github.com/fenixara/go@v0.0.0-20170127160404-96ea0918e670/doc/go_spec.html (about)

     1  <!--{
     2  	"Title": "The Go Programming Language Specification",
     3  	"Subtitle": "Version of November 18, 2016",
     4  	"Path": "/ref/spec"
     5  }-->
     6  
     7  <h2 id="Introduction">Introduction</h2>
     8  
     9  <p>
    10  This is a reference manual for the Go programming language. For
    11  more information and other documents, see <a href="/">golang.org</a>.
    12  </p>
    13  
    14  <p>
    15  Go is a general-purpose language designed with systems programming
    16  in mind. It is strongly typed and garbage-collected and has explicit
    17  support for concurrent programming.  Programs are constructed from
    18  <i>packages</i>, whose properties allow efficient management of
    19  dependencies. The existing implementations use a traditional
    20  compile/link model to generate executable binaries.
    21  </p>
    22  
    23  <p>
    24  The grammar is compact and regular, allowing for easy analysis by
    25  automatic tools such as integrated development environments.
    26  </p>
    27  
    28  <h2 id="Notation">Notation</h2>
    29  <p>
    30  The syntax is specified using Extended Backus-Naur Form (EBNF):
    31  </p>
    32  
    33  <pre class="grammar">
    34  Production  = production_name "=" [ Expression ] "." .
    35  Expression  = Alternative { "|" Alternative } .
    36  Alternative = Term { Term } .
    37  Term        = production_name | token [ "…" token ] | Group | Option | Repetition .
    38  Group       = "(" Expression ")" .
    39  Option      = "[" Expression "]" .
    40  Repetition  = "{" Expression "}" .
    41  </pre>
    42  
    43  <p>
    44  Productions are expressions constructed from terms and the following
    45  operators, in increasing precedence:
    46  </p>
    47  <pre class="grammar">
    48  |   alternation
    49  ()  grouping
    50  []  option (0 or 1 times)
    51  {}  repetition (0 to n times)
    52  </pre>
    53  
    54  <p>
    55  Lower-case production names are used to identify lexical tokens.
    56  Non-terminals are in CamelCase. Lexical tokens are enclosed in
    57  double quotes <code>""</code> or back quotes <code>``</code>.
    58  </p>
    59  
    60  <p>
    61  The form <code>a … b</code> represents the set of characters from
    62  <code>a</code> through <code>b</code> as alternatives. The horizontal
    63  ellipsis <code>…</code> is also used elsewhere in the spec to informally denote various
    64  enumerations or code snippets that are not further specified. The character <code>…</code>
    65  (as opposed to the three characters <code>...</code>) is not a token of the Go
    66  language.
    67  </p>
    68  
    69  <h2 id="Source_code_representation">Source code representation</h2>
    70  
    71  <p>
    72  Source code is Unicode text encoded in
    73  <a href="http://en.wikipedia.org/wiki/UTF-8">UTF-8</a>. The text is not
    74  canonicalized, so a single accented code point is distinct from the
    75  same character constructed from combining an accent and a letter;
    76  those are treated as two code points.  For simplicity, this document
    77  will use the unqualified term <i>character</i> to refer to a Unicode code point
    78  in the source text.
    79  </p>
    80  <p>
    81  Each code point is distinct; for instance, upper and lower case letters
    82  are different characters.
    83  </p>
    84  <p>
    85  Implementation restriction: For compatibility with other tools, a
    86  compiler may disallow the NUL character (U+0000) in the source text.
    87  </p>
    88  <p>
    89  Implementation restriction: For compatibility with other tools, a
    90  compiler may ignore a UTF-8-encoded byte order mark
    91  (U+FEFF) if it is the first Unicode code point in the source text.
    92  A byte order mark may be disallowed anywhere else in the source.
    93  </p>
    94  
    95  <h3 id="Characters">Characters</h3>
    96  
    97  <p>
    98  The following terms are used to denote specific Unicode character classes:
    99  </p>
   100  <pre class="ebnf">
   101  newline        = /* the Unicode code point U+000A */ .
   102  unicode_char   = /* an arbitrary Unicode code point except newline */ .
   103  unicode_letter = /* a Unicode code point classified as "Letter" */ .
   104  unicode_digit  = /* a Unicode code point classified as "Number, decimal digit" */ .
   105  </pre>
   106  
   107  <p>
   108  In <a href="http://www.unicode.org/versions/Unicode8.0.0/">The Unicode Standard 8.0</a>,
   109  Section 4.5 "General Category" defines a set of character categories.
   110  Go treats all characters in any of the Letter categories Lu, Ll, Lt, Lm, or Lo
   111  as Unicode letters, and those in the Number category Nd as Unicode digits.
   112  </p>
   113  
   114  <h3 id="Letters_and_digits">Letters and digits</h3>
   115  
   116  <p>
   117  The underscore character <code>_</code> (U+005F) is considered a letter.
   118  </p>
   119  <pre class="ebnf">
   120  letter        = unicode_letter | "_" .
   121  decimal_digit = "0" … "9" .
   122  octal_digit   = "0" … "7" .
   123  hex_digit     = "0" … "9" | "A" … "F" | "a" … "f" .
   124  </pre>
   125  
   126  <h2 id="Lexical_elements">Lexical elements</h2>
   127  
   128  <h3 id="Comments">Comments</h3>
   129  
   130  <p>
   131  Comments serve as program documentation. There are two forms:
   132  </p>
   133  
   134  <ol>
   135  <li>
   136  <i>Line comments</i> start with the character sequence <code>//</code>
   137  and stop at the end of the line.
   138  </li>
   139  <li>
   140  <i>General comments</i> start with the character sequence <code>/*</code>
   141  and stop with the first subsequent character sequence <code>*/</code>.
   142  </li>
   143  </ol>
   144  
   145  <p>
   146  A comment cannot start inside a <a href="#Rune_literals">rune</a> or
   147  <a href="#String_literals">string literal</a>, or inside a comment.
   148  A general comment containing no newlines acts like a space.
   149  Any other comment acts like a newline.
   150  </p>
   151  
   152  <h3 id="Tokens">Tokens</h3>
   153  
   154  <p>
   155  Tokens form the vocabulary of the Go language.
   156  There are four classes: <i>identifiers</i>, <i>keywords</i>, <i>operators
   157  and delimiters</i>, and <i>literals</i>.  <i>White space</i>, formed from
   158  spaces (U+0020), horizontal tabs (U+0009),
   159  carriage returns (U+000D), and newlines (U+000A),
   160  is ignored except as it separates tokens
   161  that would otherwise combine into a single token. Also, a newline or end of file
   162  may trigger the insertion of a <a href="#Semicolons">semicolon</a>.
   163  While breaking the input into tokens,
   164  the next token is the longest sequence of characters that form a
   165  valid token.
   166  </p>
   167  
   168  <h3 id="Semicolons">Semicolons</h3>
   169  
   170  <p>
   171  The formal grammar uses semicolons <code>";"</code> as terminators in
   172  a number of productions. Go programs may omit most of these semicolons
   173  using the following two rules:
   174  </p>
   175  
   176  <ol>
   177  <li>
   178  When the input is broken into tokens, a semicolon is automatically inserted
   179  into the token stream immediately after a line's final token if that token is
   180  <ul>
   181  	<li>an
   182  	    <a href="#Identifiers">identifier</a>
   183  	</li>
   184  
   185  	<li>an
   186  	    <a href="#Integer_literals">integer</a>,
   187  	    <a href="#Floating-point_literals">floating-point</a>,
   188  	    <a href="#Imaginary_literals">imaginary</a>,
   189  	    <a href="#Rune_literals">rune</a>, or
   190  	    <a href="#String_literals">string</a> literal
   191  	</li>
   192  
   193  	<li>one of the <a href="#Keywords">keywords</a>
   194  	    <code>break</code>,
   195  	    <code>continue</code>,
   196  	    <code>fallthrough</code>, or
   197  	    <code>return</code>
   198  	</li>
   199  
   200  	<li>one of the <a href="#Operators_and_Delimiters">operators and delimiters</a>
   201  	    <code>++</code>,
   202  	    <code>--</code>,
   203  	    <code>)</code>,
   204  	    <code>]</code>, or
   205  	    <code>}</code>
   206  	</li>
   207  </ul>
   208  </li>
   209  
   210  <li>
   211  To allow complex statements to occupy a single line, a semicolon
   212  may be omitted before a closing <code>")"</code> or <code>"}"</code>.
   213  </li>
   214  </ol>
   215  
   216  <p>
   217  To reflect idiomatic use, code examples in this document elide semicolons
   218  using these rules.
   219  </p>
   220  
   221  
   222  <h3 id="Identifiers">Identifiers</h3>
   223  
   224  <p>
   225  Identifiers name program entities such as variables and types.
   226  An identifier is a sequence of one or more letters and digits.
   227  The first character in an identifier must be a letter.
   228  </p>
   229  <pre class="ebnf">
   230  identifier = letter { letter | unicode_digit } .
   231  </pre>
   232  <pre>
   233  a
   234  _x9
   235  ThisVariableIsExported
   236  αβ
   237  </pre>
   238  
   239  <p>
   240  Some identifiers are <a href="#Predeclared_identifiers">predeclared</a>.
   241  </p>
   242  
   243  
   244  <h3 id="Keywords">Keywords</h3>
   245  
   246  <p>
   247  The following keywords are reserved and may not be used as identifiers.
   248  </p>
   249  <pre class="grammar">
   250  break        default      func         interface    select
   251  case         defer        go           map          struct
   252  chan         else         goto         package      switch
   253  const        fallthrough  if           range        type
   254  continue     for          import       return       var
   255  </pre>
   256  
   257  <h3 id="Operators_and_Delimiters">Operators and Delimiters</h3>
   258  
   259  <p>
   260  The following character sequences represent <a href="#Operators">operators</a>, delimiters, and other special tokens:
   261  </p>
   262  <pre class="grammar">
   263  +    &amp;     +=    &amp;=     &amp;&amp;    ==    !=    (    )
   264  -    |     -=    |=     ||    &lt;     &lt;=    [    ]
   265  *    ^     *=    ^=     &lt;-    &gt;     &gt;=    {    }
   266  /    &lt;&lt;    /=    &lt;&lt;=    ++    =     :=    ,    ;
   267  %    &gt;&gt;    %=    &gt;&gt;=    --    !     ...   .    :
   268       &amp;^          &amp;^=
   269  </pre>
   270  
   271  <h3 id="Integer_literals">Integer literals</h3>
   272  
   273  <p>
   274  An integer literal is a sequence of digits representing an
   275  <a href="#Constants">integer constant</a>.
   276  An optional prefix sets a non-decimal base: <code>0</code> for octal, <code>0x</code> or
   277  <code>0X</code> for hexadecimal.  In hexadecimal literals, letters
   278  <code>a-f</code> and <code>A-F</code> represent values 10 through 15.
   279  </p>
   280  <pre class="ebnf">
   281  int_lit     = decimal_lit | octal_lit | hex_lit .
   282  decimal_lit = ( "1" … "9" ) { decimal_digit } .
   283  octal_lit   = "0" { octal_digit } .
   284  hex_lit     = "0" ( "x" | "X" ) hex_digit { hex_digit } .
   285  </pre>
   286  
   287  <pre>
   288  42
   289  0600
   290  0xBadFace
   291  170141183460469231731687303715884105727
   292  </pre>
   293  
   294  <h3 id="Floating-point_literals">Floating-point literals</h3>
   295  <p>
   296  A floating-point literal is a decimal representation of a
   297  <a href="#Constants">floating-point constant</a>.
   298  It has an integer part, a decimal point, a fractional part,
   299  and an exponent part.  The integer and fractional part comprise
   300  decimal digits; the exponent part is an <code>e</code> or <code>E</code>
   301  followed by an optionally signed decimal exponent.  One of the
   302  integer part or the fractional part may be elided; one of the decimal
   303  point or the exponent may be elided.
   304  </p>
   305  <pre class="ebnf">
   306  float_lit = decimals "." [ decimals ] [ exponent ] |
   307              decimals exponent |
   308              "." decimals [ exponent ] .
   309  decimals  = decimal_digit { decimal_digit } .
   310  exponent  = ( "e" | "E" ) [ "+" | "-" ] decimals .
   311  </pre>
   312  
   313  <pre>
   314  0.
   315  72.40
   316  072.40  // == 72.40
   317  2.71828
   318  1.e+0
   319  6.67428e-11
   320  1E6
   321  .25
   322  .12345E+5
   323  </pre>
   324  
   325  <h3 id="Imaginary_literals">Imaginary literals</h3>
   326  <p>
   327  An imaginary literal is a decimal representation of the imaginary part of a
   328  <a href="#Constants">complex constant</a>.
   329  It consists of a
   330  <a href="#Floating-point_literals">floating-point literal</a>
   331  or decimal integer followed
   332  by the lower-case letter <code>i</code>.
   333  </p>
   334  <pre class="ebnf">
   335  imaginary_lit = (decimals | float_lit) "i" .
   336  </pre>
   337  
   338  <pre>
   339  0i
   340  011i  // == 11i
   341  0.i
   342  2.71828i
   343  1.e+0i
   344  6.67428e-11i
   345  1E6i
   346  .25i
   347  .12345E+5i
   348  </pre>
   349  
   350  
   351  <h3 id="Rune_literals">Rune literals</h3>
   352  
   353  <p>
   354  A rune literal represents a <a href="#Constants">rune constant</a>,
   355  an integer value identifying a Unicode code point.
   356  A rune literal is expressed as one or more characters enclosed in single quotes,
   357  as in <code>'x'</code> or <code>'\n'</code>.
   358  Within the quotes, any character may appear except newline and unescaped single
   359  quote. A single quoted character represents the Unicode value
   360  of the character itself,
   361  while multi-character sequences beginning with a backslash encode
   362  values in various formats.
   363  </p>
   364  <p>
   365  The simplest form represents the single character within the quotes;
   366  since Go source text is Unicode characters encoded in UTF-8, multiple
   367  UTF-8-encoded bytes may represent a single integer value.  For
   368  instance, the literal <code>'a'</code> holds a single byte representing
   369  a literal <code>a</code>, Unicode U+0061, value <code>0x61</code>, while
   370  <code>'ä'</code> holds two bytes (<code>0xc3</code> <code>0xa4</code>) representing
   371  a literal <code>a</code>-dieresis, U+00E4, value <code>0xe4</code>.
   372  </p>
   373  <p>
   374  Several backslash escapes allow arbitrary values to be encoded as
   375  ASCII text.  There are four ways to represent the integer value
   376  as a numeric constant: <code>\x</code> followed by exactly two hexadecimal
   377  digits; <code>\u</code> followed by exactly four hexadecimal digits;
   378  <code>\U</code> followed by exactly eight hexadecimal digits, and a
   379  plain backslash <code>\</code> followed by exactly three octal digits.
   380  In each case the value of the literal is the value represented by
   381  the digits in the corresponding base.
   382  </p>
   383  <p>
   384  Although these representations all result in an integer, they have
   385  different valid ranges.  Octal escapes must represent a value between
   386  0 and 255 inclusive.  Hexadecimal escapes satisfy this condition
   387  by construction. The escapes <code>\u</code> and <code>\U</code>
   388  represent Unicode code points so within them some values are illegal,
   389  in particular those above <code>0x10FFFF</code> and surrogate halves.
   390  </p>
   391  <p>
   392  After a backslash, certain single-character escapes represent special values:
   393  </p>
   394  <pre class="grammar">
   395  \a   U+0007 alert or bell
   396  \b   U+0008 backspace
   397  \f   U+000C form feed
   398  \n   U+000A line feed or newline
   399  \r   U+000D carriage return
   400  \t   U+0009 horizontal tab
   401  \v   U+000b vertical tab
   402  \\   U+005c backslash
   403  \'   U+0027 single quote  (valid escape only within rune literals)
   404  \"   U+0022 double quote  (valid escape only within string literals)
   405  </pre>
   406  <p>
   407  All other sequences starting with a backslash are illegal inside rune literals.
   408  </p>
   409  <pre class="ebnf">
   410  rune_lit         = "'" ( unicode_value | byte_value ) "'" .
   411  unicode_value    = unicode_char | little_u_value | big_u_value | escaped_char .
   412  byte_value       = octal_byte_value | hex_byte_value .
   413  octal_byte_value = `\` octal_digit octal_digit octal_digit .
   414  hex_byte_value   = `\` "x" hex_digit hex_digit .
   415  little_u_value   = `\` "u" hex_digit hex_digit hex_digit hex_digit .
   416  big_u_value      = `\` "U" hex_digit hex_digit hex_digit hex_digit
   417                             hex_digit hex_digit hex_digit hex_digit .
   418  escaped_char     = `\` ( "a" | "b" | "f" | "n" | "r" | "t" | "v" | `\` | "'" | `"` ) .
   419  </pre>
   420  
   421  <pre>
   422  'a'
   423  'ä'
   424  '本'
   425  '\t'
   426  '\000'
   427  '\007'
   428  '\377'
   429  '\x07'
   430  '\xff'
   431  '\u12e4'
   432  '\U00101234'
   433  '\''         // rune literal containing single quote character
   434  'aa'         // illegal: too many characters
   435  '\xa'        // illegal: too few hexadecimal digits
   436  '\0'         // illegal: too few octal digits
   437  '\uDFFF'     // illegal: surrogate half
   438  '\U00110000' // illegal: invalid Unicode code point
   439  </pre>
   440  
   441  
   442  <h3 id="String_literals">String literals</h3>
   443  
   444  <p>
   445  A string literal represents a <a href="#Constants">string constant</a>
   446  obtained from concatenating a sequence of characters. There are two forms:
   447  raw string literals and interpreted string literals.
   448  </p>
   449  <p>
   450  Raw string literals are character sequences between back quotes, as in
   451  <code>`foo`</code>.  Within the quotes, any character may appear except
   452  back quote. The value of a raw string literal is the
   453  string composed of the uninterpreted (implicitly UTF-8-encoded) characters
   454  between the quotes;
   455  in particular, backslashes have no special meaning and the string may
   456  contain newlines.
   457  Carriage return characters ('\r') inside raw string literals
   458  are discarded from the raw string value.
   459  </p>
   460  <p>
   461  Interpreted string literals are character sequences between double
   462  quotes, as in <code>&quot;bar&quot;</code>.
   463  Within the quotes, any character may appear except newline and unescaped double quote.
   464  The text between the quotes forms the
   465  value of the literal, with backslash escapes interpreted as they
   466  are in <a href="#Rune_literals">rune literals</a> (except that <code>\'</code> is illegal and
   467  <code>\"</code> is legal), with the same restrictions.
   468  The three-digit octal (<code>\</code><i>nnn</i>)
   469  and two-digit hexadecimal (<code>\x</code><i>nn</i>) escapes represent individual
   470  <i>bytes</i> of the resulting string; all other escapes represent
   471  the (possibly multi-byte) UTF-8 encoding of individual <i>characters</i>.
   472  Thus inside a string literal <code>\377</code> and <code>\xFF</code> represent
   473  a single byte of value <code>0xFF</code>=255, while <code>ÿ</code>,
   474  <code>\u00FF</code>, <code>\U000000FF</code> and <code>\xc3\xbf</code> represent
   475  the two bytes <code>0xc3</code> <code>0xbf</code> of the UTF-8 encoding of character
   476  U+00FF.
   477  </p>
   478  
   479  <pre class="ebnf">
   480  string_lit             = raw_string_lit | interpreted_string_lit .
   481  raw_string_lit         = "`" { unicode_char | newline } "`" .
   482  interpreted_string_lit = `"` { unicode_value | byte_value } `"` .
   483  </pre>
   484  
   485  <pre>
   486  `abc`                // same as "abc"
   487  `\n
   488  \n`                  // same as "\\n\n\\n"
   489  "\n"
   490  "\""                 // same as `"`
   491  "Hello, world!\n"
   492  "日本語"
   493  "\u65e5本\U00008a9e"
   494  "\xff\u00FF"
   495  "\uD800"             // illegal: surrogate half
   496  "\U00110000"         // illegal: invalid Unicode code point
   497  </pre>
   498  
   499  <p>
   500  These examples all represent the same string:
   501  </p>
   502  
   503  <pre>
   504  "日本語"                                 // UTF-8 input text
   505  `日本語`                                 // UTF-8 input text as a raw literal
   506  "\u65e5\u672c\u8a9e"                    // the explicit Unicode code points
   507  "\U000065e5\U0000672c\U00008a9e"        // the explicit Unicode code points
   508  "\xe6\x97\xa5\xe6\x9c\xac\xe8\xaa\x9e"  // the explicit UTF-8 bytes
   509  </pre>
   510  
   511  <p>
   512  If the source code represents a character as two code points, such as
   513  a combining form involving an accent and a letter, the result will be
   514  an error if placed in a rune literal (it is not a single code
   515  point), and will appear as two code points if placed in a string
   516  literal.
   517  </p>
   518  
   519  
   520  <h2 id="Constants">Constants</h2>
   521  
   522  <p>There are <i>boolean constants</i>,
   523  <i>rune constants</i>,
   524  <i>integer constants</i>,
   525  <i>floating-point constants</i>, <i>complex constants</i>,
   526  and <i>string constants</i>. Rune, integer, floating-point,
   527  and complex constants are
   528  collectively called <i>numeric constants</i>.
   529  </p>
   530  
   531  <p>
   532  A constant value is represented by a
   533  <a href="#Rune_literals">rune</a>,
   534  <a href="#Integer_literals">integer</a>,
   535  <a href="#Floating-point_literals">floating-point</a>,
   536  <a href="#Imaginary_literals">imaginary</a>,
   537  or
   538  <a href="#String_literals">string</a> literal,
   539  an identifier denoting a constant,
   540  a <a href="#Constant_expressions">constant expression</a>,
   541  a <a href="#Conversions">conversion</a> with a result that is a constant, or
   542  the result value of some built-in functions such as
   543  <code>unsafe.Sizeof</code> applied to any value,
   544  <code>cap</code> or <code>len</code> applied to
   545  <a href="#Length_and_capacity">some expressions</a>,
   546  <code>real</code> and <code>imag</code> applied to a complex constant
   547  and <code>complex</code> applied to numeric constants.
   548  The boolean truth values are represented by the predeclared constants
   549  <code>true</code> and <code>false</code>. The predeclared identifier
   550  <a href="#Iota">iota</a> denotes an integer constant.
   551  </p>
   552  
   553  <p>
   554  In general, complex constants are a form of
   555  <a href="#Constant_expressions">constant expression</a>
   556  and are discussed in that section.
   557  </p>
   558  
   559  <p>
   560  Numeric constants represent exact values of arbitrary precision and do not overflow.
   561  Consequently, there are no constants denoting the IEEE-754 negative zero, infinity,
   562  and not-a-number values.
   563  </p>
   564  
   565  <p>
   566  Constants may be <a href="#Types">typed</a> or <i>untyped</i>.
   567  Literal constants, <code>true</code>, <code>false</code>, <code>iota</code>,
   568  and certain <a href="#Constant_expressions">constant expressions</a>
   569  containing only untyped constant operands are untyped.
   570  </p>
   571  
   572  <p>
   573  A constant may be given a type explicitly by a <a href="#Constant_declarations">constant declaration</a>
   574  or <a href="#Conversions">conversion</a>, or implicitly when used in a
   575  <a href="#Variable_declarations">variable declaration</a> or an
   576  <a href="#Assignments">assignment</a> or as an
   577  operand in an <a href="#Expressions">expression</a>.
   578  It is an error if the constant value
   579  cannot be represented as a value of the respective type.
   580  For instance, <code>3.0</code> can be given any integer or any
   581  floating-point type, while <code>2147483648.0</code> (equal to <code>1&lt;&lt;31</code>)
   582  can be given the types <code>float32</code>, <code>float64</code>, or <code>uint32</code> but
   583  not <code>int32</code> or <code>string</code>.
   584  </p>
   585  
   586  <p>
   587  An untyped constant has a <i>default type</i> which is the type to which the
   588  constant is implicitly converted in contexts where a typed value is required,
   589  for instance, in a <a href="#Short_variable_declarations">short variable declaration</a>
   590  such as <code>i := 0</code> where there is no explicit type.
   591  The default type of an untyped constant is <code>bool</code>, <code>rune</code>,
   592  <code>int</code>, <code>float64</code>, <code>complex128</code> or <code>string</code>
   593  respectively, depending on whether it is a boolean, rune, integer, floating-point,
   594  complex, or string constant.
   595  </p>
   596  
   597  <p>
   598  Implementation restriction: Although numeric constants have arbitrary
   599  precision in the language, a compiler may implement them using an
   600  internal representation with limited precision.  That said, every
   601  implementation must:
   602  </p>
   603  <ul>
   604  	<li>Represent integer constants with at least 256 bits.</li>
   605  
   606  	<li>Represent floating-point constants, including the parts of
   607  	    a complex constant, with a mantissa of at least 256 bits
   608  	    and a signed binary exponent of at least 16 bits.</li>
   609  
   610  	<li>Give an error if unable to represent an integer constant
   611  	    precisely.</li>
   612  
   613  	<li>Give an error if unable to represent a floating-point or
   614  	    complex constant due to overflow.</li>
   615  
   616  	<li>Round to the nearest representable constant if unable to
   617  	    represent a floating-point or complex constant due to limits
   618  	    on precision.</li>
   619  </ul>
   620  <p>
   621  These requirements apply both to literal constants and to the result
   622  of evaluating <a href="#Constant_expressions">constant
   623  expressions</a>.
   624  </p>
   625  
   626  <h2 id="Variables">Variables</h2>
   627  
   628  <p>
   629  A variable is a storage location for holding a <i>value</i>.
   630  The set of permissible values is determined by the
   631  variable's <i><a href="#Types">type</a></i>.
   632  </p>
   633  
   634  <p>
   635  A <a href="#Variable_declarations">variable declaration</a>
   636  or, for function parameters and results, the signature
   637  of a <a href="#Function_declarations">function declaration</a>
   638  or <a href="#Function_literals">function literal</a> reserves
   639  storage for a named variable.
   640  
   641  Calling the built-in function <a href="#Allocation"><code>new</code></a>
   642  or taking the address of a <a href="#Composite_literals">composite literal</a>
   643  allocates storage for a variable at run time.
   644  Such an anonymous variable is referred to via a (possibly implicit)
   645  <a href="#Address_operators">pointer indirection</a>.
   646  </p>
   647  
   648  <p>
   649  <i>Structured</i> variables of <a href="#Array_types">array</a>, <a href="#Slice_types">slice</a>,
   650  and <a href="#Struct_types">struct</a> types have elements and fields that may
   651  be <a href="#Address_operators">addressed</a> individually. Each such element
   652  acts like a variable.
   653  </p>
   654  
   655  <p>
   656  The <i>static type</i> (or just <i>type</i>) of a variable is the
   657  type given in its declaration, the type provided in the
   658  <code>new</code> call or composite literal, or the type of
   659  an element of a structured variable.
   660  Variables of interface type also have a distinct <i>dynamic type</i>,
   661  which is the concrete type of the value assigned to the variable at run time
   662  (unless the value is the predeclared identifier <code>nil</code>,
   663  which has no type).
   664  The dynamic type may vary during execution but values stored in interface
   665  variables are always <a href="#Assignability">assignable</a>
   666  to the static type of the variable.
   667  </p>
   668  
   669  <pre>
   670  var x interface{}  // x is nil and has static type interface{}
   671  var v *T           // v has value nil, static type *T
   672  x = 42             // x has value 42 and dynamic type int
   673  x = v              // x has value (*T)(nil) and dynamic type *T
   674  </pre>
   675  
   676  <p>
   677  A variable's value is retrieved by referring to the variable in an
   678  <a href="#Expressions">expression</a>; it is the most recent value
   679  <a href="#Assignments">assigned</a> to the variable.
   680  If a variable has not yet been assigned a value, its value is the
   681  <a href="#The_zero_value">zero value</a> for its type.
   682  </p>
   683  
   684  
   685  <h2 id="Types">Types</h2>
   686  
   687  <p>
   688  A type determines the set of values and operations specific to values of that
   689  type. Types may be <i>named</i> or <i>unnamed</i>. Named types are specified
   690  by a (possibly <a href="#Qualified_identifiers">qualified</a>)
   691  <a href="#Type_declarations"><i>type name</i></a>; unnamed types are specified
   692  using a <i>type literal</i>, which composes a new type from existing types.
   693  </p>
   694  
   695  <pre class="ebnf">
   696  Type      = TypeName | TypeLit | "(" Type ")" .
   697  TypeName  = identifier | QualifiedIdent .
   698  TypeLit   = ArrayType | StructType | PointerType | FunctionType | InterfaceType |
   699  	    SliceType | MapType | ChannelType .
   700  </pre>
   701  
   702  <p>
   703  Named instances of the boolean, numeric, and string types are
   704  <a href="#Predeclared_identifiers">predeclared</a>.
   705  <i>Composite types</i>&mdash;array, struct, pointer, function,
   706  interface, slice, map, and channel types&mdash;may be constructed using
   707  type literals.
   708  </p>
   709  
   710  <p>
   711  Each type <code>T</code> has an <i>underlying type</i>: If <code>T</code>
   712  is one of the predeclared boolean, numeric, or string types, or a type literal,
   713  the corresponding underlying
   714  type is <code>T</code> itself. Otherwise, <code>T</code>'s underlying type
   715  is the underlying type of the type to which <code>T</code> refers in its
   716  <a href="#Type_declarations">type declaration</a>.
   717  </p>
   718  
   719  <pre>
   720     type T1 string
   721     type T2 T1
   722     type T3 []T1
   723     type T4 T3
   724  </pre>
   725  
   726  <p>
   727  The underlying type of <code>string</code>, <code>T1</code>, and <code>T2</code>
   728  is <code>string</code>. The underlying type of <code>[]T1</code>, <code>T3</code>,
   729  and <code>T4</code> is <code>[]T1</code>.
   730  </p>
   731  
   732  <h3 id="Method_sets">Method sets</h3>
   733  <p>
   734  A type may have a <i>method set</i> associated with it.
   735  The method set of an <a href="#Interface_types">interface type</a> is its interface.
   736  The method set of any other type <code>T</code> consists of all
   737  <a href="#Method_declarations">methods</a> declared with receiver type <code>T</code>.
   738  The method set of the corresponding <a href="#Pointer_types">pointer type</a> <code>*T</code>
   739  is the set of all methods declared with receiver <code>*T</code> or <code>T</code>
   740  (that is, it also contains the method set of <code>T</code>).
   741  Further rules apply to structs containing anonymous fields, as described
   742  in the section on <a href="#Struct_types">struct types</a>.
   743  Any other type has an empty method set.
   744  In a method set, each method must have a
   745  <a href="#Uniqueness_of_identifiers">unique</a>
   746  non-<a href="#Blank_identifier">blank</a> <a href="#MethodName">method name</a>.
   747  </p>
   748  
   749  <p>
   750  The method set of a type determines the interfaces that the
   751  type <a href="#Interface_types">implements</a>
   752  and the methods that can be <a href="#Calls">called</a>
   753  using a receiver of that type.
   754  </p>
   755  
   756  <h3 id="Boolean_types">Boolean types</h3>
   757  
   758  <p>
   759  A <i>boolean type</i> represents the set of Boolean truth values
   760  denoted by the predeclared constants <code>true</code>
   761  and <code>false</code>. The predeclared boolean type is <code>bool</code>.
   762  </p>
   763  
   764  <h3 id="Numeric_types">Numeric types</h3>
   765  
   766  <p>
   767  A <i>numeric type</i> represents sets of integer or floating-point values.
   768  The predeclared architecture-independent numeric types are:
   769  </p>
   770  
   771  <pre class="grammar">
   772  uint8       the set of all unsigned  8-bit integers (0 to 255)
   773  uint16      the set of all unsigned 16-bit integers (0 to 65535)
   774  uint32      the set of all unsigned 32-bit integers (0 to 4294967295)
   775  uint64      the set of all unsigned 64-bit integers (0 to 18446744073709551615)
   776  
   777  int8        the set of all signed  8-bit integers (-128 to 127)
   778  int16       the set of all signed 16-bit integers (-32768 to 32767)
   779  int32       the set of all signed 32-bit integers (-2147483648 to 2147483647)
   780  int64       the set of all signed 64-bit integers (-9223372036854775808 to 9223372036854775807)
   781  
   782  float32     the set of all IEEE-754 32-bit floating-point numbers
   783  float64     the set of all IEEE-754 64-bit floating-point numbers
   784  
   785  complex64   the set of all complex numbers with float32 real and imaginary parts
   786  complex128  the set of all complex numbers with float64 real and imaginary parts
   787  
   788  byte        alias for uint8
   789  rune        alias for int32
   790  </pre>
   791  
   792  <p>
   793  The value of an <i>n</i>-bit integer is <i>n</i> bits wide and represented using
   794  <a href="http://en.wikipedia.org/wiki/Two's_complement">two's complement arithmetic</a>.
   795  </p>
   796  
   797  <p>
   798  There is also a set of predeclared numeric types with implementation-specific sizes:
   799  </p>
   800  
   801  <pre class="grammar">
   802  uint     either 32 or 64 bits
   803  int      same size as uint
   804  uintptr  an unsigned integer large enough to store the uninterpreted bits of a pointer value
   805  </pre>
   806  
   807  <p>
   808  To avoid portability issues all numeric types are distinct except
   809  <code>byte</code>, which is an alias for <code>uint8</code>, and
   810  <code>rune</code>, which is an alias for <code>int32</code>.
   811  Conversions
   812  are required when different numeric types are mixed in an expression
   813  or assignment. For instance, <code>int32</code> and <code>int</code>
   814  are not the same type even though they may have the same size on a
   815  particular architecture.
   816  
   817  
   818  <h3 id="String_types">String types</h3>
   819  
   820  <p>
   821  A <i>string type</i> represents the set of string values.
   822  A string value is a (possibly empty) sequence of bytes.
   823  Strings are immutable: once created,
   824  it is impossible to change the contents of a string.
   825  The predeclared string type is <code>string</code>.
   826  </p>
   827  
   828  <p>
   829  The length of a string <code>s</code> (its size in bytes) can be discovered using
   830  the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
   831  The length is a compile-time constant if the string is a constant.
   832  A string's bytes can be accessed by integer <a href="#Index_expressions">indices</a>
   833  0 through <code>len(s)-1</code>.
   834  It is illegal to take the address of such an element; if
   835  <code>s[i]</code> is the <code>i</code>'th byte of a
   836  string, <code>&amp;s[i]</code> is invalid.
   837  </p>
   838  
   839  
   840  <h3 id="Array_types">Array types</h3>
   841  
   842  <p>
   843  An array is a numbered sequence of elements of a single
   844  type, called the element type.
   845  The number of elements is called the length and is never
   846  negative.
   847  </p>
   848  
   849  <pre class="ebnf">
   850  ArrayType   = "[" ArrayLength "]" ElementType .
   851  ArrayLength = Expression .
   852  ElementType = Type .
   853  </pre>
   854  
   855  <p>
   856  The length is part of the array's type; it must evaluate to a
   857  non-negative <a href="#Constants">constant</a> representable by a value
   858  of type <code>int</code>.
   859  The length of array <code>a</code> can be discovered
   860  using the built-in function <a href="#Length_and_capacity"><code>len</code></a>.
   861  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
   862  0 through <code>len(a)-1</code>.
   863  Array types are always one-dimensional but may be composed to form
   864  multi-dimensional types.
   865  </p>
   866  
   867  <pre>
   868  [32]byte
   869  [2*N] struct { x, y int32 }
   870  [1000]*float64
   871  [3][5]int
   872  [2][2][2]float64  // same as [2]([2]([2]float64))
   873  </pre>
   874  
   875  <h3 id="Slice_types">Slice types</h3>
   876  
   877  <p>
   878  A slice is a descriptor for a contiguous segment of an <i>underlying array</i> and
   879  provides access to a numbered sequence of elements from that array.
   880  A slice type denotes the set of all slices of arrays of its element type.
   881  The value of an uninitialized slice is <code>nil</code>.
   882  </p>
   883  
   884  <pre class="ebnf">
   885  SliceType = "[" "]" ElementType .
   886  </pre>
   887  
   888  <p>
   889  Like arrays, slices are indexable and have a length.  The length of a
   890  slice <code>s</code> can be discovered by the built-in function
   891  <a href="#Length_and_capacity"><code>len</code></a>; unlike with arrays it may change during
   892  execution.  The elements can be addressed by integer <a href="#Index_expressions">indices</a>
   893  0 through <code>len(s)-1</code>.  The slice index of a
   894  given element may be less than the index of the same element in the
   895  underlying array.
   896  </p>
   897  <p>
   898  A slice, once initialized, is always associated with an underlying
   899  array that holds its elements.  A slice therefore shares storage
   900  with its array and with other slices of the same array; by contrast,
   901  distinct arrays always represent distinct storage.
   902  </p>
   903  <p>
   904  The array underlying a slice may extend past the end of the slice.
   905  The <i>capacity</i> is a measure of that extent: it is the sum of
   906  the length of the slice and the length of the array beyond the slice;
   907  a slice of length up to that capacity can be created by
   908  <a href="#Slice_expressions"><i>slicing</i></a> a new one from the original slice.
   909  The capacity of a slice <code>a</code> can be discovered using the
   910  built-in function <a href="#Length_and_capacity"><code>cap(a)</code></a>.
   911  </p>
   912  
   913  <p>
   914  A new, initialized slice value for a given element type <code>T</code> is
   915  made using the built-in function
   916  <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
   917  which takes a slice type
   918  and parameters specifying the length and optionally the capacity.
   919  A slice created with <code>make</code> always allocates a new, hidden array
   920  to which the returned slice value refers. That is, executing
   921  </p>
   922  
   923  <pre>
   924  make([]T, length, capacity)
   925  </pre>
   926  
   927  <p>
   928  produces the same slice as allocating an array and <a href="#Slice_expressions">slicing</a>
   929  it, so these two expressions are equivalent:
   930  </p>
   931  
   932  <pre>
   933  make([]int, 50, 100)
   934  new([100]int)[0:50]
   935  </pre>
   936  
   937  <p>
   938  Like arrays, slices are always one-dimensional but may be composed to construct
   939  higher-dimensional objects.
   940  With arrays of arrays, the inner arrays are, by construction, always the same length;
   941  however with slices of slices (or arrays of slices), the inner lengths may vary dynamically.
   942  Moreover, the inner slices must be initialized individually.
   943  </p>
   944  
   945  <h3 id="Struct_types">Struct types</h3>
   946  
   947  <p>
   948  A struct is a sequence of named elements, called fields, each of which has a
   949  name and a type. Field names may be specified explicitly (IdentifierList) or
   950  implicitly (AnonymousField).
   951  Within a struct, non-<a href="#Blank_identifier">blank</a> field names must
   952  be <a href="#Uniqueness_of_identifiers">unique</a>.
   953  </p>
   954  
   955  <pre class="ebnf">
   956  StructType     = "struct" "{" { FieldDecl ";" } "}" .
   957  FieldDecl      = (IdentifierList Type | AnonymousField) [ Tag ] .
   958  AnonymousField = [ "*" ] TypeName .
   959  Tag            = string_lit .
   960  </pre>
   961  
   962  <pre>
   963  // An empty struct.
   964  struct {}
   965  
   966  // A struct with 6 fields.
   967  struct {
   968  	x, y int
   969  	u float32
   970  	_ float32  // padding
   971  	A *[]int
   972  	F func()
   973  }
   974  </pre>
   975  
   976  <p>
   977  A field declared with a type but no explicit field name is an <i>anonymous field</i>,
   978  also called an <i>embedded</i> field or an embedding of the type in the struct.
   979  An embedded type must be specified as
   980  a type name <code>T</code> or as a pointer to a non-interface type name <code>*T</code>,
   981  and <code>T</code> itself may not be
   982  a pointer type. The unqualified type name acts as the field name.
   983  </p>
   984  
   985  <pre>
   986  // A struct with four anonymous fields of type T1, *T2, P.T3 and *P.T4
   987  struct {
   988  	T1        // field name is T1
   989  	*T2       // field name is T2
   990  	P.T3      // field name is T3
   991  	*P.T4     // field name is T4
   992  	x, y int  // field names are x and y
   993  }
   994  </pre>
   995  
   996  <p>
   997  The following declaration is illegal because field names must be unique
   998  in a struct type:
   999  </p>
  1000  
  1001  <pre>
  1002  struct {
  1003  	T     // conflicts with anonymous field *T and *P.T
  1004  	*T    // conflicts with anonymous field T and *P.T
  1005  	*P.T  // conflicts with anonymous field T and *T
  1006  }
  1007  </pre>
  1008  
  1009  <p>
  1010  A field or <a href="#Method_declarations">method</a> <code>f</code> of an
  1011  anonymous field in a struct <code>x</code> is called <i>promoted</i> if
  1012  <code>x.f</code> is a legal <a href="#Selectors">selector</a> that denotes
  1013  that field or method <code>f</code>.
  1014  </p>
  1015  
  1016  <p>
  1017  Promoted fields act like ordinary fields
  1018  of a struct except that they cannot be used as field names in
  1019  <a href="#Composite_literals">composite literals</a> of the struct.
  1020  </p>
  1021  
  1022  <p>
  1023  Given a struct type <code>S</code> and a type named <code>T</code>,
  1024  promoted methods are included in the method set of the struct as follows:
  1025  </p>
  1026  <ul>
  1027  	<li>
  1028  	If <code>S</code> contains an anonymous field <code>T</code>,
  1029  	the <a href="#Method_sets">method sets</a> of <code>S</code>
  1030  	and <code>*S</code> both include promoted methods with receiver
  1031  	<code>T</code>. The method set of <code>*S</code> also
  1032  	includes promoted methods with receiver <code>*T</code>.
  1033  	</li>
  1034  
  1035  	<li>
  1036  	If <code>S</code> contains an anonymous field <code>*T</code>,
  1037  	the method sets of <code>S</code> and <code>*S</code> both
  1038  	include promoted methods with receiver <code>T</code> or
  1039  	<code>*T</code>.
  1040  	</li>
  1041  </ul>
  1042  
  1043  <p>
  1044  A field declaration may be followed by an optional string literal <i>tag</i>,
  1045  which becomes an attribute for all the fields in the corresponding
  1046  field declaration. An empty tag string is equivalent to an absent tag.
  1047  The tags are made visible through a <a href="/pkg/reflect/#StructTag">reflection interface</a>
  1048  and take part in <a href="#Type_identity">type identity</a> for structs
  1049  but are otherwise ignored.
  1050  </p>
  1051  
  1052  <pre>
  1053  struct {
  1054  	x, y float64 ""  // an empty tag string is like an absent tag
  1055  	name string  "any string is permitted as a tag"
  1056  	_    [4]byte "ceci n'est pas un champ de structure"
  1057  }
  1058  
  1059  // A struct corresponding to a TimeStamp protocol buffer.
  1060  // The tag strings define the protocol buffer field numbers;
  1061  // they follow the convention outlined by the reflect package.
  1062  struct {
  1063  	microsec  uint64 `protobuf:"1"`
  1064  	serverIP6 uint64 `protobuf:"2"`
  1065  }
  1066  </pre>
  1067  
  1068  <h3 id="Pointer_types">Pointer types</h3>
  1069  
  1070  <p>
  1071  A pointer type denotes the set of all pointers to <a href="#Variables">variables</a> of a given
  1072  type, called the <i>base type</i> of the pointer.
  1073  The value of an uninitialized pointer is <code>nil</code>.
  1074  </p>
  1075  
  1076  <pre class="ebnf">
  1077  PointerType = "*" BaseType .
  1078  BaseType    = Type .
  1079  </pre>
  1080  
  1081  <pre>
  1082  *Point
  1083  *[4]int
  1084  </pre>
  1085  
  1086  <h3 id="Function_types">Function types</h3>
  1087  
  1088  <p>
  1089  A function type denotes the set of all functions with the same parameter
  1090  and result types. The value of an uninitialized variable of function type
  1091  is <code>nil</code>.
  1092  </p>
  1093  
  1094  <pre class="ebnf">
  1095  FunctionType   = "func" Signature .
  1096  Signature      = Parameters [ Result ] .
  1097  Result         = Parameters | Type .
  1098  Parameters     = "(" [ ParameterList [ "," ] ] ")" .
  1099  ParameterList  = ParameterDecl { "," ParameterDecl } .
  1100  ParameterDecl  = [ IdentifierList ] [ "..." ] Type .
  1101  </pre>
  1102  
  1103  <p>
  1104  Within a list of parameters or results, the names (IdentifierList)
  1105  must either all be present or all be absent. If present, each name
  1106  stands for one item (parameter or result) of the specified type and
  1107  all non-<a href="#Blank_identifier">blank</a> names in the signature
  1108  must be <a href="#Uniqueness_of_identifiers">unique</a>.
  1109  If absent, each type stands for one item of that type.
  1110  Parameter and result
  1111  lists are always parenthesized except that if there is exactly
  1112  one unnamed result it may be written as an unparenthesized type.
  1113  </p>
  1114  
  1115  <p>
  1116  The final incoming parameter in a function signature may have
  1117  a type prefixed with <code>...</code>.
  1118  A function with such a parameter is called <i>variadic</i> and
  1119  may be invoked with zero or more arguments for that parameter.
  1120  </p>
  1121  
  1122  <pre>
  1123  func()
  1124  func(x int) int
  1125  func(a, _ int, z float32) bool
  1126  func(a, b int, z float32) (bool)
  1127  func(prefix string, values ...int)
  1128  func(a, b int, z float64, opt ...interface{}) (success bool)
  1129  func(int, int, float64) (float64, *[]int)
  1130  func(n int) func(p *T)
  1131  </pre>
  1132  
  1133  
  1134  <h3 id="Interface_types">Interface types</h3>
  1135  
  1136  <p>
  1137  An interface type specifies a <a href="#Method_sets">method set</a> called its <i>interface</i>.
  1138  A variable of interface type can store a value of any type with a method set
  1139  that is any superset of the interface. Such a type is said to
  1140  <i>implement the interface</i>.
  1141  The value of an uninitialized variable of interface type is <code>nil</code>.
  1142  </p>
  1143  
  1144  <pre class="ebnf">
  1145  InterfaceType      = "interface" "{" { MethodSpec ";" } "}" .
  1146  MethodSpec         = MethodName Signature | InterfaceTypeName .
  1147  MethodName         = identifier .
  1148  InterfaceTypeName  = TypeName .
  1149  </pre>
  1150  
  1151  <p>
  1152  As with all method sets, in an interface type, each method must have a
  1153  <a href="#Uniqueness_of_identifiers">unique</a>
  1154  non-<a href="#Blank_identifier">blank</a> name.
  1155  </p>
  1156  
  1157  <pre>
  1158  // A simple File interface
  1159  interface {
  1160  	Read(b Buffer) bool
  1161  	Write(b Buffer) bool
  1162  	Close()
  1163  }
  1164  </pre>
  1165  
  1166  <p>
  1167  More than one type may implement an interface.
  1168  For instance, if two types <code>S1</code> and <code>S2</code>
  1169  have the method set
  1170  </p>
  1171  
  1172  <pre>
  1173  func (p T) Read(b Buffer) bool { return … }
  1174  func (p T) Write(b Buffer) bool { return … }
  1175  func (p T) Close() { … }
  1176  </pre>
  1177  
  1178  <p>
  1179  (where <code>T</code> stands for either <code>S1</code> or <code>S2</code>)
  1180  then the <code>File</code> interface is implemented by both <code>S1</code> and
  1181  <code>S2</code>, regardless of what other methods
  1182  <code>S1</code> and <code>S2</code> may have or share.
  1183  </p>
  1184  
  1185  <p>
  1186  A type implements any interface comprising any subset of its methods
  1187  and may therefore implement several distinct interfaces. For
  1188  instance, all types implement the <i>empty interface</i>:
  1189  </p>
  1190  
  1191  <pre>
  1192  interface{}
  1193  </pre>
  1194  
  1195  <p>
  1196  Similarly, consider this interface specification,
  1197  which appears within a <a href="#Type_declarations">type declaration</a>
  1198  to define an interface called <code>Locker</code>:
  1199  </p>
  1200  
  1201  <pre>
  1202  type Locker interface {
  1203  	Lock()
  1204  	Unlock()
  1205  }
  1206  </pre>
  1207  
  1208  <p>
  1209  If <code>S1</code> and <code>S2</code> also implement
  1210  </p>
  1211  
  1212  <pre>
  1213  func (p T) Lock() { … }
  1214  func (p T) Unlock() { … }
  1215  </pre>
  1216  
  1217  <p>
  1218  they implement the <code>Locker</code> interface as well
  1219  as the <code>File</code> interface.
  1220  </p>
  1221  
  1222  <p>
  1223  An interface <code>T</code> may use a (possibly qualified) interface type
  1224  name <code>E</code> in place of a method specification. This is called
  1225  <i>embedding</i> interface <code>E</code> in <code>T</code>; it adds
  1226  all (exported and non-exported) methods of <code>E</code> to the interface
  1227  <code>T</code>.
  1228  </p>
  1229  
  1230  <pre>
  1231  type ReadWriter interface {
  1232  	Read(b Buffer) bool
  1233  	Write(b Buffer) bool
  1234  }
  1235  
  1236  type File interface {
  1237  	ReadWriter  // same as adding the methods of ReadWriter
  1238  	Locker      // same as adding the methods of Locker
  1239  	Close()
  1240  }
  1241  
  1242  type LockedFile interface {
  1243  	Locker
  1244  	File        // illegal: Lock, Unlock not unique
  1245  	Lock()      // illegal: Lock not unique
  1246  }
  1247  </pre>
  1248  
  1249  <p>
  1250  An interface type <code>T</code> may not embed itself
  1251  or any interface type that embeds <code>T</code>, recursively.
  1252  </p>
  1253  
  1254  <pre>
  1255  // illegal: Bad cannot embed itself
  1256  type Bad interface {
  1257  	Bad
  1258  }
  1259  
  1260  // illegal: Bad1 cannot embed itself using Bad2
  1261  type Bad1 interface {
  1262  	Bad2
  1263  }
  1264  type Bad2 interface {
  1265  	Bad1
  1266  }
  1267  </pre>
  1268  
  1269  <h3 id="Map_types">Map types</h3>
  1270  
  1271  <p>
  1272  A map is an unordered group of elements of one type, called the
  1273  element type, indexed by a set of unique <i>keys</i> of another type,
  1274  called the key type.
  1275  The value of an uninitialized map is <code>nil</code>.
  1276  </p>
  1277  
  1278  <pre class="ebnf">
  1279  MapType     = "map" "[" KeyType "]" ElementType .
  1280  KeyType     = Type .
  1281  </pre>
  1282  
  1283  <p>
  1284  The <a href="#Comparison_operators">comparison operators</a>
  1285  <code>==</code> and <code>!=</code> must be fully defined
  1286  for operands of the key type; thus the key type must not be a function, map, or
  1287  slice.
  1288  If the key type is an interface type, these
  1289  comparison operators must be defined for the dynamic key values;
  1290  failure will cause a <a href="#Run_time_panics">run-time panic</a>.
  1291  
  1292  </p>
  1293  
  1294  <pre>
  1295  map[string]int
  1296  map[*T]struct{ x, y float64 }
  1297  map[string]interface{}
  1298  </pre>
  1299  
  1300  <p>
  1301  The number of map elements is called its length.
  1302  For a map <code>m</code>, it can be discovered using the
  1303  built-in function <a href="#Length_and_capacity"><code>len</code></a>
  1304  and may change during execution. Elements may be added during execution
  1305  using <a href="#Assignments">assignments</a> and retrieved with
  1306  <a href="#Index_expressions">index expressions</a>; they may be removed with the
  1307  <a href="#Deletion_of_map_elements"><code>delete</code></a> built-in function.
  1308  </p>
  1309  <p>
  1310  A new, empty map value is made using the built-in
  1311  function <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
  1312  which takes the map type and an optional capacity hint as arguments:
  1313  </p>
  1314  
  1315  <pre>
  1316  make(map[string]int)
  1317  make(map[string]int, 100)
  1318  </pre>
  1319  
  1320  <p>
  1321  The initial capacity does not bound its size:
  1322  maps grow to accommodate the number of items
  1323  stored in them, with the exception of <code>nil</code> maps.
  1324  A <code>nil</code> map is equivalent to an empty map except that no elements
  1325  may be added.
  1326  
  1327  <h3 id="Channel_types">Channel types</h3>
  1328  
  1329  <p>
  1330  A channel provides a mechanism for
  1331  <a href="#Go_statements">concurrently executing functions</a>
  1332  to communicate by
  1333  <a href="#Send_statements">sending</a> and
  1334  <a href="#Receive_operator">receiving</a>
  1335  values of a specified element type.
  1336  The value of an uninitialized channel is <code>nil</code>.
  1337  </p>
  1338  
  1339  <pre class="ebnf">
  1340  ChannelType = ( "chan" | "chan" "&lt;-" | "&lt;-" "chan" ) ElementType .
  1341  </pre>
  1342  
  1343  <p>
  1344  The optional <code>&lt;-</code> operator specifies the channel <i>direction</i>,
  1345  <i>send</i> or <i>receive</i>. If no direction is given, the channel is
  1346  <i>bidirectional</i>.
  1347  A channel may be constrained only to send or only to receive by
  1348  <a href="#Conversions">conversion</a> or <a href="#Assignments">assignment</a>.
  1349  </p>
  1350  
  1351  <pre>
  1352  chan T          // can be used to send and receive values of type T
  1353  chan&lt;- float64  // can only be used to send float64s
  1354  &lt;-chan int      // can only be used to receive ints
  1355  </pre>
  1356  
  1357  <p>
  1358  The <code>&lt;-</code> operator associates with the leftmost <code>chan</code>
  1359  possible:
  1360  </p>
  1361  
  1362  <pre>
  1363  chan&lt;- chan int    // same as chan&lt;- (chan int)
  1364  chan&lt;- &lt;-chan int  // same as chan&lt;- (&lt;-chan int)
  1365  &lt;-chan &lt;-chan int  // same as &lt;-chan (&lt;-chan int)
  1366  chan (&lt;-chan int)
  1367  </pre>
  1368  
  1369  <p>
  1370  A new, initialized channel
  1371  value can be made using the built-in function
  1372  <a href="#Making_slices_maps_and_channels"><code>make</code></a>,
  1373  which takes the channel type and an optional <i>capacity</i> as arguments:
  1374  </p>
  1375  
  1376  <pre>
  1377  make(chan int, 100)
  1378  </pre>
  1379  
  1380  <p>
  1381  The capacity, in number of elements, sets the size of the buffer in the channel.
  1382  If the capacity is zero or absent, the channel is unbuffered and communication
  1383  succeeds only when both a sender and receiver are ready. Otherwise, the channel
  1384  is buffered and communication succeeds without blocking if the buffer
  1385  is not full (sends) or not empty (receives).
  1386  A <code>nil</code> channel is never ready for communication.
  1387  </p>
  1388  
  1389  <p>
  1390  A channel may be closed with the built-in function
  1391  <a href="#Close"><code>close</code></a>.
  1392  The multi-valued assignment form of the
  1393  <a href="#Receive_operator">receive operator</a>
  1394  reports whether a received value was sent before
  1395  the channel was closed.
  1396  </p>
  1397  
  1398  <p>
  1399  A single channel may be used in
  1400  <a href="#Send_statements">send statements</a>,
  1401  <a href="#Receive_operator">receive operations</a>,
  1402  and calls to the built-in functions
  1403  <a href="#Length_and_capacity"><code>cap</code></a> and
  1404  <a href="#Length_and_capacity"><code>len</code></a>
  1405  by any number of goroutines without further synchronization.
  1406  Channels act as first-in-first-out queues.
  1407  For example, if one goroutine sends values on a channel
  1408  and a second goroutine receives them, the values are
  1409  received in the order sent.
  1410  </p>
  1411  
  1412  <h2 id="Properties_of_types_and_values">Properties of types and values</h2>
  1413  
  1414  <h3 id="Type_identity">Type identity</h3>
  1415  
  1416  <p>
  1417  Two types are either <i>identical</i> or <i>different</i>.
  1418  </p>
  1419  
  1420  <p>
  1421  Two <a href="#Types">named types</a> are identical if their type names originate in the same
  1422  <a href="#Type_declarations">TypeSpec</a>.
  1423  A named and an <a href="#Types">unnamed type</a> are always different. Two unnamed types are identical
  1424  if the corresponding type literals are identical, that is, if they have the same
  1425  literal structure and corresponding components have identical types. In detail:
  1426  </p>
  1427  
  1428  <ul>
  1429  	<li>Two array types are identical if they have identical element types and
  1430  	    the same array length.</li>
  1431  
  1432  	<li>Two slice types are identical if they have identical element types.</li>
  1433  
  1434  	<li>Two struct types are identical if they have the same sequence of fields,
  1435  	    and if corresponding fields have the same names, and identical types,
  1436  	    and identical tags.
  1437  	    Two anonymous fields are considered to have the same name. Lower-case field
  1438  	    names from different packages are always different.</li>
  1439  
  1440  	<li>Two pointer types are identical if they have identical base types.</li>
  1441  
  1442  	<li>Two function types are identical if they have the same number of parameters
  1443  	    and result values, corresponding parameter and result types are
  1444  	    identical, and either both functions are variadic or neither is.
  1445  	    Parameter and result names are not required to match.</li>
  1446  
  1447  	<li>Two interface types are identical if they have the same set of methods
  1448  	    with the same names and identical function types. Lower-case method names from
  1449  	    different packages are always different. The order of the methods is irrelevant.</li>
  1450  
  1451  	<li>Two map types are identical if they have identical key and value types.</li>
  1452  
  1453  	<li>Two channel types are identical if they have identical value types and
  1454  	    the same direction.</li>
  1455  </ul>
  1456  
  1457  <p>
  1458  Given the declarations
  1459  </p>
  1460  
  1461  <pre>
  1462  type (
  1463  	T0 []string
  1464  	T1 []string
  1465  	T2 struct{ a, b int }
  1466  	T3 struct{ a, c int }
  1467  	T4 func(int, float64) *T0
  1468  	T5 func(x int, y float64) *[]string
  1469  )
  1470  </pre>
  1471  
  1472  <p>
  1473  these types are identical:
  1474  </p>
  1475  
  1476  <pre>
  1477  T0 and T0
  1478  []int and []int
  1479  struct{ a, b *T5 } and struct{ a, b *T5 }
  1480  func(x int, y float64) *[]string and func(int, float64) (result *[]string)
  1481  </pre>
  1482  
  1483  <p>
  1484  <code>T0</code> and <code>T1</code> are different because they are named types
  1485  with distinct declarations; <code>func(int, float64) *T0</code> and
  1486  <code>func(x int, y float64) *[]string</code> are different because <code>T0</code>
  1487  is different from <code>[]string</code>.
  1488  </p>
  1489  
  1490  
  1491  <h3 id="Assignability">Assignability</h3>
  1492  
  1493  <p>
  1494  A value <code>x</code> is <i>assignable</i> to a <a href="#Variables">variable</a> of type <code>T</code>
  1495  ("<code>x</code> is assignable to <code>T</code>") in any of these cases:
  1496  </p>
  1497  
  1498  <ul>
  1499  <li>
  1500  <code>x</code>'s type is identical to <code>T</code>.
  1501  </li>
  1502  <li>
  1503  <code>x</code>'s type <code>V</code> and <code>T</code> have identical
  1504  <a href="#Types">underlying types</a> and at least one of <code>V</code>
  1505  or <code>T</code> is not a <a href="#Types">named type</a>.
  1506  </li>
  1507  <li>
  1508  <code>T</code> is an interface type and
  1509  <code>x</code> <a href="#Interface_types">implements</a> <code>T</code>.
  1510  </li>
  1511  <li>
  1512  <code>x</code> is a bidirectional channel value, <code>T</code> is a channel type,
  1513  <code>x</code>'s type <code>V</code> and <code>T</code> have identical element types,
  1514  and at least one of <code>V</code> or <code>T</code> is not a named type.
  1515  </li>
  1516  <li>
  1517  <code>x</code> is the predeclared identifier <code>nil</code> and <code>T</code>
  1518  is a pointer, function, slice, map, channel, or interface type.
  1519  </li>
  1520  <li>
  1521  <code>x</code> is an untyped <a href="#Constants">constant</a> representable
  1522  by a value of type <code>T</code>.
  1523  </li>
  1524  </ul>
  1525  
  1526  
  1527  <h2 id="Blocks">Blocks</h2>
  1528  
  1529  <p>
  1530  A <i>block</i> is a possibly empty sequence of declarations and statements
  1531  within matching brace brackets.
  1532  </p>
  1533  
  1534  <pre class="ebnf">
  1535  Block = "{" StatementList "}" .
  1536  StatementList = { Statement ";" } .
  1537  </pre>
  1538  
  1539  <p>
  1540  In addition to explicit blocks in the source code, there are implicit blocks:
  1541  </p>
  1542  
  1543  <ol>
  1544  	<li>The <i>universe block</i> encompasses all Go source text.</li>
  1545  
  1546  	<li>Each <a href="#Packages">package</a> has a <i>package block</i> containing all
  1547  	    Go source text for that package.</li>
  1548  
  1549  	<li>Each file has a <i>file block</i> containing all Go source text
  1550  	    in that file.</li>
  1551  
  1552  	<li>Each <a href="#If_statements">"if"</a>,
  1553  	    <a href="#For_statements">"for"</a>, and
  1554  	    <a href="#Switch_statements">"switch"</a>
  1555  	    statement is considered to be in its own implicit block.</li>
  1556  
  1557  	<li>Each clause in a <a href="#Switch_statements">"switch"</a>
  1558  	    or <a href="#Select_statements">"select"</a> statement
  1559  	    acts as an implicit block.</li>
  1560  </ol>
  1561  
  1562  <p>
  1563  Blocks nest and influence <a href="#Declarations_and_scope">scoping</a>.
  1564  </p>
  1565  
  1566  
  1567  <h2 id="Declarations_and_scope">Declarations and scope</h2>
  1568  
  1569  <p>
  1570  A <i>declaration</i> binds a non-<a href="#Blank_identifier">blank</a> identifier to a
  1571  <a href="#Constant_declarations">constant</a>,
  1572  <a href="#Type_declarations">type</a>,
  1573  <a href="#Variable_declarations">variable</a>,
  1574  <a href="#Function_declarations">function</a>,
  1575  <a href="#Labeled_statements">label</a>, or
  1576  <a href="#Import_declarations">package</a>.
  1577  Every identifier in a program must be declared.
  1578  No identifier may be declared twice in the same block, and
  1579  no identifier may be declared in both the file and package block.
  1580  </p>
  1581  
  1582  <p>
  1583  The <a href="#Blank_identifier">blank identifier</a> may be used like any other identifier
  1584  in a declaration, but it does not introduce a binding and thus is not declared.
  1585  In the package block, the identifier <code>init</code> may only be used for
  1586  <a href="#Package_initialization"><code>init</code> function</a> declarations,
  1587  and like the blank identifier it does not introduce a new binding.
  1588  </p>
  1589  
  1590  <pre class="ebnf">
  1591  Declaration   = ConstDecl | TypeDecl | VarDecl .
  1592  TopLevelDecl  = Declaration | FunctionDecl | MethodDecl .
  1593  </pre>
  1594  
  1595  <p>
  1596  The <i>scope</i> of a declared identifier is the extent of source text in which
  1597  the identifier denotes the specified constant, type, variable, function, label, or package.
  1598  </p>
  1599  
  1600  <p>
  1601  Go is lexically scoped using <a href="#Blocks">blocks</a>:
  1602  </p>
  1603  
  1604  <ol>
  1605  	<li>The scope of a <a href="#Predeclared_identifiers">predeclared identifier</a> is the universe block.</li>
  1606  
  1607  	<li>The scope of an identifier denoting a constant, type, variable,
  1608  	    or function (but not method) declared at top level (outside any
  1609  	    function) is the package block.</li>
  1610  
  1611  	<li>The scope of the package name of an imported package is the file block
  1612  	    of the file containing the import declaration.</li>
  1613  
  1614  	<li>The scope of an identifier denoting a method receiver, function parameter,
  1615  	    or result variable is the function body.</li>
  1616  
  1617  	<li>The scope of a constant or variable identifier declared
  1618  	    inside a function begins at the end of the ConstSpec or VarSpec
  1619  	    (ShortVarDecl for short variable declarations)
  1620  	    and ends at the end of the innermost containing block.</li>
  1621  
  1622  	<li>The scope of a type identifier declared inside a function
  1623  	    begins at the identifier in the TypeSpec
  1624  	    and ends at the end of the innermost containing block.</li>
  1625  </ol>
  1626  
  1627  <p>
  1628  An identifier declared in a block may be redeclared in an inner block.
  1629  While the identifier of the inner declaration is in scope, it denotes
  1630  the entity declared by the inner declaration.
  1631  </p>
  1632  
  1633  <p>
  1634  The <a href="#Package_clause">package clause</a> is not a declaration; the package name
  1635  does not appear in any scope. Its purpose is to identify the files belonging
  1636  to the same <a href="#Packages">package</a> and to specify the default package name for import
  1637  declarations.
  1638  </p>
  1639  
  1640  
  1641  <h3 id="Label_scopes">Label scopes</h3>
  1642  
  1643  <p>
  1644  Labels are declared by <a href="#Labeled_statements">labeled statements</a> and are
  1645  used in the <a href="#Break_statements">"break"</a>,
  1646  <a href="#Continue_statements">"continue"</a>, and
  1647  <a href="#Goto_statements">"goto"</a> statements.
  1648  It is illegal to define a label that is never used.
  1649  In contrast to other identifiers, labels are not block scoped and do
  1650  not conflict with identifiers that are not labels. The scope of a label
  1651  is the body of the function in which it is declared and excludes
  1652  the body of any nested function.
  1653  </p>
  1654  
  1655  
  1656  <h3 id="Blank_identifier">Blank identifier</h3>
  1657  
  1658  <p>
  1659  The <i>blank identifier</i> is represented by the underscore character <code>_</code>.
  1660  It serves as an anonymous placeholder instead of a regular (non-blank)
  1661  identifier and has special meaning in <a href="#Declarations_and_scope">declarations</a>,
  1662  as an <a href="#Operands">operand</a>, and in <a href="#Assignments">assignments</a>.
  1663  </p>
  1664  
  1665  
  1666  <h3 id="Predeclared_identifiers">Predeclared identifiers</h3>
  1667  
  1668  <p>
  1669  The following identifiers are implicitly declared in the
  1670  <a href="#Blocks">universe block</a>:
  1671  </p>
  1672  <pre class="grammar">
  1673  Types:
  1674  	bool byte complex64 complex128 error float32 float64
  1675  	int int8 int16 int32 int64 rune string
  1676  	uint uint8 uint16 uint32 uint64 uintptr
  1677  
  1678  Constants:
  1679  	true false iota
  1680  
  1681  Zero value:
  1682  	nil
  1683  
  1684  Functions:
  1685  	append cap close complex copy delete imag len
  1686  	make new panic print println real recover
  1687  </pre>
  1688  
  1689  
  1690  <h3 id="Exported_identifiers">Exported identifiers</h3>
  1691  
  1692  <p>
  1693  An identifier may be <i>exported</i> to permit access to it from another package.
  1694  An identifier is exported if both:
  1695  </p>
  1696  <ol>
  1697  	<li>the first character of the identifier's name is a Unicode upper case
  1698  	letter (Unicode class "Lu"); and</li>
  1699  	<li>the identifier is declared in the <a href="#Blocks">package block</a>
  1700  	or it is a <a href="#Struct_types">field name</a> or
  1701  	<a href="#MethodName">method name</a>.</li>
  1702  </ol>
  1703  <p>
  1704  All other identifiers are not exported.
  1705  </p>
  1706  
  1707  
  1708  <h3 id="Uniqueness_of_identifiers">Uniqueness of identifiers</h3>
  1709  
  1710  <p>
  1711  Given a set of identifiers, an identifier is called <i>unique</i> if it is
  1712  <i>different</i> from every other in the set.
  1713  Two identifiers are different if they are spelled differently, or if they
  1714  appear in different <a href="#Packages">packages</a> and are not
  1715  <a href="#Exported_identifiers">exported</a>. Otherwise, they are the same.
  1716  </p>
  1717  
  1718  <h3 id="Constant_declarations">Constant declarations</h3>
  1719  
  1720  <p>
  1721  A constant declaration binds a list of identifiers (the names of
  1722  the constants) to the values of a list of <a href="#Constant_expressions">constant expressions</a>.
  1723  The number of identifiers must be equal
  1724  to the number of expressions, and the <i>n</i>th identifier on
  1725  the left is bound to the value of the <i>n</i>th expression on the
  1726  right.
  1727  </p>
  1728  
  1729  <pre class="ebnf">
  1730  ConstDecl      = "const" ( ConstSpec | "(" { ConstSpec ";" } ")" ) .
  1731  ConstSpec      = IdentifierList [ [ Type ] "=" ExpressionList ] .
  1732  
  1733  IdentifierList = identifier { "," identifier } .
  1734  ExpressionList = Expression { "," Expression } .
  1735  </pre>
  1736  
  1737  <p>
  1738  If the type is present, all constants take the type specified, and
  1739  the expressions must be <a href="#Assignability">assignable</a> to that type.
  1740  If the type is omitted, the constants take the
  1741  individual types of the corresponding expressions.
  1742  If the expression values are untyped <a href="#Constants">constants</a>,
  1743  the declared constants remain untyped and the constant identifiers
  1744  denote the constant values. For instance, if the expression is a
  1745  floating-point literal, the constant identifier denotes a floating-point
  1746  constant, even if the literal's fractional part is zero.
  1747  </p>
  1748  
  1749  <pre>
  1750  const Pi float64 = 3.14159265358979323846
  1751  const zero = 0.0         // untyped floating-point constant
  1752  const (
  1753  	size int64 = 1024
  1754  	eof        = -1  // untyped integer constant
  1755  )
  1756  const a, b, c = 3, 4, "foo"  // a = 3, b = 4, c = "foo", untyped integer and string constants
  1757  const u, v float32 = 0, 3    // u = 0.0, v = 3.0
  1758  </pre>
  1759  
  1760  <p>
  1761  Within a parenthesized <code>const</code> declaration list the
  1762  expression list may be omitted from any but the first declaration.
  1763  Such an empty list is equivalent to the textual substitution of the
  1764  first preceding non-empty expression list and its type if any.
  1765  Omitting the list of expressions is therefore equivalent to
  1766  repeating the previous list.  The number of identifiers must be equal
  1767  to the number of expressions in the previous list.
  1768  Together with the <a href="#Iota"><code>iota</code> constant generator</a>
  1769  this mechanism permits light-weight declaration of sequential values:
  1770  </p>
  1771  
  1772  <pre>
  1773  const (
  1774  	Sunday = iota
  1775  	Monday
  1776  	Tuesday
  1777  	Wednesday
  1778  	Thursday
  1779  	Friday
  1780  	Partyday
  1781  	numberOfDays  // this constant is not exported
  1782  )
  1783  </pre>
  1784  
  1785  
  1786  <h3 id="Iota">Iota</h3>
  1787  
  1788  <p>
  1789  Within a <a href="#Constant_declarations">constant declaration</a>, the predeclared identifier
  1790  <code>iota</code> represents successive untyped integer <a href="#Constants">
  1791  constants</a>. It is reset to 0 whenever the reserved word <code>const</code>
  1792  appears in the source and increments after each <a href="#ConstSpec">ConstSpec</a>.
  1793  It can be used to construct a set of related constants:
  1794  </p>
  1795  
  1796  <pre>
  1797  const ( // iota is reset to 0
  1798  	c0 = iota  // c0 == 0
  1799  	c1 = iota  // c1 == 1
  1800  	c2 = iota  // c2 == 2
  1801  )
  1802  
  1803  const ( // iota is reset to 0
  1804  	a = 1 &lt;&lt; iota  // a == 1
  1805  	b = 1 &lt;&lt; iota  // b == 2
  1806  	c = 3          // c == 3  (iota is not used but still incremented)
  1807  	d = 1 &lt;&lt; iota  // d == 8
  1808  )
  1809  
  1810  const ( // iota is reset to 0
  1811  	u         = iota * 42  // u == 0     (untyped integer constant)
  1812  	v float64 = iota * 42  // v == 42.0  (float64 constant)
  1813  	w         = iota * 42  // w == 84    (untyped integer constant)
  1814  )
  1815  
  1816  const x = iota  // x == 0  (iota has been reset)
  1817  const y = iota  // y == 0  (iota has been reset)
  1818  </pre>
  1819  
  1820  <p>
  1821  Within an ExpressionList, the value of each <code>iota</code> is the same because
  1822  it is only incremented after each ConstSpec:
  1823  </p>
  1824  
  1825  <pre>
  1826  const (
  1827  	bit0, mask0 = 1 &lt;&lt; iota, 1&lt;&lt;iota - 1  // bit0 == 1, mask0 == 0
  1828  	bit1, mask1                           // bit1 == 2, mask1 == 1
  1829  	_, _                                  // skips iota == 2
  1830  	bit3, mask3                           // bit3 == 8, mask3 == 7
  1831  )
  1832  </pre>
  1833  
  1834  <p>
  1835  This last example exploits the implicit repetition of the
  1836  last non-empty expression list.
  1837  </p>
  1838  
  1839  
  1840  <h3 id="Type_declarations">Type declarations</h3>
  1841  
  1842  <p>
  1843  A type declaration binds an identifier, the <i>type name</i>, to a new type
  1844  that has the same <a href="#Types">underlying type</a> as an existing type,
  1845  and operations defined for the existing type are also defined for the new type.
  1846  The new type is <a href="#Type_identity">different</a> from the existing type.
  1847  </p>
  1848  
  1849  <pre class="ebnf">
  1850  TypeDecl     = "type" ( TypeSpec | "(" { TypeSpec ";" } ")" ) .
  1851  TypeSpec     = identifier Type .
  1852  </pre>
  1853  
  1854  <pre>
  1855  type IntArray [16]int
  1856  
  1857  type (
  1858  	Point struct{ x, y float64 }
  1859  	Polar Point
  1860  )
  1861  
  1862  type TreeNode struct {
  1863  	left, right *TreeNode
  1864  	value *Comparable
  1865  }
  1866  
  1867  type Block interface {
  1868  	BlockSize() int
  1869  	Encrypt(src, dst []byte)
  1870  	Decrypt(src, dst []byte)
  1871  }
  1872  </pre>
  1873  
  1874  <p>
  1875  The declared type does not inherit any <a href="#Method_declarations">methods</a>
  1876  bound to the existing type, but the <a href="#Method_sets">method set</a>
  1877  of an interface type or of elements of a composite type remains unchanged:
  1878  </p>
  1879  
  1880  <pre>
  1881  // A Mutex is a data type with two methods, Lock and Unlock.
  1882  type Mutex struct         { /* Mutex fields */ }
  1883  func (m *Mutex) Lock()    { /* Lock implementation */ }
  1884  func (m *Mutex) Unlock()  { /* Unlock implementation */ }
  1885  
  1886  // NewMutex has the same composition as Mutex but its method set is empty.
  1887  type NewMutex Mutex
  1888  
  1889  // The method set of the <a href="#Pointer_types">base type</a> of PtrMutex remains unchanged,
  1890  // but the method set of PtrMutex is empty.
  1891  type PtrMutex *Mutex
  1892  
  1893  // The method set of *PrintableMutex contains the methods
  1894  // Lock and Unlock bound to its anonymous field Mutex.
  1895  type PrintableMutex struct {
  1896  	Mutex
  1897  }
  1898  
  1899  // MyBlock is an interface type that has the same method set as Block.
  1900  type MyBlock Block
  1901  </pre>
  1902  
  1903  <p>
  1904  A type declaration may be used to define a different boolean, numeric, or string
  1905  type and attach methods to it:
  1906  </p>
  1907  
  1908  <pre>
  1909  type TimeZone int
  1910  
  1911  const (
  1912  	EST TimeZone = -(5 + iota)
  1913  	CST
  1914  	MST
  1915  	PST
  1916  )
  1917  
  1918  func (tz TimeZone) String() string {
  1919  	return fmt.Sprintf("GMT%+dh", tz)
  1920  }
  1921  </pre>
  1922  
  1923  
  1924  <h3 id="Variable_declarations">Variable declarations</h3>
  1925  
  1926  <p>
  1927  A variable declaration creates one or more variables, binds corresponding
  1928  identifiers to them, and gives each a type and an initial value.
  1929  </p>
  1930  
  1931  <pre class="ebnf">
  1932  VarDecl     = "var" ( VarSpec | "(" { VarSpec ";" } ")" ) .
  1933  VarSpec     = IdentifierList ( Type [ "=" ExpressionList ] | "=" ExpressionList ) .
  1934  </pre>
  1935  
  1936  <pre>
  1937  var i int
  1938  var U, V, W float64
  1939  var k = 0
  1940  var x, y float32 = -1, -2
  1941  var (
  1942  	i       int
  1943  	u, v, s = 2.0, 3.0, "bar"
  1944  )
  1945  var re, im = complexSqrt(-1)
  1946  var _, found = entries[name]  // map lookup; only interested in "found"
  1947  </pre>
  1948  
  1949  <p>
  1950  If a list of expressions is given, the variables are initialized
  1951  with the expressions following the rules for <a href="#Assignments">assignments</a>.
  1952  Otherwise, each variable is initialized to its <a href="#The_zero_value">zero value</a>.
  1953  </p>
  1954  
  1955  <p>
  1956  If a type is present, each variable is given that type.
  1957  Otherwise, each variable is given the type of the corresponding
  1958  initialization value in the assignment.
  1959  If that value is an untyped constant, it is first
  1960  <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
  1961  if it is an untyped boolean value, it is first converted to type <code>bool</code>.
  1962  The predeclared value <code>nil</code> cannot be used to initialize a variable
  1963  with no explicit type.
  1964  </p>
  1965  
  1966  <pre>
  1967  var d = math.Sin(0.5)  // d is float64
  1968  var i = 42             // i is int
  1969  var t, ok = x.(T)      // t is T, ok is bool
  1970  var n = nil            // illegal
  1971  </pre>
  1972  
  1973  <p>
  1974  Implementation restriction: A compiler may make it illegal to declare a variable
  1975  inside a <a href="#Function_declarations">function body</a> if the variable is
  1976  never used.
  1977  </p>
  1978  
  1979  <h3 id="Short_variable_declarations">Short variable declarations</h3>
  1980  
  1981  <p>
  1982  A <i>short variable declaration</i> uses the syntax:
  1983  </p>
  1984  
  1985  <pre class="ebnf">
  1986  ShortVarDecl = IdentifierList ":=" ExpressionList .
  1987  </pre>
  1988  
  1989  <p>
  1990  It is shorthand for a regular <a href="#Variable_declarations">variable declaration</a>
  1991  with initializer expressions but no types:
  1992  </p>
  1993  
  1994  <pre class="grammar">
  1995  "var" IdentifierList = ExpressionList .
  1996  </pre>
  1997  
  1998  <pre>
  1999  i, j := 0, 10
  2000  f := func() int { return 7 }
  2001  ch := make(chan int)
  2002  r, w := os.Pipe(fd)  // os.Pipe() returns two values
  2003  _, y, _ := coord(p)  // coord() returns three values; only interested in y coordinate
  2004  </pre>
  2005  
  2006  <p>
  2007  Unlike regular variable declarations, a short variable declaration may <i>redeclare</i>
  2008  variables provided they were originally declared earlier in the same block
  2009  (or the parameter lists if the block is the function body) with the same type,
  2010  and at least one of the non-<a href="#Blank_identifier">blank</a> variables is new.
  2011  As a consequence, redeclaration can only appear in a multi-variable short declaration.
  2012  Redeclaration does not introduce a new variable; it just assigns a new value to the original.
  2013  </p>
  2014  
  2015  <pre>
  2016  field1, offset := nextField(str, 0)
  2017  field2, offset := nextField(str, offset)  // redeclares offset
  2018  a, a := 1, 2                              // illegal: double declaration of a or no new variable if a was declared elsewhere
  2019  </pre>
  2020  
  2021  <p>
  2022  Short variable declarations may appear only inside functions.
  2023  In some contexts such as the initializers for
  2024  <a href="#If_statements">"if"</a>,
  2025  <a href="#For_statements">"for"</a>, or
  2026  <a href="#Switch_statements">"switch"</a> statements,
  2027  they can be used to declare local temporary variables.
  2028  </p>
  2029  
  2030  <h3 id="Function_declarations">Function declarations</h3>
  2031  
  2032  <p>
  2033  A function declaration binds an identifier, the <i>function name</i>,
  2034  to a function.
  2035  </p>
  2036  
  2037  <pre class="ebnf">
  2038  FunctionDecl = "func" FunctionName ( Function | Signature ) .
  2039  FunctionName = identifier .
  2040  Function     = Signature FunctionBody .
  2041  FunctionBody = Block .
  2042  </pre>
  2043  
  2044  <p>
  2045  If the function's <a href="#Function_types">signature</a> declares
  2046  result parameters, the function body's statement list must end in
  2047  a <a href="#Terminating_statements">terminating statement</a>.
  2048  </p>
  2049  
  2050  <pre>
  2051  func IndexRune(s string, r rune) int {
  2052  	for i, c := range s {
  2053  		if c == r {
  2054  			return i
  2055  		}
  2056  	}
  2057  	// invalid: missing return statement
  2058  }
  2059  </pre>
  2060  
  2061  <p>
  2062  A function declaration may omit the body. Such a declaration provides the
  2063  signature for a function implemented outside Go, such as an assembly routine.
  2064  </p>
  2065  
  2066  <pre>
  2067  func min(x int, y int) int {
  2068  	if x &lt; y {
  2069  		return x
  2070  	}
  2071  	return y
  2072  }
  2073  
  2074  func flushICache(begin, end uintptr)  // implemented externally
  2075  </pre>
  2076  
  2077  <h3 id="Method_declarations">Method declarations</h3>
  2078  
  2079  <p>
  2080  A method is a <a href="#Function_declarations">function</a> with a <i>receiver</i>.
  2081  A method declaration binds an identifier, the <i>method name</i>, to a method,
  2082  and associates the method with the receiver's <i>base type</i>.
  2083  </p>
  2084  
  2085  <pre class="ebnf">
  2086  MethodDecl   = "func" Receiver MethodName ( Function | Signature ) .
  2087  Receiver     = Parameters .
  2088  </pre>
  2089  
  2090  <p>
  2091  The receiver is specified via an extra parameter section preceding the method
  2092  name. That parameter section must declare a single non-variadic parameter, the receiver.
  2093  Its type must be of the form <code>T</code> or <code>*T</code> (possibly using
  2094  parentheses) where <code>T</code> is a type name. The type denoted by <code>T</code> is called
  2095  the receiver <i>base type</i>; it must not be a pointer or interface type and
  2096  it must be declared in the same package as the method.
  2097  The method is said to be <i>bound</i> to the base type and the method name
  2098  is visible only within <a href="#Selectors">selectors</a> for type <code>T</code>
  2099  or <code>*T</code>.
  2100  </p>
  2101  
  2102  <p>
  2103  A non-<a href="#Blank_identifier">blank</a> receiver identifier must be
  2104  <a href="#Uniqueness_of_identifiers">unique</a> in the method signature.
  2105  If the receiver's value is not referenced inside the body of the method,
  2106  its identifier may be omitted in the declaration. The same applies in
  2107  general to parameters of functions and methods.
  2108  </p>
  2109  
  2110  <p>
  2111  For a base type, the non-blank names of methods bound to it must be unique.
  2112  If the base type is a <a href="#Struct_types">struct type</a>,
  2113  the non-blank method and field names must be distinct.
  2114  </p>
  2115  
  2116  <p>
  2117  Given type <code>Point</code>, the declarations
  2118  </p>
  2119  
  2120  <pre>
  2121  func (p *Point) Length() float64 {
  2122  	return math.Sqrt(p.x * p.x + p.y * p.y)
  2123  }
  2124  
  2125  func (p *Point) Scale(factor float64) {
  2126  	p.x *= factor
  2127  	p.y *= factor
  2128  }
  2129  </pre>
  2130  
  2131  <p>
  2132  bind the methods <code>Length</code> and <code>Scale</code>,
  2133  with receiver type <code>*Point</code>,
  2134  to the base type <code>Point</code>.
  2135  </p>
  2136  
  2137  <p>
  2138  The type of a method is the type of a function with the receiver as first
  2139  argument.  For instance, the method <code>Scale</code> has type
  2140  </p>
  2141  
  2142  <pre>
  2143  func(p *Point, factor float64)
  2144  </pre>
  2145  
  2146  <p>
  2147  However, a function declared this way is not a method.
  2148  </p>
  2149  
  2150  
  2151  <h2 id="Expressions">Expressions</h2>
  2152  
  2153  <p>
  2154  An expression specifies the computation of a value by applying
  2155  operators and functions to operands.
  2156  </p>
  2157  
  2158  <h3 id="Operands">Operands</h3>
  2159  
  2160  <p>
  2161  Operands denote the elementary values in an expression. An operand may be a
  2162  literal, a (possibly <a href="#Qualified_identifiers">qualified</a>)
  2163  non-<a href="#Blank_identifier">blank</a> identifier denoting a
  2164  <a href="#Constant_declarations">constant</a>,
  2165  <a href="#Variable_declarations">variable</a>, or
  2166  <a href="#Function_declarations">function</a>,
  2167  a <a href="#Method_expressions">method expression</a> yielding a function,
  2168  or a parenthesized expression.
  2169  </p>
  2170  
  2171  <p>
  2172  The <a href="#Blank_identifier">blank identifier</a> may appear as an
  2173  operand only on the left-hand side of an <a href="#Assignments">assignment</a>.
  2174  </p>
  2175  
  2176  <pre class="ebnf">
  2177  Operand     = Literal | OperandName | MethodExpr | "(" Expression ")" .
  2178  Literal     = BasicLit | CompositeLit | FunctionLit .
  2179  BasicLit    = int_lit | float_lit | imaginary_lit | rune_lit | string_lit .
  2180  OperandName = identifier | QualifiedIdent.
  2181  </pre>
  2182  
  2183  <h3 id="Qualified_identifiers">Qualified identifiers</h3>
  2184  
  2185  <p>
  2186  A qualified identifier is an identifier qualified with a package name prefix.
  2187  Both the package name and the identifier must not be
  2188  <a href="#Blank_identifier">blank</a>.
  2189  </p>
  2190  
  2191  <pre class="ebnf">
  2192  QualifiedIdent = PackageName "." identifier .
  2193  </pre>
  2194  
  2195  <p>
  2196  A qualified identifier accesses an identifier in a different package, which
  2197  must be <a href="#Import_declarations">imported</a>.
  2198  The identifier must be <a href="#Exported_identifiers">exported</a> and
  2199  declared in the <a href="#Blocks">package block</a> of that package.
  2200  </p>
  2201  
  2202  <pre>
  2203  math.Sin	// denotes the Sin function in package math
  2204  </pre>
  2205  
  2206  <h3 id="Composite_literals">Composite literals</h3>
  2207  
  2208  <p>
  2209  Composite literals construct values for structs, arrays, slices, and maps
  2210  and create a new value each time they are evaluated.
  2211  They consist of the type of the literal followed by a brace-bound list of elements.
  2212  Each element may optionally be preceded by a corresponding key.
  2213  </p>
  2214  
  2215  <pre class="ebnf">
  2216  CompositeLit  = LiteralType LiteralValue .
  2217  LiteralType   = StructType | ArrayType | "[" "..." "]" ElementType |
  2218                  SliceType | MapType | TypeName .
  2219  LiteralValue  = "{" [ ElementList [ "," ] ] "}" .
  2220  ElementList   = KeyedElement { "," KeyedElement } .
  2221  KeyedElement  = [ Key ":" ] Element .
  2222  Key           = FieldName | Expression | LiteralValue .
  2223  FieldName     = identifier .
  2224  Element       = Expression | LiteralValue .
  2225  </pre>
  2226  
  2227  <p>
  2228  The LiteralType's underlying type must be a struct, array, slice, or map type
  2229  (the grammar enforces this constraint except when the type is given
  2230  as a TypeName).
  2231  The types of the elements and keys must be <a href="#Assignability">assignable</a>
  2232  to the respective field, element, and key types of the literal type;
  2233  there is no additional conversion.
  2234  The key is interpreted as a field name for struct literals,
  2235  an index for array and slice literals, and a key for map literals.
  2236  For map literals, all elements must have a key. It is an error
  2237  to specify multiple elements with the same field name or
  2238  constant key value.
  2239  </p>
  2240  
  2241  <p>
  2242  For struct literals the following rules apply:
  2243  </p>
  2244  <ul>
  2245  	<li>A key must be a field name declared in the struct type.
  2246  	</li>
  2247  	<li>An element list that does not contain any keys must
  2248  	    list an element for each struct field in the
  2249  	    order in which the fields are declared.
  2250  	</li>
  2251  	<li>If any element has a key, every element must have a key.
  2252  	</li>
  2253  	<li>An element list that contains keys does not need to
  2254  	    have an element for each struct field. Omitted fields
  2255  	    get the zero value for that field.
  2256  	</li>
  2257  	<li>A literal may omit the element list; such a literal evaluates
  2258  	    to the zero value for its type.
  2259  	</li>
  2260  	<li>It is an error to specify an element for a non-exported
  2261  	    field of a struct belonging to a different package.
  2262  	</li>
  2263  </ul>
  2264  
  2265  <p>
  2266  Given the declarations
  2267  </p>
  2268  <pre>
  2269  type Point3D struct { x, y, z float64 }
  2270  type Line struct { p, q Point3D }
  2271  </pre>
  2272  
  2273  <p>
  2274  one may write
  2275  </p>
  2276  
  2277  <pre>
  2278  origin := Point3D{}                            // zero value for Point3D
  2279  line := Line{origin, Point3D{y: -4, z: 12.3}}  // zero value for line.q.x
  2280  </pre>
  2281  
  2282  <p>
  2283  For array and slice literals the following rules apply:
  2284  </p>
  2285  <ul>
  2286  	<li>Each element has an associated integer index marking
  2287  	    its position in the array.
  2288  	</li>
  2289  	<li>An element with a key uses the key as its index. The
  2290  	    key must be a non-negative constant representable by
  2291  	    a value of type <code>int</code>; and if it is typed
  2292  	    it must be of integer type.
  2293  	</li>
  2294  	<li>An element without a key uses the previous element's index plus one.
  2295  	    If the first element has no key, its index is zero.
  2296  	</li>
  2297  </ul>
  2298  
  2299  <p>
  2300  <a href="#Address_operators">Taking the address</a> of a composite literal
  2301  generates a pointer to a unique <a href="#Variables">variable</a> initialized
  2302  with the literal's value.
  2303  </p>
  2304  <pre>
  2305  var pointer *Point3D = &amp;Point3D{y: 1000}
  2306  </pre>
  2307  
  2308  <p>
  2309  The length of an array literal is the length specified in the literal type.
  2310  If fewer elements than the length are provided in the literal, the missing
  2311  elements are set to the zero value for the array element type.
  2312  It is an error to provide elements with index values outside the index range
  2313  of the array. The notation <code>...</code> specifies an array length equal
  2314  to the maximum element index plus one.
  2315  </p>
  2316  
  2317  <pre>
  2318  buffer := [10]string{}             // len(buffer) == 10
  2319  intSet := [6]int{1, 2, 3, 5}       // len(intSet) == 6
  2320  days := [...]string{"Sat", "Sun"}  // len(days) == 2
  2321  </pre>
  2322  
  2323  <p>
  2324  A slice literal describes the entire underlying array literal.
  2325  Thus the length and capacity of a slice literal are the maximum
  2326  element index plus one. A slice literal has the form
  2327  </p>
  2328  
  2329  <pre>
  2330  []T{x1, x2, … xn}
  2331  </pre>
  2332  
  2333  <p>
  2334  and is shorthand for a slice operation applied to an array:
  2335  </p>
  2336  
  2337  <pre>
  2338  tmp := [n]T{x1, x2, … xn}
  2339  tmp[0 : n]
  2340  </pre>
  2341  
  2342  <p>
  2343  Within a composite literal of array, slice, or map type <code>T</code>,
  2344  elements or map keys that are themselves composite literals may elide the respective
  2345  literal type if it is identical to the element or key type of <code>T</code>.
  2346  Similarly, elements or keys that are addresses of composite literals may elide
  2347  the <code>&amp;T</code> when the element or key type is <code>*T</code>.
  2348  </p>
  2349  
  2350  <pre>
  2351  [...]Point{{1.5, -3.5}, {0, 0}}     // same as [...]Point{Point{1.5, -3.5}, Point{0, 0}}
  2352  [][]int{{1, 2, 3}, {4, 5}}          // same as [][]int{[]int{1, 2, 3}, []int{4, 5}}
  2353  [][]Point{{{0, 1}, {1, 2}}}         // same as [][]Point{[]Point{Point{0, 1}, Point{1, 2}}}
  2354  map[string]Point{"orig": {0, 0}}    // same as map[string]Point{"orig": Point{0, 0}}
  2355  map[Point]string{{0, 0}: "orig"}    // same as map[Point]string{Point{0, 0}: "orig"}
  2356  
  2357  type PPoint *Point
  2358  [2]*Point{{1.5, -3.5}, {}}          // same as [2]*Point{&amp;Point{1.5, -3.5}, &amp;Point{}}
  2359  [2]PPoint{{1.5, -3.5}, {}}          // same as [2]PPoint{PPoint(&amp;Point{1.5, -3.5}), PPoint(&amp;Point{})}
  2360  </pre>
  2361  
  2362  <p>
  2363  A parsing ambiguity arises when a composite literal using the
  2364  TypeName form of the LiteralType appears as an operand between the
  2365  <a href="#Keywords">keyword</a> and the opening brace of the block
  2366  of an "if", "for", or "switch" statement, and the composite literal
  2367  is not enclosed in parentheses, square brackets, or curly braces.
  2368  In this rare case, the opening brace of the literal is erroneously parsed
  2369  as the one introducing the block of statements. To resolve the ambiguity,
  2370  the composite literal must appear within parentheses.
  2371  </p>
  2372  
  2373  <pre>
  2374  if x == (T{a,b,c}[i]) { … }
  2375  if (x == T{a,b,c}[i]) { … }
  2376  </pre>
  2377  
  2378  <p>
  2379  Examples of valid array, slice, and map literals:
  2380  </p>
  2381  
  2382  <pre>
  2383  // list of prime numbers
  2384  primes := []int{2, 3, 5, 7, 9, 2147483647}
  2385  
  2386  // vowels[ch] is true if ch is a vowel
  2387  vowels := [128]bool{'a': true, 'e': true, 'i': true, 'o': true, 'u': true, 'y': true}
  2388  
  2389  // the array [10]float32{-1, 0, 0, 0, -0.1, -0.1, 0, 0, 0, -1}
  2390  filter := [10]float32{-1, 4: -0.1, -0.1, 9: -1}
  2391  
  2392  // frequencies in Hz for equal-tempered scale (A4 = 440Hz)
  2393  noteFrequency := map[string]float32{
  2394  	"C0": 16.35, "D0": 18.35, "E0": 20.60, "F0": 21.83,
  2395  	"G0": 24.50, "A0": 27.50, "B0": 30.87,
  2396  }
  2397  </pre>
  2398  
  2399  
  2400  <h3 id="Function_literals">Function literals</h3>
  2401  
  2402  <p>
  2403  A function literal represents an anonymous <a href="#Function_declarations">function</a>.
  2404  </p>
  2405  
  2406  <pre class="ebnf">
  2407  FunctionLit = "func" Function .
  2408  </pre>
  2409  
  2410  <pre>
  2411  func(a, b int, z float64) bool { return a*b &lt; int(z) }
  2412  </pre>
  2413  
  2414  <p>
  2415  A function literal can be assigned to a variable or invoked directly.
  2416  </p>
  2417  
  2418  <pre>
  2419  f := func(x, y int) int { return x + y }
  2420  func(ch chan int) { ch &lt;- ACK }(replyChan)
  2421  </pre>
  2422  
  2423  <p>
  2424  Function literals are <i>closures</i>: they may refer to variables
  2425  defined in a surrounding function. Those variables are then shared between
  2426  the surrounding function and the function literal, and they survive as long
  2427  as they are accessible.
  2428  </p>
  2429  
  2430  
  2431  <h3 id="Primary_expressions">Primary expressions</h3>
  2432  
  2433  <p>
  2434  Primary expressions are the operands for unary and binary expressions.
  2435  </p>
  2436  
  2437  <pre class="ebnf">
  2438  PrimaryExpr =
  2439  	Operand |
  2440  	Conversion |
  2441  	PrimaryExpr Selector |
  2442  	PrimaryExpr Index |
  2443  	PrimaryExpr Slice |
  2444  	PrimaryExpr TypeAssertion |
  2445  	PrimaryExpr Arguments .
  2446  
  2447  Selector       = "." identifier .
  2448  Index          = "[" Expression "]" .
  2449  Slice          = "[" [ Expression ] ":" [ Expression ] "]" |
  2450                   "[" [ Expression ] ":" Expression ":" Expression "]" .
  2451  TypeAssertion  = "." "(" Type ")" .
  2452  Arguments      = "(" [ ( ExpressionList | Type [ "," ExpressionList ] ) [ "..." ] [ "," ] ] ")" .
  2453  </pre>
  2454  
  2455  
  2456  <pre>
  2457  x
  2458  2
  2459  (s + ".txt")
  2460  f(3.1415, true)
  2461  Point{1, 2}
  2462  m["foo"]
  2463  s[i : j + 1]
  2464  obj.color
  2465  f.p[i].x()
  2466  </pre>
  2467  
  2468  
  2469  <h3 id="Selectors">Selectors</h3>
  2470  
  2471  <p>
  2472  For a <a href="#Primary_expressions">primary expression</a> <code>x</code>
  2473  that is not a <a href="#Package_clause">package name</a>, the
  2474  <i>selector expression</i>
  2475  </p>
  2476  
  2477  <pre>
  2478  x.f
  2479  </pre>
  2480  
  2481  <p>
  2482  denotes the field or method <code>f</code> of the value <code>x</code>
  2483  (or sometimes <code>*x</code>; see below).
  2484  The identifier <code>f</code> is called the (field or method) <i>selector</i>;
  2485  it must not be the <a href="#Blank_identifier">blank identifier</a>.
  2486  The type of the selector expression is the type of <code>f</code>.
  2487  If <code>x</code> is a package name, see the section on
  2488  <a href="#Qualified_identifiers">qualified identifiers</a>.
  2489  </p>
  2490  
  2491  <p>
  2492  A selector <code>f</code> may denote a field or method <code>f</code> of
  2493  a type <code>T</code>, or it may refer
  2494  to a field or method <code>f</code> of a nested
  2495  <a href="#Struct_types">anonymous field</a> of <code>T</code>.
  2496  The number of anonymous fields traversed
  2497  to reach <code>f</code> is called its <i>depth</i> in <code>T</code>.
  2498  The depth of a field or method <code>f</code>
  2499  declared in <code>T</code> is zero.
  2500  The depth of a field or method <code>f</code> declared in
  2501  an anonymous field <code>A</code> in <code>T</code> is the
  2502  depth of <code>f</code> in <code>A</code> plus one.
  2503  </p>
  2504  
  2505  <p>
  2506  The following rules apply to selectors:
  2507  </p>
  2508  
  2509  <ol>
  2510  <li>
  2511  For a value <code>x</code> of type <code>T</code> or <code>*T</code>
  2512  where <code>T</code> is not a pointer or interface type,
  2513  <code>x.f</code> denotes the field or method at the shallowest depth
  2514  in <code>T</code> where there
  2515  is such an <code>f</code>.
  2516  If there is not exactly <a href="#Uniqueness_of_identifiers">one <code>f</code></a>
  2517  with shallowest depth, the selector expression is illegal.
  2518  </li>
  2519  
  2520  <li>
  2521  For a value <code>x</code> of type <code>I</code> where <code>I</code>
  2522  is an interface type, <code>x.f</code> denotes the actual method with name
  2523  <code>f</code> of the dynamic value of <code>x</code>.
  2524  If there is no method with name <code>f</code> in the
  2525  <a href="#Method_sets">method set</a> of <code>I</code>, the selector
  2526  expression is illegal.
  2527  </li>
  2528  
  2529  <li>
  2530  As an exception, if the type of <code>x</code> is a named pointer type
  2531  and <code>(*x).f</code> is a valid selector expression denoting a field
  2532  (but not a method), <code>x.f</code> is shorthand for <code>(*x).f</code>.
  2533  </li>
  2534  
  2535  <li>
  2536  In all other cases, <code>x.f</code> is illegal.
  2537  </li>
  2538  
  2539  <li>
  2540  If <code>x</code> is of pointer type and has the value
  2541  <code>nil</code> and <code>x.f</code> denotes a struct field,
  2542  assigning to or evaluating <code>x.f</code>
  2543  causes a <a href="#Run_time_panics">run-time panic</a>.
  2544  </li>
  2545  
  2546  <li>
  2547  If <code>x</code> is of interface type and has the value
  2548  <code>nil</code>, <a href="#Calls">calling</a> or
  2549  <a href="#Method_values">evaluating</a> the method <code>x.f</code>
  2550  causes a <a href="#Run_time_panics">run-time panic</a>.
  2551  </li>
  2552  </ol>
  2553  
  2554  <p>
  2555  For example, given the declarations:
  2556  </p>
  2557  
  2558  <pre>
  2559  type T0 struct {
  2560  	x int
  2561  }
  2562  
  2563  func (*T0) M0()
  2564  
  2565  type T1 struct {
  2566  	y int
  2567  }
  2568  
  2569  func (T1) M1()
  2570  
  2571  type T2 struct {
  2572  	z int
  2573  	T1
  2574  	*T0
  2575  }
  2576  
  2577  func (*T2) M2()
  2578  
  2579  type Q *T2
  2580  
  2581  var t T2     // with t.T0 != nil
  2582  var p *T2    // with p != nil and (*p).T0 != nil
  2583  var q Q = p
  2584  </pre>
  2585  
  2586  <p>
  2587  one may write:
  2588  </p>
  2589  
  2590  <pre>
  2591  t.z          // t.z
  2592  t.y          // t.T1.y
  2593  t.x          // (*t.T0).x
  2594  
  2595  p.z          // (*p).z
  2596  p.y          // (*p).T1.y
  2597  p.x          // (*(*p).T0).x
  2598  
  2599  q.x          // (*(*q).T0).x        (*q).x is a valid field selector
  2600  
  2601  p.M0()       // ((*p).T0).M0()      M0 expects *T0 receiver
  2602  p.M1()       // ((*p).T1).M1()      M1 expects T1 receiver
  2603  p.M2()       // p.M2()              M2 expects *T2 receiver
  2604  t.M2()       // (&amp;t).M2()           M2 expects *T2 receiver, see section on Calls
  2605  </pre>
  2606  
  2607  <p>
  2608  but the following is invalid:
  2609  </p>
  2610  
  2611  <pre>
  2612  q.M0()       // (*q).M0 is valid but not a field selector
  2613  </pre>
  2614  
  2615  
  2616  <h3 id="Method_expressions">Method expressions</h3>
  2617  
  2618  <p>
  2619  If <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
  2620  <code>T.M</code> is a function that is callable as a regular function
  2621  with the same arguments as <code>M</code> prefixed by an additional
  2622  argument that is the receiver of the method.
  2623  </p>
  2624  
  2625  <pre class="ebnf">
  2626  MethodExpr    = ReceiverType "." MethodName .
  2627  ReceiverType  = TypeName | "(" "*" TypeName ")" | "(" ReceiverType ")" .
  2628  </pre>
  2629  
  2630  <p>
  2631  Consider a struct type <code>T</code> with two methods,
  2632  <code>Mv</code>, whose receiver is of type <code>T</code>, and
  2633  <code>Mp</code>, whose receiver is of type <code>*T</code>.
  2634  </p>
  2635  
  2636  <pre>
  2637  type T struct {
  2638  	a int
  2639  }
  2640  func (tv  T) Mv(a int) int         { return 0 }  // value receiver
  2641  func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
  2642  
  2643  var t T
  2644  </pre>
  2645  
  2646  <p>
  2647  The expression
  2648  </p>
  2649  
  2650  <pre>
  2651  T.Mv
  2652  </pre>
  2653  
  2654  <p>
  2655  yields a function equivalent to <code>Mv</code> but
  2656  with an explicit receiver as its first argument; it has signature
  2657  </p>
  2658  
  2659  <pre>
  2660  func(tv T, a int) int
  2661  </pre>
  2662  
  2663  <p>
  2664  That function may be called normally with an explicit receiver, so
  2665  these five invocations are equivalent:
  2666  </p>
  2667  
  2668  <pre>
  2669  t.Mv(7)
  2670  T.Mv(t, 7)
  2671  (T).Mv(t, 7)
  2672  f1 := T.Mv; f1(t, 7)
  2673  f2 := (T).Mv; f2(t, 7)
  2674  </pre>
  2675  
  2676  <p>
  2677  Similarly, the expression
  2678  </p>
  2679  
  2680  <pre>
  2681  (*T).Mp
  2682  </pre>
  2683  
  2684  <p>
  2685  yields a function value representing <code>Mp</code> with signature
  2686  </p>
  2687  
  2688  <pre>
  2689  func(tp *T, f float32) float32
  2690  </pre>
  2691  
  2692  <p>
  2693  For a method with a value receiver, one can derive a function
  2694  with an explicit pointer receiver, so
  2695  </p>
  2696  
  2697  <pre>
  2698  (*T).Mv
  2699  </pre>
  2700  
  2701  <p>
  2702  yields a function value representing <code>Mv</code> with signature
  2703  </p>
  2704  
  2705  <pre>
  2706  func(tv *T, a int) int
  2707  </pre>
  2708  
  2709  <p>
  2710  Such a function indirects through the receiver to create a value
  2711  to pass as the receiver to the underlying method;
  2712  the method does not overwrite the value whose address is passed in
  2713  the function call.
  2714  </p>
  2715  
  2716  <p>
  2717  The final case, a value-receiver function for a pointer-receiver method,
  2718  is illegal because pointer-receiver methods are not in the method set
  2719  of the value type.
  2720  </p>
  2721  
  2722  <p>
  2723  Function values derived from methods are called with function call syntax;
  2724  the receiver is provided as the first argument to the call.
  2725  That is, given <code>f := T.Mv</code>, <code>f</code> is invoked
  2726  as <code>f(t, 7)</code> not <code>t.f(7)</code>.
  2727  To construct a function that binds the receiver, use a
  2728  <a href="#Function_literals">function literal</a> or
  2729  <a href="#Method_values">method value</a>.
  2730  </p>
  2731  
  2732  <p>
  2733  It is legal to derive a function value from a method of an interface type.
  2734  The resulting function takes an explicit receiver of that interface type.
  2735  </p>
  2736  
  2737  <h3 id="Method_values">Method values</h3>
  2738  
  2739  <p>
  2740  If the expression <code>x</code> has static type <code>T</code> and
  2741  <code>M</code> is in the <a href="#Method_sets">method set</a> of type <code>T</code>,
  2742  <code>x.M</code> is called a <i>method value</i>.
  2743  The method value <code>x.M</code> is a function value that is callable
  2744  with the same arguments as a method call of <code>x.M</code>.
  2745  The expression <code>x</code> is evaluated and saved during the evaluation of the
  2746  method value; the saved copy is then used as the receiver in any calls,
  2747  which may be executed later.
  2748  </p>
  2749  
  2750  <p>
  2751  The type <code>T</code> may be an interface or non-interface type.
  2752  </p>
  2753  
  2754  <p>
  2755  As in the discussion of <a href="#Method_expressions">method expressions</a> above,
  2756  consider a struct type <code>T</code> with two methods,
  2757  <code>Mv</code>, whose receiver is of type <code>T</code>, and
  2758  <code>Mp</code>, whose receiver is of type <code>*T</code>.
  2759  </p>
  2760  
  2761  <pre>
  2762  type T struct {
  2763  	a int
  2764  }
  2765  func (tv  T) Mv(a int) int         { return 0 }  // value receiver
  2766  func (tp *T) Mp(f float32) float32 { return 1 }  // pointer receiver
  2767  
  2768  var t T
  2769  var pt *T
  2770  func makeT() T
  2771  </pre>
  2772  
  2773  <p>
  2774  The expression
  2775  </p>
  2776  
  2777  <pre>
  2778  t.Mv
  2779  </pre>
  2780  
  2781  <p>
  2782  yields a function value of type
  2783  </p>
  2784  
  2785  <pre>
  2786  func(int) int
  2787  </pre>
  2788  
  2789  <p>
  2790  These two invocations are equivalent:
  2791  </p>
  2792  
  2793  <pre>
  2794  t.Mv(7)
  2795  f := t.Mv; f(7)
  2796  </pre>
  2797  
  2798  <p>
  2799  Similarly, the expression
  2800  </p>
  2801  
  2802  <pre>
  2803  pt.Mp
  2804  </pre>
  2805  
  2806  <p>
  2807  yields a function value of type
  2808  </p>
  2809  
  2810  <pre>
  2811  func(float32) float32
  2812  </pre>
  2813  
  2814  <p>
  2815  As with <a href="#Selectors">selectors</a>, a reference to a non-interface method with a value receiver
  2816  using a pointer will automatically dereference that pointer: <code>pt.Mv</code> is equivalent to <code>(*pt).Mv</code>.
  2817  </p>
  2818  
  2819  <p>
  2820  As with <a href="#Calls">method calls</a>, a reference to a non-interface method with a pointer receiver
  2821  using an addressable value will automatically take the address of that value: <code>t.Mp</code> is equivalent to <code>(&amp;t).Mp</code>.
  2822  </p>
  2823  
  2824  <pre>
  2825  f := t.Mv; f(7)   // like t.Mv(7)
  2826  f := pt.Mp; f(7)  // like pt.Mp(7)
  2827  f := pt.Mv; f(7)  // like (*pt).Mv(7)
  2828  f := t.Mp; f(7)   // like (&amp;t).Mp(7)
  2829  f := makeT().Mp   // invalid: result of makeT() is not addressable
  2830  </pre>
  2831  
  2832  <p>
  2833  Although the examples above use non-interface types, it is also legal to create a method value
  2834  from a value of interface type.
  2835  </p>
  2836  
  2837  <pre>
  2838  var i interface { M(int) } = myVal
  2839  f := i.M; f(7)  // like i.M(7)
  2840  </pre>
  2841  
  2842  
  2843  <h3 id="Index_expressions">Index expressions</h3>
  2844  
  2845  <p>
  2846  A primary expression of the form
  2847  </p>
  2848  
  2849  <pre>
  2850  a[x]
  2851  </pre>
  2852  
  2853  <p>
  2854  denotes the element of the array, pointer to array, slice, string or map <code>a</code> indexed by <code>x</code>.
  2855  The value <code>x</code> is called the <i>index</i> or <i>map key</i>, respectively.
  2856  The following rules apply:
  2857  </p>
  2858  
  2859  <p>
  2860  If <code>a</code> is not a map:
  2861  </p>
  2862  <ul>
  2863  	<li>the index <code>x</code> must be of integer type or untyped;
  2864  	    it is <i>in range</i> if <code>0 &lt;= x &lt; len(a)</code>,
  2865  	    otherwise it is <i>out of range</i></li>
  2866  	<li>a <a href="#Constants">constant</a> index must be non-negative
  2867  	    and representable by a value of type <code>int</code>
  2868  </ul>
  2869  
  2870  <p>
  2871  For <code>a</code> of <a href="#Array_types">array type</a> <code>A</code>:
  2872  </p>
  2873  <ul>
  2874  	<li>a <a href="#Constants">constant</a> index must be in range</li>
  2875  	<li>if <code>x</code> is out of range at run time,
  2876  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2877  	<li><code>a[x]</code> is the array element at index <code>x</code> and the type of
  2878  	    <code>a[x]</code> is the element type of <code>A</code></li>
  2879  </ul>
  2880  
  2881  <p>
  2882  For <code>a</code> of <a href="#Pointer_types">pointer</a> to array type:
  2883  </p>
  2884  <ul>
  2885  	<li><code>a[x]</code> is shorthand for <code>(*a)[x]</code></li>
  2886  </ul>
  2887  
  2888  <p>
  2889  For <code>a</code> of <a href="#Slice_types">slice type</a> <code>S</code>:
  2890  </p>
  2891  <ul>
  2892  	<li>if <code>x</code> is out of range at run time,
  2893  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2894  	<li><code>a[x]</code> is the slice element at index <code>x</code> and the type of
  2895  	    <code>a[x]</code> is the element type of <code>S</code></li>
  2896  </ul>
  2897  
  2898  <p>
  2899  For <code>a</code> of <a href="#String_types">string type</a>:
  2900  </p>
  2901  <ul>
  2902  	<li>a <a href="#Constants">constant</a> index must be in range
  2903  	    if the string <code>a</code> is also constant</li>
  2904  	<li>if <code>x</code> is out of range at run time,
  2905  	    a <a href="#Run_time_panics">run-time panic</a> occurs</li>
  2906  	<li><code>a[x]</code> is the non-constant byte value at index <code>x</code> and the type of
  2907  	    <code>a[x]</code> is <code>byte</code></li>
  2908  	<li><code>a[x]</code> may not be assigned to</li>
  2909  </ul>
  2910  
  2911  <p>
  2912  For <code>a</code> of <a href="#Map_types">map type</a> <code>M</code>:
  2913  </p>
  2914  <ul>
  2915  	<li><code>x</code>'s type must be
  2916  	    <a href="#Assignability">assignable</a>
  2917  	    to the key type of <code>M</code></li>
  2918  	<li>if the map contains an entry with key <code>x</code>,
  2919  	    <code>a[x]</code> is the map value with key <code>x</code>
  2920  	    and the type of <code>a[x]</code> is the value type of <code>M</code></li>
  2921  	<li>if the map is <code>nil</code> or does not contain such an entry,
  2922  	    <code>a[x]</code> is the <a href="#The_zero_value">zero value</a>
  2923  	    for the value type of <code>M</code></li>
  2924  </ul>
  2925  
  2926  <p>
  2927  Otherwise <code>a[x]</code> is illegal.
  2928  </p>
  2929  
  2930  <p>
  2931  An index expression on a map <code>a</code> of type <code>map[K]V</code>
  2932  used in an <a href="#Assignments">assignment</a> or initialization of the special form
  2933  </p>
  2934  
  2935  <pre>
  2936  v, ok = a[x]
  2937  v, ok := a[x]
  2938  var v, ok = a[x]
  2939  var v, ok T = a[x]
  2940  </pre>
  2941  
  2942  <p>
  2943  yields an additional untyped boolean value. The value of <code>ok</code> is
  2944  <code>true</code> if the key <code>x</code> is present in the map, and
  2945  <code>false</code> otherwise.
  2946  </p>
  2947  
  2948  <p>
  2949  Assigning to an element of a <code>nil</code> map causes a
  2950  <a href="#Run_time_panics">run-time panic</a>.
  2951  </p>
  2952  
  2953  
  2954  <h3 id="Slice_expressions">Slice expressions</h3>
  2955  
  2956  <p>
  2957  Slice expressions construct a substring or slice from a string, array, pointer
  2958  to array, or slice. There are two variants: a simple form that specifies a low
  2959  and high bound, and a full form that also specifies a bound on the capacity.
  2960  </p>
  2961  
  2962  <h4>Simple slice expressions</h4>
  2963  
  2964  <p>
  2965  For a string, array, pointer to array, or slice <code>a</code>, the primary expression
  2966  </p>
  2967  
  2968  <pre>
  2969  a[low : high]
  2970  </pre>
  2971  
  2972  <p>
  2973  constructs a substring or slice. The <i>indices</i> <code>low</code> and
  2974  <code>high</code> select which elements of operand <code>a</code> appear
  2975  in the result. The result has indices starting at 0 and length equal to
  2976  <code>high</code>&nbsp;-&nbsp;<code>low</code>.
  2977  After slicing the array <code>a</code>
  2978  </p>
  2979  
  2980  <pre>
  2981  a := [5]int{1, 2, 3, 4, 5}
  2982  s := a[1:4]
  2983  </pre>
  2984  
  2985  <p>
  2986  the slice <code>s</code> has type <code>[]int</code>, length 3, capacity 4, and elements
  2987  </p>
  2988  
  2989  <pre>
  2990  s[0] == 2
  2991  s[1] == 3
  2992  s[2] == 4
  2993  </pre>
  2994  
  2995  <p>
  2996  For convenience, any of the indices may be omitted. A missing <code>low</code>
  2997  index defaults to zero; a missing <code>high</code> index defaults to the length of the
  2998  sliced operand:
  2999  </p>
  3000  
  3001  <pre>
  3002  a[2:]  // same as a[2 : len(a)]
  3003  a[:3]  // same as a[0 : 3]
  3004  a[:]   // same as a[0 : len(a)]
  3005  </pre>
  3006  
  3007  <p>
  3008  If <code>a</code> is a pointer to an array, <code>a[low : high]</code> is shorthand for
  3009  <code>(*a)[low : high]</code>.
  3010  </p>
  3011  
  3012  <p>
  3013  For arrays or strings, the indices are <i>in range</i> if
  3014  <code>0</code> &lt;= <code>low</code> &lt;= <code>high</code> &lt;= <code>len(a)</code>,
  3015  otherwise they are <i>out of range</i>.
  3016  For slices, the upper index bound is the slice capacity <code>cap(a)</code> rather than the length.
  3017  A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
  3018  <code>int</code>; for arrays or constant strings, constant indices must also be in range.
  3019  If both indices are constant, they must satisfy <code>low &lt;= high</code>.
  3020  If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3021  </p>
  3022  
  3023  <p>
  3024  Except for <a href="#Constants">untyped strings</a>, if the sliced operand is a string or slice,
  3025  the result of the slice operation is a non-constant value of the same type as the operand.
  3026  For untyped string operands the result is a non-constant value of type <code>string</code>.
  3027  If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>
  3028  and the result of the slice operation is a slice with the same element type as the array.
  3029  </p>
  3030  
  3031  <p>
  3032  If the sliced operand of a valid slice expression is a <code>nil</code> slice, the result
  3033  is a <code>nil</code> slice. Otherwise, the result shares its underlying array with the
  3034  operand.
  3035  </p>
  3036  
  3037  <h4>Full slice expressions</h4>
  3038  
  3039  <p>
  3040  For an array, pointer to array, or slice <code>a</code> (but not a string), the primary expression
  3041  </p>
  3042  
  3043  <pre>
  3044  a[low : high : max]
  3045  </pre>
  3046  
  3047  <p>
  3048  constructs a slice of the same type, and with the same length and elements as the simple slice
  3049  expression <code>a[low : high]</code>. Additionally, it controls the resulting slice's capacity
  3050  by setting it to <code>max - low</code>. Only the first index may be omitted; it defaults to 0.
  3051  After slicing the array <code>a</code>
  3052  </p>
  3053  
  3054  <pre>
  3055  a := [5]int{1, 2, 3, 4, 5}
  3056  t := a[1:3:5]
  3057  </pre>
  3058  
  3059  <p>
  3060  the slice <code>t</code> has type <code>[]int</code>, length 2, capacity 4, and elements
  3061  </p>
  3062  
  3063  <pre>
  3064  t[0] == 2
  3065  t[1] == 3
  3066  </pre>
  3067  
  3068  <p>
  3069  As for simple slice expressions, if <code>a</code> is a pointer to an array,
  3070  <code>a[low : high : max]</code> is shorthand for <code>(*a)[low : high : max]</code>.
  3071  If the sliced operand is an array, it must be <a href="#Address_operators">addressable</a>.
  3072  </p>
  3073  
  3074  <p>
  3075  The indices are <i>in range</i> if <code>0 &lt;= low &lt;= high &lt;= max &lt;= cap(a)</code>,
  3076  otherwise they are <i>out of range</i>.
  3077  A <a href="#Constants">constant</a> index must be non-negative and representable by a value of type
  3078  <code>int</code>; for arrays, constant indices must also be in range.
  3079  If multiple indices are constant, the constants that are present must be in range relative to each
  3080  other.
  3081  If the indices are out of range at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3082  </p>
  3083  
  3084  <h3 id="Type_assertions">Type assertions</h3>
  3085  
  3086  <p>
  3087  For an expression <code>x</code> of <a href="#Interface_types">interface type</a>
  3088  and a type <code>T</code>, the primary expression
  3089  </p>
  3090  
  3091  <pre>
  3092  x.(T)
  3093  </pre>
  3094  
  3095  <p>
  3096  asserts that <code>x</code> is not <code>nil</code>
  3097  and that the value stored in <code>x</code> is of type <code>T</code>.
  3098  The notation <code>x.(T)</code> is called a <i>type assertion</i>.
  3099  </p>
  3100  <p>
  3101  More precisely, if <code>T</code> is not an interface type, <code>x.(T)</code> asserts
  3102  that the dynamic type of <code>x</code> is <a href="#Type_identity">identical</a>
  3103  to the type <code>T</code>.
  3104  In this case, <code>T</code> must <a href="#Method_sets">implement</a> the (interface) type of <code>x</code>;
  3105  otherwise the type assertion is invalid since it is not possible for <code>x</code>
  3106  to store a value of type <code>T</code>.
  3107  If <code>T</code> is an interface type, <code>x.(T)</code> asserts that the dynamic type
  3108  of <code>x</code> implements the interface <code>T</code>.
  3109  </p>
  3110  <p>
  3111  If the type assertion holds, the value of the expression is the value
  3112  stored in <code>x</code> and its type is <code>T</code>. If the type assertion is false,
  3113  a <a href="#Run_time_panics">run-time panic</a> occurs.
  3114  In other words, even though the dynamic type of <code>x</code>
  3115  is known only at run time, the type of <code>x.(T)</code> is
  3116  known to be <code>T</code> in a correct program.
  3117  </p>
  3118  
  3119  <pre>
  3120  var x interface{} = 7          // x has dynamic type int and value 7
  3121  i := x.(int)                   // i has type int and value 7
  3122  
  3123  type I interface { m() }
  3124  
  3125  func f(y I) {
  3126  	s := y.(string)        // illegal: string does not implement I (missing method m)
  3127  	r := y.(io.Reader)     // r has type io.Reader and the dynamic type of y must implement both I and io.Reader
  3128  	…
  3129  }
  3130  </pre>
  3131  
  3132  <p>
  3133  A type assertion used in an <a href="#Assignments">assignment</a> or initialization of the special form
  3134  </p>
  3135  
  3136  <pre>
  3137  v, ok = x.(T)
  3138  v, ok := x.(T)
  3139  var v, ok = x.(T)
  3140  var v, ok T1 = x.(T)
  3141  </pre>
  3142  
  3143  <p>
  3144  yields an additional untyped boolean value. The value of <code>ok</code> is <code>true</code>
  3145  if the assertion holds. Otherwise it is <code>false</code> and the value of <code>v</code> is
  3146  the <a href="#The_zero_value">zero value</a> for type <code>T</code>.
  3147  No run-time panic occurs in this case.
  3148  </p>
  3149  
  3150  
  3151  <h3 id="Calls">Calls</h3>
  3152  
  3153  <p>
  3154  Given an expression <code>f</code> of function type
  3155  <code>F</code>,
  3156  </p>
  3157  
  3158  <pre>
  3159  f(a1, a2, … an)
  3160  </pre>
  3161  
  3162  <p>
  3163  calls <code>f</code> with arguments <code>a1, a2, … an</code>.
  3164  Except for one special case, arguments must be single-valued expressions
  3165  <a href="#Assignability">assignable</a> to the parameter types of
  3166  <code>F</code> and are evaluated before the function is called.
  3167  The type of the expression is the result type
  3168  of <code>F</code>.
  3169  A method invocation is similar but the method itself
  3170  is specified as a selector upon a value of the receiver type for
  3171  the method.
  3172  </p>
  3173  
  3174  <pre>
  3175  math.Atan2(x, y)  // function call
  3176  var pt *Point
  3177  pt.Scale(3.5)     // method call with receiver pt
  3178  </pre>
  3179  
  3180  <p>
  3181  In a function call, the function value and arguments are evaluated in
  3182  <a href="#Order_of_evaluation">the usual order</a>.
  3183  After they are evaluated, the parameters of the call are passed by value to the function
  3184  and the called function begins execution.
  3185  The return parameters of the function are passed by value
  3186  back to the calling function when the function returns.
  3187  </p>
  3188  
  3189  <p>
  3190  Calling a <code>nil</code> function value
  3191  causes a <a href="#Run_time_panics">run-time panic</a>.
  3192  </p>
  3193  
  3194  <p>
  3195  As a special case, if the return values of a function or method
  3196  <code>g</code> are equal in number and individually
  3197  assignable to the parameters of another function or method
  3198  <code>f</code>, then the call <code>f(g(<i>parameters_of_g</i>))</code>
  3199  will invoke <code>f</code> after binding the return values of
  3200  <code>g</code> to the parameters of <code>f</code> in order.  The call
  3201  of <code>f</code> must contain no parameters other than the call of <code>g</code>,
  3202  and <code>g</code> must have at least one return value.
  3203  If <code>f</code> has a final <code>...</code> parameter, it is
  3204  assigned the return values of <code>g</code> that remain after
  3205  assignment of regular parameters.
  3206  </p>
  3207  
  3208  <pre>
  3209  func Split(s string, pos int) (string, string) {
  3210  	return s[0:pos], s[pos:]
  3211  }
  3212  
  3213  func Join(s, t string) string {
  3214  	return s + t
  3215  }
  3216  
  3217  if Join(Split(value, len(value)/2)) != value {
  3218  	log.Panic("test fails")
  3219  }
  3220  </pre>
  3221  
  3222  <p>
  3223  A method call <code>x.m()</code> is valid if the <a href="#Method_sets">method set</a>
  3224  of (the type of) <code>x</code> contains <code>m</code> and the
  3225  argument list can be assigned to the parameter list of <code>m</code>.
  3226  If <code>x</code> is <a href="#Address_operators">addressable</a> and <code>&amp;x</code>'s method
  3227  set contains <code>m</code>, <code>x.m()</code> is shorthand
  3228  for <code>(&amp;x).m()</code>:
  3229  </p>
  3230  
  3231  <pre>
  3232  var p Point
  3233  p.Scale(3.5)
  3234  </pre>
  3235  
  3236  <p>
  3237  There is no distinct method type and there are no method literals.
  3238  </p>
  3239  
  3240  <h3 id="Passing_arguments_to_..._parameters">Passing arguments to <code>...</code> parameters</h3>
  3241  
  3242  <p>
  3243  If <code>f</code> is <a href="#Function_types">variadic</a> with a final
  3244  parameter <code>p</code> of type <code>...T</code>, then within <code>f</code>
  3245  the type of <code>p</code> is equivalent to type <code>[]T</code>.
  3246  If <code>f</code> is invoked with no actual arguments for <code>p</code>,
  3247  the value passed to <code>p</code> is <code>nil</code>.
  3248  Otherwise, the value passed is a new slice
  3249  of type <code>[]T</code> with a new underlying array whose successive elements
  3250  are the actual arguments, which all must be <a href="#Assignability">assignable</a>
  3251  to <code>T</code>. The length and capacity of the slice is therefore
  3252  the number of arguments bound to <code>p</code> and may differ for each
  3253  call site.
  3254  </p>
  3255  
  3256  <p>
  3257  Given the function and calls
  3258  </p>
  3259  <pre>
  3260  func Greeting(prefix string, who ...string)
  3261  Greeting("nobody")
  3262  Greeting("hello:", "Joe", "Anna", "Eileen")
  3263  </pre>
  3264  
  3265  <p>
  3266  within <code>Greeting</code>, <code>who</code> will have the value
  3267  <code>nil</code> in the first call, and
  3268  <code>[]string{"Joe", "Anna", "Eileen"}</code> in the second.
  3269  </p>
  3270  
  3271  <p>
  3272  If the final argument is assignable to a slice type <code>[]T</code>, it may be
  3273  passed unchanged as the value for a <code>...T</code> parameter if the argument
  3274  is followed by <code>...</code>. In this case no new slice is created.
  3275  </p>
  3276  
  3277  <p>
  3278  Given the slice <code>s</code> and call
  3279  </p>
  3280  
  3281  <pre>
  3282  s := []string{"James", "Jasmine"}
  3283  Greeting("goodbye:", s...)
  3284  </pre>
  3285  
  3286  <p>
  3287  within <code>Greeting</code>, <code>who</code> will have the same value as <code>s</code>
  3288  with the same underlying array.
  3289  </p>
  3290  
  3291  
  3292  <h3 id="Operators">Operators</h3>
  3293  
  3294  <p>
  3295  Operators combine operands into expressions.
  3296  </p>
  3297  
  3298  <pre class="ebnf">
  3299  Expression = UnaryExpr | Expression binary_op Expression .
  3300  UnaryExpr  = PrimaryExpr | unary_op UnaryExpr .
  3301  
  3302  binary_op  = "||" | "&amp;&amp;" | rel_op | add_op | mul_op .
  3303  rel_op     = "==" | "!=" | "&lt;" | "&lt;=" | ">" | ">=" .
  3304  add_op     = "+" | "-" | "|" | "^" .
  3305  mul_op     = "*" | "/" | "%" | "&lt;&lt;" | "&gt;&gt;" | "&amp;" | "&amp;^" .
  3306  
  3307  unary_op   = "+" | "-" | "!" | "^" | "*" | "&amp;" | "&lt;-" .
  3308  </pre>
  3309  
  3310  <p>
  3311  Comparisons are discussed <a href="#Comparison_operators">elsewhere</a>.
  3312  For other binary operators, the operand types must be <a href="#Type_identity">identical</a>
  3313  unless the operation involves shifts or untyped <a href="#Constants">constants</a>.
  3314  For operations involving constants only, see the section on
  3315  <a href="#Constant_expressions">constant expressions</a>.
  3316  </p>
  3317  
  3318  <p>
  3319  Except for shift operations, if one operand is an untyped <a href="#Constants">constant</a>
  3320  and the other operand is not, the constant is <a href="#Conversions">converted</a>
  3321  to the type of the other operand.
  3322  </p>
  3323  
  3324  <p>
  3325  The right operand in a shift expression must have unsigned integer type
  3326  or be an untyped constant that can be converted to unsigned integer type.
  3327  If the left operand of a non-constant shift expression is an untyped constant,
  3328  it is first converted to the type it would assume if the shift expression were
  3329  replaced by its left operand alone.
  3330  </p>
  3331  
  3332  <pre>
  3333  var s uint = 33
  3334  var i = 1&lt;&lt;s           // 1 has type int
  3335  var j int32 = 1&lt;&lt;s     // 1 has type int32; j == 0
  3336  var k = uint64(1&lt;&lt;s)   // 1 has type uint64; k == 1&lt;&lt;33
  3337  var m int = 1.0&lt;&lt;s     // 1.0 has type int; m == 0 if ints are 32bits in size
  3338  var n = 1.0&lt;&lt;s == j    // 1.0 has type int32; n == true
  3339  var o = 1&lt;&lt;s == 2&lt;&lt;s   // 1 and 2 have type int; o == true if ints are 32bits in size
  3340  var p = 1&lt;&lt;s == 1&lt;&lt;33  // illegal if ints are 32bits in size: 1 has type int, but 1&lt;&lt;33 overflows int
  3341  var u = 1.0&lt;&lt;s         // illegal: 1.0 has type float64, cannot shift
  3342  var u1 = 1.0&lt;&lt;s != 0   // illegal: 1.0 has type float64, cannot shift
  3343  var u2 = 1&lt;&lt;s != 1.0   // illegal: 1 has type float64, cannot shift
  3344  var v float32 = 1&lt;&lt;s   // illegal: 1 has type float32, cannot shift
  3345  var w int64 = 1.0&lt;&lt;33  // 1.0&lt;&lt;33 is a constant shift expression
  3346  </pre>
  3347  
  3348  
  3349  <h4 id="Operator_precedence">Operator precedence</h4>
  3350  <p>
  3351  Unary operators have the highest precedence.
  3352  As the  <code>++</code> and <code>--</code> operators form
  3353  statements, not expressions, they fall
  3354  outside the operator hierarchy.
  3355  As a consequence, statement <code>*p++</code> is the same as <code>(*p)++</code>.
  3356  <p>
  3357  There are five precedence levels for binary operators.
  3358  Multiplication operators bind strongest, followed by addition
  3359  operators, comparison operators, <code>&amp;&amp;</code> (logical AND),
  3360  and finally <code>||</code> (logical OR):
  3361  </p>
  3362  
  3363  <pre class="grammar">
  3364  Precedence    Operator
  3365      5             *  /  %  &lt;&lt;  &gt;&gt;  &amp;  &amp;^
  3366      4             +  -  |  ^
  3367      3             ==  !=  &lt;  &lt;=  &gt;  &gt;=
  3368      2             &amp;&amp;
  3369      1             ||
  3370  </pre>
  3371  
  3372  <p>
  3373  Binary operators of the same precedence associate from left to right.
  3374  For instance, <code>x / y * z</code> is the same as <code>(x / y) * z</code>.
  3375  </p>
  3376  
  3377  <pre>
  3378  +x
  3379  23 + 3*x[i]
  3380  x &lt;= f()
  3381  ^a &gt;&gt; b
  3382  f() || g()
  3383  x == y+1 &amp;&amp; &lt;-chanPtr &gt; 0
  3384  </pre>
  3385  
  3386  
  3387  <h3 id="Arithmetic_operators">Arithmetic operators</h3>
  3388  <p>
  3389  Arithmetic operators apply to numeric values and yield a result of the same
  3390  type as the first operand. The four standard arithmetic operators (<code>+</code>,
  3391  <code>-</code>, <code>*</code>, <code>/</code>) apply to integer,
  3392  floating-point, and complex types; <code>+</code> also applies to strings.
  3393  The bitwise logical and shift operators apply to integers only.
  3394  </p>
  3395  
  3396  <pre class="grammar">
  3397  +    sum                    integers, floats, complex values, strings
  3398  -    difference             integers, floats, complex values
  3399  *    product                integers, floats, complex values
  3400  /    quotient               integers, floats, complex values
  3401  %    remainder              integers
  3402  
  3403  &amp;    bitwise AND            integers
  3404  |    bitwise OR             integers
  3405  ^    bitwise XOR            integers
  3406  &amp;^   bit clear (AND NOT)    integers
  3407  
  3408  &lt;&lt;   left shift             integer &lt;&lt; unsigned integer
  3409  &gt;&gt;   right shift            integer &gt;&gt; unsigned integer
  3410  </pre>
  3411  
  3412  
  3413  <h4 id="Integer_operators">Integer operators</h4>
  3414  
  3415  <p>
  3416  For two integer values <code>x</code> and <code>y</code>, the integer quotient
  3417  <code>q = x / y</code> and remainder <code>r = x % y</code> satisfy the following
  3418  relationships:
  3419  </p>
  3420  
  3421  <pre>
  3422  x = q*y + r  and  |r| &lt; |y|
  3423  </pre>
  3424  
  3425  <p>
  3426  with <code>x / y</code> truncated towards zero
  3427  (<a href="http://en.wikipedia.org/wiki/Modulo_operation">"truncated division"</a>).
  3428  </p>
  3429  
  3430  <pre>
  3431   x     y     x / y     x % y
  3432   5     3       1         2
  3433  -5     3      -1        -2
  3434   5    -3      -1         2
  3435  -5    -3       1        -2
  3436  </pre>
  3437  
  3438  <p>
  3439  As an exception to this rule, if the dividend <code>x</code> is the most
  3440  negative value for the int type of <code>x</code>, the quotient
  3441  <code>q = x / -1</code> is equal to <code>x</code> (and <code>r = 0</code>).
  3442  </p>
  3443  
  3444  <pre>
  3445  			 x, q
  3446  int8                     -128
  3447  int16                  -32768
  3448  int32             -2147483648
  3449  int64    -9223372036854775808
  3450  </pre>
  3451  
  3452  <p>
  3453  If the divisor is a <a href="#Constants">constant</a>, it must not be zero.
  3454  If the divisor is zero at run time, a <a href="#Run_time_panics">run-time panic</a> occurs.
  3455  If the dividend is non-negative and the divisor is a constant power of 2,
  3456  the division may be replaced by a right shift, and computing the remainder may
  3457  be replaced by a bitwise AND operation:
  3458  </p>
  3459  
  3460  <pre>
  3461   x     x / 4     x % 4     x &gt;&gt; 2     x &amp; 3
  3462   11      2         3         2          3
  3463  -11     -2        -3        -3          1
  3464  </pre>
  3465  
  3466  <p>
  3467  The shift operators shift the left operand by the shift count specified by the
  3468  right operand. They implement arithmetic shifts if the left operand is a signed
  3469  integer and logical shifts if it is an unsigned integer.
  3470  There is no upper limit on the shift count. Shifts behave
  3471  as if the left operand is shifted <code>n</code> times by 1 for a shift
  3472  count of <code>n</code>.
  3473  As a result, <code>x &lt;&lt; 1</code> is the same as <code>x*2</code>
  3474  and <code>x &gt;&gt; 1</code> is the same as
  3475  <code>x/2</code> but truncated towards negative infinity.
  3476  </p>
  3477  
  3478  <p>
  3479  For integer operands, the unary operators
  3480  <code>+</code>, <code>-</code>, and <code>^</code> are defined as
  3481  follows:
  3482  </p>
  3483  
  3484  <pre class="grammar">
  3485  +x                          is 0 + x
  3486  -x    negation              is 0 - x
  3487  ^x    bitwise complement    is m ^ x  with m = "all bits set to 1" for unsigned x
  3488                                        and  m = -1 for signed x
  3489  </pre>
  3490  
  3491  
  3492  <h4 id="Integer_overflow">Integer overflow</h4>
  3493  
  3494  <p>
  3495  For unsigned integer values, the operations <code>+</code>,
  3496  <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> are
  3497  computed modulo 2<sup><i>n</i></sup>, where <i>n</i> is the bit width of
  3498  the <a href="#Numeric_types">unsigned integer</a>'s type.
  3499  Loosely speaking, these unsigned integer operations
  3500  discard high bits upon overflow, and programs may rely on ``wrap around''.
  3501  </p>
  3502  <p>
  3503  For signed integers, the operations <code>+</code>,
  3504  <code>-</code>, <code>*</code>, and <code>&lt;&lt;</code> may legally
  3505  overflow and the resulting value exists and is deterministically defined
  3506  by the signed integer representation, the operation, and its operands.
  3507  No exception is raised as a result of overflow. A
  3508  compiler may not optimize code under the assumption that overflow does
  3509  not occur. For instance, it may not assume that <code>x &lt; x + 1</code> is always true.
  3510  </p>
  3511  
  3512  
  3513  <h4 id="Floating_point_operators">Floating-point operators</h4>
  3514  
  3515  <p>
  3516  For floating-point and complex numbers,
  3517  <code>+x</code> is the same as <code>x</code>,
  3518  while <code>-x</code> is the negation of <code>x</code>.
  3519  The result of a floating-point or complex division by zero is not specified beyond the
  3520  IEEE-754 standard; whether a <a href="#Run_time_panics">run-time panic</a>
  3521  occurs is implementation-specific.
  3522  </p>
  3523  
  3524  
  3525  <h4 id="String_concatenation">String concatenation</h4>
  3526  
  3527  <p>
  3528  Strings can be concatenated using the <code>+</code> operator
  3529  or the <code>+=</code> assignment operator:
  3530  </p>
  3531  
  3532  <pre>
  3533  s := "hi" + string(c)
  3534  s += " and good bye"
  3535  </pre>
  3536  
  3537  <p>
  3538  String addition creates a new string by concatenating the operands.
  3539  </p>
  3540  
  3541  
  3542  <h3 id="Comparison_operators">Comparison operators</h3>
  3543  
  3544  <p>
  3545  Comparison operators compare two operands and yield an untyped boolean value.
  3546  </p>
  3547  
  3548  <pre class="grammar">
  3549  ==    equal
  3550  !=    not equal
  3551  &lt;     less
  3552  &lt;=    less or equal
  3553  &gt;     greater
  3554  &gt;=    greater or equal
  3555  </pre>
  3556  
  3557  <p>
  3558  In any comparison, the first operand
  3559  must be <a href="#Assignability">assignable</a>
  3560  to the type of the second operand, or vice versa.
  3561  </p>
  3562  <p>
  3563  The equality operators <code>==</code> and <code>!=</code> apply
  3564  to operands that are <i>comparable</i>.
  3565  The ordering operators <code>&lt;</code>, <code>&lt;=</code>, <code>&gt;</code>, and <code>&gt;=</code>
  3566  apply to operands that are <i>ordered</i>.
  3567  These terms and the result of the comparisons are defined as follows:
  3568  </p>
  3569  
  3570  <ul>
  3571  	<li>
  3572  	Boolean values are comparable.
  3573  	Two boolean values are equal if they are either both
  3574  	<code>true</code> or both <code>false</code>.
  3575  	</li>
  3576  
  3577  	<li>
  3578  	Integer values are comparable and ordered, in the usual way.
  3579  	</li>
  3580  
  3581  	<li>
  3582  	Floating point values are comparable and ordered,
  3583  	as defined by the IEEE-754 standard.
  3584  	</li>
  3585  
  3586  	<li>
  3587  	Complex values are comparable.
  3588  	Two complex values <code>u</code> and <code>v</code> are
  3589  	equal if both <code>real(u) == real(v)</code> and
  3590  	<code>imag(u) == imag(v)</code>.
  3591  	</li>
  3592  
  3593  	<li>
  3594  	String values are comparable and ordered, lexically byte-wise.
  3595  	</li>
  3596  
  3597  	<li>
  3598  	Pointer values are comparable.
  3599  	Two pointer values are equal if they point to the same variable or if both have value <code>nil</code>.
  3600  	Pointers to distinct <a href="#Size_and_alignment_guarantees">zero-size</a> variables may or may not be equal.
  3601  	</li>
  3602  
  3603  	<li>
  3604  	Channel values are comparable.
  3605  	Two channel values are equal if they were created by the same call to
  3606  	<a href="#Making_slices_maps_and_channels"><code>make</code></a>
  3607  	or if both have value <code>nil</code>.
  3608  	</li>
  3609  
  3610  	<li>
  3611  	Interface values are comparable.
  3612  	Two interface values are equal if they have <a href="#Type_identity">identical</a> dynamic types
  3613  	and equal dynamic values or if both have value <code>nil</code>.
  3614  	</li>
  3615  
  3616  	<li>
  3617  	A value <code>x</code> of non-interface type <code>X</code> and
  3618  	a value <code>t</code> of interface type <code>T</code> are comparable when values
  3619  	of type <code>X</code> are comparable and
  3620  	<code>X</code> implements <code>T</code>.
  3621  	They are equal if <code>t</code>'s dynamic type is identical to <code>X</code>
  3622  	and <code>t</code>'s dynamic value is equal to <code>x</code>.
  3623  	</li>
  3624  
  3625  	<li>
  3626  	Struct values are comparable if all their fields are comparable.
  3627  	Two struct values are equal if their corresponding
  3628  	non-<a href="#Blank_identifier">blank</a> fields are equal.
  3629  	</li>
  3630  
  3631  	<li>
  3632  	Array values are comparable if values of the array element type are comparable.
  3633  	Two array values are equal if their corresponding elements are equal.
  3634  	</li>
  3635  </ul>
  3636  
  3637  <p>
  3638  A comparison of two interface values with identical dynamic types
  3639  causes a <a href="#Run_time_panics">run-time panic</a> if values
  3640  of that type are not comparable.  This behavior applies not only to direct interface
  3641  value comparisons but also when comparing arrays of interface values
  3642  or structs with interface-valued fields.
  3643  </p>
  3644  
  3645  <p>
  3646  Slice, map, and function values are not comparable.
  3647  However, as a special case, a slice, map, or function value may
  3648  be compared to the predeclared identifier <code>nil</code>.
  3649  Comparison of pointer, channel, and interface values to <code>nil</code>
  3650  is also allowed and follows from the general rules above.
  3651  </p>
  3652  
  3653  <pre>
  3654  const c = 3 &lt; 4            // c is the untyped boolean constant true
  3655  
  3656  type MyBool bool
  3657  var x, y int
  3658  var (
  3659  	// The result of a comparison is an untyped boolean.
  3660  	// The usual assignment rules apply.
  3661  	b3        = x == y // b3 has type bool
  3662  	b4 bool   = x == y // b4 has type bool
  3663  	b5 MyBool = x == y // b5 has type MyBool
  3664  )
  3665  </pre>
  3666  
  3667  <h3 id="Logical_operators">Logical operators</h3>
  3668  
  3669  <p>
  3670  Logical operators apply to <a href="#Boolean_types">boolean</a> values
  3671  and yield a result of the same type as the operands.
  3672  The right operand is evaluated conditionally.
  3673  </p>
  3674  
  3675  <pre class="grammar">
  3676  &amp;&amp;    conditional AND    p &amp;&amp; q  is  "if p then q else false"
  3677  ||    conditional OR     p || q  is  "if p then true else q"
  3678  !     NOT                !p      is  "not p"
  3679  </pre>
  3680  
  3681  
  3682  <h3 id="Address_operators">Address operators</h3>
  3683  
  3684  <p>
  3685  For an operand <code>x</code> of type <code>T</code>, the address operation
  3686  <code>&amp;x</code> generates a pointer of type <code>*T</code> to <code>x</code>.
  3687  The operand must be <i>addressable</i>,
  3688  that is, either a variable, pointer indirection, or slice indexing
  3689  operation; or a field selector of an addressable struct operand;
  3690  or an array indexing operation of an addressable array.
  3691  As an exception to the addressability requirement, <code>x</code> may also be a
  3692  (possibly parenthesized)
  3693  <a href="#Composite_literals">composite literal</a>.
  3694  If the evaluation of <code>x</code> would cause a <a href="#Run_time_panics">run-time panic</a>,
  3695  then the evaluation of <code>&amp;x</code> does too.
  3696  </p>
  3697  
  3698  <p>
  3699  For an operand <code>x</code> of pointer type <code>*T</code>, the pointer
  3700  indirection <code>*x</code> denotes the <a href="#Variables">variable</a> of type <code>T</code> pointed
  3701  to by <code>x</code>.
  3702  If <code>x</code> is <code>nil</code>, an attempt to evaluate <code>*x</code>
  3703  will cause a <a href="#Run_time_panics">run-time panic</a>.
  3704  </p>
  3705  
  3706  <pre>
  3707  &amp;x
  3708  &amp;a[f(2)]
  3709  &amp;Point{2, 3}
  3710  *p
  3711  *pf(x)
  3712  
  3713  var x *int = nil
  3714  *x   // causes a run-time panic
  3715  &amp;*x  // causes a run-time panic
  3716  </pre>
  3717  
  3718  
  3719  <h3 id="Receive_operator">Receive operator</h3>
  3720  
  3721  <p>
  3722  For an operand <code>ch</code> of <a href="#Channel_types">channel type</a>,
  3723  the value of the receive operation <code>&lt;-ch</code> is the value received
  3724  from the channel <code>ch</code>. The channel direction must permit receive operations,
  3725  and the type of the receive operation is the element type of the channel.
  3726  The expression blocks until a value is available.
  3727  Receiving from a <code>nil</code> channel blocks forever.
  3728  A receive operation on a <a href="#Close">closed</a> channel can always proceed
  3729  immediately, yielding the element type's <a href="#The_zero_value">zero value</a>
  3730  after any previously sent values have been received.
  3731  </p>
  3732  
  3733  <pre>
  3734  v1 := &lt;-ch
  3735  v2 = &lt;-ch
  3736  f(&lt;-ch)
  3737  &lt;-strobe  // wait until clock pulse and discard received value
  3738  </pre>
  3739  
  3740  <p>
  3741  A receive expression used in an <a href="#Assignments">assignment</a> or initialization of the special form
  3742  </p>
  3743  
  3744  <pre>
  3745  x, ok = &lt;-ch
  3746  x, ok := &lt;-ch
  3747  var x, ok = &lt;-ch
  3748  var x, ok T = &lt;-ch
  3749  </pre>
  3750  
  3751  <p>
  3752  yields an additional untyped boolean result reporting whether the
  3753  communication succeeded. The value of <code>ok</code> is <code>true</code>
  3754  if the value received was delivered by a successful send operation to the
  3755  channel, or <code>false</code> if it is a zero value generated because the
  3756  channel is closed and empty.
  3757  </p>
  3758  
  3759  
  3760  <h3 id="Conversions">Conversions</h3>
  3761  
  3762  <p>
  3763  Conversions are expressions of the form <code>T(x)</code>
  3764  where <code>T</code> is a type and <code>x</code> is an expression
  3765  that can be converted to type <code>T</code>.
  3766  </p>
  3767  
  3768  <pre class="ebnf">
  3769  Conversion = Type "(" Expression [ "," ] ")" .
  3770  </pre>
  3771  
  3772  <p>
  3773  If the type starts with the operator <code>*</code> or <code>&lt;-</code>,
  3774  or if the type starts with the keyword <code>func</code>
  3775  and has no result list, it must be parenthesized when
  3776  necessary to avoid ambiguity:
  3777  </p>
  3778  
  3779  <pre>
  3780  *Point(p)        // same as *(Point(p))
  3781  (*Point)(p)      // p is converted to *Point
  3782  &lt;-chan int(c)    // same as &lt;-(chan int(c))
  3783  (&lt;-chan int)(c)  // c is converted to &lt;-chan int
  3784  func()(x)        // function signature func() x
  3785  (func())(x)      // x is converted to func()
  3786  (func() int)(x)  // x is converted to func() int
  3787  func() int(x)    // x is converted to func() int (unambiguous)
  3788  </pre>
  3789  
  3790  <p>
  3791  A <a href="#Constants">constant</a> value <code>x</code> can be converted to
  3792  type <code>T</code> in any of these cases:
  3793  </p>
  3794  
  3795  <ul>
  3796  	<li>
  3797  	<code>x</code> is representable by a value of type <code>T</code>.
  3798  	</li>
  3799  	<li>
  3800  	<code>x</code> is a floating-point constant,
  3801  	<code>T</code> is a floating-point type,
  3802  	and <code>x</code> is representable by a value
  3803  	of type <code>T</code> after rounding using
  3804  	IEEE 754 round-to-even rules, but with an IEEE <code>-0.0</code>
  3805  	further rounded to an unsigned <code>0.0</code>.
  3806  	The constant <code>T(x)</code> is the rounded value.
  3807  	</li>
  3808  	<li>
  3809  	<code>x</code> is an integer constant and <code>T</code> is a
  3810  	<a href="#String_types">string type</a>.
  3811  	The <a href="#Conversions_to_and_from_a_string_type">same rule</a>
  3812  	as for non-constant <code>x</code> applies in this case.
  3813  	</li>
  3814  </ul>
  3815  
  3816  <p>
  3817  Converting a constant yields a typed constant as result.
  3818  </p>
  3819  
  3820  <pre>
  3821  uint(iota)               // iota value of type uint
  3822  float32(2.718281828)     // 2.718281828 of type float32
  3823  complex128(1)            // 1.0 + 0.0i of type complex128
  3824  float32(0.49999999)      // 0.5 of type float32
  3825  float64(-1e-1000)        // 0.0 of type float64
  3826  string('x')              // "x" of type string
  3827  string(0x266c)           // "♬" of type string
  3828  MyString("foo" + "bar")  // "foobar" of type MyString
  3829  string([]byte{'a'})      // not a constant: []byte{'a'} is not a constant
  3830  (*int)(nil)              // not a constant: nil is not a constant, *int is not a boolean, numeric, or string type
  3831  int(1.2)                 // illegal: 1.2 cannot be represented as an int
  3832  string(65.0)             // illegal: 65.0 is not an integer constant
  3833  </pre>
  3834  
  3835  <p>
  3836  A non-constant value <code>x</code> can be converted to type <code>T</code>
  3837  in any of these cases:
  3838  </p>
  3839  
  3840  <ul>
  3841  	<li>
  3842  	<code>x</code> is <a href="#Assignability">assignable</a>
  3843  	to <code>T</code>.
  3844  	</li>
  3845  	<li>
  3846  	ignoring struct tags (see below),
  3847  	<code>x</code>'s type and <code>T</code> have <a href="#Type_identity">identical</a>
  3848  	<a href="#Types">underlying types</a>.
  3849  	</li>
  3850  	<li>
  3851  	ignoring struct tags (see below),
  3852  	<code>x</code>'s type and <code>T</code> are unnamed pointer types
  3853  	and their pointer base types have identical underlying types.
  3854  	</li>
  3855  	<li>
  3856  	<code>x</code>'s type and <code>T</code> are both integer or floating
  3857  	point types.
  3858  	</li>
  3859  	<li>
  3860  	<code>x</code>'s type and <code>T</code> are both complex types.
  3861  	</li>
  3862  	<li>
  3863  	<code>x</code> is an integer or a slice of bytes or runes
  3864  	and <code>T</code> is a string type.
  3865  	</li>
  3866  	<li>
  3867  	<code>x</code> is a string and <code>T</code> is a slice of bytes or runes.
  3868  	</li>
  3869  </ul>
  3870  
  3871  <p>
  3872  <a href="#Struct_types">Struct tags</a> are ignored when comparing struct types
  3873  for identity for the purpose of conversion:
  3874  </p>
  3875  
  3876  <pre>
  3877  type Person struct {
  3878  	Name    string
  3879  	Address *struct {
  3880  		Street string
  3881  		City   string
  3882  	}
  3883  }
  3884  
  3885  var data *struct {
  3886  	Name    string `json:"name"`
  3887  	Address *struct {
  3888  		Street string `json:"street"`
  3889  		City   string `json:"city"`
  3890  	} `json:"address"`
  3891  }
  3892  
  3893  var person = (*Person)(data)  // ignoring tags, the underlying types are identical
  3894  </pre>
  3895  
  3896  <p>
  3897  Specific rules apply to (non-constant) conversions between numeric types or
  3898  to and from a string type.
  3899  These conversions may change the representation of <code>x</code>
  3900  and incur a run-time cost.
  3901  All other conversions only change the type but not the representation
  3902  of <code>x</code>.
  3903  </p>
  3904  
  3905  <p>
  3906  There is no linguistic mechanism to convert between pointers and integers.
  3907  The package <a href="#Package_unsafe"><code>unsafe</code></a>
  3908  implements this functionality under
  3909  restricted circumstances.
  3910  </p>
  3911  
  3912  <h4>Conversions between numeric types</h4>
  3913  
  3914  <p>
  3915  For the conversion of non-constant numeric values, the following rules apply:
  3916  </p>
  3917  
  3918  <ol>
  3919  <li>
  3920  When converting between integer types, if the value is a signed integer, it is
  3921  sign extended to implicit infinite precision; otherwise it is zero extended.
  3922  It is then truncated to fit in the result type's size.
  3923  For example, if <code>v := uint16(0x10F0)</code>, then <code>uint32(int8(v)) == 0xFFFFFFF0</code>.
  3924  The conversion always yields a valid value; there is no indication of overflow.
  3925  </li>
  3926  <li>
  3927  When converting a floating-point number to an integer, the fraction is discarded
  3928  (truncation towards zero).
  3929  </li>
  3930  <li>
  3931  When converting an integer or floating-point number to a floating-point type,
  3932  or a complex number to another complex type, the result value is rounded
  3933  to the precision specified by the destination type.
  3934  For instance, the value of a variable <code>x</code> of type <code>float32</code>
  3935  may be stored using additional precision beyond that of an IEEE-754 32-bit number,
  3936  but float32(x) represents the result of rounding <code>x</code>'s value to
  3937  32-bit precision. Similarly, <code>x + 0.1</code> may use more than 32 bits
  3938  of precision, but <code>float32(x + 0.1)</code> does not.
  3939  </li>
  3940  </ol>
  3941  
  3942  <p>
  3943  In all non-constant conversions involving floating-point or complex values,
  3944  if the result type cannot represent the value the conversion
  3945  succeeds but the result value is implementation-dependent.
  3946  </p>
  3947  
  3948  <h4 id="Conversions_to_and_from_a_string_type">Conversions to and from a string type</h4>
  3949  
  3950  <ol>
  3951  <li>
  3952  Converting a signed or unsigned integer value to a string type yields a
  3953  string containing the UTF-8 representation of the integer. Values outside
  3954  the range of valid Unicode code points are converted to <code>"\uFFFD"</code>.
  3955  
  3956  <pre>
  3957  string('a')       // "a"
  3958  string(-1)        // "\ufffd" == "\xef\xbf\xbd"
  3959  string(0xf8)      // "\u00f8" == "ø" == "\xc3\xb8"
  3960  type MyString string
  3961  MyString(0x65e5)  // "\u65e5" == "日" == "\xe6\x97\xa5"
  3962  </pre>
  3963  </li>
  3964  
  3965  <li>
  3966  Converting a slice of bytes to a string type yields
  3967  a string whose successive bytes are the elements of the slice.
  3968  
  3969  <pre>
  3970  string([]byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'})   // "hellø"
  3971  string([]byte{})                                     // ""
  3972  string([]byte(nil))                                  // ""
  3973  
  3974  type MyBytes []byte
  3975  string(MyBytes{'h', 'e', 'l', 'l', '\xc3', '\xb8'})  // "hellø"
  3976  </pre>
  3977  </li>
  3978  
  3979  <li>
  3980  Converting a slice of runes to a string type yields
  3981  a string that is the concatenation of the individual rune values
  3982  converted to strings.
  3983  
  3984  <pre>
  3985  string([]rune{0x767d, 0x9d6c, 0x7fd4})   // "\u767d\u9d6c\u7fd4" == "白鵬翔"
  3986  string([]rune{})                         // ""
  3987  string([]rune(nil))                      // ""
  3988  
  3989  type MyRunes []rune
  3990  string(MyRunes{0x767d, 0x9d6c, 0x7fd4})  // "\u767d\u9d6c\u7fd4" == "白鵬翔"
  3991  </pre>
  3992  </li>
  3993  
  3994  <li>
  3995  Converting a value of a string type to a slice of bytes type
  3996  yields a slice whose successive elements are the bytes of the string.
  3997  
  3998  <pre>
  3999  []byte("hellø")   // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
  4000  []byte("")        // []byte{}
  4001  
  4002  MyBytes("hellø")  // []byte{'h', 'e', 'l', 'l', '\xc3', '\xb8'}
  4003  </pre>
  4004  </li>
  4005  
  4006  <li>
  4007  Converting a value of a string type to a slice of runes type
  4008  yields a slice containing the individual Unicode code points of the string.
  4009  
  4010  <pre>
  4011  []rune(MyString("白鵬翔"))  // []rune{0x767d, 0x9d6c, 0x7fd4}
  4012  []rune("")                 // []rune{}
  4013  
  4014  MyRunes("白鵬翔")           // []rune{0x767d, 0x9d6c, 0x7fd4}
  4015  </pre>
  4016  </li>
  4017  </ol>
  4018  
  4019  
  4020  <h3 id="Constant_expressions">Constant expressions</h3>
  4021  
  4022  <p>
  4023  Constant expressions may contain only <a href="#Constants">constant</a>
  4024  operands and are evaluated at compile time.
  4025  </p>
  4026  
  4027  <p>
  4028  Untyped boolean, numeric, and string constants may be used as operands
  4029  wherever it is legal to use an operand of boolean, numeric, or string type,
  4030  respectively.
  4031  Except for shift operations, if the operands of a binary operation are
  4032  different kinds of untyped constants, the operation and, for non-boolean operations, the result use
  4033  the kind that appears later in this list: integer, rune, floating-point, complex.
  4034  For example, an untyped integer constant divided by an
  4035  untyped complex constant yields an untyped complex constant.
  4036  </p>
  4037  
  4038  <p>
  4039  A constant <a href="#Comparison_operators">comparison</a> always yields
  4040  an untyped boolean constant.  If the left operand of a constant
  4041  <a href="#Operators">shift expression</a> is an untyped constant, the
  4042  result is an integer constant; otherwise it is a constant of the same
  4043  type as the left operand, which must be of
  4044  <a href="#Numeric_types">integer type</a>.
  4045  Applying all other operators to untyped constants results in an untyped
  4046  constant of the same kind (that is, a boolean, integer, floating-point,
  4047  complex, or string constant).
  4048  </p>
  4049  
  4050  <pre>
  4051  const a = 2 + 3.0          // a == 5.0   (untyped floating-point constant)
  4052  const b = 15 / 4           // b == 3     (untyped integer constant)
  4053  const c = 15 / 4.0         // c == 3.75  (untyped floating-point constant)
  4054  const Θ float64 = 3/2      // Θ == 1.0   (type float64, 3/2 is integer division)
  4055  const Π float64 = 3/2.     // Π == 1.5   (type float64, 3/2. is float division)
  4056  const d = 1 &lt;&lt; 3.0         // d == 8     (untyped integer constant)
  4057  const e = 1.0 &lt;&lt; 3         // e == 8     (untyped integer constant)
  4058  const f = int32(1) &lt;&lt; 33   // illegal    (constant 8589934592 overflows int32)
  4059  const g = float64(2) &gt;&gt; 1  // illegal    (float64(2) is a typed floating-point constant)
  4060  const h = "foo" &gt; "bar"    // h == true  (untyped boolean constant)
  4061  const j = true             // j == true  (untyped boolean constant)
  4062  const k = 'w' + 1          // k == 'x'   (untyped rune constant)
  4063  const l = "hi"             // l == "hi"  (untyped string constant)
  4064  const m = string(k)        // m == "x"   (type string)
  4065  const Σ = 1 - 0.707i       //            (untyped complex constant)
  4066  const Δ = Σ + 2.0e-4       //            (untyped complex constant)
  4067  const Φ = iota*1i - 1/1i   //            (untyped complex constant)
  4068  </pre>
  4069  
  4070  <p>
  4071  Applying the built-in function <code>complex</code> to untyped
  4072  integer, rune, or floating-point constants yields
  4073  an untyped complex constant.
  4074  </p>
  4075  
  4076  <pre>
  4077  const ic = complex(0, c)   // ic == 3.75i  (untyped complex constant)
  4078  const iΘ = complex(0, Θ)   // iΘ == 1i     (type complex128)
  4079  </pre>
  4080  
  4081  <p>
  4082  Constant expressions are always evaluated exactly; intermediate values and the
  4083  constants themselves may require precision significantly larger than supported
  4084  by any predeclared type in the language. The following are legal declarations:
  4085  </p>
  4086  
  4087  <pre>
  4088  const Huge = 1 &lt;&lt; 100         // Huge == 1267650600228229401496703205376  (untyped integer constant)
  4089  const Four int8 = Huge &gt;&gt; 98  // Four == 4                                (type int8)
  4090  </pre>
  4091  
  4092  <p>
  4093  The divisor of a constant division or remainder operation must not be zero:
  4094  </p>
  4095  
  4096  <pre>
  4097  3.14 / 0.0   // illegal: division by zero
  4098  </pre>
  4099  
  4100  <p>
  4101  The values of <i>typed</i> constants must always be accurately representable as values
  4102  of the constant type. The following constant expressions are illegal:
  4103  </p>
  4104  
  4105  <pre>
  4106  uint(-1)     // -1 cannot be represented as a uint
  4107  int(3.14)    // 3.14 cannot be represented as an int
  4108  int64(Huge)  // 1267650600228229401496703205376 cannot be represented as an int64
  4109  Four * 300   // operand 300 cannot be represented as an int8 (type of Four)
  4110  Four * 100   // product 400 cannot be represented as an int8 (type of Four)
  4111  </pre>
  4112  
  4113  <p>
  4114  The mask used by the unary bitwise complement operator <code>^</code> matches
  4115  the rule for non-constants: the mask is all 1s for unsigned constants
  4116  and -1 for signed and untyped constants.
  4117  </p>
  4118  
  4119  <pre>
  4120  ^1         // untyped integer constant, equal to -2
  4121  uint8(^1)  // illegal: same as uint8(-2), -2 cannot be represented as a uint8
  4122  ^uint8(1)  // typed uint8 constant, same as 0xFF ^ uint8(1) = uint8(0xFE)
  4123  int8(^1)   // same as int8(-2)
  4124  ^int8(1)   // same as -1 ^ int8(1) = -2
  4125  </pre>
  4126  
  4127  <p>
  4128  Implementation restriction: A compiler may use rounding while
  4129  computing untyped floating-point or complex constant expressions; see
  4130  the implementation restriction in the section
  4131  on <a href="#Constants">constants</a>.  This rounding may cause a
  4132  floating-point constant expression to be invalid in an integer
  4133  context, even if it would be integral when calculated using infinite
  4134  precision, and vice versa.
  4135  </p>
  4136  
  4137  
  4138  <h3 id="Order_of_evaluation">Order of evaluation</h3>
  4139  
  4140  <p>
  4141  At package level, <a href="#Package_initialization">initialization dependencies</a>
  4142  determine the evaluation order of individual initialization expressions in
  4143  <a href="#Variable_declarations">variable declarations</a>.
  4144  Otherwise, when evaluating the <a href="#Operands">operands</a> of an
  4145  expression, assignment, or
  4146  <a href="#Return_statements">return statement</a>,
  4147  all function calls, method calls, and
  4148  communication operations are evaluated in lexical left-to-right
  4149  order.
  4150  </p>
  4151  
  4152  <p>
  4153  For example, in the (function-local) assignment
  4154  </p>
  4155  <pre>
  4156  y[f()], ok = g(h(), i()+x[j()], &lt;-c), k()
  4157  </pre>
  4158  <p>
  4159  the function calls and communication happen in the order
  4160  <code>f()</code>, <code>h()</code>, <code>i()</code>, <code>j()</code>,
  4161  <code>&lt;-c</code>, <code>g()</code>, and <code>k()</code>.
  4162  However, the order of those events compared to the evaluation
  4163  and indexing of <code>x</code> and the evaluation
  4164  of <code>y</code> is not specified.
  4165  </p>
  4166  
  4167  <pre>
  4168  a := 1
  4169  f := func() int { a++; return a }
  4170  x := []int{a, f()}            // x may be [1, 2] or [2, 2]: evaluation order between a and f() is not specified
  4171  m := map[int]int{a: 1, a: 2}  // m may be {2: 1} or {2: 2}: evaluation order between the two map assignments is not specified
  4172  n := map[int]int{a: f()}      // n may be {2: 3} or {3: 3}: evaluation order between the key and the value is not specified
  4173  </pre>
  4174  
  4175  <p>
  4176  At package level, initialization dependencies override the left-to-right rule
  4177  for individual initialization expressions, but not for operands within each
  4178  expression:
  4179  </p>
  4180  
  4181  <pre>
  4182  var a, b, c = f() + v(), g(), sqr(u()) + v()
  4183  
  4184  func f() int        { return c }
  4185  func g() int        { return a }
  4186  func sqr(x int) int { return x*x }
  4187  
  4188  // functions u and v are independent of all other variables and functions
  4189  </pre>
  4190  
  4191  <p>
  4192  The function calls happen in the order
  4193  <code>u()</code>, <code>sqr()</code>, <code>v()</code>,
  4194  <code>f()</code>, <code>v()</code>, and <code>g()</code>.
  4195  </p>
  4196  
  4197  <p>
  4198  Floating-point operations within a single expression are evaluated according to
  4199  the associativity of the operators.  Explicit parentheses affect the evaluation
  4200  by overriding the default associativity.
  4201  In the expression <code>x + (y + z)</code> the addition <code>y + z</code>
  4202  is performed before adding <code>x</code>.
  4203  </p>
  4204  
  4205  <h2 id="Statements">Statements</h2>
  4206  
  4207  <p>
  4208  Statements control execution.
  4209  </p>
  4210  
  4211  <pre class="ebnf">
  4212  Statement =
  4213  	Declaration | LabeledStmt | SimpleStmt |
  4214  	GoStmt | ReturnStmt | BreakStmt | ContinueStmt | GotoStmt |
  4215  	FallthroughStmt | Block | IfStmt | SwitchStmt | SelectStmt | ForStmt |
  4216  	DeferStmt .
  4217  
  4218  SimpleStmt = EmptyStmt | ExpressionStmt | SendStmt | IncDecStmt | Assignment | ShortVarDecl .
  4219  </pre>
  4220  
  4221  <h3 id="Terminating_statements">Terminating statements</h3>
  4222  
  4223  <p>
  4224  A terminating statement is one of the following:
  4225  </p>
  4226  
  4227  <ol>
  4228  <li>
  4229  	A <a href="#Return_statements">"return"</a> or
  4230      	<a href="#Goto_statements">"goto"</a> statement.
  4231  	<!-- ul below only for regular layout -->
  4232  	<ul> </ul>
  4233  </li>
  4234  
  4235  <li>
  4236  	A call to the built-in function
  4237  	<a href="#Handling_panics"><code>panic</code></a>.
  4238  	<!-- ul below only for regular layout -->
  4239  	<ul> </ul>
  4240  </li>
  4241  
  4242  <li>
  4243  	A <a href="#Blocks">block</a> in which the statement list ends in a terminating statement.
  4244  	<!-- ul below only for regular layout -->
  4245  	<ul> </ul>
  4246  </li>
  4247  
  4248  <li>
  4249  	An <a href="#If_statements">"if" statement</a> in which:
  4250  	<ul>
  4251  	<li>the "else" branch is present, and</li>
  4252  	<li>both branches are terminating statements.</li>
  4253  	</ul>
  4254  </li>
  4255  
  4256  <li>
  4257  	A <a href="#For_statements">"for" statement</a> in which:
  4258  	<ul>
  4259  	<li>there are no "break" statements referring to the "for" statement, and</li>
  4260  	<li>the loop condition is absent.</li>
  4261  	</ul>
  4262  </li>
  4263  
  4264  <li>
  4265  	A <a href="#Switch_statements">"switch" statement</a> in which:
  4266  	<ul>
  4267  	<li>there are no "break" statements referring to the "switch" statement,</li>
  4268  	<li>there is a default case, and</li>
  4269  	<li>the statement lists in each case, including the default, end in a terminating
  4270  	    statement, or a possibly labeled <a href="#Fallthrough_statements">"fallthrough"
  4271  	    statement</a>.</li>
  4272  	</ul>
  4273  </li>
  4274  
  4275  <li>
  4276  	A <a href="#Select_statements">"select" statement</a> in which:
  4277  	<ul>
  4278  	<li>there are no "break" statements referring to the "select" statement, and</li>
  4279  	<li>the statement lists in each case, including the default if present,
  4280  	    end in a terminating statement.</li>
  4281  	</ul>
  4282  </li>
  4283  
  4284  <li>
  4285  	A <a href="#Labeled_statements">labeled statement</a> labeling
  4286  	a terminating statement.
  4287  </li>
  4288  </ol>
  4289  
  4290  <p>
  4291  All other statements are not terminating.
  4292  </p>
  4293  
  4294  <p>
  4295  A <a href="#Blocks">statement list</a> ends in a terminating statement if the list
  4296  is not empty and its final non-empty statement is terminating.
  4297  </p>
  4298  
  4299  
  4300  <h3 id="Empty_statements">Empty statements</h3>
  4301  
  4302  <p>
  4303  The empty statement does nothing.
  4304  </p>
  4305  
  4306  <pre class="ebnf">
  4307  EmptyStmt = .
  4308  </pre>
  4309  
  4310  
  4311  <h3 id="Labeled_statements">Labeled statements</h3>
  4312  
  4313  <p>
  4314  A labeled statement may be the target of a <code>goto</code>,
  4315  <code>break</code> or <code>continue</code> statement.
  4316  </p>
  4317  
  4318  <pre class="ebnf">
  4319  LabeledStmt = Label ":" Statement .
  4320  Label       = identifier .
  4321  </pre>
  4322  
  4323  <pre>
  4324  Error: log.Panic("error encountered")
  4325  </pre>
  4326  
  4327  
  4328  <h3 id="Expression_statements">Expression statements</h3>
  4329  
  4330  <p>
  4331  With the exception of specific built-in functions,
  4332  function and method <a href="#Calls">calls</a> and
  4333  <a href="#Receive_operator">receive operations</a>
  4334  can appear in statement context. Such statements may be parenthesized.
  4335  </p>
  4336  
  4337  <pre class="ebnf">
  4338  ExpressionStmt = Expression .
  4339  </pre>
  4340  
  4341  <p>
  4342  The following built-in functions are not permitted in statement context:
  4343  </p>
  4344  
  4345  <pre>
  4346  append cap complex imag len make new real
  4347  unsafe.Alignof unsafe.Offsetof unsafe.Sizeof
  4348  </pre>
  4349  
  4350  <pre>
  4351  h(x+y)
  4352  f.Close()
  4353  &lt;-ch
  4354  (&lt;-ch)
  4355  len("foo")  // illegal if len is the built-in function
  4356  </pre>
  4357  
  4358  
  4359  <h3 id="Send_statements">Send statements</h3>
  4360  
  4361  <p>
  4362  A send statement sends a value on a channel.
  4363  The channel expression must be of <a href="#Channel_types">channel type</a>,
  4364  the channel direction must permit send operations,
  4365  and the type of the value to be sent must be <a href="#Assignability">assignable</a>
  4366  to the channel's element type.
  4367  </p>
  4368  
  4369  <pre class="ebnf">
  4370  SendStmt = Channel "&lt;-" Expression .
  4371  Channel  = Expression .
  4372  </pre>
  4373  
  4374  <p>
  4375  Both the channel and the value expression are evaluated before communication
  4376  begins. Communication blocks until the send can proceed.
  4377  A send on an unbuffered channel can proceed if a receiver is ready.
  4378  A send on a buffered channel can proceed if there is room in the buffer.
  4379  A send on a closed channel proceeds by causing a <a href="#Run_time_panics">run-time panic</a>.
  4380  A send on a <code>nil</code> channel blocks forever.
  4381  </p>
  4382  
  4383  <pre>
  4384  ch &lt;- 3  // send value 3 to channel ch
  4385  </pre>
  4386  
  4387  
  4388  <h3 id="IncDec_statements">IncDec statements</h3>
  4389  
  4390  <p>
  4391  The "++" and "--" statements increment or decrement their operands
  4392  by the untyped <a href="#Constants">constant</a> <code>1</code>.
  4393  As with an assignment, the operand must be <a href="#Address_operators">addressable</a>
  4394  or a map index expression.
  4395  </p>
  4396  
  4397  <pre class="ebnf">
  4398  IncDecStmt = Expression ( "++" | "--" ) .
  4399  </pre>
  4400  
  4401  <p>
  4402  The following <a href="#Assignments">assignment statements</a> are semantically
  4403  equivalent:
  4404  </p>
  4405  
  4406  <pre class="grammar">
  4407  IncDec statement    Assignment
  4408  x++                 x += 1
  4409  x--                 x -= 1
  4410  </pre>
  4411  
  4412  
  4413  <h3 id="Assignments">Assignments</h3>
  4414  
  4415  <pre class="ebnf">
  4416  Assignment = ExpressionList assign_op ExpressionList .
  4417  
  4418  assign_op = [ add_op | mul_op ] "=" .
  4419  </pre>
  4420  
  4421  <p>
  4422  Each left-hand side operand must be <a href="#Address_operators">addressable</a>,
  4423  a map index expression, or (for <code>=</code> assignments only) the
  4424  <a href="#Blank_identifier">blank identifier</a>.
  4425  Operands may be parenthesized.
  4426  </p>
  4427  
  4428  <pre>
  4429  x = 1
  4430  *p = f()
  4431  a[i] = 23
  4432  (k) = &lt;-ch  // same as: k = &lt;-ch
  4433  </pre>
  4434  
  4435  <p>
  4436  An <i>assignment operation</i> <code>x</code> <i>op</i><code>=</code>
  4437  <code>y</code> where <i>op</i> is a binary arithmetic operation is equivalent
  4438  to <code>x</code> <code>=</code> <code>x</code> <i>op</i>
  4439  <code>(y)</code> but evaluates <code>x</code>
  4440  only once.  The <i>op</i><code>=</code> construct is a single token.
  4441  In assignment operations, both the left- and right-hand expression lists
  4442  must contain exactly one single-valued expression, and the left-hand
  4443  expression must not be the blank identifier.
  4444  </p>
  4445  
  4446  <pre>
  4447  a[i] &lt;&lt;= 2
  4448  i &amp;^= 1&lt;&lt;n
  4449  </pre>
  4450  
  4451  <p>
  4452  A tuple assignment assigns the individual elements of a multi-valued
  4453  operation to a list of variables.  There are two forms.  In the
  4454  first, the right hand operand is a single multi-valued expression
  4455  such as a function call, a <a href="#Channel_types">channel</a> or
  4456  <a href="#Map_types">map</a> operation, or a <a href="#Type_assertions">type assertion</a>.
  4457  The number of operands on the left
  4458  hand side must match the number of values.  For instance, if
  4459  <code>f</code> is a function returning two values,
  4460  </p>
  4461  
  4462  <pre>
  4463  x, y = f()
  4464  </pre>
  4465  
  4466  <p>
  4467  assigns the first value to <code>x</code> and the second to <code>y</code>.
  4468  In the second form, the number of operands on the left must equal the number
  4469  of expressions on the right, each of which must be single-valued, and the
  4470  <i>n</i>th expression on the right is assigned to the <i>n</i>th
  4471  operand on the left:
  4472  </p>
  4473  
  4474  <pre>
  4475  one, two, three = '一', '二', '三'
  4476  </pre>
  4477  
  4478  <p>
  4479  The <a href="#Blank_identifier">blank identifier</a> provides a way to
  4480  ignore right-hand side values in an assignment:
  4481  </p>
  4482  
  4483  <pre>
  4484  _ = x       // evaluate x but ignore it
  4485  x, _ = f()  // evaluate f() but ignore second result value
  4486  </pre>
  4487  
  4488  <p>
  4489  The assignment proceeds in two phases.
  4490  First, the operands of <a href="#Index_expressions">index expressions</a>
  4491  and <a href="#Address_operators">pointer indirections</a>
  4492  (including implicit pointer indirections in <a href="#Selectors">selectors</a>)
  4493  on the left and the expressions on the right are all
  4494  <a href="#Order_of_evaluation">evaluated in the usual order</a>.
  4495  Second, the assignments are carried out in left-to-right order.
  4496  </p>
  4497  
  4498  <pre>
  4499  a, b = b, a  // exchange a and b
  4500  
  4501  x := []int{1, 2, 3}
  4502  i := 0
  4503  i, x[i] = 1, 2  // set i = 1, x[0] = 2
  4504  
  4505  i = 0
  4506  x[i], i = 2, 1  // set x[0] = 2, i = 1
  4507  
  4508  x[0], x[0] = 1, 2  // set x[0] = 1, then x[0] = 2 (so x[0] == 2 at end)
  4509  
  4510  x[1], x[3] = 4, 5  // set x[1] = 4, then panic setting x[3] = 5.
  4511  
  4512  type Point struct { x, y int }
  4513  var p *Point
  4514  x[2], p.x = 6, 7  // set x[2] = 6, then panic setting p.x = 7
  4515  
  4516  i = 2
  4517  x = []int{3, 5, 7}
  4518  for i, x[i] = range x {  // set i, x[2] = 0, x[0]
  4519  	break
  4520  }
  4521  // after this loop, i == 0 and x == []int{3, 5, 3}
  4522  </pre>
  4523  
  4524  <p>
  4525  In assignments, each value must be <a href="#Assignability">assignable</a>
  4526  to the type of the operand to which it is assigned, with the following special cases:
  4527  </p>
  4528  
  4529  <ol>
  4530  <li>
  4531  	Any typed value may be assigned to the blank identifier.
  4532  </li>
  4533  
  4534  <li>
  4535  	If an untyped constant
  4536  	is assigned to a variable of interface type or the blank identifier,
  4537  	the constant is first <a href="#Conversions">converted</a> to its
  4538  	 <a href="#Constants">default type</a>.
  4539  </li>
  4540  
  4541  <li>
  4542  	If an untyped boolean value is assigned to a variable of interface type or
  4543  	the blank identifier, it is first converted to type <code>bool</code>.
  4544  </li>
  4545  </ol>
  4546  
  4547  <h3 id="If_statements">If statements</h3>
  4548  
  4549  <p>
  4550  "If" statements specify the conditional execution of two branches
  4551  according to the value of a boolean expression.  If the expression
  4552  evaluates to true, the "if" branch is executed, otherwise, if
  4553  present, the "else" branch is executed.
  4554  </p>
  4555  
  4556  <pre class="ebnf">
  4557  IfStmt = "if" [ SimpleStmt ";" ] Expression Block [ "else" ( IfStmt | Block ) ] .
  4558  </pre>
  4559  
  4560  <pre>
  4561  if x &gt; max {
  4562  	x = max
  4563  }
  4564  </pre>
  4565  
  4566  <p>
  4567  The expression may be preceded by a simple statement, which
  4568  executes before the expression is evaluated.
  4569  </p>
  4570  
  4571  <pre>
  4572  if x := f(); x &lt; y {
  4573  	return x
  4574  } else if x &gt; z {
  4575  	return z
  4576  } else {
  4577  	return y
  4578  }
  4579  </pre>
  4580  
  4581  
  4582  <h3 id="Switch_statements">Switch statements</h3>
  4583  
  4584  <p>
  4585  "Switch" statements provide multi-way execution.
  4586  An expression or type specifier is compared to the "cases"
  4587  inside the "switch" to determine which branch
  4588  to execute.
  4589  </p>
  4590  
  4591  <pre class="ebnf">
  4592  SwitchStmt = ExprSwitchStmt | TypeSwitchStmt .
  4593  </pre>
  4594  
  4595  <p>
  4596  There are two forms: expression switches and type switches.
  4597  In an expression switch, the cases contain expressions that are compared
  4598  against the value of the switch expression.
  4599  In a type switch, the cases contain types that are compared against the
  4600  type of a specially annotated switch expression.
  4601  The switch expression is evaluated exactly once in a switch statement.
  4602  </p>
  4603  
  4604  <h4 id="Expression_switches">Expression switches</h4>
  4605  
  4606  <p>
  4607  In an expression switch,
  4608  the switch expression is evaluated and
  4609  the case expressions, which need not be constants,
  4610  are evaluated left-to-right and top-to-bottom; the first one that equals the
  4611  switch expression
  4612  triggers execution of the statements of the associated case;
  4613  the other cases are skipped.
  4614  If no case matches and there is a "default" case,
  4615  its statements are executed.
  4616  There can be at most one default case and it may appear anywhere in the
  4617  "switch" statement.
  4618  A missing switch expression is equivalent to the boolean value
  4619  <code>true</code>.
  4620  </p>
  4621  
  4622  <pre class="ebnf">
  4623  ExprSwitchStmt = "switch" [ SimpleStmt ";" ] [ Expression ] "{" { ExprCaseClause } "}" .
  4624  ExprCaseClause = ExprSwitchCase ":" StatementList .
  4625  ExprSwitchCase = "case" ExpressionList | "default" .
  4626  </pre>
  4627  
  4628  <p>
  4629  If the switch expression evaluates to an untyped constant, it is first
  4630  <a href="#Conversions">converted</a> to its <a href="#Constants">default type</a>;
  4631  if it is an untyped boolean value, it is first converted to type <code>bool</code>.
  4632  The predeclared untyped value <code>nil</code> cannot be used as a switch expression.
  4633  </p>
  4634  
  4635  <p>
  4636  If a case expression is untyped, it is first <a href="#Conversions">converted</a>
  4637  to the type of the switch expression.
  4638  For each (possibly converted) case expression <code>x</code> and the value <code>t</code>
  4639  of the switch expression, <code>x == t</code> must be a valid <a href="#Comparison_operators">comparison</a>.
  4640  </p>
  4641  
  4642  <p>
  4643  In other words, the switch expression is treated as if it were used to declare and
  4644  initialize a temporary variable <code>t</code> without explicit type; it is that
  4645  value of <code>t</code> against which each case expression <code>x</code> is tested
  4646  for equality.
  4647  </p>
  4648  
  4649  <p>
  4650  In a case or default clause, the last non-empty statement
  4651  may be a (possibly <a href="#Labeled_statements">labeled</a>)
  4652  <a href="#Fallthrough_statements">"fallthrough" statement</a> to
  4653  indicate that control should flow from the end of this clause to
  4654  the first statement of the next clause.
  4655  Otherwise control flows to the end of the "switch" statement.
  4656  A "fallthrough" statement may appear as the last statement of all
  4657  but the last clause of an expression switch.
  4658  </p>
  4659  
  4660  <p>
  4661  The switch expression may be preceded by a simple statement, which
  4662  executes before the expression is evaluated.
  4663  </p>
  4664  
  4665  <pre>
  4666  switch tag {
  4667  default: s3()
  4668  case 0, 1, 2, 3: s1()
  4669  case 4, 5, 6, 7: s2()
  4670  }
  4671  
  4672  switch x := f(); {  // missing switch expression means "true"
  4673  case x &lt; 0: return -x
  4674  default: return x
  4675  }
  4676  
  4677  switch {
  4678  case x &lt; y: f1()
  4679  case x &lt; z: f2()
  4680  case x == 4: f3()
  4681  }
  4682  </pre>
  4683  
  4684  <p>
  4685  Implementation restriction: A compiler may disallow multiple case
  4686  expressions evaluating to the same constant.
  4687  For instance, the current compilers disallow duplicate integer,
  4688  floating point, or string constants in case expressions.
  4689  </p>
  4690  
  4691  <h4 id="Type_switches">Type switches</h4>
  4692  
  4693  <p>
  4694  A type switch compares types rather than values. It is otherwise similar
  4695  to an expression switch. It is marked by a special switch expression that
  4696  has the form of a <a href="#Type_assertions">type assertion</a>
  4697  using the reserved word <code>type</code> rather than an actual type:
  4698  </p>
  4699  
  4700  <pre>
  4701  switch x.(type) {
  4702  // cases
  4703  }
  4704  </pre>
  4705  
  4706  <p>
  4707  Cases then match actual types <code>T</code> against the dynamic type of the
  4708  expression <code>x</code>. As with type assertions, <code>x</code> must be of
  4709  <a href="#Interface_types">interface type</a>, and each non-interface type
  4710  <code>T</code> listed in a case must implement the type of <code>x</code>.
  4711  The types listed in the cases of a type switch must all be
  4712  <a href="#Type_identity">different</a>.
  4713  </p>
  4714  
  4715  <pre class="ebnf">
  4716  TypeSwitchStmt  = "switch" [ SimpleStmt ";" ] TypeSwitchGuard "{" { TypeCaseClause } "}" .
  4717  TypeSwitchGuard = [ identifier ":=" ] PrimaryExpr "." "(" "type" ")" .
  4718  TypeCaseClause  = TypeSwitchCase ":" StatementList .
  4719  TypeSwitchCase  = "case" TypeList | "default" .
  4720  TypeList        = Type { "," Type } .
  4721  </pre>
  4722  
  4723  <p>
  4724  The TypeSwitchGuard may include a
  4725  <a href="#Short_variable_declarations">short variable declaration</a>.
  4726  When that form is used, the variable is declared at the end of the
  4727  TypeSwitchCase in the <a href="#Blocks">implicit block</a> of each clause.
  4728  In clauses with a case listing exactly one type, the variable
  4729  has that type; otherwise, the variable has the type of the expression
  4730  in the TypeSwitchGuard.
  4731  </p>
  4732  
  4733  <p>
  4734  The type in a case may be <a href="#Predeclared_identifiers"><code>nil</code></a>;
  4735  that case is used when the expression in the TypeSwitchGuard
  4736  is a <code>nil</code> interface value.
  4737  There may be at most one <code>nil</code> case.
  4738  </p>
  4739  
  4740  <p>
  4741  Given an expression <code>x</code> of type <code>interface{}</code>,
  4742  the following type switch:
  4743  </p>
  4744  
  4745  <pre>
  4746  switch i := x.(type) {
  4747  case nil:
  4748  	printString("x is nil")                // type of i is type of x (interface{})
  4749  case int:
  4750  	printInt(i)                            // type of i is int
  4751  case float64:
  4752  	printFloat64(i)                        // type of i is float64
  4753  case func(int) float64:
  4754  	printFunction(i)                       // type of i is func(int) float64
  4755  case bool, string:
  4756  	printString("type is bool or string")  // type of i is type of x (interface{})
  4757  default:
  4758  	printString("don't know the type")     // type of i is type of x (interface{})
  4759  }
  4760  </pre>
  4761  
  4762  <p>
  4763  could be rewritten:
  4764  </p>
  4765  
  4766  <pre>
  4767  v := x  // x is evaluated exactly once
  4768  if v == nil {
  4769  	i := v                                 // type of i is type of x (interface{})
  4770  	printString("x is nil")
  4771  } else if i, isInt := v.(int); isInt {
  4772  	printInt(i)                            // type of i is int
  4773  } else if i, isFloat64 := v.(float64); isFloat64 {
  4774  	printFloat64(i)                        // type of i is float64
  4775  } else if i, isFunc := v.(func(int) float64); isFunc {
  4776  	printFunction(i)                       // type of i is func(int) float64
  4777  } else {
  4778  	_, isBool := v.(bool)
  4779  	_, isString := v.(string)
  4780  	if isBool || isString {
  4781  		i := v                         // type of i is type of x (interface{})
  4782  		printString("type is bool or string")
  4783  	} else {
  4784  		i := v                         // type of i is type of x (interface{})
  4785  		printString("don't know the type")
  4786  	}
  4787  }
  4788  </pre>
  4789  
  4790  <p>
  4791  The type switch guard may be preceded by a simple statement, which
  4792  executes before the guard is evaluated.
  4793  </p>
  4794  
  4795  <p>
  4796  The "fallthrough" statement is not permitted in a type switch.
  4797  </p>
  4798  
  4799  <h3 id="For_statements">For statements</h3>
  4800  
  4801  <p>
  4802  A "for" statement specifies repeated execution of a block. There are three forms:
  4803  The iteration may be controlled by a single condition, a "for" clause, or a "range" clause.
  4804  </p>
  4805  
  4806  <pre class="ebnf">
  4807  ForStmt = "for" [ Condition | ForClause | RangeClause ] Block .
  4808  Condition = Expression .
  4809  </pre>
  4810  
  4811  <h4 id="For_condition">For statements with single condition</h4>
  4812  
  4813  <p>
  4814  In its simplest form, a "for" statement specifies the repeated execution of
  4815  a block as long as a boolean condition evaluates to true.
  4816  The condition is evaluated before each iteration.
  4817  If the condition is absent, it is equivalent to the boolean value
  4818  <code>true</code>.
  4819  </p>
  4820  
  4821  <pre>
  4822  for a &lt; b {
  4823  	a *= 2
  4824  }
  4825  </pre>
  4826  
  4827  <h4 id="For_clause">For statements with <code>for</code> clause</h4>
  4828  
  4829  <p>
  4830  A "for" statement with a ForClause is also controlled by its condition, but
  4831  additionally it may specify an <i>init</i>
  4832  and a <i>post</i> statement, such as an assignment,
  4833  an increment or decrement statement. The init statement may be a
  4834  <a href="#Short_variable_declarations">short variable declaration</a>, but the post statement must not.
  4835  Variables declared by the init statement are re-used in each iteration.
  4836  </p>
  4837  
  4838  <pre class="ebnf">
  4839  ForClause = [ InitStmt ] ";" [ Condition ] ";" [ PostStmt ] .
  4840  InitStmt = SimpleStmt .
  4841  PostStmt = SimpleStmt .
  4842  </pre>
  4843  
  4844  <pre>
  4845  for i := 0; i &lt; 10; i++ {
  4846  	f(i)
  4847  }
  4848  </pre>
  4849  
  4850  <p>
  4851  If non-empty, the init statement is executed once before evaluating the
  4852  condition for the first iteration;
  4853  the post statement is executed after each execution of the block (and
  4854  only if the block was executed).
  4855  Any element of the ForClause may be empty but the
  4856  <a href="#Semicolons">semicolons</a> are
  4857  required unless there is only a condition.
  4858  If the condition is absent, it is equivalent to the boolean value
  4859  <code>true</code>.
  4860  </p>
  4861  
  4862  <pre>
  4863  for cond { S() }    is the same as    for ; cond ; { S() }
  4864  for      { S() }    is the same as    for true     { S() }
  4865  </pre>
  4866  
  4867  <h4 id="For_range">For statements with <code>range</code> clause</h4>
  4868  
  4869  <p>
  4870  A "for" statement with a "range" clause
  4871  iterates through all entries of an array, slice, string or map,
  4872  or values received on a channel. For each entry it assigns <i>iteration values</i>
  4873  to corresponding <i>iteration variables</i> if present and then executes the block.
  4874  </p>
  4875  
  4876  <pre class="ebnf">
  4877  RangeClause = [ ExpressionList "=" | IdentifierList ":=" ] "range" Expression .
  4878  </pre>
  4879  
  4880  <p>
  4881  The expression on the right in the "range" clause is called the <i>range expression</i>,
  4882  which may be an array, pointer to an array, slice, string, map, or channel permitting
  4883  <a href="#Receive_operator">receive operations</a>.
  4884  As with an assignment, if present the operands on the left must be
  4885  <a href="#Address_operators">addressable</a> or map index expressions; they
  4886  denote the iteration variables. If the range expression is a channel, at most
  4887  one iteration variable is permitted, otherwise there may be up to two.
  4888  If the last iteration variable is the <a href="#Blank_identifier">blank identifier</a>,
  4889  the range clause is equivalent to the same clause without that identifier.
  4890  </p>
  4891  
  4892  <p>
  4893  The range expression is evaluated once before beginning the loop,
  4894  with one exception: if the range expression is an array or a pointer to an array
  4895  and at most one iteration variable is present, only the range expression's
  4896  length is evaluated; if that length is constant,
  4897  <a href="#Length_and_capacity">by definition</a>
  4898  the range expression itself will not be evaluated.
  4899  </p>
  4900  
  4901  <p>
  4902  Function calls on the left are evaluated once per iteration.
  4903  For each iteration, iteration values are produced as follows
  4904  if the respective iteration variables are present:
  4905  </p>
  4906  
  4907  <pre class="grammar">
  4908  Range expression                          1st value          2nd value
  4909  
  4910  array or slice  a  [n]E, *[n]E, or []E    index    i  int    a[i]       E
  4911  string          s  string type            index    i  int    see below  rune
  4912  map             m  map[K]V                key      k  K      m[k]       V
  4913  channel         c  chan E, &lt;-chan E       element  e  E
  4914  </pre>
  4915  
  4916  <ol>
  4917  <li>
  4918  For an array, pointer to array, or slice value <code>a</code>, the index iteration
  4919  values are produced in increasing order, starting at element index 0.
  4920  If at most one iteration variable is present, the range loop produces
  4921  iteration values from 0 up to <code>len(a)-1</code> and does not index into the array
  4922  or slice itself. For a <code>nil</code> slice, the number of iterations is 0.
  4923  </li>
  4924  
  4925  <li>
  4926  For a string value, the "range" clause iterates over the Unicode code points
  4927  in the string starting at byte index 0.  On successive iterations, the index value will be the
  4928  index of the first byte of successive UTF-8-encoded code points in the string,
  4929  and the second value, of type <code>rune</code>, will be the value of
  4930  the corresponding code point.  If the iteration encounters an invalid
  4931  UTF-8 sequence, the second value will be <code>0xFFFD</code>,
  4932  the Unicode replacement character, and the next iteration will advance
  4933  a single byte in the string.
  4934  </li>
  4935  
  4936  <li>
  4937  The iteration order over maps is not specified
  4938  and is not guaranteed to be the same from one iteration to the next.
  4939  If map entries that have not yet been reached are removed during iteration,
  4940  the corresponding iteration values will not be produced. If map entries are
  4941  created during iteration, that entry may be produced during the iteration or
  4942  may be skipped. The choice may vary for each entry created and from one
  4943  iteration to the next.
  4944  If the map is <code>nil</code>, the number of iterations is 0.
  4945  </li>
  4946  
  4947  <li>
  4948  For channels, the iteration values produced are the successive values sent on
  4949  the channel until the channel is <a href="#Close">closed</a>. If the channel
  4950  is <code>nil</code>, the range expression blocks forever.
  4951  </li>
  4952  </ol>
  4953  
  4954  <p>
  4955  The iteration values are assigned to the respective
  4956  iteration variables as in an <a href="#Assignments">assignment statement</a>.
  4957  </p>
  4958  
  4959  <p>
  4960  The iteration variables may be declared by the "range" clause using a form of
  4961  <a href="#Short_variable_declarations">short variable declaration</a>
  4962  (<code>:=</code>).
  4963  In this case their types are set to the types of the respective iteration values
  4964  and their <a href="#Declarations_and_scope">scope</a> is the block of the "for"
  4965  statement; they are re-used in each iteration.
  4966  If the iteration variables are declared outside the "for" statement,
  4967  after execution their values will be those of the last iteration.
  4968  </p>
  4969  
  4970  <pre>
  4971  var testdata *struct {
  4972  	a *[7]int
  4973  }
  4974  for i, _ := range testdata.a {
  4975  	// testdata.a is never evaluated; len(testdata.a) is constant
  4976  	// i ranges from 0 to 6
  4977  	f(i)
  4978  }
  4979  
  4980  var a [10]string
  4981  for i, s := range a {
  4982  	// type of i is int
  4983  	// type of s is string
  4984  	// s == a[i]
  4985  	g(i, s)
  4986  }
  4987  
  4988  var key string
  4989  var val interface {}  // value type of m is assignable to val
  4990  m := map[string]int{"mon":0, "tue":1, "wed":2, "thu":3, "fri":4, "sat":5, "sun":6}
  4991  for key, val = range m {
  4992  	h(key, val)
  4993  }
  4994  // key == last map key encountered in iteration
  4995  // val == map[key]
  4996  
  4997  var ch chan Work = producer()
  4998  for w := range ch {
  4999  	doWork(w)
  5000  }
  5001  
  5002  // empty a channel
  5003  for range ch {}
  5004  </pre>
  5005  
  5006  
  5007  <h3 id="Go_statements">Go statements</h3>
  5008  
  5009  <p>
  5010  A "go" statement starts the execution of a function call
  5011  as an independent concurrent thread of control, or <i>goroutine</i>,
  5012  within the same address space.
  5013  </p>
  5014  
  5015  <pre class="ebnf">
  5016  GoStmt = "go" Expression .
  5017  </pre>
  5018  
  5019  <p>
  5020  The expression must be a function or method call; it cannot be parenthesized.
  5021  Calls of built-in functions are restricted as for
  5022  <a href="#Expression_statements">expression statements</a>.
  5023  </p>
  5024  
  5025  <p>
  5026  The function value and parameters are
  5027  <a href="#Calls">evaluated as usual</a>
  5028  in the calling goroutine, but
  5029  unlike with a regular call, program execution does not wait
  5030  for the invoked function to complete.
  5031  Instead, the function begins executing independently
  5032  in a new goroutine.
  5033  When the function terminates, its goroutine also terminates.
  5034  If the function has any return values, they are discarded when the
  5035  function completes.
  5036  </p>
  5037  
  5038  <pre>
  5039  go Server()
  5040  go func(ch chan&lt;- bool) { for { sleep(10); ch &lt;- true; }} (c)
  5041  </pre>
  5042  
  5043  
  5044  <h3 id="Select_statements">Select statements</h3>
  5045  
  5046  <p>
  5047  A "select" statement chooses which of a set of possible
  5048  <a href="#Send_statements">send</a> or
  5049  <a href="#Receive_operator">receive</a>
  5050  operations will proceed.
  5051  It looks similar to a
  5052  <a href="#Switch_statements">"switch"</a> statement but with the
  5053  cases all referring to communication operations.
  5054  </p>
  5055  
  5056  <pre class="ebnf">
  5057  SelectStmt = "select" "{" { CommClause } "}" .
  5058  CommClause = CommCase ":" StatementList .
  5059  CommCase   = "case" ( SendStmt | RecvStmt ) | "default" .
  5060  RecvStmt   = [ ExpressionList "=" | IdentifierList ":=" ] RecvExpr .
  5061  RecvExpr   = Expression .
  5062  </pre>
  5063  
  5064  <p>
  5065  A case with a RecvStmt may assign the result of a RecvExpr to one or
  5066  two variables, which may be declared using a
  5067  <a href="#Short_variable_declarations">short variable declaration</a>.
  5068  The RecvExpr must be a (possibly parenthesized) receive operation.
  5069  There can be at most one default case and it may appear anywhere
  5070  in the list of cases.
  5071  </p>
  5072  
  5073  <p>
  5074  Execution of a "select" statement proceeds in several steps:
  5075  </p>
  5076  
  5077  <ol>
  5078  <li>
  5079  For all the cases in the statement, the channel operands of receive operations
  5080  and the channel and right-hand-side expressions of send statements are
  5081  evaluated exactly once, in source order, upon entering the "select" statement.
  5082  The result is a set of channels to receive from or send to,
  5083  and the corresponding values to send.
  5084  Any side effects in that evaluation will occur irrespective of which (if any)
  5085  communication operation is selected to proceed.
  5086  Expressions on the left-hand side of a RecvStmt with a short variable declaration
  5087  or assignment are not yet evaluated.
  5088  </li>
  5089  
  5090  <li>
  5091  If one or more of the communications can proceed,
  5092  a single one that can proceed is chosen via a uniform pseudo-random selection.
  5093  Otherwise, if there is a default case, that case is chosen.
  5094  If there is no default case, the "select" statement blocks until
  5095  at least one of the communications can proceed.
  5096  </li>
  5097  
  5098  <li>
  5099  Unless the selected case is the default case, the respective communication
  5100  operation is executed.
  5101  </li>
  5102  
  5103  <li>
  5104  If the selected case is a RecvStmt with a short variable declaration or
  5105  an assignment, the left-hand side expressions are evaluated and the
  5106  received value (or values) are assigned.
  5107  </li>
  5108  
  5109  <li>
  5110  The statement list of the selected case is executed.
  5111  </li>
  5112  </ol>
  5113  
  5114  <p>
  5115  Since communication on <code>nil</code> channels can never proceed,
  5116  a select with only <code>nil</code> channels and no default case blocks forever.
  5117  </p>
  5118  
  5119  <pre>
  5120  var a []int
  5121  var c, c1, c2, c3, c4 chan int
  5122  var i1, i2 int
  5123  select {
  5124  case i1 = &lt;-c1:
  5125  	print("received ", i1, " from c1\n")
  5126  case c2 &lt;- i2:
  5127  	print("sent ", i2, " to c2\n")
  5128  case i3, ok := (&lt;-c3):  // same as: i3, ok := &lt;-c3
  5129  	if ok {
  5130  		print("received ", i3, " from c3\n")
  5131  	} else {
  5132  		print("c3 is closed\n")
  5133  	}
  5134  case a[f()] = &lt;-c4:
  5135  	// same as:
  5136  	// case t := &lt;-c4
  5137  	//	a[f()] = t
  5138  default:
  5139  	print("no communication\n")
  5140  }
  5141  
  5142  for {  // send random sequence of bits to c
  5143  	select {
  5144  	case c &lt;- 0:  // note: no statement, no fallthrough, no folding of cases
  5145  	case c &lt;- 1:
  5146  	}
  5147  }
  5148  
  5149  select {}  // block forever
  5150  </pre>
  5151  
  5152  
  5153  <h3 id="Return_statements">Return statements</h3>
  5154  
  5155  <p>
  5156  A "return" statement in a function <code>F</code> terminates the execution
  5157  of <code>F</code>, and optionally provides one or more result values.
  5158  Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
  5159  are executed before <code>F</code> returns to its caller.
  5160  </p>
  5161  
  5162  <pre class="ebnf">
  5163  ReturnStmt = "return" [ ExpressionList ] .
  5164  </pre>
  5165  
  5166  <p>
  5167  In a function without a result type, a "return" statement must not
  5168  specify any result values.
  5169  </p>
  5170  <pre>
  5171  func noResult() {
  5172  	return
  5173  }
  5174  </pre>
  5175  
  5176  <p>
  5177  There are three ways to return values from a function with a result
  5178  type:
  5179  </p>
  5180  
  5181  <ol>
  5182  	<li>The return value or values may be explicitly listed
  5183  		in the "return" statement. Each expression must be single-valued
  5184  		and <a href="#Assignability">assignable</a>
  5185  		to the corresponding element of the function's result type.
  5186  <pre>
  5187  func simpleF() int {
  5188  	return 2
  5189  }
  5190  
  5191  func complexF1() (re float64, im float64) {
  5192  	return -7.0, -4.0
  5193  }
  5194  </pre>
  5195  	</li>
  5196  	<li>The expression list in the "return" statement may be a single
  5197  		call to a multi-valued function. The effect is as if each value
  5198  		returned from that function were assigned to a temporary
  5199  		variable with the type of the respective value, followed by a
  5200  		"return" statement listing these variables, at which point the
  5201  		rules of the previous case apply.
  5202  <pre>
  5203  func complexF2() (re float64, im float64) {
  5204  	return complexF1()
  5205  }
  5206  </pre>
  5207  	</li>
  5208  	<li>The expression list may be empty if the function's result
  5209  		type specifies names for its <a href="#Function_types">result parameters</a>.
  5210  		The result parameters act as ordinary local variables
  5211  		and the function may assign values to them as necessary.
  5212  		The "return" statement returns the values of these variables.
  5213  <pre>
  5214  func complexF3() (re float64, im float64) {
  5215  	re = 7.0
  5216  	im = 4.0
  5217  	return
  5218  }
  5219  
  5220  func (devnull) Write(p []byte) (n int, _ error) {
  5221  	n = len(p)
  5222  	return
  5223  }
  5224  </pre>
  5225  	</li>
  5226  </ol>
  5227  
  5228  <p>
  5229  Regardless of how they are declared, all the result values are initialized to
  5230  the <a href="#The_zero_value">zero values</a> for their type upon entry to the
  5231  function. A "return" statement that specifies results sets the result parameters before
  5232  any deferred functions are executed.
  5233  </p>
  5234  
  5235  <p>
  5236  Implementation restriction: A compiler may disallow an empty expression list
  5237  in a "return" statement if a different entity (constant, type, or variable)
  5238  with the same name as a result parameter is in
  5239  <a href="#Declarations_and_scope">scope</a> at the place of the return.
  5240  </p>
  5241  
  5242  <pre>
  5243  func f(n int) (res int, err error) {
  5244  	if _, err := f(n-1); err != nil {
  5245  		return  // invalid return statement: err is shadowed
  5246  	}
  5247  	return
  5248  }
  5249  </pre>
  5250  
  5251  <h3 id="Break_statements">Break statements</h3>
  5252  
  5253  <p>
  5254  A "break" statement terminates execution of the innermost
  5255  <a href="#For_statements">"for"</a>,
  5256  <a href="#Switch_statements">"switch"</a>, or
  5257  <a href="#Select_statements">"select"</a> statement
  5258  within the same function.
  5259  </p>
  5260  
  5261  <pre class="ebnf">
  5262  BreakStmt = "break" [ Label ] .
  5263  </pre>
  5264  
  5265  <p>
  5266  If there is a label, it must be that of an enclosing
  5267  "for", "switch", or "select" statement,
  5268  and that is the one whose execution terminates.
  5269  </p>
  5270  
  5271  <pre>
  5272  OuterLoop:
  5273  	for i = 0; i &lt; n; i++ {
  5274  		for j = 0; j &lt; m; j++ {
  5275  			switch a[i][j] {
  5276  			case nil:
  5277  				state = Error
  5278  				break OuterLoop
  5279  			case item:
  5280  				state = Found
  5281  				break OuterLoop
  5282  			}
  5283  		}
  5284  	}
  5285  </pre>
  5286  
  5287  <h3 id="Continue_statements">Continue statements</h3>
  5288  
  5289  <p>
  5290  A "continue" statement begins the next iteration of the
  5291  innermost <a href="#For_statements">"for" loop</a> at its post statement.
  5292  The "for" loop must be within the same function.
  5293  </p>
  5294  
  5295  <pre class="ebnf">
  5296  ContinueStmt = "continue" [ Label ] .
  5297  </pre>
  5298  
  5299  <p>
  5300  If there is a label, it must be that of an enclosing
  5301  "for" statement, and that is the one whose execution
  5302  advances.
  5303  </p>
  5304  
  5305  <pre>
  5306  RowLoop:
  5307  	for y, row := range rows {
  5308  		for x, data := range row {
  5309  			if data == endOfRow {
  5310  				continue RowLoop
  5311  			}
  5312  			row[x] = data + bias(x, y)
  5313  		}
  5314  	}
  5315  </pre>
  5316  
  5317  <h3 id="Goto_statements">Goto statements</h3>
  5318  
  5319  <p>
  5320  A "goto" statement transfers control to the statement with the corresponding label
  5321  within the same function.
  5322  </p>
  5323  
  5324  <pre class="ebnf">
  5325  GotoStmt = "goto" Label .
  5326  </pre>
  5327  
  5328  <pre>
  5329  goto Error
  5330  </pre>
  5331  
  5332  <p>
  5333  Executing the "goto" statement must not cause any variables to come into
  5334  <a href="#Declarations_and_scope">scope</a> that were not already in scope at the point of the goto.
  5335  For instance, this example:
  5336  </p>
  5337  
  5338  <pre>
  5339  	goto L  // BAD
  5340  	v := 3
  5341  L:
  5342  </pre>
  5343  
  5344  <p>
  5345  is erroneous because the jump to label <code>L</code> skips
  5346  the creation of <code>v</code>.
  5347  </p>
  5348  
  5349  <p>
  5350  A "goto" statement outside a <a href="#Blocks">block</a> cannot jump to a label inside that block.
  5351  For instance, this example:
  5352  </p>
  5353  
  5354  <pre>
  5355  if n%2 == 1 {
  5356  	goto L1
  5357  }
  5358  for n &gt; 0 {
  5359  	f()
  5360  	n--
  5361  L1:
  5362  	f()
  5363  	n--
  5364  }
  5365  </pre>
  5366  
  5367  <p>
  5368  is erroneous because the label <code>L1</code> is inside
  5369  the "for" statement's block but the <code>goto</code> is not.
  5370  </p>
  5371  
  5372  <h3 id="Fallthrough_statements">Fallthrough statements</h3>
  5373  
  5374  <p>
  5375  A "fallthrough" statement transfers control to the first statement of the
  5376  next case clause in an <a href="#Expression_switches">expression "switch" statement</a>.
  5377  It may be used only as the final non-empty statement in such a clause.
  5378  </p>
  5379  
  5380  <pre class="ebnf">
  5381  FallthroughStmt = "fallthrough" .
  5382  </pre>
  5383  
  5384  
  5385  <h3 id="Defer_statements">Defer statements</h3>
  5386  
  5387  <p>
  5388  A "defer" statement invokes a function whose execution is deferred
  5389  to the moment the surrounding function returns, either because the
  5390  surrounding function executed a <a href="#Return_statements">return statement</a>,
  5391  reached the end of its <a href="#Function_declarations">function body</a>,
  5392  or because the corresponding goroutine is <a href="#Handling_panics">panicking</a>.
  5393  </p>
  5394  
  5395  <pre class="ebnf">
  5396  DeferStmt = "defer" Expression .
  5397  </pre>
  5398  
  5399  <p>
  5400  The expression must be a function or method call; it cannot be parenthesized.
  5401  Calls of built-in functions are restricted as for
  5402  <a href="#Expression_statements">expression statements</a>.
  5403  </p>
  5404  
  5405  <p>
  5406  Each time a "defer" statement
  5407  executes, the function value and parameters to the call are
  5408  <a href="#Calls">evaluated as usual</a>
  5409  and saved anew but the actual function is not invoked.
  5410  Instead, deferred functions are invoked immediately before
  5411  the surrounding function returns, in the reverse order
  5412  they were deferred.
  5413  If a deferred function value evaluates
  5414  to <code>nil</code>, execution <a href="#Handling_panics">panics</a>
  5415  when the function is invoked, not when the "defer" statement is executed.
  5416  </p>
  5417  
  5418  <p>
  5419  For instance, if the deferred function is
  5420  a <a href="#Function_literals">function literal</a> and the surrounding
  5421  function has <a href="#Function_types">named result parameters</a> that
  5422  are in scope within the literal, the deferred function may access and modify
  5423  the result parameters before they are returned.
  5424  If the deferred function has any return values, they are discarded when
  5425  the function completes.
  5426  (See also the section on <a href="#Handling_panics">handling panics</a>.)
  5427  </p>
  5428  
  5429  <pre>
  5430  lock(l)
  5431  defer unlock(l)  // unlocking happens before surrounding function returns
  5432  
  5433  // prints 3 2 1 0 before surrounding function returns
  5434  for i := 0; i &lt;= 3; i++ {
  5435  	defer fmt.Print(i)
  5436  }
  5437  
  5438  // f returns 1
  5439  func f() (result int) {
  5440  	defer func() {
  5441  		result++
  5442  	}()
  5443  	return 0
  5444  }
  5445  </pre>
  5446  
  5447  <h2 id="Built-in_functions">Built-in functions</h2>
  5448  
  5449  <p>
  5450  Built-in functions are
  5451  <a href="#Predeclared_identifiers">predeclared</a>.
  5452  They are called like any other function but some of them
  5453  accept a type instead of an expression as the first argument.
  5454  </p>
  5455  
  5456  <p>
  5457  The built-in functions do not have standard Go types,
  5458  so they can only appear in <a href="#Calls">call expressions</a>;
  5459  they cannot be used as function values.
  5460  </p>
  5461  
  5462  <h3 id="Close">Close</h3>
  5463  
  5464  <p>
  5465  For a channel <code>c</code>, the built-in function <code>close(c)</code>
  5466  records that no more values will be sent on the channel.
  5467  It is an error if <code>c</code> is a receive-only channel.
  5468  Sending to or closing a closed channel causes a <a href="#Run_time_panics">run-time panic</a>.
  5469  Closing the nil channel also causes a <a href="#Run_time_panics">run-time panic</a>.
  5470  After calling <code>close</code>, and after any previously
  5471  sent values have been received, receive operations will return
  5472  the zero value for the channel's type without blocking.
  5473  The multi-valued <a href="#Receive_operator">receive operation</a>
  5474  returns a received value along with an indication of whether the channel is closed.
  5475  </p>
  5476  
  5477  
  5478  <h3 id="Length_and_capacity">Length and capacity</h3>
  5479  
  5480  <p>
  5481  The built-in functions <code>len</code> and <code>cap</code> take arguments
  5482  of various types and return a result of type <code>int</code>.
  5483  The implementation guarantees that the result always fits into an <code>int</code>.
  5484  </p>
  5485  
  5486  <pre class="grammar">
  5487  Call      Argument type    Result
  5488  
  5489  len(s)    string type      string length in bytes
  5490            [n]T, *[n]T      array length (== n)
  5491            []T              slice length
  5492            map[K]T          map length (number of defined keys)
  5493            chan T           number of elements queued in channel buffer
  5494  
  5495  cap(s)    [n]T, *[n]T      array length (== n)
  5496            []T              slice capacity
  5497            chan T           channel buffer capacity
  5498  </pre>
  5499  
  5500  <p>
  5501  The capacity of a slice is the number of elements for which there is
  5502  space allocated in the underlying array.
  5503  At any time the following relationship holds:
  5504  </p>
  5505  
  5506  <pre>
  5507  0 &lt;= len(s) &lt;= cap(s)
  5508  </pre>
  5509  
  5510  <p>
  5511  The length of a <code>nil</code> slice, map or channel is 0.
  5512  The capacity of a <code>nil</code> slice or channel is 0.
  5513  </p>
  5514  
  5515  <p>
  5516  The expression <code>len(s)</code> is <a href="#Constants">constant</a> if
  5517  <code>s</code> is a string constant. The expressions <code>len(s)</code> and
  5518  <code>cap(s)</code> are constants if the type of <code>s</code> is an array
  5519  or pointer to an array and the expression <code>s</code> does not contain
  5520  <a href="#Receive_operator">channel receives</a> or (non-constant)
  5521  <a href="#Calls">function calls</a>; in this case <code>s</code> is not evaluated.
  5522  Otherwise, invocations of <code>len</code> and <code>cap</code> are not
  5523  constant and <code>s</code> is evaluated.
  5524  </p>
  5525  
  5526  <pre>
  5527  const (
  5528  	c1 = imag(2i)                    // imag(2i) = 2.0 is a constant
  5529  	c2 = len([10]float64{2})         // [10]float64{2} contains no function calls
  5530  	c3 = len([10]float64{c1})        // [10]float64{c1} contains no function calls
  5531  	c4 = len([10]float64{imag(2i)})  // imag(2i) is a constant and no function call is issued
  5532  	c5 = len([10]float64{imag(z)})   // invalid: imag(z) is a (non-constant) function call
  5533  )
  5534  var z complex128
  5535  </pre>
  5536  
  5537  <h3 id="Allocation">Allocation</h3>
  5538  
  5539  <p>
  5540  The built-in function <code>new</code> takes a type <code>T</code>,
  5541  allocates storage for a <a href="#Variables">variable</a> of that type
  5542  at run time, and returns a value of type <code>*T</code>
  5543  <a href="#Pointer_types">pointing</a> to it.
  5544  The variable is initialized as described in the section on
  5545  <a href="#The_zero_value">initial values</a>.
  5546  </p>
  5547  
  5548  <pre class="grammar">
  5549  new(T)
  5550  </pre>
  5551  
  5552  <p>
  5553  For instance
  5554  </p>
  5555  
  5556  <pre>
  5557  type S struct { a int; b float64 }
  5558  new(S)
  5559  </pre>
  5560  
  5561  <p>
  5562  allocates storage for a variable of type <code>S</code>,
  5563  initializes it (<code>a=0</code>, <code>b=0.0</code>),
  5564  and returns a value of type <code>*S</code> containing the address
  5565  of the location.
  5566  </p>
  5567  
  5568  <h3 id="Making_slices_maps_and_channels">Making slices, maps and channels</h3>
  5569  
  5570  <p>
  5571  The built-in function <code>make</code> takes a type <code>T</code>,
  5572  which must be a slice, map or channel type,
  5573  optionally followed by a type-specific list of expressions.
  5574  It returns a value of type <code>T</code> (not <code>*T</code>).
  5575  The memory is initialized as described in the section on
  5576  <a href="#The_zero_value">initial values</a>.
  5577  </p>
  5578  
  5579  <pre class="grammar">
  5580  Call             Type T     Result
  5581  
  5582  make(T, n)       slice      slice of type T with length n and capacity n
  5583  make(T, n, m)    slice      slice of type T with length n and capacity m
  5584  
  5585  make(T)          map        map of type T
  5586  make(T, n)       map        map of type T with initial space for n elements
  5587  
  5588  make(T)          channel    unbuffered channel of type T
  5589  make(T, n)       channel    buffered channel of type T, buffer size n
  5590  </pre>
  5591  
  5592  
  5593  <p>
  5594  The size arguments <code>n</code> and <code>m</code> must be of integer type or untyped.
  5595  A <a href="#Constants">constant</a> size argument must be non-negative and
  5596  representable by a value of type <code>int</code>.
  5597  If both <code>n</code> and <code>m</code> are provided and are constant, then
  5598  <code>n</code> must be no larger than <code>m</code>.
  5599  If <code>n</code> is negative or larger than <code>m</code> at run time,
  5600  a <a href="#Run_time_panics">run-time panic</a> occurs.
  5601  </p>
  5602  
  5603  <pre>
  5604  s := make([]int, 10, 100)       // slice with len(s) == 10, cap(s) == 100
  5605  s := make([]int, 1e3)           // slice with len(s) == cap(s) == 1000
  5606  s := make([]int, 1&lt;&lt;63)         // illegal: len(s) is not representable by a value of type int
  5607  s := make([]int, 10, 0)         // illegal: len(s) > cap(s)
  5608  c := make(chan int, 10)         // channel with a buffer size of 10
  5609  m := make(map[string]int, 100)  // map with initial space for 100 elements
  5610  </pre>
  5611  
  5612  
  5613  <h3 id="Appending_and_copying_slices">Appending to and copying slices</h3>
  5614  
  5615  <p>
  5616  The built-in functions <code>append</code> and <code>copy</code> assist in
  5617  common slice operations.
  5618  For both functions, the result is independent of whether the memory referenced
  5619  by the arguments overlaps.
  5620  </p>
  5621  
  5622  <p>
  5623  The <a href="#Function_types">variadic</a> function <code>append</code>
  5624  appends zero or more values <code>x</code>
  5625  to <code>s</code> of type <code>S</code>, which must be a slice type, and
  5626  returns the resulting slice, also of type <code>S</code>.
  5627  The values <code>x</code> are passed to a parameter of type <code>...T</code>
  5628  where <code>T</code> is the <a href="#Slice_types">element type</a> of
  5629  <code>S</code> and the respective
  5630  <a href="#Passing_arguments_to_..._parameters">parameter passing rules</a> apply.
  5631  As a special case, <code>append</code> also accepts a first argument
  5632  assignable to type <code>[]byte</code> with a second argument of
  5633  string type followed by <code>...</code>. This form appends the
  5634  bytes of the string.
  5635  </p>
  5636  
  5637  <pre class="grammar">
  5638  append(s S, x ...T) S  // T is the element type of S
  5639  </pre>
  5640  
  5641  <p>
  5642  If the capacity of <code>s</code> is not large enough to fit the additional
  5643  values, <code>append</code> allocates a new, sufficiently large underlying
  5644  array that fits both the existing slice elements and the additional values.
  5645  Otherwise, <code>append</code> re-uses the underlying array.
  5646  </p>
  5647  
  5648  <pre>
  5649  s0 := []int{0, 0}
  5650  s1 := append(s0, 2)                // append a single element     s1 == []int{0, 0, 2}
  5651  s2 := append(s1, 3, 5, 7)          // append multiple elements    s2 == []int{0, 0, 2, 3, 5, 7}
  5652  s3 := append(s2, s0...)            // append a slice              s3 == []int{0, 0, 2, 3, 5, 7, 0, 0}
  5653  s4 := append(s3[3:6], s3[2:]...)   // append overlapping slice    s4 == []int{3, 5, 7, 2, 3, 5, 7, 0, 0}
  5654  
  5655  var t []interface{}
  5656  t = append(t, 42, 3.1415, "foo")   //                             t == []interface{}{42, 3.1415, "foo"}
  5657  
  5658  var b []byte
  5659  b = append(b, "bar"...)            // append string contents      b == []byte{'b', 'a', 'r' }
  5660  </pre>
  5661  
  5662  <p>
  5663  The function <code>copy</code> copies slice elements from
  5664  a source <code>src</code> to a destination <code>dst</code> and returns the
  5665  number of elements copied.
  5666  Both arguments must have <a href="#Type_identity">identical</a> element type <code>T</code> and must be
  5667  <a href="#Assignability">assignable</a> to a slice of type <code>[]T</code>.
  5668  The number of elements copied is the minimum of
  5669  <code>len(src)</code> and <code>len(dst)</code>.
  5670  As a special case, <code>copy</code> also accepts a destination argument assignable
  5671  to type <code>[]byte</code> with a source argument of a string type.
  5672  This form copies the bytes from the string into the byte slice.
  5673  </p>
  5674  
  5675  <pre class="grammar">
  5676  copy(dst, src []T) int
  5677  copy(dst []byte, src string) int
  5678  </pre>
  5679  
  5680  <p>
  5681  Examples:
  5682  </p>
  5683  
  5684  <pre>
  5685  var a = [...]int{0, 1, 2, 3, 4, 5, 6, 7}
  5686  var s = make([]int, 6)
  5687  var b = make([]byte, 5)
  5688  n1 := copy(s, a[0:])            // n1 == 6, s == []int{0, 1, 2, 3, 4, 5}
  5689  n2 := copy(s, s[2:])            // n2 == 4, s == []int{2, 3, 4, 5, 4, 5}
  5690  n3 := copy(b, "Hello, World!")  // n3 == 5, b == []byte("Hello")
  5691  </pre>
  5692  
  5693  
  5694  <h3 id="Deletion_of_map_elements">Deletion of map elements</h3>
  5695  
  5696  <p>
  5697  The built-in function <code>delete</code> removes the element with key
  5698  <code>k</code> from a <a href="#Map_types">map</a> <code>m</code>. The
  5699  type of <code>k</code> must be <a href="#Assignability">assignable</a>
  5700  to the key type of <code>m</code>.
  5701  </p>
  5702  
  5703  <pre class="grammar">
  5704  delete(m, k)  // remove element m[k] from map m
  5705  </pre>
  5706  
  5707  <p>
  5708  If the map <code>m</code> is <code>nil</code> or the element <code>m[k]</code>
  5709  does not exist, <code>delete</code> is a no-op.
  5710  </p>
  5711  
  5712  
  5713  <h3 id="Complex_numbers">Manipulating complex numbers</h3>
  5714  
  5715  <p>
  5716  Three functions assemble and disassemble complex numbers.
  5717  The built-in function <code>complex</code> constructs a complex
  5718  value from a floating-point real and imaginary part, while
  5719  <code>real</code> and <code>imag</code>
  5720  extract the real and imaginary parts of a complex value.
  5721  </p>
  5722  
  5723  <pre class="grammar">
  5724  complex(realPart, imaginaryPart floatT) complexT
  5725  real(complexT) floatT
  5726  imag(complexT) floatT
  5727  </pre>
  5728  
  5729  <p>
  5730  The type of the arguments and return value correspond.
  5731  For <code>complex</code>, the two arguments must be of the same
  5732  floating-point type and the return type is the complex type
  5733  with the corresponding floating-point constituents:
  5734  <code>complex64</code> for <code>float32</code> arguments, and
  5735  <code>complex128</code> for <code>float64</code> arguments.
  5736  If one of the arguments evaluates to an untyped constant, it is first
  5737  <a href="#Conversions">converted</a> to the type of the other argument.
  5738  If both arguments evaluate to untyped constants, they must be non-complex
  5739  numbers or their imaginary parts must be zero, and the return value of
  5740  the function is an untyped complex constant.
  5741  </p>
  5742  
  5743  <p>
  5744  For <code>real</code> and <code>imag</code>, the argument must be
  5745  of complex type, and the return type is the corresponding floating-point
  5746  type: <code>float32</code> for a <code>complex64</code> argument, and
  5747  <code>float64</code> for a <code>complex128</code> argument.
  5748  If the argument evaluates to an untyped constant, it must be a number,
  5749  and the return value of the function is an untyped floating-point constant.
  5750  </p>
  5751  
  5752  <p>
  5753  The <code>real</code> and <code>imag</code> functions together form the inverse of
  5754  <code>complex</code>, so for a value <code>z</code> of a complex type <code>Z</code>,
  5755  <code>z&nbsp;==&nbsp;Z(complex(real(z),&nbsp;imag(z)))</code>.
  5756  </p>
  5757  
  5758  <p>
  5759  If the operands of these functions are all constants, the return
  5760  value is a constant.
  5761  </p>
  5762  
  5763  <pre>
  5764  var a = complex(2, -2)             // complex128
  5765  const b = complex(1.0, -1.4)       // untyped complex constant 1 - 1.4i
  5766  x := float32(math.Cos(math.Pi/2))  // float32
  5767  var c64 = complex(5, -x)           // complex64
  5768  var s uint = complex(1, 0)         // untyped complex constant 1 + 0i can be converted to uint
  5769  _ = complex(1, 2&lt;&lt;s)               // illegal: 2 assumes floating-point type, cannot shift
  5770  var rl = real(c64)                 // float32
  5771  var im = imag(a)                   // float64
  5772  const c = imag(b)                  // untyped constant -1.4
  5773  _ = imag(3 &lt;&lt; s)                   // illegal: 3 assumes complex type, cannot shift
  5774  </pre>
  5775  
  5776  <h3 id="Handling_panics">Handling panics</h3>
  5777  
  5778  <p> Two built-in functions, <code>panic</code> and <code>recover</code>,
  5779  assist in reporting and handling <a href="#Run_time_panics">run-time panics</a>
  5780  and program-defined error conditions.
  5781  </p>
  5782  
  5783  <pre class="grammar">
  5784  func panic(interface{})
  5785  func recover() interface{}
  5786  </pre>
  5787  
  5788  <p>
  5789  While executing a function <code>F</code>,
  5790  an explicit call to <code>panic</code> or a <a href="#Run_time_panics">run-time panic</a>
  5791  terminates the execution of <code>F</code>.
  5792  Any functions <a href="#Defer_statements">deferred</a> by <code>F</code>
  5793  are then executed as usual.
  5794  Next, any deferred functions run by <code>F's</code> caller are run,
  5795  and so on up to any deferred by the top-level function in the executing goroutine.
  5796  At that point, the program is terminated and the error
  5797  condition is reported, including the value of the argument to <code>panic</code>.
  5798  This termination sequence is called <i>panicking</i>.
  5799  </p>
  5800  
  5801  <pre>
  5802  panic(42)
  5803  panic("unreachable")
  5804  panic(Error("cannot parse"))
  5805  </pre>
  5806  
  5807  <p>
  5808  The <code>recover</code> function allows a program to manage behavior
  5809  of a panicking goroutine.
  5810  Suppose a function <code>G</code> defers a function <code>D</code> that calls
  5811  <code>recover</code> and a panic occurs in a function on the same goroutine in which <code>G</code>
  5812  is executing.
  5813  When the running of deferred functions reaches <code>D</code>,
  5814  the return value of <code>D</code>'s call to <code>recover</code> will be the value passed to the call of <code>panic</code>.
  5815  If <code>D</code> returns normally, without starting a new
  5816  <code>panic</code>, the panicking sequence stops. In that case,
  5817  the state of functions called between <code>G</code> and the call to <code>panic</code>
  5818  is discarded, and normal execution resumes.
  5819  Any functions deferred by <code>G</code> before <code>D</code> are then run and <code>G</code>'s
  5820  execution terminates by returning to its caller.
  5821  </p>
  5822  
  5823  <p>
  5824  The return value of <code>recover</code> is <code>nil</code> if any of the following conditions holds:
  5825  </p>
  5826  <ul>
  5827  <li>
  5828  <code>panic</code>'s argument was <code>nil</code>;
  5829  </li>
  5830  <li>
  5831  the goroutine is not panicking;
  5832  </li>
  5833  <li>
  5834  <code>recover</code> was not called directly by a deferred function.
  5835  </li>
  5836  </ul>
  5837  
  5838  <p>
  5839  The <code>protect</code> function in the example below invokes
  5840  the function argument <code>g</code> and protects callers from
  5841  run-time panics raised by <code>g</code>.
  5842  </p>
  5843  
  5844  <pre>
  5845  func protect(g func()) {
  5846  	defer func() {
  5847  		log.Println("done")  // Println executes normally even if there is a panic
  5848  		if x := recover(); x != nil {
  5849  			log.Printf("run time panic: %v", x)
  5850  		}
  5851  	}()
  5852  	log.Println("start")
  5853  	g()
  5854  }
  5855  </pre>
  5856  
  5857  
  5858  <h3 id="Bootstrapping">Bootstrapping</h3>
  5859  
  5860  <p>
  5861  Current implementations provide several built-in functions useful during
  5862  bootstrapping. These functions are documented for completeness but are not
  5863  guaranteed to stay in the language. They do not return a result.
  5864  </p>
  5865  
  5866  <pre class="grammar">
  5867  Function   Behavior
  5868  
  5869  print      prints all arguments; formatting of arguments is implementation-specific
  5870  println    like print but prints spaces between arguments and a newline at the end
  5871  </pre>
  5872  
  5873  
  5874  <h2 id="Packages">Packages</h2>
  5875  
  5876  <p>
  5877  Go programs are constructed by linking together <i>packages</i>.
  5878  A package in turn is constructed from one or more source files
  5879  that together declare constants, types, variables and functions
  5880  belonging to the package and which are accessible in all files
  5881  of the same package. Those elements may be
  5882  <a href="#Exported_identifiers">exported</a> and used in another package.
  5883  </p>
  5884  
  5885  <h3 id="Source_file_organization">Source file organization</h3>
  5886  
  5887  <p>
  5888  Each source file consists of a package clause defining the package
  5889  to which it belongs, followed by a possibly empty set of import
  5890  declarations that declare packages whose contents it wishes to use,
  5891  followed by a possibly empty set of declarations of functions,
  5892  types, variables, and constants.
  5893  </p>
  5894  
  5895  <pre class="ebnf">
  5896  SourceFile       = PackageClause ";" { ImportDecl ";" } { TopLevelDecl ";" } .
  5897  </pre>
  5898  
  5899  <h3 id="Package_clause">Package clause</h3>
  5900  
  5901  <p>
  5902  A package clause begins each source file and defines the package
  5903  to which the file belongs.
  5904  </p>
  5905  
  5906  <pre class="ebnf">
  5907  PackageClause  = "package" PackageName .
  5908  PackageName    = identifier .
  5909  </pre>
  5910  
  5911  <p>
  5912  The PackageName must not be the <a href="#Blank_identifier">blank identifier</a>.
  5913  </p>
  5914  
  5915  <pre>
  5916  package math
  5917  </pre>
  5918  
  5919  <p>
  5920  A set of files sharing the same PackageName form the implementation of a package.
  5921  An implementation may require that all source files for a package inhabit the same directory.
  5922  </p>
  5923  
  5924  <h3 id="Import_declarations">Import declarations</h3>
  5925  
  5926  <p>
  5927  An import declaration states that the source file containing the declaration
  5928  depends on functionality of the <i>imported</i> package
  5929  (<a href="#Program_initialization_and_execution">§Program initialization and execution</a>)
  5930  and enables access to <a href="#Exported_identifiers">exported</a> identifiers
  5931  of that package.
  5932  The import names an identifier (PackageName) to be used for access and an ImportPath
  5933  that specifies the package to be imported.
  5934  </p>
  5935  
  5936  <pre class="ebnf">
  5937  ImportDecl       = "import" ( ImportSpec | "(" { ImportSpec ";" } ")" ) .
  5938  ImportSpec       = [ "." | PackageName ] ImportPath .
  5939  ImportPath       = string_lit .
  5940  </pre>
  5941  
  5942  <p>
  5943  The PackageName is used in <a href="#Qualified_identifiers">qualified identifiers</a>
  5944  to access exported identifiers of the package within the importing source file.
  5945  It is declared in the <a href="#Blocks">file block</a>.
  5946  If the PackageName is omitted, it defaults to the identifier specified in the
  5947  <a href="#Package_clause">package clause</a> of the imported package.
  5948  If an explicit period (<code>.</code>) appears instead of a name, all the
  5949  package's exported identifiers declared in that package's
  5950  <a href="#Blocks">package block</a> will be declared in the importing source
  5951  file's file block and must be accessed without a qualifier.
  5952  </p>
  5953  
  5954  <p>
  5955  The interpretation of the ImportPath is implementation-dependent but
  5956  it is typically a substring of the full file name of the compiled
  5957  package and may be relative to a repository of installed packages.
  5958  </p>
  5959  
  5960  <p>
  5961  Implementation restriction: A compiler may restrict ImportPaths to
  5962  non-empty strings using only characters belonging to
  5963  <a href="http://www.unicode.org/versions/Unicode6.3.0/">Unicode's</a>
  5964  L, M, N, P, and S general categories (the Graphic characters without
  5965  spaces) and may also exclude the characters
  5966  <code>!"#$%&amp;'()*,:;&lt;=&gt;?[\]^`{|}</code>
  5967  and the Unicode replacement character U+FFFD.
  5968  </p>
  5969  
  5970  <p>
  5971  Assume we have compiled a package containing the package clause
  5972  <code>package math</code>, which exports function <code>Sin</code>, and
  5973  installed the compiled package in the file identified by
  5974  <code>"lib/math"</code>.
  5975  This table illustrates how <code>Sin</code> is accessed in files
  5976  that import the package after the
  5977  various types of import declaration.
  5978  </p>
  5979  
  5980  <pre class="grammar">
  5981  Import declaration          Local name of Sin
  5982  
  5983  import   "lib/math"         math.Sin
  5984  import m "lib/math"         m.Sin
  5985  import . "lib/math"         Sin
  5986  </pre>
  5987  
  5988  <p>
  5989  An import declaration declares a dependency relation between
  5990  the importing and imported package.
  5991  It is illegal for a package to import itself, directly or indirectly,
  5992  or to directly import a package without
  5993  referring to any of its exported identifiers. To import a package solely for
  5994  its side-effects (initialization), use the <a href="#Blank_identifier">blank</a>
  5995  identifier as explicit package name:
  5996  </p>
  5997  
  5998  <pre>
  5999  import _ "lib/math"
  6000  </pre>
  6001  
  6002  
  6003  <h3 id="An_example_package">An example package</h3>
  6004  
  6005  <p>
  6006  Here is a complete Go package that implements a concurrent prime sieve.
  6007  </p>
  6008  
  6009  <pre>
  6010  package main
  6011  
  6012  import "fmt"
  6013  
  6014  // Send the sequence 2, 3, 4, … to channel 'ch'.
  6015  func generate(ch chan&lt;- int) {
  6016  	for i := 2; ; i++ {
  6017  		ch &lt;- i  // Send 'i' to channel 'ch'.
  6018  	}
  6019  }
  6020  
  6021  // Copy the values from channel 'src' to channel 'dst',
  6022  // removing those divisible by 'prime'.
  6023  func filter(src &lt;-chan int, dst chan&lt;- int, prime int) {
  6024  	for i := range src {  // Loop over values received from 'src'.
  6025  		if i%prime != 0 {
  6026  			dst &lt;- i  // Send 'i' to channel 'dst'.
  6027  		}
  6028  	}
  6029  }
  6030  
  6031  // The prime sieve: Daisy-chain filter processes together.
  6032  func sieve() {
  6033  	ch := make(chan int)  // Create a new channel.
  6034  	go generate(ch)       // Start generate() as a subprocess.
  6035  	for {
  6036  		prime := &lt;-ch
  6037  		fmt.Print(prime, "\n")
  6038  		ch1 := make(chan int)
  6039  		go filter(ch, ch1, prime)
  6040  		ch = ch1
  6041  	}
  6042  }
  6043  
  6044  func main() {
  6045  	sieve()
  6046  }
  6047  </pre>
  6048  
  6049  <h2 id="Program_initialization_and_execution">Program initialization and execution</h2>
  6050  
  6051  <h3 id="The_zero_value">The zero value</h3>
  6052  <p>
  6053  When storage is allocated for a <a href="#Variables">variable</a>,
  6054  either through a declaration or a call of <code>new</code>, or when
  6055  a new value is created, either through a composite literal or a call
  6056  of <code>make</code>,
  6057  and no explicit initialization is provided, the variable or value is
  6058  given a default value.  Each element of such a variable or value is
  6059  set to the <i>zero value</i> for its type: <code>false</code> for booleans,
  6060  <code>0</code> for integers, <code>0.0</code> for floats, <code>""</code>
  6061  for strings, and <code>nil</code> for pointers, functions, interfaces, slices, channels, and maps.
  6062  This initialization is done recursively, so for instance each element of an
  6063  array of structs will have its fields zeroed if no value is specified.
  6064  </p>
  6065  <p>
  6066  These two simple declarations are equivalent:
  6067  </p>
  6068  
  6069  <pre>
  6070  var i int
  6071  var i int = 0
  6072  </pre>
  6073  
  6074  <p>
  6075  After
  6076  </p>
  6077  
  6078  <pre>
  6079  type T struct { i int; f float64; next *T }
  6080  t := new(T)
  6081  </pre>
  6082  
  6083  <p>
  6084  the following holds:
  6085  </p>
  6086  
  6087  <pre>
  6088  t.i == 0
  6089  t.f == 0.0
  6090  t.next == nil
  6091  </pre>
  6092  
  6093  <p>
  6094  The same would also be true after
  6095  </p>
  6096  
  6097  <pre>
  6098  var t T
  6099  </pre>
  6100  
  6101  <h3 id="Package_initialization">Package initialization</h3>
  6102  
  6103  <p>
  6104  Within a package, package-level variables are initialized in
  6105  <i>declaration order</i> but after any of the variables
  6106  they <i>depend</i> on.
  6107  </p>
  6108  
  6109  <p>
  6110  More precisely, a package-level variable is considered <i>ready for
  6111  initialization</i> if it is not yet initialized and either has
  6112  no <a href="#Variable_declarations">initialization expression</a> or
  6113  its initialization expression has no dependencies on uninitialized variables.
  6114  Initialization proceeds by repeatedly initializing the next package-level
  6115  variable that is earliest in declaration order and ready for initialization,
  6116  until there are no variables ready for initialization.
  6117  </p>
  6118  
  6119  <p>
  6120  If any variables are still uninitialized when this
  6121  process ends, those variables are part of one or more initialization cycles,
  6122  and the program is not valid.
  6123  </p>
  6124  
  6125  <p>
  6126  The declaration order of variables declared in multiple files is determined
  6127  by the order in which the files are presented to the compiler: Variables
  6128  declared in the first file are declared before any of the variables declared
  6129  in the second file, and so on.
  6130  </p>
  6131  
  6132  <p>
  6133  Dependency analysis does not rely on the actual values of the
  6134  variables, only on lexical <i>references</i> to them in the source,
  6135  analyzed transitively. For instance, if a variable <code>x</code>'s
  6136  initialization expression refers to a function whose body refers to
  6137  variable <code>y</code> then <code>x</code> depends on <code>y</code>.
  6138  Specifically:
  6139  </p>
  6140  
  6141  <ul>
  6142  <li>
  6143  A reference to a variable or function is an identifier denoting that
  6144  variable or function.
  6145  </li>
  6146  
  6147  <li>
  6148  A reference to a method <code>m</code> is a
  6149  <a href="#Method_values">method value</a> or
  6150  <a href="#Method_expressions">method expression</a> of the form
  6151  <code>t.m</code>, where the (static) type of <code>t</code> is
  6152  not an interface type, and the method <code>m</code> is in the
  6153  <a href="#Method_sets">method set</a> of <code>t</code>.
  6154  It is immaterial whether the resulting function value
  6155  <code>t.m</code> is invoked.
  6156  </li>
  6157  
  6158  <li>
  6159  A variable, function, or method <code>x</code> depends on a variable
  6160  <code>y</code> if <code>x</code>'s initialization expression or body
  6161  (for functions and methods) contains a reference to <code>y</code>
  6162  or to a function or method that depends on <code>y</code>.
  6163  </li>
  6164  </ul>
  6165  
  6166  <p>
  6167  Dependency analysis is performed per package; only references referring
  6168  to variables, functions, and methods declared in the current package
  6169  are considered.
  6170  </p>
  6171  
  6172  <p>
  6173  For example, given the declarations
  6174  </p>
  6175  
  6176  <pre>
  6177  var (
  6178  	a = c + b
  6179  	b = f()
  6180  	c = f()
  6181  	d = 3
  6182  )
  6183  
  6184  func f() int {
  6185  	d++
  6186  	return d
  6187  }
  6188  </pre>
  6189  
  6190  <p>
  6191  the initialization order is <code>d</code>, <code>b</code>, <code>c</code>, <code>a</code>.
  6192  </p>
  6193  
  6194  <p>
  6195  Variables may also be initialized using functions named <code>init</code>
  6196  declared in the package block, with no arguments and no result parameters.
  6197  </p>
  6198  
  6199  <pre>
  6200  func init() { … }
  6201  </pre>
  6202  
  6203  <p>
  6204  Multiple such functions may be defined per package, even within a single
  6205  source file. In the package block, the <code>init</code> identifier can
  6206  be used only to declare <code>init</code> functions, yet the identifier
  6207  itself is not <a href="#Declarations_and_scope">declared</a>. Thus
  6208  <code>init</code> functions cannot be referred to from anywhere
  6209  in a program.
  6210  </p>
  6211  
  6212  <p>
  6213  A package with no imports is initialized by assigning initial values
  6214  to all its package-level variables followed by calling all <code>init</code>
  6215  functions in the order they appear in the source, possibly in multiple files,
  6216  as presented to the compiler.
  6217  If a package has imports, the imported packages are initialized
  6218  before initializing the package itself. If multiple packages import
  6219  a package, the imported package will be initialized only once.
  6220  The importing of packages, by construction, guarantees that there
  6221  can be no cyclic initialization dependencies.
  6222  </p>
  6223  
  6224  <p>
  6225  Package initialization&mdash;variable initialization and the invocation of
  6226  <code>init</code> functions&mdash;happens in a single goroutine,
  6227  sequentially, one package at a time.
  6228  An <code>init</code> function may launch other goroutines, which can run
  6229  concurrently with the initialization code. However, initialization
  6230  always sequences
  6231  the <code>init</code> functions: it will not invoke the next one
  6232  until the previous one has returned.
  6233  </p>
  6234  
  6235  <p>
  6236  To ensure reproducible initialization behavior, build systems are encouraged
  6237  to present multiple files belonging to the same package in lexical file name
  6238  order to a compiler.
  6239  </p>
  6240  
  6241  
  6242  <h3 id="Program_execution">Program execution</h3>
  6243  <p>
  6244  A complete program is created by linking a single, unimported package
  6245  called the <i>main package</i> with all the packages it imports, transitively.
  6246  The main package must
  6247  have package name <code>main</code> and
  6248  declare a function <code>main</code> that takes no
  6249  arguments and returns no value.
  6250  </p>
  6251  
  6252  <pre>
  6253  func main() { … }
  6254  </pre>
  6255  
  6256  <p>
  6257  Program execution begins by initializing the main package and then
  6258  invoking the function <code>main</code>.
  6259  When that function invocation returns, the program exits.
  6260  It does not wait for other (non-<code>main</code>) goroutines to complete.
  6261  </p>
  6262  
  6263  <h2 id="Errors">Errors</h2>
  6264  
  6265  <p>
  6266  The predeclared type <code>error</code> is defined as
  6267  </p>
  6268  
  6269  <pre>
  6270  type error interface {
  6271  	Error() string
  6272  }
  6273  </pre>
  6274  
  6275  <p>
  6276  It is the conventional interface for representing an error condition,
  6277  with the nil value representing no error.
  6278  For instance, a function to read data from a file might be defined:
  6279  </p>
  6280  
  6281  <pre>
  6282  func Read(f *File, b []byte) (n int, err error)
  6283  </pre>
  6284  
  6285  <h2 id="Run_time_panics">Run-time panics</h2>
  6286  
  6287  <p>
  6288  Execution errors such as attempting to index an array out
  6289  of bounds trigger a <i>run-time panic</i> equivalent to a call of
  6290  the built-in function <a href="#Handling_panics"><code>panic</code></a>
  6291  with a value of the implementation-defined interface type <code>runtime.Error</code>.
  6292  That type satisfies the predeclared interface type
  6293  <a href="#Errors"><code>error</code></a>.
  6294  The exact error values that
  6295  represent distinct run-time error conditions are unspecified.
  6296  </p>
  6297  
  6298  <pre>
  6299  package runtime
  6300  
  6301  type Error interface {
  6302  	error
  6303  	// and perhaps other methods
  6304  }
  6305  </pre>
  6306  
  6307  <h2 id="System_considerations">System considerations</h2>
  6308  
  6309  <h3 id="Package_unsafe">Package <code>unsafe</code></h3>
  6310  
  6311  <p>
  6312  The built-in package <code>unsafe</code>, known to the compiler,
  6313  provides facilities for low-level programming including operations
  6314  that violate the type system. A package using <code>unsafe</code>
  6315  must be vetted manually for type safety and may not be portable.
  6316  The package provides the following interface:
  6317  </p>
  6318  
  6319  <pre class="grammar">
  6320  package unsafe
  6321  
  6322  type ArbitraryType int  // shorthand for an arbitrary Go type; it is not a real type
  6323  type Pointer *ArbitraryType
  6324  
  6325  func Alignof(variable ArbitraryType) uintptr
  6326  func Offsetof(selector ArbitraryType) uintptr
  6327  func Sizeof(variable ArbitraryType) uintptr
  6328  </pre>
  6329  
  6330  <p>
  6331  A <code>Pointer</code> is a <a href="#Pointer_types">pointer type</a> but a <code>Pointer</code>
  6332  value may not be <a href="#Address_operators">dereferenced</a>.
  6333  Any pointer or value of <a href="#Types">underlying type</a> <code>uintptr</code> can be converted to
  6334  a <code>Pointer</code> type and vice versa.
  6335  The effect of converting between <code>Pointer</code> and <code>uintptr</code> is implementation-defined.
  6336  </p>
  6337  
  6338  <pre>
  6339  var f float64
  6340  bits = *(*uint64)(unsafe.Pointer(&amp;f))
  6341  
  6342  type ptr unsafe.Pointer
  6343  bits = *(*uint64)(ptr(&amp;f))
  6344  
  6345  var p ptr = nil
  6346  </pre>
  6347  
  6348  <p>
  6349  The functions <code>Alignof</code> and <code>Sizeof</code> take an expression <code>x</code>
  6350  of any type and return the alignment or size, respectively, of a hypothetical variable <code>v</code>
  6351  as if <code>v</code> was declared via <code>var v = x</code>.
  6352  </p>
  6353  <p>
  6354  The function <code>Offsetof</code> takes a (possibly parenthesized) <a href="#Selectors">selector</a>
  6355  <code>s.f</code>, denoting a field <code>f</code> of the struct denoted by <code>s</code>
  6356  or <code>*s</code>, and returns the field offset in bytes relative to the struct's address.
  6357  If <code>f</code> is an <a href="#Struct_types">embedded field</a>, it must be reachable
  6358  without pointer indirections through fields of the struct.
  6359  For a struct <code>s</code> with field <code>f</code>:
  6360  </p>
  6361  
  6362  <pre>
  6363  uintptr(unsafe.Pointer(&amp;s)) + unsafe.Offsetof(s.f) == uintptr(unsafe.Pointer(&amp;s.f))
  6364  </pre>
  6365  
  6366  <p>
  6367  Computer architectures may require memory addresses to be <i>aligned</i>;
  6368  that is, for addresses of a variable to be a multiple of a factor,
  6369  the variable's type's <i>alignment</i>.  The function <code>Alignof</code>
  6370  takes an expression denoting a variable of any type and returns the
  6371  alignment of the (type of the) variable in bytes.  For a variable
  6372  <code>x</code>:
  6373  </p>
  6374  
  6375  <pre>
  6376  uintptr(unsafe.Pointer(&amp;x)) % unsafe.Alignof(x) == 0
  6377  </pre>
  6378  
  6379  <p>
  6380  Calls to <code>Alignof</code>, <code>Offsetof</code>, and
  6381  <code>Sizeof</code> are compile-time constant expressions of type <code>uintptr</code>.
  6382  </p>
  6383  
  6384  <h3 id="Size_and_alignment_guarantees">Size and alignment guarantees</h3>
  6385  
  6386  <p>
  6387  For the <a href="#Numeric_types">numeric types</a>, the following sizes are guaranteed:
  6388  </p>
  6389  
  6390  <pre class="grammar">
  6391  type                                 size in bytes
  6392  
  6393  byte, uint8, int8                     1
  6394  uint16, int16                         2
  6395  uint32, int32, float32                4
  6396  uint64, int64, float64, complex64     8
  6397  complex128                           16
  6398  </pre>
  6399  
  6400  <p>
  6401  The following minimal alignment properties are guaranteed:
  6402  </p>
  6403  <ol>
  6404  <li>For a variable <code>x</code> of any type: <code>unsafe.Alignof(x)</code> is at least 1.
  6405  </li>
  6406  
  6407  <li>For a variable <code>x</code> of struct type: <code>unsafe.Alignof(x)</code> is the largest of
  6408     all the values <code>unsafe.Alignof(x.f)</code> for each field <code>f</code> of <code>x</code>, but at least 1.
  6409  </li>
  6410  
  6411  <li>For a variable <code>x</code> of array type: <code>unsafe.Alignof(x)</code> is the same as
  6412     <code>unsafe.Alignof(x[0])</code>, but at least 1.
  6413  </li>
  6414  </ol>
  6415  
  6416  <p>
  6417  A struct or array type has size zero if it contains no fields (or elements, respectively) that have a size greater than zero. Two distinct zero-size variables may have the same address in memory.
  6418  </p>