_size[i])
   579  	}
   580  	totalFree += smallFree
   581  
   582  	memstats.nfree += memstats.tinyallocs
   583  	memstats.nmalloc += memstats.tinyallocs
   584  
   585  	// Calculate derived stats.
   586  	memstats.total_alloc = totalAlloc
   587  	memstats.alloc = totalAlloc - totalFree
   588  	memstats.heap_alloc = memstats.alloc
   589  	memstats.heap_objects = memstats.nmalloc - memstats.nfree
   590  }
   591  
   592  //go:nowritebarrier
   593  func cachestats() {
   594  	for _, p := range &allp {
   595  		if p == nil {
   596  			break
   597  		}
   598  		c := p.mcache
   599  		if c == nil {
   600  			continue
   601  		}
   602  		purgecachedstats(c)
   603  	}
   604  }
   605  
   606  // flushmcache flushes the mcache of allp[i].
   607  //
   608  // The world must be stopped.
   609  //
   610  //go:nowritebarrier
   611  func flushmcache(i int) {
   612  	p := allp[i]
   613  	if p == nil {
   614  		return
   615  	}
   616  	c := p.mcache
   617  	if c == nil {
   618  		return
   619  	}
   620  	c.releaseAll()
   621  	stackcache_clear(c)
   622  }
   623  
   624  // flushallmcaches flushes the mcaches of all Ps.
   625  //
   626  // The world must be stopped.
   627  //
   628  //go:nowritebarrier
   629  func flushallmcaches() {
   630  	for i := 0; i < int(gomaxprocs); i++ {
   631  		flushmcache(i)
   632  	}
   633  }
   634  
   635  //go:nosplit
   636  func purgecachedstats(c *mcache) {
   637  	// Protected by either heap or GC lock.
   638  	h := &mheap_
   639  	memstats.heap_scan += uint64(c.local_scan)
   640  	c.local_scan = 0
   641  	memstats.tinyallocs += uint64(c.local_tinyallocs)
   642  	c.local_tinyallocs = 0
   643  	memstats.nlookup += uint64(c.local_nlookup)
   644  	c.local_nlookup = 0
   645  	h.largefree += uint64(c.local_largefree)
   646  	c.local_largefree = 0
   647  	h.nlargefree += uint64(c.local_nlargefree)
   648  	c.local_nlargefree = 0
   649  	for i := 0; i < len(c.local_nsmallfree); i++ {
   650  		h.nsmallfree[i] += uint64(c.local_nsmallfree[i])
   651  		c.local_nsmallfree[i] = 0
   652  	}
   653  }
   654  
   655  // Atomically increases a given *system* memory stat. We are counting on this
   656  // stat never overflowing a uintptr, so this function must only be used for
   657  // system memory stats.
   658  //
   659  // The current implementation for little endian architectures is based on
   660  // xadduintptr(), which is less than ideal: xadd64() should really be used.
   661  // Using xadduintptr() is a stop-gap solution until arm supports xadd64() that
   662  // doesn't use locks.  (Locks are a problem as they require a valid G, which
   663  // restricts their useability.)
   664  //
   665  // A side-effect of using xadduintptr() is that we need to check for
   666  // overflow errors.
   667  //go:nosplit
   668  func mSysStatInc(sysStat *uint64, n uintptr) {
   669  	if sys.BigEndian != 0 {
   670  		atomic.Xadd64(sysStat, int64(n))
   671  		return
   672  	}
   673  	if val := atomic.Xadduintptr((*uintptr)(unsafe.Pointer(sysStat)), n); val < n {
   674  		print("runtime: stat overflow: val ", val, ", n ", n, "\n")
   675  		exit(2)
   676  	}
   677  }
   678  
   679  // Atomically decreases a given *system* memory stat. Same comments as
   680  // mSysStatInc apply.
   681  //go:nosplit
   682  func mSysStatDec(sysStat *uint64, n uintptr) {
   683  	if sys.BigEndian != 0 {
   684  		atomic.Xadd64(sysStat, -int64(n))
   685  		return
   686  	}
   687  	if val := atomic.Xadduintptr((*uintptr)(unsafe.Pointer(sysStat)), uintptr(-int64(n))); val+n < n {
   688  		print("runtime: stat underflow: val ", val, ", n ", n, "\n")
   689  		exit(2)
   690  	}
   691  }