github.com/eun/go@v0.0.0-20170811110501-92cfd07a6cfd/src/runtime/vlop_arm.s (about)

     1  // Inferno's libkern/vlop-arm.s
     2  // https://bitbucket.org/inferno-os/inferno-os/src/default/libkern/vlop-arm.s
     3  //
     4  //         Copyright © 1994-1999 Lucent Technologies Inc. All rights reserved.
     5  //         Revisions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com).  All rights reserved.
     6  //         Portions Copyright 2009 The Go Authors. All rights reserved.
     7  //
     8  // Permission is hereby granted, free of charge, to any person obtaining a copy
     9  // of this software and associated documentation files (the "Software"), to deal
    10  // in the Software without restriction, including without limitation the rights
    11  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    12  // copies of the Software, and to permit persons to whom the Software is
    13  // furnished to do so, subject to the following conditions:
    14  //
    15  // The above copyright notice and this permission notice shall be included in
    16  // all copies or substantial portions of the Software.
    17  //
    18  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    19  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    20  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    21  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    22  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    23  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    24  // THE SOFTWARE.
    25  
    26  #include "go_asm.h"
    27  #include "go_tls.h"
    28  #include "funcdata.h"
    29  #include "textflag.h"
    30  
    31  // trampoline for _sfloat2. passes LR as arg0 and
    32  // saves registers R0-R13 and CPSR on the stack. R0-R12 and CPSR flags can
    33  // be changed by _sfloat2.
    34  TEXT runtime·_sfloat(SB), NOSPLIT, $68-0 // 4 arg + 14*4 saved regs + cpsr + return value
    35  	MOVW	R14, 4(R13)
    36  	MOVW	R0, 8(R13)
    37  	MOVW	$12(R13), R0
    38  	MOVM.IA.W	[R1-R12], (R0)
    39  	MOVW	$72(R13), R1 // correct for frame size
    40  	MOVW	R1, 60(R13)
    41  	WORD	$0xe10f1000 // mrs r1, cpsr
    42  	MOVW	R1, 64(R13)
    43  	// Disable preemption of this goroutine during _sfloat2 by
    44  	// m->locks++ and m->locks-- around the call.
    45  	// Rescheduling this goroutine may cause the loss of the
    46  	// contents of the software floating point registers in 
    47  	// m->freghi, m->freglo, m->fflag, if the goroutine is moved
    48  	// to a different m or another goroutine runs on this m.
    49  	// Rescheduling at ordinary function calls is okay because
    50  	// all registers are caller save, but _sfloat2 and the things
    51  	// that it runs are simulating the execution of individual
    52  	// program instructions, and those instructions do not expect
    53  	// the floating point registers to be lost.
    54  	// An alternative would be to move the software floating point
    55  	// registers into G, but they do not need to be kept at the 
    56  	// usual places a goroutine reschedules (at function calls),
    57  	// so it would be a waste of 132 bytes per G.
    58  	MOVW	g_m(g), R8
    59  	MOVW	m_locks(R8), R1
    60  	ADD	$1, R1
    61  	MOVW	R1, m_locks(R8)
    62  	MOVW	$1, R1
    63  	MOVW	R1, m_softfloat(R8)
    64  	BL	runtime·_sfloat2(SB)
    65  	MOVW	68(R13), R0
    66  	MOVW	g_m(g), R8
    67  	MOVW	m_locks(R8), R1
    68  	SUB	$1, R1
    69  	MOVW	R1, m_locks(R8)
    70  	MOVW	$0, R1
    71  	MOVW	R1, m_softfloat(R8)
    72  	MOVW	R0, 0(R13)
    73  	MOVW	64(R13), R1
    74  	WORD	$0xe128f001	// msr cpsr_f, r1
    75  	MOVW	$12(R13), R0
    76  	// Restore R1-R12, R0.
    77  	MOVM.IA.W	(R0), [R1-R12]
    78  	MOVW	8(R13), R0
    79  	RET
    80  
    81  // trampoline for _sfloat2 panic.
    82  // _sfloat2 instructs _sfloat to return here.
    83  // We need to push a fake saved LR onto the stack,
    84  // load the signal fault address into LR, and jump
    85  // to the real sigpanic.
    86  // This simulates what sighandler does for a memory fault.
    87  TEXT runtime·_sfloatpanic(SB),NOSPLIT,$-4
    88  	MOVW	$0, R0
    89  	MOVW.W	R0, -4(R13)
    90  	MOVW	g_sigpc(g), LR
    91  	B	runtime·sigpanic(SB)
    92  
    93  // func runtime·udiv(n, d uint32) (q, r uint32)
    94  // compiler knowns the register usage of this function
    95  // Reference: 
    96  // Sloss, Andrew et. al; ARM System Developer's Guide: Designing and Optimizing System Software
    97  // Morgan Kaufmann; 1 edition (April 8, 2004), ISBN 978-1558608740
    98  #define Rq	R0 // input d, output q
    99  #define Rr	R1 // input n, output r
   100  #define Rs	R2 // three temporary variables
   101  #define RM	R3
   102  #define Ra	R11
   103  
   104  // Be careful: Ra == R11 will be used by the linker for synthesized instructions.
   105  TEXT runtime·udiv(SB),NOSPLIT,$-4
   106  	MOVBU	runtime·hardDiv(SB), Ra
   107  	CMP	$0, Ra
   108  	BNE	udiv_hardware
   109  
   110  	CLZ 	Rq, Rs // find normalizing shift
   111  	MOVW.S	Rq<<Rs, Ra
   112  	MOVW	$fast_udiv_tab<>-64(SB), RM
   113  	ADD.NE	Ra>>25, RM, Ra // index by most significant 7 bits of divisor
   114  	MOVBU.NE	(Ra), Ra
   115  
   116  	SUB.S	$7, Rs
   117  	RSB 	$0, Rq, RM // M = -q
   118  	MOVW.PL	Ra<<Rs, Rq
   119  
   120  	// 1st Newton iteration
   121  	MUL.PL	RM, Rq, Ra // a = -q*d
   122  	BMI 	udiv_by_large_d
   123  	MULAWT	Ra, Rq, Rq, Rq // q approx q-(q*q*d>>32)
   124  	TEQ 	RM->1, RM // check for d=0 or d=1
   125  
   126  	// 2nd Newton iteration
   127  	MUL.NE	RM, Rq, Ra
   128  	MOVW.NE	$0, Rs
   129  	MULAL.NE Rq, Ra, (Rq,Rs)
   130  	BEQ 	udiv_by_0_or_1
   131  
   132  	// q now accurate enough for a remainder r, 0<=r<3*d
   133  	MULLU	Rq, Rr, (Rq,Rs) // q = (r * q) >> 32
   134  	ADD 	RM, Rr, Rr // r = n - d
   135  	MULA	RM, Rq, Rr, Rr // r = n - (q+1)*d
   136  
   137  	// since 0 <= n-q*d < 3*d; thus -d <= r < 2*d
   138  	CMN 	RM, Rr // t = r-d
   139  	SUB.CS	RM, Rr, Rr // if (t<-d || t>=0) r=r+d
   140  	ADD.CC	$1, Rq
   141  	ADD.PL	RM<<1, Rr
   142  	ADD.PL	$2, Rq
   143  	RET
   144  
   145  // use hardware divider
   146  udiv_hardware:
   147  	DIVUHW	Rq, Rr, Rs
   148  	MUL	Rs, Rq, RM
   149  	RSB	Rr, RM, Rr
   150  	MOVW	Rs, Rq
   151  	RET
   152  
   153  udiv_by_large_d:
   154  	// at this point we know d>=2^(31-6)=2^25
   155  	SUB 	$4, Ra, Ra
   156  	RSB 	$0, Rs, Rs
   157  	MOVW	Ra>>Rs, Rq
   158  	MULLU	Rq, Rr, (Rq,Rs)
   159  	MULA	RM, Rq, Rr, Rr
   160  
   161  	// q now accurate enough for a remainder r, 0<=r<4*d
   162  	CMN 	Rr>>1, RM // if(r/2 >= d)
   163  	ADD.CS	RM<<1, Rr
   164  	ADD.CS	$2, Rq
   165  	CMN 	Rr, RM
   166  	ADD.CS	RM, Rr
   167  	ADD.CS	$1, Rq
   168  	RET
   169  
   170  udiv_by_0_or_1:
   171  	// carry set if d==1, carry clear if d==0
   172  	BCC udiv_by_0
   173  	MOVW	Rr, Rq
   174  	MOVW	$0, Rr
   175  	RET
   176  
   177  udiv_by_0:
   178  	MOVW	$runtime·panicdivide(SB), R11
   179  	B	(R11)
   180  
   181  // var tab [64]byte
   182  // tab[0] = 255; for i := 1; i <= 63; i++ { tab[i] = (1<<14)/(64+i) }
   183  // laid out here as little-endian uint32s
   184  DATA fast_udiv_tab<>+0x00(SB)/4, $0xf4f8fcff
   185  DATA fast_udiv_tab<>+0x04(SB)/4, $0xe6eaedf0
   186  DATA fast_udiv_tab<>+0x08(SB)/4, $0xdadde0e3
   187  DATA fast_udiv_tab<>+0x0c(SB)/4, $0xcfd2d4d7
   188  DATA fast_udiv_tab<>+0x10(SB)/4, $0xc5c7cacc
   189  DATA fast_udiv_tab<>+0x14(SB)/4, $0xbcbec0c3
   190  DATA fast_udiv_tab<>+0x18(SB)/4, $0xb4b6b8ba
   191  DATA fast_udiv_tab<>+0x1c(SB)/4, $0xacaeb0b2
   192  DATA fast_udiv_tab<>+0x20(SB)/4, $0xa5a7a8aa
   193  DATA fast_udiv_tab<>+0x24(SB)/4, $0x9fa0a2a3
   194  DATA fast_udiv_tab<>+0x28(SB)/4, $0x999a9c9d
   195  DATA fast_udiv_tab<>+0x2c(SB)/4, $0x93949697
   196  DATA fast_udiv_tab<>+0x30(SB)/4, $0x8e8f9092
   197  DATA fast_udiv_tab<>+0x34(SB)/4, $0x898a8c8d
   198  DATA fast_udiv_tab<>+0x38(SB)/4, $0x85868788
   199  DATA fast_udiv_tab<>+0x3c(SB)/4, $0x81828384
   200  GLOBL fast_udiv_tab<>(SB), RODATA, $64
   201  
   202  // The linker will pass numerator in R8
   203  #define Rn R8
   204  // The linker expects the result in RTMP
   205  #define RTMP R11
   206  
   207  TEXT runtime·_divu(SB), NOSPLIT, $16-0
   208  	// It's not strictly true that there are no local pointers.
   209  	// It could be that the saved registers Rq, Rr, Rs, and Rm
   210  	// contain pointers. However, the only way this can matter
   211  	// is if the stack grows (which it can't, udiv is nosplit)
   212  	// or if a fault happens and more frames are added to
   213  	// the stack due to deferred functions.
   214  	// In the latter case, the stack can grow arbitrarily,
   215  	// and garbage collection can happen, and those
   216  	// operations care about pointers, but in that case
   217  	// the calling frame is dead, and so are the saved
   218  	// registers. So we can claim there are no pointers here.
   219  	NO_LOCAL_POINTERS
   220  	MOVW	Rq, 4(R13)
   221  	MOVW	Rr, 8(R13)
   222  	MOVW	Rs, 12(R13)
   223  	MOVW	RM, 16(R13)
   224  
   225  	MOVW	Rn, Rr			/* numerator */
   226  	MOVW	g_m(g), Rq
   227  	MOVW	m_divmod(Rq), Rq	/* denominator */
   228  	BL  	runtime·udiv(SB)
   229  	MOVW	Rq, RTMP
   230  	MOVW	4(R13), Rq
   231  	MOVW	8(R13), Rr
   232  	MOVW	12(R13), Rs
   233  	MOVW	16(R13), RM
   234  	RET
   235  
   236  TEXT runtime·_modu(SB), NOSPLIT, $16-0
   237  	NO_LOCAL_POINTERS
   238  	MOVW	Rq, 4(R13)
   239  	MOVW	Rr, 8(R13)
   240  	MOVW	Rs, 12(R13)
   241  	MOVW	RM, 16(R13)
   242  
   243  	MOVW	Rn, Rr			/* numerator */
   244  	MOVW	g_m(g), Rq
   245  	MOVW	m_divmod(Rq), Rq	/* denominator */
   246  	BL  	runtime·udiv(SB)
   247  	MOVW	Rr, RTMP
   248  	MOVW	4(R13), Rq
   249  	MOVW	8(R13), Rr
   250  	MOVW	12(R13), Rs
   251  	MOVW	16(R13), RM
   252  	RET
   253  
   254  TEXT runtime·_div(SB),NOSPLIT,$16-0
   255  	NO_LOCAL_POINTERS
   256  	MOVW	Rq, 4(R13)
   257  	MOVW	Rr, 8(R13)
   258  	MOVW	Rs, 12(R13)
   259  	MOVW	RM, 16(R13)
   260  	MOVW	Rn, Rr			/* numerator */
   261  	MOVW	g_m(g), Rq
   262  	MOVW	m_divmod(Rq), Rq	/* denominator */
   263  	CMP 	$0, Rr
   264  	BGE 	d1
   265  	RSB 	$0, Rr, Rr
   266  	CMP 	$0, Rq
   267  	BGE 	d2
   268  	RSB 	$0, Rq, Rq
   269  d0:
   270  	BL  	runtime·udiv(SB)  	/* none/both neg */
   271  	MOVW	Rq, RTMP
   272  	B	out1
   273  d1:
   274  	CMP 	$0, Rq
   275  	BGE 	d0
   276  	RSB 	$0, Rq, Rq
   277  d2:
   278  	BL  	runtime·udiv(SB)  	/* one neg */
   279  	RSB	$0, Rq, RTMP
   280  out1:
   281  	MOVW	4(R13), Rq
   282  	MOVW	8(R13), Rr
   283  	MOVW	12(R13), Rs
   284  	MOVW	16(R13), RM
   285  	RET
   286  
   287  TEXT runtime·_mod(SB),NOSPLIT,$16-0
   288  	NO_LOCAL_POINTERS
   289  	MOVW	Rq, 4(R13)
   290  	MOVW	Rr, 8(R13)
   291  	MOVW	Rs, 12(R13)
   292  	MOVW	RM, 16(R13)
   293  	MOVW	Rn, Rr			/* numerator */
   294  	MOVW	g_m(g), Rq
   295  	MOVW	m_divmod(Rq), Rq	/* denominator */
   296  	CMP 	$0, Rq
   297  	RSB.LT	$0, Rq, Rq
   298  	CMP 	$0, Rr
   299  	BGE 	m1
   300  	RSB 	$0, Rr, Rr
   301  	BL  	runtime·udiv(SB)  	/* neg numerator */
   302  	RSB 	$0, Rr, RTMP
   303  	B   	out
   304  m1:
   305  	BL  	runtime·udiv(SB)  	/* pos numerator */
   306  	MOVW	Rr, RTMP
   307  out:
   308  	MOVW	4(R13), Rq
   309  	MOVW	8(R13), Rr
   310  	MOVW	12(R13), Rs
   311  	MOVW	16(R13), RM
   312  	RET
   313  
   314  // _mul64by32 and _div64by32 not implemented on arm
   315  TEXT runtime·_mul64by32(SB), NOSPLIT, $0
   316  	MOVW	$0, R0
   317  	MOVW	(R0), R1 // crash
   318  
   319  TEXT runtime·_div64by32(SB), NOSPLIT, $0
   320  	MOVW	$0, R0
   321  	MOVW	(R0), R1 // crash