github.com/fenixara/go@v0.0.0-20170127160404-96ea0918e670/src/runtime/malloc.go (about)

     1  // Copyright 2014 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Memory allocator.
     6  //
     7  // This was originally based on tcmalloc, but has diverged quite a bit.
     8  // http://goog-perftools.sourceforge.net/doc/tcmalloc.html
     9  
    10  // The main allocator works in runs of pages.
    11  // Small allocation sizes (up to and including 32 kB) are
    12  // rounded to one of about 70 size classes, each of which
    13  // has its own free set of objects of exactly that size.
    14  // Any free page of memory can be split into a set of objects
    15  // of one size class, which are then managed using a free bitmap.
    16  //
    17  // The allocator's data structures are:
    18  //
    19  //	fixalloc: a free-list allocator for fixed-size off-heap objects,
    20  //		used to manage storage used by the allocator.
    21  //	mheap: the malloc heap, managed at page (8192-byte) granularity.
    22  //	mspan: a run of pages managed by the mheap.
    23  //	mcentral: collects all spans of a given size class.
    24  //	mcache: a per-P cache of mspans with free space.
    25  //	mstats: allocation statistics.
    26  //
    27  // Allocating a small object proceeds up a hierarchy of caches:
    28  //
    29  //	1. Round the size up to one of the small size classes
    30  //	   and look in the corresponding mspan in this P's mcache.
    31  //	   Scan the mspan's free bitmap to find a free slot.
    32  //	   If there is a free slot, allocate it.
    33  //	   This can all be done without acquiring a lock.
    34  //
    35  //	2. If the mspan has no free slots, obtain a new mspan
    36  //	   from the mcentral's list of mspans of the required size
    37  //	   class that have free space.
    38  //	   Obtaining a whole span amortizes the cost of locking
    39  //	   the mcentral.
    40  //
    41  //	3. If the mcentral's mspan list is empty, obtain a run
    42  //	   of pages from the mheap to use for the mspan.
    43  //
    44  //	4. If the mheap is empty or has no page runs large enough,
    45  //	   allocate a new group of pages (at least 1MB) from the
    46  //	   operating system. Allocating a large run of pages
    47  //	   amortizes the cost of talking to the operating system.
    48  //
    49  // Sweeping an mspan and freeing objects on it proceeds up a similar
    50  // hierarchy:
    51  //
    52  //	1. If the mspan is being swept in response to allocation, it
    53  //	   is returned to the mcache to satisfy the allocation.
    54  //
    55  //	2. Otherwise, if the mspan still has allocated objects in it,
    56  //	   it is placed on the mcentral free list for the mspan's size
    57  //	   class.
    58  //
    59  //	3. Otherwise, if all objects in the mspan are free, the mspan
    60  //	   is now "idle", so it is returned to the mheap and no longer
    61  //	   has a size class.
    62  //	   This may coalesce it with adjacent idle mspans.
    63  //
    64  //	4. If an mspan remains idle for long enough, return its pages
    65  //	   to the operating system.
    66  //
    67  // Allocating and freeing a large object uses the mheap
    68  // directly, bypassing the mcache and mcentral.
    69  //
    70  // Free object slots in an mspan are zeroed only if mspan.needzero is
    71  // false. If needzero is true, objects are zeroed as they are
    72  // allocated. There are various benefits to delaying zeroing this way:
    73  //
    74  //	1. Stack frame allocation can avoid zeroing altogether.
    75  //
    76  //	2. It exhibits better temporal locality, since the program is
    77  //	   probably about to write to the memory.
    78  //
    79  //	3. We don't zero pages that never get reused.
    80  
    81  package runtime
    82  
    83  import (
    84  	"runtime/internal/sys"
    85  	"unsafe"
    86  )
    87  
    88  const (
    89  	debugMalloc = false
    90  
    91  	maxTinySize   = _TinySize
    92  	tinySizeClass = _TinySizeClass
    93  	maxSmallSize  = _MaxSmallSize
    94  
    95  	pageShift = _PageShift
    96  	pageSize  = _PageSize
    97  	pageMask  = _PageMask
    98  	// By construction, single page spans of the smallest object class
    99  	// have the most objects per span.
   100  	maxObjsPerSpan = pageSize / 8
   101  
   102  	mSpanInUse = _MSpanInUse
   103  
   104  	concurrentSweep = _ConcurrentSweep
   105  
   106  	_PageSize = 1 << _PageShift
   107  	_PageMask = _PageSize - 1
   108  
   109  	// _64bit = 1 on 64-bit systems, 0 on 32-bit systems
   110  	_64bit = 1 << (^uintptr(0) >> 63) / 2
   111  
   112  	// Tiny allocator parameters, see "Tiny allocator" comment in malloc.go.
   113  	_TinySize      = 16
   114  	_TinySizeClass = 2
   115  
   116  	_FixAllocChunk  = 16 << 10               // Chunk size for FixAlloc
   117  	_MaxMHeapList   = 1 << (20 - _PageShift) // Maximum page length for fixed-size list in MHeap.
   118  	_HeapAllocChunk = 1 << 20                // Chunk size for heap growth
   119  
   120  	// Per-P, per order stack segment cache size.
   121  	_StackCacheSize = 32 * 1024
   122  
   123  	// Number of orders that get caching. Order 0 is FixedStack
   124  	// and each successive order is twice as large.
   125  	// We want to cache 2KB, 4KB, 8KB, and 16KB stacks. Larger stacks
   126  	// will be allocated directly.
   127  	// Since FixedStack is different on different systems, we
   128  	// must vary NumStackOrders to keep the same maximum cached size.
   129  	//   OS               | FixedStack | NumStackOrders
   130  	//   -----------------+------------+---------------
   131  	//   linux/darwin/bsd | 2KB        | 4
   132  	//   windows/32       | 4KB        | 3
   133  	//   windows/64       | 8KB        | 2
   134  	//   plan9            | 4KB        | 3
   135  	_NumStackOrders = 4 - sys.PtrSize/4*sys.GoosWindows - 1*sys.GoosPlan9
   136  
   137  	// Number of bits in page to span calculations (4k pages).
   138  	// On Windows 64-bit we limit the arena to 32GB or 35 bits.
   139  	// Windows counts memory used by page table into committed memory
   140  	// of the process, so we can't reserve too much memory.
   141  	// See https://golang.org/issue/5402 and https://golang.org/issue/5236.
   142  	// On other 64-bit platforms, we limit the arena to 512GB, or 39 bits.
   143  	// On 32-bit, we don't bother limiting anything, so we use the full 32-bit address.
   144  	// The only exception is mips32 which only has access to low 2GB of virtual memory.
   145  	// On Darwin/arm64, we cannot reserve more than ~5GB of virtual memory,
   146  	// but as most devices have less than 4GB of physical memory anyway, we
   147  	// try to be conservative here, and only ask for a 2GB heap.
   148  	_MHeapMap_TotalBits = (_64bit*sys.GoosWindows)*35 + (_64bit*(1-sys.GoosWindows)*(1-sys.GoosDarwin*sys.GoarchArm64))*39 + sys.GoosDarwin*sys.GoarchArm64*31 + (1-_64bit)*(32-(sys.GoarchMips+sys.GoarchMipsle))
   149  	_MHeapMap_Bits      = _MHeapMap_TotalBits - _PageShift
   150  
   151  	_MaxMem = uintptr(1<<_MHeapMap_TotalBits - 1)
   152  
   153  	// Max number of threads to run garbage collection.
   154  	// 2, 3, and 4 are all plausible maximums depending
   155  	// on the hardware details of the machine. The garbage
   156  	// collector scales well to 32 cpus.
   157  	_MaxGcproc = 32
   158  
   159  	_MaxArena32 = 1<<32 - 1
   160  
   161  	// minLegalPointer is the smallest possible legal pointer.
   162  	// This is the smallest possible architectural page size,
   163  	// since we assume that the first page is never mapped.
   164  	//
   165  	// This should agree with minZeroPage in the compiler.
   166  	minLegalPointer uintptr = 4096
   167  )
   168  
   169  // physPageSize is the size in bytes of the OS's physical pages.
   170  // Mapping and unmapping operations must be done at multiples of
   171  // physPageSize.
   172  //
   173  // This must be set by the OS init code (typically in osinit) before
   174  // mallocinit.
   175  var physPageSize uintptr
   176  
   177  // OS-defined helpers:
   178  //
   179  // sysAlloc obtains a large chunk of zeroed memory from the
   180  // operating system, typically on the order of a hundred kilobytes
   181  // or a megabyte.
   182  // NOTE: sysAlloc returns OS-aligned memory, but the heap allocator
   183  // may use larger alignment, so the caller must be careful to realign the
   184  // memory obtained by sysAlloc.
   185  //
   186  // SysUnused notifies the operating system that the contents
   187  // of the memory region are no longer needed and can be reused
   188  // for other purposes.
   189  // SysUsed notifies the operating system that the contents
   190  // of the memory region are needed again.
   191  //
   192  // SysFree returns it unconditionally; this is only used if
   193  // an out-of-memory error has been detected midway through
   194  // an allocation. It is okay if SysFree is a no-op.
   195  //
   196  // SysReserve reserves address space without allocating memory.
   197  // If the pointer passed to it is non-nil, the caller wants the
   198  // reservation there, but SysReserve can still choose another
   199  // location if that one is unavailable. On some systems and in some
   200  // cases SysReserve will simply check that the address space is
   201  // available and not actually reserve it. If SysReserve returns
   202  // non-nil, it sets *reserved to true if the address space is
   203  // reserved, false if it has merely been checked.
   204  // NOTE: SysReserve returns OS-aligned memory, but the heap allocator
   205  // may use larger alignment, so the caller must be careful to realign the
   206  // memory obtained by sysAlloc.
   207  //
   208  // SysMap maps previously reserved address space for use.
   209  // The reserved argument is true if the address space was really
   210  // reserved, not merely checked.
   211  //
   212  // SysFault marks a (already sysAlloc'd) region to fault
   213  // if accessed. Used only for debugging the runtime.
   214  
   215  func mallocinit() {
   216  	if class_to_size[_TinySizeClass] != _TinySize {
   217  		throw("bad TinySizeClass")
   218  	}
   219  
   220  	testdefersizes()
   221  
   222  	// Copy class sizes out for statistics table.
   223  	for i := range class_to_size {
   224  		memstats.by_size[i].size = uint32(class_to_size[i])
   225  	}
   226  
   227  	// Check physPageSize.
   228  	if physPageSize == 0 {
   229  		// The OS init code failed to fetch the physical page size.
   230  		throw("failed to get system page size")
   231  	}
   232  	if physPageSize < minPhysPageSize {
   233  		print("system page size (", physPageSize, ") is smaller than minimum page size (", minPhysPageSize, ")\n")
   234  		throw("bad system page size")
   235  	}
   236  	if physPageSize&(physPageSize-1) != 0 {
   237  		print("system page size (", physPageSize, ") must be a power of 2\n")
   238  		throw("bad system page size")
   239  	}
   240  
   241  	var p, bitmapSize, spansSize, pSize, limit uintptr
   242  	var reserved bool
   243  
   244  	// limit = runtime.memlimit();
   245  	// See https://golang.org/issue/5049
   246  	// TODO(rsc): Fix after 1.1.
   247  	limit = 0
   248  
   249  	// Set up the allocation arena, a contiguous area of memory where
   250  	// allocated data will be found. The arena begins with a bitmap large
   251  	// enough to hold 2 bits per allocated word.
   252  	if sys.PtrSize == 8 && (limit == 0 || limit > 1<<30) {
   253  		// On a 64-bit machine, allocate from a single contiguous reservation.
   254  		// 512 GB (MaxMem) should be big enough for now.
   255  		//
   256  		// The code will work with the reservation at any address, but ask
   257  		// SysReserve to use 0x0000XXc000000000 if possible (XX=00...7f).
   258  		// Allocating a 512 GB region takes away 39 bits, and the amd64
   259  		// doesn't let us choose the top 17 bits, so that leaves the 9 bits
   260  		// in the middle of 0x00c0 for us to choose. Choosing 0x00c0 means
   261  		// that the valid memory addresses will begin 0x00c0, 0x00c1, ..., 0x00df.
   262  		// In little-endian, that's c0 00, c1 00, ..., df 00. None of those are valid
   263  		// UTF-8 sequences, and they are otherwise as far away from
   264  		// ff (likely a common byte) as possible. If that fails, we try other 0xXXc0
   265  		// addresses. An earlier attempt to use 0x11f8 caused out of memory errors
   266  		// on OS X during thread allocations.  0x00c0 causes conflicts with
   267  		// AddressSanitizer which reserves all memory up to 0x0100.
   268  		// These choices are both for debuggability and to reduce the
   269  		// odds of a conservative garbage collector (as is still used in gccgo)
   270  		// not collecting memory because some non-pointer block of memory
   271  		// had a bit pattern that matched a memory address.
   272  		//
   273  		// Actually we reserve 544 GB (because the bitmap ends up being 32 GB)
   274  		// but it hardly matters: e0 00 is not valid UTF-8 either.
   275  		//
   276  		// If this fails we fall back to the 32 bit memory mechanism
   277  		//
   278  		// However, on arm64, we ignore all this advice above and slam the
   279  		// allocation at 0x40 << 32 because when using 4k pages with 3-level
   280  		// translation buffers, the user address space is limited to 39 bits
   281  		// On darwin/arm64, the address space is even smaller.
   282  		arenaSize := round(_MaxMem, _PageSize)
   283  		bitmapSize = arenaSize / (sys.PtrSize * 8 / 2)
   284  		spansSize = arenaSize / _PageSize * sys.PtrSize
   285  		spansSize = round(spansSize, _PageSize)
   286  		for i := 0; i <= 0x7f; i++ {
   287  			switch {
   288  			case GOARCH == "arm64" && GOOS == "darwin":
   289  				p = uintptr(i)<<40 | uintptrMask&(0x0013<<28)
   290  			case GOARCH == "arm64":
   291  				p = uintptr(i)<<40 | uintptrMask&(0x0040<<32)
   292  			default:
   293  				p = uintptr(i)<<40 | uintptrMask&(0x00c0<<32)
   294  			}
   295  			pSize = bitmapSize + spansSize + arenaSize + _PageSize
   296  			p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
   297  			if p != 0 {
   298  				break
   299  			}
   300  		}
   301  	}
   302  
   303  	if p == 0 {
   304  		// On a 32-bit machine, we can't typically get away
   305  		// with a giant virtual address space reservation.
   306  		// Instead we map the memory information bitmap
   307  		// immediately after the data segment, large enough
   308  		// to handle the entire 4GB address space (256 MB),
   309  		// along with a reservation for an initial arena.
   310  		// When that gets used up, we'll start asking the kernel
   311  		// for any memory anywhere.
   312  
   313  		// If we fail to allocate, try again with a smaller arena.
   314  		// This is necessary on Android L where we share a process
   315  		// with ART, which reserves virtual memory aggressively.
   316  		// In the worst case, fall back to a 0-sized initial arena,
   317  		// in the hope that subsequent reservations will succeed.
   318  		arenaSizes := []uintptr{
   319  			512 << 20,
   320  			256 << 20,
   321  			128 << 20,
   322  			0,
   323  		}
   324  
   325  		for _, arenaSize := range arenaSizes {
   326  			bitmapSize = (_MaxArena32 + 1) / (sys.PtrSize * 8 / 2)
   327  			spansSize = (_MaxArena32 + 1) / _PageSize * sys.PtrSize
   328  			if limit > 0 && arenaSize+bitmapSize+spansSize > limit {
   329  				bitmapSize = (limit / 9) &^ ((1 << _PageShift) - 1)
   330  				arenaSize = bitmapSize * 8
   331  				spansSize = arenaSize / _PageSize * sys.PtrSize
   332  			}
   333  			spansSize = round(spansSize, _PageSize)
   334  
   335  			// SysReserve treats the address we ask for, end, as a hint,
   336  			// not as an absolute requirement. If we ask for the end
   337  			// of the data segment but the operating system requires
   338  			// a little more space before we can start allocating, it will
   339  			// give out a slightly higher pointer. Except QEMU, which
   340  			// is buggy, as usual: it won't adjust the pointer upward.
   341  			// So adjust it upward a little bit ourselves: 1/4 MB to get
   342  			// away from the running binary image and then round up
   343  			// to a MB boundary.
   344  			p = round(firstmoduledata.end+(1<<18), 1<<20)
   345  			pSize = bitmapSize + spansSize + arenaSize + _PageSize
   346  			p = uintptr(sysReserve(unsafe.Pointer(p), pSize, &reserved))
   347  			if p != 0 {
   348  				break
   349  			}
   350  		}
   351  		if p == 0 {
   352  			throw("runtime: cannot reserve arena virtual address space")
   353  		}
   354  	}
   355  
   356  	// PageSize can be larger than OS definition of page size,
   357  	// so SysReserve can give us a PageSize-unaligned pointer.
   358  	// To overcome this we ask for PageSize more and round up the pointer.
   359  	p1 := round(p, _PageSize)
   360  
   361  	spansStart := p1
   362  	mheap_.bitmap = p1 + spansSize + bitmapSize
   363  	if sys.PtrSize == 4 {
   364  		// Set arena_start such that we can accept memory
   365  		// reservations located anywhere in the 4GB virtual space.
   366  		mheap_.arena_start = 0
   367  	} else {
   368  		mheap_.arena_start = p1 + (spansSize + bitmapSize)
   369  	}
   370  	mheap_.arena_end = p + pSize
   371  	mheap_.arena_used = p1 + (spansSize + bitmapSize)
   372  	mheap_.arena_reserved = reserved
   373  
   374  	if mheap_.arena_start&(_PageSize-1) != 0 {
   375  		println("bad pagesize", hex(p), hex(p1), hex(spansSize), hex(bitmapSize), hex(_PageSize), "start", hex(mheap_.arena_start))
   376  		throw("misrounded allocation in mallocinit")
   377  	}
   378  
   379  	// Initialize the rest of the allocator.
   380  	mheap_.init(spansStart, spansSize)
   381  	_g_ := getg()
   382  	_g_.m.mcache = allocmcache()
   383  }
   384  
   385  // sysAlloc allocates the next n bytes from the heap arena. The
   386  // returned pointer is always _PageSize aligned and between
   387  // h.arena_start and h.arena_end. sysAlloc returns nil on failure.
   388  // There is no corresponding free function.
   389  func (h *mheap) sysAlloc(n uintptr) unsafe.Pointer {
   390  	if n > h.arena_end-h.arena_used {
   391  		// We are in 32-bit mode, maybe we didn't use all possible address space yet.
   392  		// Reserve some more space.
   393  		p_size := round(n+_PageSize, 256<<20)
   394  		new_end := h.arena_end + p_size // Careful: can overflow
   395  		if h.arena_end <= new_end && new_end-h.arena_start-1 <= _MaxArena32 {
   396  			// TODO: It would be bad if part of the arena
   397  			// is reserved and part is not.
   398  			var reserved bool
   399  			p := uintptr(sysReserve(unsafe.Pointer(h.arena_end), p_size, &reserved))
   400  			if p == 0 {
   401  				return nil
   402  			}
   403  			if p == h.arena_end {
   404  				h.arena_end = new_end
   405  				h.arena_reserved = reserved
   406  			} else if h.arena_start <= p && p+p_size-h.arena_start-1 <= _MaxArena32 {
   407  				// Keep everything page-aligned.
   408  				// Our pages are bigger than hardware pages.
   409  				h.arena_end = p + p_size
   410  				used := p + (-p & (_PageSize - 1))
   411  				h.mapBits(used)
   412  				h.mapSpans(used)
   413  				h.arena_used = used
   414  				h.arena_reserved = reserved
   415  			} else {
   416  				// We haven't added this allocation to
   417  				// the stats, so subtract it from a
   418  				// fake stat (but avoid underflow).
   419  				stat := uint64(p_size)
   420  				sysFree(unsafe.Pointer(p), p_size, &stat)
   421  			}
   422  		}
   423  	}
   424  
   425  	if n <= h.arena_end-h.arena_used {
   426  		// Keep taking from our reservation.
   427  		p := h.arena_used
   428  		sysMap(unsafe.Pointer(p), n, h.arena_reserved, &memstats.heap_sys)
   429  		h.mapBits(p + n)
   430  		h.mapSpans(p + n)
   431  		h.arena_used = p + n
   432  		if raceenabled {
   433  			racemapshadow(unsafe.Pointer(p), n)
   434  		}
   435  
   436  		if p&(_PageSize-1) != 0 {
   437  			throw("misrounded allocation in MHeap_SysAlloc")
   438  		}
   439  		return unsafe.Pointer(p)
   440  	}
   441  
   442  	// If using 64-bit, our reservation is all we have.
   443  	if h.arena_end-h.arena_start > _MaxArena32 {
   444  		return nil
   445  	}
   446  
   447  	// On 32-bit, once the reservation is gone we can
   448  	// try to get memory at a location chosen by the OS.
   449  	p_size := round(n, _PageSize) + _PageSize
   450  	p := uintptr(sysAlloc(p_size, &memstats.heap_sys))
   451  	if p == 0 {
   452  		return nil
   453  	}
   454  
   455  	if p < h.arena_start || p+p_size-h.arena_start > _MaxArena32 {
   456  		top := ^uintptr(0)
   457  		if top-h.arena_start-1 > _MaxArena32 {
   458  			top = h.arena_start + _MaxArena32 + 1
   459  		}
   460  		print("runtime: memory allocated by OS (", hex(p), ") not in usable range [", hex(h.arena_start), ",", hex(top), ")\n")
   461  		sysFree(unsafe.Pointer(p), p_size, &memstats.heap_sys)
   462  		return nil
   463  	}
   464  
   465  	p_end := p + p_size
   466  	p += -p & (_PageSize - 1)
   467  	if p+n > h.arena_used {
   468  		h.mapBits(p + n)
   469  		h.mapSpans(p + n)
   470  		h.arena_used = p + n
   471  		if p_end > h.arena_end {
   472  			h.arena_end = p_end
   473  		}
   474  		if raceenabled {
   475  			racemapshadow(unsafe.Pointer(p), n)
   476  		}
   477  	}
   478  
   479  	if p&(_PageSize-1) != 0 {
   480  		throw("misrounded allocation in MHeap_SysAlloc")
   481  	}
   482  	return unsafe.Pointer(p)
   483  }
   484  
   485  // base address for all 0-byte allocations
   486  var zerobase uintptr
   487  
   488  // nextFreeFast returns the next free object if one is quickly available.
   489  // Otherwise it returns 0.
   490  func nextFreeFast(s *mspan) gclinkptr {
   491  	theBit := sys.Ctz64(s.allocCache) // Is there a free object in the allocCache?
   492  	if theBit < 64 {
   493  		result := s.freeindex + uintptr(theBit)
   494  		if result < s.nelems {
   495  			freeidx := result + 1
   496  			if freeidx%64 == 0 && freeidx != s.nelems {
   497  				return 0
   498  			}
   499  			s.allocCache >>= (theBit + 1)
   500  			s.freeindex = freeidx
   501  			v := gclinkptr(result*s.elemsize + s.base())
   502  			s.allocCount++
   503  			return v
   504  		}
   505  	}
   506  	return 0
   507  }
   508  
   509  // nextFree returns the next free object from the cached span if one is available.
   510  // Otherwise it refills the cache with a span with an available object and
   511  // returns that object along with a flag indicating that this was a heavy
   512  // weight allocation. If it is a heavy weight allocation the caller must
   513  // determine whether a new GC cycle needs to be started or if the GC is active
   514  // whether this goroutine needs to assist the GC.
   515  func (c *mcache) nextFree(sizeclass uint8) (v gclinkptr, s *mspan, shouldhelpgc bool) {
   516  	s = c.alloc[sizeclass]
   517  	shouldhelpgc = false
   518  	freeIndex := s.nextFreeIndex()
   519  	if freeIndex == s.nelems {
   520  		// The span is full.
   521  		if uintptr(s.allocCount) != s.nelems {
   522  			println("runtime: s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
   523  			throw("s.allocCount != s.nelems && freeIndex == s.nelems")
   524  		}
   525  		systemstack(func() {
   526  			c.refill(int32(sizeclass))
   527  		})
   528  		shouldhelpgc = true
   529  		s = c.alloc[sizeclass]
   530  
   531  		freeIndex = s.nextFreeIndex()
   532  	}
   533  
   534  	if freeIndex >= s.nelems {
   535  		throw("freeIndex is not valid")
   536  	}
   537  
   538  	v = gclinkptr(freeIndex*s.elemsize + s.base())
   539  	s.allocCount++
   540  	if uintptr(s.allocCount) > s.nelems {
   541  		println("s.allocCount=", s.allocCount, "s.nelems=", s.nelems)
   542  		throw("s.allocCount > s.nelems")
   543  	}
   544  	return
   545  }
   546  
   547  // Allocate an object of size bytes.
   548  // Small objects are allocated from the per-P cache's free lists.
   549  // Large objects (> 32 kB) are allocated straight from the heap.
   550  func mallocgc(size uintptr, typ *_type, needzero bool) unsafe.Pointer {
   551  	if gcphase == _GCmarktermination {
   552  		throw("mallocgc called with gcphase == _GCmarktermination")
   553  	}
   554  
   555  	if size == 0 {
   556  		return unsafe.Pointer(&zerobase)
   557  	}
   558  
   559  	if debug.sbrk != 0 {
   560  		align := uintptr(16)
   561  		if typ != nil {
   562  			align = uintptr(typ.align)
   563  		}
   564  		return persistentalloc(size, align, &memstats.other_sys)
   565  	}
   566  
   567  	// assistG is the G to charge for this allocation, or nil if
   568  	// GC is not currently active.
   569  	var assistG *g
   570  	if gcBlackenEnabled != 0 {
   571  		// Charge the current user G for this allocation.
   572  		assistG = getg()
   573  		if assistG.m.curg != nil {
   574  			assistG = assistG.m.curg
   575  		}
   576  		// Charge the allocation against the G. We'll account
   577  		// for internal fragmentation at the end of mallocgc.
   578  		assistG.gcAssistBytes -= int64(size)
   579  
   580  		if assistG.gcAssistBytes < 0 {
   581  			// This G is in debt. Assist the GC to correct
   582  			// this before allocating. This must happen
   583  			// before disabling preemption.
   584  			gcAssistAlloc(assistG)
   585  		}
   586  	}
   587  
   588  	// Set mp.mallocing to keep from being preempted by GC.
   589  	mp := acquirem()
   590  	if mp.mallocing != 0 {
   591  		throw("malloc deadlock")
   592  	}
   593  	if mp.gsignal == getg() {
   594  		throw("malloc during signal")
   595  	}
   596  	mp.mallocing = 1
   597  
   598  	shouldhelpgc := false
   599  	dataSize := size
   600  	c := gomcache()
   601  	var x unsafe.Pointer
   602  	noscan := typ == nil || typ.kind&kindNoPointers != 0
   603  	if size <= maxSmallSize {
   604  		if noscan && size < maxTinySize {
   605  			// Tiny allocator.
   606  			//
   607  			// Tiny allocator combines several tiny allocation requests
   608  			// into a single memory block. The resulting memory block
   609  			// is freed when all subobjects are unreachable. The subobjects
   610  			// must be noscan (don't have pointers), this ensures that
   611  			// the amount of potentially wasted memory is bounded.
   612  			//
   613  			// Size of the memory block used for combining (maxTinySize) is tunable.
   614  			// Current setting is 16 bytes, which relates to 2x worst case memory
   615  			// wastage (when all but one subobjects are unreachable).
   616  			// 8 bytes would result in no wastage at all, but provides less
   617  			// opportunities for combining.
   618  			// 32 bytes provides more opportunities for combining,
   619  			// but can lead to 4x worst case wastage.
   620  			// The best case winning is 8x regardless of block size.
   621  			//
   622  			// Objects obtained from tiny allocator must not be freed explicitly.
   623  			// So when an object will be freed explicitly, we ensure that
   624  			// its size >= maxTinySize.
   625  			//
   626  			// SetFinalizer has a special case for objects potentially coming
   627  			// from tiny allocator, it such case it allows to set finalizers
   628  			// for an inner byte of a memory block.
   629  			//
   630  			// The main targets of tiny allocator are small strings and
   631  			// standalone escaping variables. On a json benchmark
   632  			// the allocator reduces number of allocations by ~12% and
   633  			// reduces heap size by ~20%.
   634  			off := c.tinyoffset
   635  			// Align tiny pointer for required (conservative) alignment.
   636  			if size&7 == 0 {
   637  				off = round(off, 8)
   638  			} else if size&3 == 0 {
   639  				off = round(off, 4)
   640  			} else if size&1 == 0 {
   641  				off = round(off, 2)
   642  			}
   643  			if off+size <= maxTinySize && c.tiny != 0 {
   644  				// The object fits into existing tiny block.
   645  				x = unsafe.Pointer(c.tiny + off)
   646  				c.tinyoffset = off + size
   647  				c.local_tinyallocs++
   648  				mp.mallocing = 0
   649  				releasem(mp)
   650  				return x
   651  			}
   652  			// Allocate a new maxTinySize block.
   653  			span := c.alloc[tinySizeClass]
   654  			v := nextFreeFast(span)
   655  			if v == 0 {
   656  				v, _, shouldhelpgc = c.nextFree(tinySizeClass)
   657  			}
   658  			x = unsafe.Pointer(v)
   659  			(*[2]uint64)(x)[0] = 0
   660  			(*[2]uint64)(x)[1] = 0
   661  			// See if we need to replace the existing tiny block with the new one
   662  			// based on amount of remaining free space.
   663  			if size < c.tinyoffset || c.tiny == 0 {
   664  				c.tiny = uintptr(x)
   665  				c.tinyoffset = size
   666  			}
   667  			size = maxTinySize
   668  		} else {
   669  			var sizeclass uint8
   670  			if size <= smallSizeMax-8 {
   671  				sizeclass = size_to_class8[(size+smallSizeDiv-1)/smallSizeDiv]
   672  			} else {
   673  				sizeclass = size_to_class128[(size-smallSizeMax+largeSizeDiv-1)/largeSizeDiv]
   674  			}
   675  			size = uintptr(class_to_size[sizeclass])
   676  			span := c.alloc[sizeclass]
   677  			v := nextFreeFast(span)
   678  			if v == 0 {
   679  				v, span, shouldhelpgc = c.nextFree(sizeclass)
   680  			}
   681  			x = unsafe.Pointer(v)
   682  			if needzero && span.needzero != 0 {
   683  				memclrNoHeapPointers(unsafe.Pointer(v), size)
   684  			}
   685  		}
   686  	} else {
   687  		var s *mspan
   688  		shouldhelpgc = true
   689  		systemstack(func() {
   690  			s = largeAlloc(size, needzero)
   691  		})
   692  		s.freeindex = 1
   693  		s.allocCount = 1
   694  		x = unsafe.Pointer(s.base())
   695  		size = s.elemsize
   696  	}
   697  
   698  	var scanSize uintptr
   699  	if noscan {
   700  		heapBitsSetTypeNoScan(uintptr(x))
   701  	} else {
   702  		// If allocating a defer+arg block, now that we've picked a malloc size
   703  		// large enough to hold everything, cut the "asked for" size down to
   704  		// just the defer header, so that the GC bitmap will record the arg block
   705  		// as containing nothing at all (as if it were unused space at the end of
   706  		// a malloc block caused by size rounding).
   707  		// The defer arg areas are scanned as part of scanstack.
   708  		if typ == deferType {
   709  			dataSize = unsafe.Sizeof(_defer{})
   710  		}
   711  		heapBitsSetType(uintptr(x), size, dataSize, typ)
   712  		if dataSize > typ.size {
   713  			// Array allocation. If there are any
   714  			// pointers, GC has to scan to the last
   715  			// element.
   716  			if typ.ptrdata != 0 {
   717  				scanSize = dataSize - typ.size + typ.ptrdata
   718  			}
   719  		} else {
   720  			scanSize = typ.ptrdata
   721  		}
   722  		c.local_scan += scanSize
   723  	}
   724  
   725  	// Ensure that the stores above that initialize x to
   726  	// type-safe memory and set the heap bits occur before
   727  	// the caller can make x observable to the garbage
   728  	// collector. Otherwise, on weakly ordered machines,
   729  	// the garbage collector could follow a pointer to x,
   730  	// but see uninitialized memory or stale heap bits.
   731  	publicationBarrier()
   732  
   733  	// Allocate black during GC.
   734  	// All slots hold nil so no scanning is needed.
   735  	// This may be racing with GC so do it atomically if there can be
   736  	// a race marking the bit.
   737  	if gcphase != _GCoff {
   738  		gcmarknewobject(uintptr(x), size, scanSize)
   739  	}
   740  
   741  	if raceenabled {
   742  		racemalloc(x, size)
   743  	}
   744  
   745  	if msanenabled {
   746  		msanmalloc(x, size)
   747  	}
   748  
   749  	mp.mallocing = 0
   750  	releasem(mp)
   751  
   752  	if debug.allocfreetrace != 0 {
   753  		tracealloc(x, size, typ)
   754  	}
   755  
   756  	if rate := MemProfileRate; rate > 0 {
   757  		if size < uintptr(rate) && int32(size) < c.next_sample {
   758  			c.next_sample -= int32(size)
   759  		} else {
   760  			mp := acquirem()
   761  			profilealloc(mp, x, size)
   762  			releasem(mp)
   763  		}
   764  	}
   765  
   766  	if assistG != nil {
   767  		// Account for internal fragmentation in the assist
   768  		// debt now that we know it.
   769  		assistG.gcAssistBytes -= int64(size - dataSize)
   770  	}
   771  
   772  	if shouldhelpgc && gcShouldStart(false) {
   773  		gcStart(gcBackgroundMode, false)
   774  	}
   775  
   776  	return x
   777  }
   778  
   779  func largeAlloc(size uintptr, needzero bool) *mspan {
   780  	// print("largeAlloc size=", size, "\n")
   781  
   782  	if size+_PageSize < size {
   783  		throw("out of memory")
   784  	}
   785  	npages := size >> _PageShift
   786  	if size&_PageMask != 0 {
   787  		npages++
   788  	}
   789  
   790  	// Deduct credit for this span allocation and sweep if
   791  	// necessary. mHeap_Alloc will also sweep npages, so this only
   792  	// pays the debt down to npage pages.
   793  	deductSweepCredit(npages*_PageSize, npages)
   794  
   795  	s := mheap_.alloc(npages, 0, true, needzero)
   796  	if s == nil {
   797  		throw("out of memory")
   798  	}
   799  	s.limit = s.base() + size
   800  	heapBitsForSpan(s.base()).initSpan(s)
   801  	return s
   802  }
   803  
   804  // implementation of new builtin
   805  // compiler (both frontend and SSA backend) knows the signature
   806  // of this function
   807  func newobject(typ *_type) unsafe.Pointer {
   808  	return mallocgc(typ.size, typ, true)
   809  }
   810  
   811  //go:linkname reflect_unsafe_New reflect.unsafe_New
   812  func reflect_unsafe_New(typ *_type) unsafe.Pointer {
   813  	return newobject(typ)
   814  }
   815  
   816  // newarray allocates an array of n elements of type typ.
   817  func newarray(typ *_type, n int) unsafe.Pointer {
   818  	if n < 0 || uintptr(n) > maxSliceCap(typ.size) {
   819  		panic(plainError("runtime: allocation size out of range"))
   820  	}
   821  	return mallocgc(typ.size*uintptr(n), typ, true)
   822  }
   823  
   824  //go:linkname reflect_unsafe_NewArray reflect.unsafe_NewArray
   825  func reflect_unsafe_NewArray(typ *_type, n int) unsafe.Pointer {
   826  	return newarray(typ, n)
   827  }
   828  
   829  func profilealloc(mp *m, x unsafe.Pointer, size uintptr) {
   830  	mp.mcache.next_sample = nextSample()
   831  	mProf_Malloc(x, size)
   832  }
   833  
   834  // nextSample returns the next sampling point for heap profiling.
   835  // It produces a random variable with a geometric distribution and
   836  // mean MemProfileRate. This is done by generating a uniformly
   837  // distributed random number and applying the cumulative distribution
   838  // function for an exponential.
   839  func nextSample() int32 {
   840  	if GOOS == "plan9" {
   841  		// Plan 9 doesn't support floating point in note handler.
   842  		if g := getg(); g == g.m.gsignal {
   843  			return nextSampleNoFP()
   844  		}
   845  	}
   846  
   847  	period := MemProfileRate
   848  
   849  	// make nextSample not overflow. Maximum possible step is
   850  	// -ln(1/(1<<kRandomBitCount)) * period, approximately 20 * period.
   851  	switch {
   852  	case period > 0x7000000:
   853  		period = 0x7000000
   854  	case period == 0:
   855  		return 0
   856  	}
   857  
   858  	// Let m be the sample rate,
   859  	// the probability distribution function is m*exp(-mx), so the CDF is
   860  	// p = 1 - exp(-mx), so
   861  	// q = 1 - p == exp(-mx)
   862  	// log_e(q) = -mx
   863  	// -log_e(q)/m = x
   864  	// x = -log_e(q) * period
   865  	// x = log_2(q) * (-log_e(2)) * period    ; Using log_2 for efficiency
   866  	const randomBitCount = 26
   867  	q := fastrand()%(1<<randomBitCount) + 1
   868  	qlog := fastlog2(float64(q)) - randomBitCount
   869  	if qlog > 0 {
   870  		qlog = 0
   871  	}
   872  	const minusLog2 = -0.6931471805599453 // -ln(2)
   873  	return int32(qlog*(minusLog2*float64(period))) + 1
   874  }
   875  
   876  // nextSampleNoFP is similar to nextSample, but uses older,
   877  // simpler code to avoid floating point.
   878  func nextSampleNoFP() int32 {
   879  	// Set first allocation sample size.
   880  	rate := MemProfileRate
   881  	if rate > 0x3fffffff { // make 2*rate not overflow
   882  		rate = 0x3fffffff
   883  	}
   884  	if rate != 0 {
   885  		return int32(int(fastrand()) % (2 * rate))
   886  	}
   887  	return 0
   888  }
   889  
   890  type persistentAlloc struct {
   891  	base unsafe.Pointer
   892  	off  uintptr
   893  }
   894  
   895  var globalAlloc struct {
   896  	mutex
   897  	persistentAlloc
   898  }
   899  
   900  // Wrapper around sysAlloc that can allocate small chunks.
   901  // There is no associated free operation.
   902  // Intended for things like function/type/debug-related persistent data.
   903  // If align is 0, uses default align (currently 8).
   904  // The returned memory will be zeroed.
   905  //
   906  // Consider marking persistentalloc'd types go:notinheap.
   907  func persistentalloc(size, align uintptr, sysStat *uint64) unsafe.Pointer {
   908  	var p unsafe.Pointer
   909  	systemstack(func() {
   910  		p = persistentalloc1(size, align, sysStat)
   911  	})
   912  	return p
   913  }
   914  
   915  // Must run on system stack because stack growth can (re)invoke it.
   916  // See issue 9174.
   917  //go:systemstack
   918  func persistentalloc1(size, align uintptr, sysStat *uint64) unsafe.Pointer {
   919  	const (
   920  		chunk    = 256 << 10
   921  		maxBlock = 64 << 10 // VM reservation granularity is 64K on windows
   922  	)
   923  
   924  	if size == 0 {
   925  		throw("persistentalloc: size == 0")
   926  	}
   927  	if align != 0 {
   928  		if align&(align-1) != 0 {
   929  			throw("persistentalloc: align is not a power of 2")
   930  		}
   931  		if align > _PageSize {
   932  			throw("persistentalloc: align is too large")
   933  		}
   934  	} else {
   935  		align = 8
   936  	}
   937  
   938  	if size >= maxBlock {
   939  		return sysAlloc(size, sysStat)
   940  	}
   941  
   942  	mp := acquirem()
   943  	var persistent *persistentAlloc
   944  	if mp != nil && mp.p != 0 {
   945  		persistent = &mp.p.ptr().palloc
   946  	} else {
   947  		lock(&globalAlloc.mutex)
   948  		persistent = &globalAlloc.persistentAlloc
   949  	}
   950  	persistent.off = round(persistent.off, align)
   951  	if persistent.off+size > chunk || persistent.base == nil {
   952  		persistent.base = sysAlloc(chunk, &memstats.other_sys)
   953  		if persistent.base == nil {
   954  			if persistent == &globalAlloc.persistentAlloc {
   955  				unlock(&globalAlloc.mutex)
   956  			}
   957  			throw("runtime: cannot allocate memory")
   958  		}
   959  		persistent.off = 0
   960  	}
   961  	p := add(persistent.base, persistent.off)
   962  	persistent.off += size
   963  	releasem(mp)
   964  	if persistent == &globalAlloc.persistentAlloc {
   965  		unlock(&globalAlloc.mutex)
   966  	}
   967  
   968  	if sysStat != &memstats.other_sys {
   969  		mSysStatInc(sysStat, size)
   970  		mSysStatDec(&memstats.other_sys, size)
   971  	}
   972  	return p
   973  }