github.com/fenixara/go@v0.0.0-20170127160404-96ea0918e670/src/runtime/mbarrier.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Garbage collector: write barriers.
     6  //
     7  // For the concurrent garbage collector, the Go compiler implements
     8  // updates to pointer-valued fields that may be in heap objects by
     9  // emitting calls to write barriers. This file contains the actual write barrier
    10  // implementation, gcmarkwb_m, and the various wrappers called by the
    11  // compiler to implement pointer assignment, slice assignment,
    12  // typed memmove, and so on.
    13  
    14  package runtime
    15  
    16  import (
    17  	"runtime/internal/sys"
    18  	"unsafe"
    19  )
    20  
    21  // gcmarkwb_m is the mark-phase write barrier, the only barrier we have.
    22  // The rest of this file exists only to make calls to this function.
    23  //
    24  // This is a hybrid barrier that combines a Yuasa-style deletion
    25  // barrier—which shades the object whose reference is being
    26  // overwritten—with Dijkstra insertion barrier—which shades the object
    27  // whose reference is being written. The insertion part of the barrier
    28  // is necessary while the calling goroutine's stack is grey. In
    29  // pseudocode, the barrier is:
    30  //
    31  //     writePointer(slot, ptr):
    32  //         shade(*slot)
    33  //         if current stack is grey:
    34  //             shade(ptr)
    35  //         *slot = ptr
    36  //
    37  // slot is the destination in Go code.
    38  // ptr is the value that goes into the slot in Go code.
    39  //
    40  // Shade indicates that it has seen a white pointer by adding the referent
    41  // to wbuf as well as marking it.
    42  //
    43  // The two shades and the condition work together to prevent a mutator
    44  // from hiding an object from the garbage collector:
    45  //
    46  // 1. shade(*slot) prevents a mutator from hiding an object by moving
    47  // the sole pointer to it from the heap to its stack. If it attempts
    48  // to unlink an object from the heap, this will shade it.
    49  //
    50  // 2. shade(ptr) prevents a mutator from hiding an object by moving
    51  // the sole pointer to it from its stack into a black object in the
    52  // heap. If it attempts to install the pointer into a black object,
    53  // this will shade it.
    54  //
    55  // 3. Once a goroutine's stack is black, the shade(ptr) becomes
    56  // unnecessary. shade(ptr) prevents hiding an object by moving it from
    57  // the stack to the heap, but this requires first having a pointer
    58  // hidden on the stack. Immediately after a stack is scanned, it only
    59  // points to shaded objects, so it's not hiding anything, and the
    60  // shade(*slot) prevents it from hiding any other pointers on its
    61  // stack.
    62  //
    63  // For a detailed description of this barrier and proof of
    64  // correctness, see https://github.com/golang/proposal/blob/master/design/17503-eliminate-rescan.md
    65  //
    66  //
    67  //
    68  // Dealing with memory ordering:
    69  //
    70  // Both the Yuasa and Dijkstra barriers can be made conditional on the
    71  // color of the object containing the slot. We chose not to make these
    72  // conditional because the cost of ensuring that the object holding
    73  // the slot doesn't concurrently change color without the mutator
    74  // noticing seems prohibitive.
    75  //
    76  // Consider the following example where the mutator writes into
    77  // a slot and then loads the slot's mark bit while the GC thread
    78  // writes to the slot's mark bit and then as part of scanning reads
    79  // the slot.
    80  //
    81  // Initially both [slot] and [slotmark] are 0 (nil)
    82  // Mutator thread          GC thread
    83  // st [slot], ptr          st [slotmark], 1
    84  //
    85  // ld r1, [slotmark]       ld r2, [slot]
    86  //
    87  // Without an expensive memory barrier between the st and the ld, the final
    88  // result on most HW (including 386/amd64) can be r1==r2==0. This is a classic
    89  // example of what can happen when loads are allowed to be reordered with older
    90  // stores (avoiding such reorderings lies at the heart of the classic
    91  // Peterson/Dekker algorithms for mutual exclusion). Rather than require memory
    92  // barriers, which will slow down both the mutator and the GC, we always grey
    93  // the ptr object regardless of the slot's color.
    94  //
    95  // Another place where we intentionally omit memory barriers is when
    96  // accessing mheap_.arena_used to check if a pointer points into the
    97  // heap. On relaxed memory machines, it's possible for a mutator to
    98  // extend the size of the heap by updating arena_used, allocate an
    99  // object from this new region, and publish a pointer to that object,
   100  // but for tracing running on another processor to observe the pointer
   101  // but use the old value of arena_used. In this case, tracing will not
   102  // mark the object, even though it's reachable. However, the mutator
   103  // is guaranteed to execute a write barrier when it publishes the
   104  // pointer, so it will take care of marking the object. A general
   105  // consequence of this is that the garbage collector may cache the
   106  // value of mheap_.arena_used. (See issue #9984.)
   107  //
   108  //
   109  // Stack writes:
   110  //
   111  // The compiler omits write barriers for writes to the current frame,
   112  // but if a stack pointer has been passed down the call stack, the
   113  // compiler will generate a write barrier for writes through that
   114  // pointer (because it doesn't know it's not a heap pointer).
   115  //
   116  // One might be tempted to ignore the write barrier if slot points
   117  // into to the stack. Don't do it! Mark termination only re-scans
   118  // frames that have potentially been active since the concurrent scan,
   119  // so it depends on write barriers to track changes to pointers in
   120  // stack frames that have not been active.
   121  //
   122  //
   123  // Global writes:
   124  //
   125  // The Go garbage collector requires write barriers when heap pointers
   126  // are stored in globals. Many garbage collectors ignore writes to
   127  // globals and instead pick up global -> heap pointers during
   128  // termination. This increases pause time, so we instead rely on write
   129  // barriers for writes to globals so that we don't have to rescan
   130  // global during mark termination.
   131  //
   132  //
   133  // Publication ordering:
   134  //
   135  // The write barrier is *pre-publication*, meaning that the write
   136  // barrier happens prior to the *slot = ptr write that may make ptr
   137  // reachable by some goroutine that currently cannot reach it.
   138  //
   139  //
   140  //go:nowritebarrierrec
   141  //go:systemstack
   142  func gcmarkwb_m(slot *uintptr, ptr uintptr) {
   143  	if writeBarrier.needed {
   144  		// Note: This turns bad pointer writes into bad
   145  		// pointer reads, which could be confusing. We avoid
   146  		// reading from obviously bad pointers, which should
   147  		// take care of the vast majority of these. We could
   148  		// patch this up in the signal handler, or use XCHG to
   149  		// combine the read and the write. Checking inheap is
   150  		// insufficient since we need to track changes to
   151  		// roots outside the heap.
   152  		if slot1 := uintptr(unsafe.Pointer(slot)); slot1 >= minPhysPageSize {
   153  			if optr := *slot; optr != 0 {
   154  				shade(optr)
   155  			}
   156  		}
   157  		// TODO: Make this conditional on the caller's stack color.
   158  		if ptr != 0 && inheap(ptr) {
   159  			shade(ptr)
   160  		}
   161  	}
   162  }
   163  
   164  // writebarrierptr_prewrite1 invokes a write barrier for *dst = src
   165  // prior to the write happening.
   166  //
   167  // Write barrier calls must not happen during critical GC and scheduler
   168  // related operations. In particular there are times when the GC assumes
   169  // that the world is stopped but scheduler related code is still being
   170  // executed, dealing with syscalls, dealing with putting gs on runnable
   171  // queues and so forth. This code cannot execute write barriers because
   172  // the GC might drop them on the floor. Stopping the world involves removing
   173  // the p associated with an m. We use the fact that m.p == nil to indicate
   174  // that we are in one these critical section and throw if the write is of
   175  // a pointer to a heap object.
   176  //go:nosplit
   177  func writebarrierptr_prewrite1(dst *uintptr, src uintptr) {
   178  	mp := acquirem()
   179  	if mp.inwb || mp.dying > 0 {
   180  		releasem(mp)
   181  		return
   182  	}
   183  	systemstack(func() {
   184  		if mp.p == 0 && memstats.enablegc && !mp.inwb && inheap(src) {
   185  			throw("writebarrierptr_prewrite1 called with mp.p == nil")
   186  		}
   187  		mp.inwb = true
   188  		gcmarkwb_m(dst, src)
   189  	})
   190  	mp.inwb = false
   191  	releasem(mp)
   192  }
   193  
   194  // NOTE: Really dst *unsafe.Pointer, src unsafe.Pointer,
   195  // but if we do that, Go inserts a write barrier on *dst = src.
   196  //go:nosplit
   197  func writebarrierptr(dst *uintptr, src uintptr) {
   198  	if writeBarrier.cgo {
   199  		cgoCheckWriteBarrier(dst, src)
   200  	}
   201  	if !writeBarrier.needed {
   202  		*dst = src
   203  		return
   204  	}
   205  	if src != 0 && src < minPhysPageSize {
   206  		systemstack(func() {
   207  			print("runtime: writebarrierptr *", dst, " = ", hex(src), "\n")
   208  			throw("bad pointer in write barrier")
   209  		})
   210  	}
   211  	writebarrierptr_prewrite1(dst, src)
   212  	*dst = src
   213  }
   214  
   215  // writebarrierptr_prewrite is like writebarrierptr, but the store
   216  // will be performed by the caller after this call. The caller must
   217  // not allow preemption between this call and the write.
   218  //
   219  //go:nosplit
   220  func writebarrierptr_prewrite(dst *uintptr, src uintptr) {
   221  	if writeBarrier.cgo {
   222  		cgoCheckWriteBarrier(dst, src)
   223  	}
   224  	if !writeBarrier.needed {
   225  		return
   226  	}
   227  	if src != 0 && src < minPhysPageSize {
   228  		systemstack(func() { throw("bad pointer in write barrier") })
   229  	}
   230  	writebarrierptr_prewrite1(dst, src)
   231  }
   232  
   233  // typedmemmove copies a value of type t to dst from src.
   234  //go:nosplit
   235  func typedmemmove(typ *_type, dst, src unsafe.Pointer) {
   236  	if typ.kind&kindNoPointers == 0 {
   237  		bulkBarrierPreWrite(uintptr(dst), uintptr(src), typ.size)
   238  	}
   239  	// There's a race here: if some other goroutine can write to
   240  	// src, it may change some pointer in src after we've
   241  	// performed the write barrier but before we perform the
   242  	// memory copy. This safe because the write performed by that
   243  	// other goroutine must also be accompanied by a write
   244  	// barrier, so at worst we've unnecessarily greyed the old
   245  	// pointer that was in src.
   246  	memmove(dst, src, typ.size)
   247  	if writeBarrier.cgo {
   248  		cgoCheckMemmove(typ, dst, src, 0, typ.size)
   249  	}
   250  }
   251  
   252  //go:linkname reflect_typedmemmove reflect.typedmemmove
   253  func reflect_typedmemmove(typ *_type, dst, src unsafe.Pointer) {
   254  	if raceenabled {
   255  		raceWriteObjectPC(typ, dst, getcallerpc(unsafe.Pointer(&typ)), funcPC(reflect_typedmemmove))
   256  		raceReadObjectPC(typ, src, getcallerpc(unsafe.Pointer(&typ)), funcPC(reflect_typedmemmove))
   257  	}
   258  	if msanenabled {
   259  		msanwrite(dst, typ.size)
   260  		msanread(src, typ.size)
   261  	}
   262  	typedmemmove(typ, dst, src)
   263  }
   264  
   265  // typedmemmovepartial is like typedmemmove but assumes that
   266  // dst and src point off bytes into the value and only copies size bytes.
   267  //go:linkname reflect_typedmemmovepartial reflect.typedmemmovepartial
   268  func reflect_typedmemmovepartial(typ *_type, dst, src unsafe.Pointer, off, size uintptr) {
   269  	if writeBarrier.needed && typ.kind&kindNoPointers == 0 && size >= sys.PtrSize {
   270  		// Pointer-align start address for bulk barrier.
   271  		adst, asrc, asize := dst, src, size
   272  		if frag := -off & (sys.PtrSize - 1); frag != 0 {
   273  			adst = add(dst, frag)
   274  			asrc = add(src, frag)
   275  			asize -= frag
   276  		}
   277  		bulkBarrierPreWrite(uintptr(adst), uintptr(asrc), asize&^(sys.PtrSize-1))
   278  	}
   279  
   280  	memmove(dst, src, size)
   281  	if writeBarrier.cgo {
   282  		cgoCheckMemmove(typ, dst, src, off, size)
   283  	}
   284  }
   285  
   286  // reflectcallmove is invoked by reflectcall to copy the return values
   287  // out of the stack and into the heap, invoking the necessary write
   288  // barriers. dst, src, and size describe the return value area to
   289  // copy. typ describes the entire frame (not just the return values).
   290  // typ may be nil, which indicates write barriers are not needed.
   291  //
   292  // It must be nosplit and must only call nosplit functions because the
   293  // stack map of reflectcall is wrong.
   294  //
   295  //go:nosplit
   296  func reflectcallmove(typ *_type, dst, src unsafe.Pointer, size uintptr) {
   297  	if writeBarrier.needed && typ != nil && typ.kind&kindNoPointers == 0 && size >= sys.PtrSize {
   298  		bulkBarrierPreWrite(uintptr(dst), uintptr(src), size)
   299  	}
   300  	memmove(dst, src, size)
   301  }
   302  
   303  //go:nosplit
   304  func typedslicecopy(typ *_type, dst, src slice) int {
   305  	// TODO(rsc): If typedslicecopy becomes faster than calling
   306  	// typedmemmove repeatedly, consider using during func growslice.
   307  	n := dst.len
   308  	if n > src.len {
   309  		n = src.len
   310  	}
   311  	if n == 0 {
   312  		return 0
   313  	}
   314  	dstp := dst.array
   315  	srcp := src.array
   316  
   317  	if raceenabled {
   318  		callerpc := getcallerpc(unsafe.Pointer(&typ))
   319  		pc := funcPC(slicecopy)
   320  		racewriterangepc(dstp, uintptr(n)*typ.size, callerpc, pc)
   321  		racereadrangepc(srcp, uintptr(n)*typ.size, callerpc, pc)
   322  	}
   323  	if msanenabled {
   324  		msanwrite(dstp, uintptr(n)*typ.size)
   325  		msanread(srcp, uintptr(n)*typ.size)
   326  	}
   327  
   328  	if writeBarrier.cgo {
   329  		cgoCheckSliceCopy(typ, dst, src, n)
   330  	}
   331  
   332  	// Note: No point in checking typ.kind&kindNoPointers here:
   333  	// compiler only emits calls to typedslicecopy for types with pointers,
   334  	// and growslice and reflect_typedslicecopy check for pointers
   335  	// before calling typedslicecopy.
   336  	if !writeBarrier.needed {
   337  		memmove(dstp, srcp, uintptr(n)*typ.size)
   338  		return n
   339  	}
   340  
   341  	systemstack(func() {
   342  		if uintptr(srcp) < uintptr(dstp) && uintptr(srcp)+uintptr(n)*typ.size > uintptr(dstp) {
   343  			// Overlap with src before dst.
   344  			// Copy backward, being careful not to move dstp/srcp
   345  			// out of the array they point into.
   346  			dstp = add(dstp, uintptr(n-1)*typ.size)
   347  			srcp = add(srcp, uintptr(n-1)*typ.size)
   348  			i := 0
   349  			for {
   350  				typedmemmove(typ, dstp, srcp)
   351  				if i++; i >= n {
   352  					break
   353  				}
   354  				dstp = add(dstp, -typ.size)
   355  				srcp = add(srcp, -typ.size)
   356  			}
   357  		} else {
   358  			// Copy forward, being careful not to move dstp/srcp
   359  			// out of the array they point into.
   360  			i := 0
   361  			for {
   362  				typedmemmove(typ, dstp, srcp)
   363  				if i++; i >= n {
   364  					break
   365  				}
   366  				dstp = add(dstp, typ.size)
   367  				srcp = add(srcp, typ.size)
   368  			}
   369  		}
   370  	})
   371  	return n
   372  }
   373  
   374  //go:linkname reflect_typedslicecopy reflect.typedslicecopy
   375  func reflect_typedslicecopy(elemType *_type, dst, src slice) int {
   376  	if elemType.kind&kindNoPointers != 0 {
   377  		n := dst.len
   378  		if n > src.len {
   379  			n = src.len
   380  		}
   381  		if n == 0 {
   382  			return 0
   383  		}
   384  
   385  		size := uintptr(n) * elemType.size
   386  		if raceenabled {
   387  			callerpc := getcallerpc(unsafe.Pointer(&elemType))
   388  			pc := funcPC(reflect_typedslicecopy)
   389  			racewriterangepc(dst.array, size, callerpc, pc)
   390  			racereadrangepc(src.array, size, callerpc, pc)
   391  		}
   392  		if msanenabled {
   393  			msanwrite(dst.array, size)
   394  			msanread(src.array, size)
   395  		}
   396  
   397  		memmove(dst.array, src.array, size)
   398  		return n
   399  	}
   400  	return typedslicecopy(elemType, dst, src)
   401  }
   402  
   403  // typedmemclr clears the typed memory at ptr with type typ. The
   404  // memory at ptr must already be initialized (and hence in type-safe
   405  // state). If the memory is being initialized for the first time, see
   406  // memclrNoHeapPointers.
   407  //
   408  // If the caller knows that typ has pointers, it can alternatively
   409  // call memclrHasPointers.
   410  //
   411  //go:nosplit
   412  func typedmemclr(typ *_type, ptr unsafe.Pointer) {
   413  	if typ.kind&kindNoPointers == 0 {
   414  		bulkBarrierPreWrite(uintptr(ptr), 0, typ.size)
   415  	}
   416  	memclrNoHeapPointers(ptr, typ.size)
   417  }
   418  
   419  // memclrHasPointers clears n bytes of typed memory starting at ptr.
   420  // The caller must ensure that the type of the object at ptr has
   421  // pointers, usually by checking typ.kind&kindNoPointers. However, ptr
   422  // does not have to point to the start of the allocation.
   423  //
   424  //go:nosplit
   425  func memclrHasPointers(ptr unsafe.Pointer, n uintptr) {
   426  	bulkBarrierPreWrite(uintptr(ptr), 0, n)
   427  	memclrNoHeapPointers(ptr, n)
   428  }