github.com/fenixara/go@v0.0.0-20170127160404-96ea0918e670/src/runtime/proc.go (about)

     1  // Copyright 2014 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package runtime
     6  
     7  import (
     8  	"runtime/internal/atomic"
     9  	"runtime/internal/sys"
    10  	"unsafe"
    11  )
    12  
    13  var buildVersion = sys.TheVersion
    14  
    15  // Goroutine scheduler
    16  // The scheduler's job is to distribute ready-to-run goroutines over worker threads.
    17  //
    18  // The main concepts are:
    19  // G - goroutine.
    20  // M - worker thread, or machine.
    21  // P - processor, a resource that is required to execute Go code.
    22  //     M must have an associated P to execute Go code, however it can be
    23  //     blocked or in a syscall w/o an associated P.
    24  //
    25  // Design doc at https://golang.org/s/go11sched.
    26  
    27  // Worker thread parking/unparking.
    28  // We need to balance between keeping enough running worker threads to utilize
    29  // available hardware parallelism and parking excessive running worker threads
    30  // to conserve CPU resources and power. This is not simple for two reasons:
    31  // (1) scheduler state is intentionally distributed (in particular, per-P work
    32  // queues), so it is not possible to compute global predicates on fast paths;
    33  // (2) for optimal thread management we would need to know the future (don't park
    34  // a worker thread when a new goroutine will be readied in near future).
    35  //
    36  // Three rejected approaches that would work badly:
    37  // 1. Centralize all scheduler state (would inhibit scalability).
    38  // 2. Direct goroutine handoff. That is, when we ready a new goroutine and there
    39  //    is a spare P, unpark a thread and handoff it the thread and the goroutine.
    40  //    This would lead to thread state thrashing, as the thread that readied the
    41  //    goroutine can be out of work the very next moment, we will need to park it.
    42  //    Also, it would destroy locality of computation as we want to preserve
    43  //    dependent goroutines on the same thread; and introduce additional latency.
    44  // 3. Unpark an additional thread whenever we ready a goroutine and there is an
    45  //    idle P, but don't do handoff. This would lead to excessive thread parking/
    46  //    unparking as the additional threads will instantly park without discovering
    47  //    any work to do.
    48  //
    49  // The current approach:
    50  // We unpark an additional thread when we ready a goroutine if (1) there is an
    51  // idle P and there are no "spinning" worker threads. A worker thread is considered
    52  // spinning if it is out of local work and did not find work in global run queue/
    53  // netpoller; the spinning state is denoted in m.spinning and in sched.nmspinning.
    54  // Threads unparked this way are also considered spinning; we don't do goroutine
    55  // handoff so such threads are out of work initially. Spinning threads do some
    56  // spinning looking for work in per-P run queues before parking. If a spinning
    57  // thread finds work it takes itself out of the spinning state and proceeds to
    58  // execution. If it does not find work it takes itself out of the spinning state
    59  // and then parks.
    60  // If there is at least one spinning thread (sched.nmspinning>1), we don't unpark
    61  // new threads when readying goroutines. To compensate for that, if the last spinning
    62  // thread finds work and stops spinning, it must unpark a new spinning thread.
    63  // This approach smooths out unjustified spikes of thread unparking,
    64  // but at the same time guarantees eventual maximal CPU parallelism utilization.
    65  //
    66  // The main implementation complication is that we need to be very careful during
    67  // spinning->non-spinning thread transition. This transition can race with submission
    68  // of a new goroutine, and either one part or another needs to unpark another worker
    69  // thread. If they both fail to do that, we can end up with semi-persistent CPU
    70  // underutilization. The general pattern for goroutine readying is: submit a goroutine
    71  // to local work queue, #StoreLoad-style memory barrier, check sched.nmspinning.
    72  // The general pattern for spinning->non-spinning transition is: decrement nmspinning,
    73  // #StoreLoad-style memory barrier, check all per-P work queues for new work.
    74  // Note that all this complexity does not apply to global run queue as we are not
    75  // sloppy about thread unparking when submitting to global queue. Also see comments
    76  // for nmspinning manipulation.
    77  
    78  var (
    79  	m0           m
    80  	g0           g
    81  	raceprocctx0 uintptr
    82  )
    83  
    84  //go:linkname runtime_init runtime.init
    85  func runtime_init()
    86  
    87  //go:linkname main_init main.init
    88  func main_init()
    89  
    90  // main_init_done is a signal used by cgocallbackg that initialization
    91  // has been completed. It is made before _cgo_notify_runtime_init_done,
    92  // so all cgo calls can rely on it existing. When main_init is complete,
    93  // it is closed, meaning cgocallbackg can reliably receive from it.
    94  var main_init_done chan bool
    95  
    96  //go:linkname main_main main.main
    97  func main_main()
    98  
    99  // runtimeInitTime is the nanotime() at which the runtime started.
   100  var runtimeInitTime int64
   101  
   102  // Value to use for signal mask for newly created M's.
   103  var initSigmask sigset
   104  
   105  // The main goroutine.
   106  func main() {
   107  	g := getg()
   108  
   109  	// Racectx of m0->g0 is used only as the parent of the main goroutine.
   110  	// It must not be used for anything else.
   111  	g.m.g0.racectx = 0
   112  
   113  	// Max stack size is 1 GB on 64-bit, 250 MB on 32-bit.
   114  	// Using decimal instead of binary GB and MB because
   115  	// they look nicer in the stack overflow failure message.
   116  	if sys.PtrSize == 8 {
   117  		maxstacksize = 1000000000
   118  	} else {
   119  		maxstacksize = 250000000
   120  	}
   121  
   122  	// Record when the world started.
   123  	runtimeInitTime = nanotime()
   124  
   125  	systemstack(func() {
   126  		newm(sysmon, nil)
   127  	})
   128  
   129  	// Lock the main goroutine onto this, the main OS thread,
   130  	// during initialization. Most programs won't care, but a few
   131  	// do require certain calls to be made by the main thread.
   132  	// Those can arrange for main.main to run in the main thread
   133  	// by calling runtime.LockOSThread during initialization
   134  	// to preserve the lock.
   135  	lockOSThread()
   136  
   137  	if g.m != &m0 {
   138  		throw("runtime.main not on m0")
   139  	}
   140  
   141  	runtime_init() // must be before defer
   142  
   143  	// Defer unlock so that runtime.Goexit during init does the unlock too.
   144  	needUnlock := true
   145  	defer func() {
   146  		if needUnlock {
   147  			unlockOSThread()
   148  		}
   149  	}()
   150  
   151  	gcenable()
   152  
   153  	main_init_done = make(chan bool)
   154  	if iscgo {
   155  		if _cgo_thread_start == nil {
   156  			throw("_cgo_thread_start missing")
   157  		}
   158  		if GOOS != "windows" {
   159  			if _cgo_setenv == nil {
   160  				throw("_cgo_setenv missing")
   161  			}
   162  			if _cgo_unsetenv == nil {
   163  				throw("_cgo_unsetenv missing")
   164  			}
   165  		}
   166  		if _cgo_notify_runtime_init_done == nil {
   167  			throw("_cgo_notify_runtime_init_done missing")
   168  		}
   169  		cgocall(_cgo_notify_runtime_init_done, nil)
   170  	}
   171  
   172  	fn := main_init // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime
   173  	fn()
   174  	close(main_init_done)
   175  
   176  	needUnlock = false
   177  	unlockOSThread()
   178  
   179  	if isarchive || islibrary {
   180  		// A program compiled with -buildmode=c-archive or c-shared
   181  		// has a main, but it is not executed.
   182  		return
   183  	}
   184  	fn = main_main // make an indirect call, as the linker doesn't know the address of the main package when laying down the runtime
   185  	fn()
   186  	if raceenabled {
   187  		racefini()
   188  	}
   189  
   190  	// Make racy client program work: if panicking on
   191  	// another goroutine at the same time as main returns,
   192  	// let the other goroutine finish printing the panic trace.
   193  	// Once it does, it will exit. See issue 3934.
   194  	if panicking != 0 {
   195  		gopark(nil, nil, "panicwait", traceEvGoStop, 1)
   196  	}
   197  
   198  	exit(0)
   199  	for {
   200  		var x *int32
   201  		*x = 0
   202  	}
   203  }
   204  
   205  // os_beforeExit is called from os.Exit(0).
   206  //go:linkname os_beforeExit os.runtime_beforeExit
   207  func os_beforeExit() {
   208  	if raceenabled {
   209  		racefini()
   210  	}
   211  }
   212  
   213  // start forcegc helper goroutine
   214  func init() {
   215  	go forcegchelper()
   216  }
   217  
   218  func forcegchelper() {
   219  	forcegc.g = getg()
   220  	for {
   221  		lock(&forcegc.lock)
   222  		if forcegc.idle != 0 {
   223  			throw("forcegc: phase error")
   224  		}
   225  		atomic.Store(&forcegc.idle, 1)
   226  		goparkunlock(&forcegc.lock, "force gc (idle)", traceEvGoBlock, 1)
   227  		// this goroutine is explicitly resumed by sysmon
   228  		if debug.gctrace > 0 {
   229  			println("GC forced")
   230  		}
   231  		gcStart(gcBackgroundMode, true)
   232  	}
   233  }
   234  
   235  //go:nosplit
   236  
   237  // Gosched yields the processor, allowing other goroutines to run. It does not
   238  // suspend the current goroutine, so execution resumes automatically.
   239  func Gosched() {
   240  	mcall(gosched_m)
   241  }
   242  
   243  var alwaysFalse bool
   244  
   245  // goschedguarded does nothing, but is written in a way that guarantees a preemption check in its prologue.
   246  // Calls to this function are inserted by the compiler in otherwise uninterruptible loops (see insertLoopReschedChecks).
   247  func goschedguarded() {
   248  	if alwaysFalse {
   249  		goschedguarded()
   250  	}
   251  }
   252  
   253  // Puts the current goroutine into a waiting state and calls unlockf.
   254  // If unlockf returns false, the goroutine is resumed.
   255  // unlockf must not access this G's stack, as it may be moved between
   256  // the call to gopark and the call to unlockf.
   257  func gopark(unlockf func(*g, unsafe.Pointer) bool, lock unsafe.Pointer, reason string, traceEv byte, traceskip int) {
   258  	mp := acquirem()
   259  	gp := mp.curg
   260  	status := readgstatus(gp)
   261  	if status != _Grunning && status != _Gscanrunning {
   262  		throw("gopark: bad g status")
   263  	}
   264  	mp.waitlock = lock
   265  	mp.waitunlockf = *(*unsafe.Pointer)(unsafe.Pointer(&unlockf))
   266  	gp.waitreason = reason
   267  	mp.waittraceev = traceEv
   268  	mp.waittraceskip = traceskip
   269  	releasem(mp)
   270  	// can't do anything that might move the G between Ms here.
   271  	mcall(park_m)
   272  }
   273  
   274  // Puts the current goroutine into a waiting state and unlocks the lock.
   275  // The goroutine can be made runnable again by calling goready(gp).
   276  func goparkunlock(lock *mutex, reason string, traceEv byte, traceskip int) {
   277  	gopark(parkunlock_c, unsafe.Pointer(lock), reason, traceEv, traceskip)
   278  }
   279  
   280  func goready(gp *g, traceskip int) {
   281  	systemstack(func() {
   282  		ready(gp, traceskip, true)
   283  	})
   284  }
   285  
   286  //go:nosplit
   287  func acquireSudog() *sudog {
   288  	// Delicate dance: the semaphore implementation calls
   289  	// acquireSudog, acquireSudog calls new(sudog),
   290  	// new calls malloc, malloc can call the garbage collector,
   291  	// and the garbage collector calls the semaphore implementation
   292  	// in stopTheWorld.
   293  	// Break the cycle by doing acquirem/releasem around new(sudog).
   294  	// The acquirem/releasem increments m.locks during new(sudog),
   295  	// which keeps the garbage collector from being invoked.
   296  	mp := acquirem()
   297  	pp := mp.p.ptr()
   298  	if len(pp.sudogcache) == 0 {
   299  		lock(&sched.sudoglock)
   300  		// First, try to grab a batch from central cache.
   301  		for len(pp.sudogcache) < cap(pp.sudogcache)/2 && sched.sudogcache != nil {
   302  			s := sched.sudogcache
   303  			sched.sudogcache = s.next
   304  			s.next = nil
   305  			pp.sudogcache = append(pp.sudogcache, s)
   306  		}
   307  		unlock(&sched.sudoglock)
   308  		// If the central cache is empty, allocate a new one.
   309  		if len(pp.sudogcache) == 0 {
   310  			pp.sudogcache = append(pp.sudogcache, new(sudog))
   311  		}
   312  	}
   313  	n := len(pp.sudogcache)
   314  	s := pp.sudogcache[n-1]
   315  	pp.sudogcache[n-1] = nil
   316  	pp.sudogcache = pp.sudogcache[:n-1]
   317  	if s.elem != nil {
   318  		throw("acquireSudog: found s.elem != nil in cache")
   319  	}
   320  	releasem(mp)
   321  	return s
   322  }
   323  
   324  //go:nosplit
   325  func releaseSudog(s *sudog) {
   326  	if s.elem != nil {
   327  		throw("runtime: sudog with non-nil elem")
   328  	}
   329  	if s.selectdone != nil {
   330  		throw("runtime: sudog with non-nil selectdone")
   331  	}
   332  	if s.next != nil {
   333  		throw("runtime: sudog with non-nil next")
   334  	}
   335  	if s.prev != nil {
   336  		throw("runtime: sudog with non-nil prev")
   337  	}
   338  	if s.waitlink != nil {
   339  		throw("runtime: sudog with non-nil waitlink")
   340  	}
   341  	if s.c != nil {
   342  		throw("runtime: sudog with non-nil c")
   343  	}
   344  	gp := getg()
   345  	if gp.param != nil {
   346  		throw("runtime: releaseSudog with non-nil gp.param")
   347  	}
   348  	mp := acquirem() // avoid rescheduling to another P
   349  	pp := mp.p.ptr()
   350  	if len(pp.sudogcache) == cap(pp.sudogcache) {
   351  		// Transfer half of local cache to the central cache.
   352  		var first, last *sudog
   353  		for len(pp.sudogcache) > cap(pp.sudogcache)/2 {
   354  			n := len(pp.sudogcache)
   355  			p := pp.sudogcache[n-1]
   356  			pp.sudogcache[n-1] = nil
   357  			pp.sudogcache = pp.sudogcache[:n-1]
   358  			if first == nil {
   359  				first = p
   360  			} else {
   361  				last.next = p
   362  			}
   363  			last = p
   364  		}
   365  		lock(&sched.sudoglock)
   366  		last.next = sched.sudogcache
   367  		sched.sudogcache = first
   368  		unlock(&sched.sudoglock)
   369  	}
   370  	pp.sudogcache = append(pp.sudogcache, s)
   371  	releasem(mp)
   372  }
   373  
   374  // funcPC returns the entry PC of the function f.
   375  // It assumes that f is a func value. Otherwise the behavior is undefined.
   376  //go:nosplit
   377  func funcPC(f interface{}) uintptr {
   378  	return **(**uintptr)(add(unsafe.Pointer(&f), sys.PtrSize))
   379  }
   380  
   381  // called from assembly
   382  func badmcall(fn func(*g)) {
   383  	throw("runtime: mcall called on m->g0 stack")
   384  }
   385  
   386  func badmcall2(fn func(*g)) {
   387  	throw("runtime: mcall function returned")
   388  }
   389  
   390  func badreflectcall() {
   391  	panic(plainError("arg size to reflect.call more than 1GB"))
   392  }
   393  
   394  var badmorestackg0Msg = "fatal: morestack on g0\n"
   395  
   396  //go:nosplit
   397  //go:nowritebarrierrec
   398  func badmorestackg0() {
   399  	sp := stringStructOf(&badmorestackg0Msg)
   400  	write(2, sp.str, int32(sp.len))
   401  }
   402  
   403  var badmorestackgsignalMsg = "fatal: morestack on gsignal\n"
   404  
   405  //go:nosplit
   406  //go:nowritebarrierrec
   407  func badmorestackgsignal() {
   408  	sp := stringStructOf(&badmorestackgsignalMsg)
   409  	write(2, sp.str, int32(sp.len))
   410  }
   411  
   412  //go:nosplit
   413  func badctxt() {
   414  	throw("ctxt != 0")
   415  }
   416  
   417  func lockedOSThread() bool {
   418  	gp := getg()
   419  	return gp.lockedm != nil && gp.m.lockedg != nil
   420  }
   421  
   422  var (
   423  	allgs    []*g
   424  	allglock mutex
   425  )
   426  
   427  func allgadd(gp *g) {
   428  	if readgstatus(gp) == _Gidle {
   429  		throw("allgadd: bad status Gidle")
   430  	}
   431  
   432  	lock(&allglock)
   433  	allgs = append(allgs, gp)
   434  	allglen = uintptr(len(allgs))
   435  
   436  	// Grow GC rescan list if necessary.
   437  	if len(allgs) > cap(work.rescan.list) {
   438  		lock(&work.rescan.lock)
   439  		l := work.rescan.list
   440  		// Let append do the heavy lifting, but keep the
   441  		// length the same.
   442  		work.rescan.list = append(l[:cap(l)], 0)[:len(l)]
   443  		unlock(&work.rescan.lock)
   444  	}
   445  	unlock(&allglock)
   446  }
   447  
   448  const (
   449  	// Number of goroutine ids to grab from sched.goidgen to local per-P cache at once.
   450  	// 16 seems to provide enough amortization, but other than that it's mostly arbitrary number.
   451  	_GoidCacheBatch = 16
   452  )
   453  
   454  // The bootstrap sequence is:
   455  //
   456  //	call osinit
   457  //	call schedinit
   458  //	make & queue new G
   459  //	call runtime·mstart
   460  //
   461  // The new G calls runtime·main.
   462  func schedinit() {
   463  	// raceinit must be the first call to race detector.
   464  	// In particular, it must be done before mallocinit below calls racemapshadow.
   465  	_g_ := getg()
   466  	if raceenabled {
   467  		_g_.racectx, raceprocctx0 = raceinit()
   468  	}
   469  
   470  	sched.maxmcount = 10000
   471  
   472  	tracebackinit()
   473  	moduledataverify()
   474  	stackinit()
   475  	mallocinit()
   476  	mcommoninit(_g_.m)
   477  	alginit()       // maps must not be used before this call
   478  	modulesinit()   // provides activeModules
   479  	typelinksinit() // uses maps, activeModules
   480  	itabsinit()     // uses activeModules
   481  
   482  	msigsave(_g_.m)
   483  	initSigmask = _g_.m.sigmask
   484  
   485  	goargs()
   486  	goenvs()
   487  	parsedebugvars()
   488  	gcinit()
   489  
   490  	sched.lastpoll = uint64(nanotime())
   491  	procs := ncpu
   492  	if n, ok := atoi32(gogetenv("GOMAXPROCS")); ok && n > 0 {
   493  		procs = n
   494  	}
   495  	if procs > _MaxGomaxprocs {
   496  		procs = _MaxGomaxprocs
   497  	}
   498  	if procresize(procs) != nil {
   499  		throw("unknown runnable goroutine during bootstrap")
   500  	}
   501  
   502  	if buildVersion == "" {
   503  		// Condition should never trigger. This code just serves
   504  		// to ensure runtime·buildVersion is kept in the resulting binary.
   505  		buildVersion = "unknown"
   506  	}
   507  }
   508  
   509  func dumpgstatus(gp *g) {
   510  	_g_ := getg()
   511  	print("runtime: gp: gp=", gp, ", goid=", gp.goid, ", gp->atomicstatus=", readgstatus(gp), "\n")
   512  	print("runtime:  g:  g=", _g_, ", goid=", _g_.goid, ",  g->atomicstatus=", readgstatus(_g_), "\n")
   513  }
   514  
   515  func checkmcount() {
   516  	// sched lock is held
   517  	if sched.mcount > sched.maxmcount {
   518  		print("runtime: program exceeds ", sched.maxmcount, "-thread limit\n")
   519  		throw("thread exhaustion")
   520  	}
   521  }
   522  
   523  func mcommoninit(mp *m) {
   524  	_g_ := getg()
   525  
   526  	// g0 stack won't make sense for user (and is not necessary unwindable).
   527  	if _g_ != _g_.m.g0 {
   528  		callers(1, mp.createstack[:])
   529  	}
   530  
   531  	mp.fastrand = 0x49f6428a + uint32(mp.id) + uint32(cputicks())
   532  	if mp.fastrand == 0 {
   533  		mp.fastrand = 0x49f6428a
   534  	}
   535  
   536  	lock(&sched.lock)
   537  	mp.id = sched.mcount
   538  	sched.mcount++
   539  	checkmcount()
   540  	mpreinit(mp)
   541  	if mp.gsignal != nil {
   542  		mp.gsignal.stackguard1 = mp.gsignal.stack.lo + _StackGuard
   543  	}
   544  
   545  	// Add to allm so garbage collector doesn't free g->m
   546  	// when it is just in a register or thread-local storage.
   547  	mp.alllink = allm
   548  
   549  	// NumCgoCall() iterates over allm w/o schedlock,
   550  	// so we need to publish it safely.
   551  	atomicstorep(unsafe.Pointer(&allm), unsafe.Pointer(mp))
   552  	unlock(&sched.lock)
   553  
   554  	// Allocate memory to hold a cgo traceback if the cgo call crashes.
   555  	if iscgo || GOOS == "solaris" || GOOS == "windows" {
   556  		mp.cgoCallers = new(cgoCallers)
   557  	}
   558  }
   559  
   560  // Mark gp ready to run.
   561  func ready(gp *g, traceskip int, next bool) {
   562  	if trace.enabled {
   563  		traceGoUnpark(gp, traceskip)
   564  	}
   565  
   566  	status := readgstatus(gp)
   567  
   568  	// Mark runnable.
   569  	_g_ := getg()
   570  	_g_.m.locks++ // disable preemption because it can be holding p in a local var
   571  	if status&^_Gscan != _Gwaiting {
   572  		dumpgstatus(gp)
   573  		throw("bad g->status in ready")
   574  	}
   575  
   576  	// status is Gwaiting or Gscanwaiting, make Grunnable and put on runq
   577  	casgstatus(gp, _Gwaiting, _Grunnable)
   578  	runqput(_g_.m.p.ptr(), gp, next)
   579  	if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 {
   580  		wakep()
   581  	}
   582  	_g_.m.locks--
   583  	if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in Case we've cleared it in newstack
   584  		_g_.stackguard0 = stackPreempt
   585  	}
   586  }
   587  
   588  func gcprocs() int32 {
   589  	// Figure out how many CPUs to use during GC.
   590  	// Limited by gomaxprocs, number of actual CPUs, and MaxGcproc.
   591  	lock(&sched.lock)
   592  	n := gomaxprocs
   593  	if n > ncpu {
   594  		n = ncpu
   595  	}
   596  	if n > _MaxGcproc {
   597  		n = _MaxGcproc
   598  	}
   599  	if n > sched.nmidle+1 { // one M is currently running
   600  		n = sched.nmidle + 1
   601  	}
   602  	unlock(&sched.lock)
   603  	return n
   604  }
   605  
   606  func needaddgcproc() bool {
   607  	lock(&sched.lock)
   608  	n := gomaxprocs
   609  	if n > ncpu {
   610  		n = ncpu
   611  	}
   612  	if n > _MaxGcproc {
   613  		n = _MaxGcproc
   614  	}
   615  	n -= sched.nmidle + 1 // one M is currently running
   616  	unlock(&sched.lock)
   617  	return n > 0
   618  }
   619  
   620  func helpgc(nproc int32) {
   621  	_g_ := getg()
   622  	lock(&sched.lock)
   623  	pos := 0
   624  	for n := int32(1); n < nproc; n++ { // one M is currently running
   625  		if allp[pos].mcache == _g_.m.mcache {
   626  			pos++
   627  		}
   628  		mp := mget()
   629  		if mp == nil {
   630  			throw("gcprocs inconsistency")
   631  		}
   632  		mp.helpgc = n
   633  		mp.p.set(allp[pos])
   634  		mp.mcache = allp[pos].mcache
   635  		pos++
   636  		notewakeup(&mp.park)
   637  	}
   638  	unlock(&sched.lock)
   639  }
   640  
   641  // freezeStopWait is a large value that freezetheworld sets
   642  // sched.stopwait to in order to request that all Gs permanently stop.
   643  const freezeStopWait = 0x7fffffff
   644  
   645  // freezing is set to non-zero if the runtime is trying to freeze the
   646  // world.
   647  var freezing uint32
   648  
   649  // Similar to stopTheWorld but best-effort and can be called several times.
   650  // There is no reverse operation, used during crashing.
   651  // This function must not lock any mutexes.
   652  func freezetheworld() {
   653  	atomic.Store(&freezing, 1)
   654  	// stopwait and preemption requests can be lost
   655  	// due to races with concurrently executing threads,
   656  	// so try several times
   657  	for i := 0; i < 5; i++ {
   658  		// this should tell the scheduler to not start any new goroutines
   659  		sched.stopwait = freezeStopWait
   660  		atomic.Store(&sched.gcwaiting, 1)
   661  		// this should stop running goroutines
   662  		if !preemptall() {
   663  			break // no running goroutines
   664  		}
   665  		usleep(1000)
   666  	}
   667  	// to be sure
   668  	usleep(1000)
   669  	preemptall()
   670  	usleep(1000)
   671  }
   672  
   673  func isscanstatus(status uint32) bool {
   674  	if status == _Gscan {
   675  		throw("isscanstatus: Bad status Gscan")
   676  	}
   677  	return status&_Gscan == _Gscan
   678  }
   679  
   680  // All reads and writes of g's status go through readgstatus, casgstatus
   681  // castogscanstatus, casfrom_Gscanstatus.
   682  //go:nosplit
   683  func readgstatus(gp *g) uint32 {
   684  	return atomic.Load(&gp.atomicstatus)
   685  }
   686  
   687  // Ownership of gcscanvalid:
   688  //
   689  // If gp is running (meaning status == _Grunning or _Grunning|_Gscan),
   690  // then gp owns gp.gcscanvalid, and other goroutines must not modify it.
   691  //
   692  // Otherwise, a second goroutine can lock the scan state by setting _Gscan
   693  // in the status bit and then modify gcscanvalid, and then unlock the scan state.
   694  //
   695  // Note that the first condition implies an exception to the second:
   696  // if a second goroutine changes gp's status to _Grunning|_Gscan,
   697  // that second goroutine still does not have the right to modify gcscanvalid.
   698  
   699  // The Gscanstatuses are acting like locks and this releases them.
   700  // If it proves to be a performance hit we should be able to make these
   701  // simple atomic stores but for now we are going to throw if
   702  // we see an inconsistent state.
   703  func casfrom_Gscanstatus(gp *g, oldval, newval uint32) {
   704  	success := false
   705  
   706  	// Check that transition is valid.
   707  	switch oldval {
   708  	default:
   709  		print("runtime: casfrom_Gscanstatus bad oldval gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
   710  		dumpgstatus(gp)
   711  		throw("casfrom_Gscanstatus:top gp->status is not in scan state")
   712  	case _Gscanrunnable,
   713  		_Gscanwaiting,
   714  		_Gscanrunning,
   715  		_Gscansyscall:
   716  		if newval == oldval&^_Gscan {
   717  			success = atomic.Cas(&gp.atomicstatus, oldval, newval)
   718  		}
   719  	}
   720  	if !success {
   721  		print("runtime: casfrom_Gscanstatus failed gp=", gp, ", oldval=", hex(oldval), ", newval=", hex(newval), "\n")
   722  		dumpgstatus(gp)
   723  		throw("casfrom_Gscanstatus: gp->status is not in scan state")
   724  	}
   725  }
   726  
   727  // This will return false if the gp is not in the expected status and the cas fails.
   728  // This acts like a lock acquire while the casfromgstatus acts like a lock release.
   729  func castogscanstatus(gp *g, oldval, newval uint32) bool {
   730  	switch oldval {
   731  	case _Grunnable,
   732  		_Grunning,
   733  		_Gwaiting,
   734  		_Gsyscall:
   735  		if newval == oldval|_Gscan {
   736  			return atomic.Cas(&gp.atomicstatus, oldval, newval)
   737  		}
   738  	}
   739  	print("runtime: castogscanstatus oldval=", hex(oldval), " newval=", hex(newval), "\n")
   740  	throw("castogscanstatus")
   741  	panic("not reached")
   742  }
   743  
   744  // If asked to move to or from a Gscanstatus this will throw. Use the castogscanstatus
   745  // and casfrom_Gscanstatus instead.
   746  // casgstatus will loop if the g->atomicstatus is in a Gscan status until the routine that
   747  // put it in the Gscan state is finished.
   748  //go:nosplit
   749  func casgstatus(gp *g, oldval, newval uint32) {
   750  	if (oldval&_Gscan != 0) || (newval&_Gscan != 0) || oldval == newval {
   751  		systemstack(func() {
   752  			print("runtime: casgstatus: oldval=", hex(oldval), " newval=", hex(newval), "\n")
   753  			throw("casgstatus: bad incoming values")
   754  		})
   755  	}
   756  
   757  	if oldval == _Grunning && gp.gcscanvalid {
   758  		// If oldvall == _Grunning, then the actual status must be
   759  		// _Grunning or _Grunning|_Gscan; either way,
   760  		// we own gp.gcscanvalid, so it's safe to read.
   761  		// gp.gcscanvalid must not be true when we are running.
   762  		print("runtime: casgstatus ", hex(oldval), "->", hex(newval), " gp.status=", hex(gp.atomicstatus), " gp.gcscanvalid=true\n")
   763  		throw("casgstatus")
   764  	}
   765  
   766  	// See http://golang.org/cl/21503 for justification of the yield delay.
   767  	const yieldDelay = 5 * 1000
   768  	var nextYield int64
   769  
   770  	// loop if gp->atomicstatus is in a scan state giving
   771  	// GC time to finish and change the state to oldval.
   772  	for i := 0; !atomic.Cas(&gp.atomicstatus, oldval, newval); i++ {
   773  		if oldval == _Gwaiting && gp.atomicstatus == _Grunnable {
   774  			systemstack(func() {
   775  				throw("casgstatus: waiting for Gwaiting but is Grunnable")
   776  			})
   777  		}
   778  		// Help GC if needed.
   779  		// if gp.preemptscan && !gp.gcworkdone && (oldval == _Grunning || oldval == _Gsyscall) {
   780  		// 	gp.preemptscan = false
   781  		// 	systemstack(func() {
   782  		// 		gcphasework(gp)
   783  		// 	})
   784  		// }
   785  		// But meanwhile just yield.
   786  		if i == 0 {
   787  			nextYield = nanotime() + yieldDelay
   788  		}
   789  		if nanotime() < nextYield {
   790  			for x := 0; x < 10 && gp.atomicstatus != oldval; x++ {
   791  				procyield(1)
   792  			}
   793  		} else {
   794  			osyield()
   795  			nextYield = nanotime() + yieldDelay/2
   796  		}
   797  	}
   798  	if newval == _Grunning && gp.gcscanvalid {
   799  		// Run queueRescan on the system stack so it has more space.
   800  		systemstack(func() { queueRescan(gp) })
   801  	}
   802  }
   803  
   804  // casgstatus(gp, oldstatus, Gcopystack), assuming oldstatus is Gwaiting or Grunnable.
   805  // Returns old status. Cannot call casgstatus directly, because we are racing with an
   806  // async wakeup that might come in from netpoll. If we see Gwaiting from the readgstatus,
   807  // it might have become Grunnable by the time we get to the cas. If we called casgstatus,
   808  // it would loop waiting for the status to go back to Gwaiting, which it never will.
   809  //go:nosplit
   810  func casgcopystack(gp *g) uint32 {
   811  	for {
   812  		oldstatus := readgstatus(gp) &^ _Gscan
   813  		if oldstatus != _Gwaiting && oldstatus != _Grunnable {
   814  			throw("copystack: bad status, not Gwaiting or Grunnable")
   815  		}
   816  		if atomic.Cas(&gp.atomicstatus, oldstatus, _Gcopystack) {
   817  			return oldstatus
   818  		}
   819  	}
   820  }
   821  
   822  // scang blocks until gp's stack has been scanned.
   823  // It might be scanned by scang or it might be scanned by the goroutine itself.
   824  // Either way, the stack scan has completed when scang returns.
   825  func scang(gp *g, gcw *gcWork) {
   826  	// Invariant; we (the caller, markroot for a specific goroutine) own gp.gcscandone.
   827  	// Nothing is racing with us now, but gcscandone might be set to true left over
   828  	// from an earlier round of stack scanning (we scan twice per GC).
   829  	// We use gcscandone to record whether the scan has been done during this round.
   830  	// It is important that the scan happens exactly once: if called twice,
   831  	// the installation of stack barriers will detect the double scan and die.
   832  
   833  	gp.gcscandone = false
   834  
   835  	// See http://golang.org/cl/21503 for justification of the yield delay.
   836  	const yieldDelay = 10 * 1000
   837  	var nextYield int64
   838  
   839  	// Endeavor to get gcscandone set to true,
   840  	// either by doing the stack scan ourselves or by coercing gp to scan itself.
   841  	// gp.gcscandone can transition from false to true when we're not looking
   842  	// (if we asked for preemption), so any time we lock the status using
   843  	// castogscanstatus we have to double-check that the scan is still not done.
   844  loop:
   845  	for i := 0; !gp.gcscandone; i++ {
   846  		switch s := readgstatus(gp); s {
   847  		default:
   848  			dumpgstatus(gp)
   849  			throw("stopg: invalid status")
   850  
   851  		case _Gdead:
   852  			// No stack.
   853  			gp.gcscandone = true
   854  			break loop
   855  
   856  		case _Gcopystack:
   857  		// Stack being switched. Go around again.
   858  
   859  		case _Grunnable, _Gsyscall, _Gwaiting:
   860  			// Claim goroutine by setting scan bit.
   861  			// Racing with execution or readying of gp.
   862  			// The scan bit keeps them from running
   863  			// the goroutine until we're done.
   864  			if castogscanstatus(gp, s, s|_Gscan) {
   865  				if !gp.gcscandone {
   866  					scanstack(gp, gcw)
   867  					gp.gcscandone = true
   868  				}
   869  				restartg(gp)
   870  				break loop
   871  			}
   872  
   873  		case _Gscanwaiting:
   874  		// newstack is doing a scan for us right now. Wait.
   875  
   876  		case _Grunning:
   877  			// Goroutine running. Try to preempt execution so it can scan itself.
   878  			// The preemption handler (in newstack) does the actual scan.
   879  
   880  			// Optimization: if there is already a pending preemption request
   881  			// (from the previous loop iteration), don't bother with the atomics.
   882  			if gp.preemptscan && gp.preempt && gp.stackguard0 == stackPreempt {
   883  				break
   884  			}
   885  
   886  			// Ask for preemption and self scan.
   887  			if castogscanstatus(gp, _Grunning, _Gscanrunning) {
   888  				if !gp.gcscandone {
   889  					gp.preemptscan = true
   890  					gp.preempt = true
   891  					gp.stackguard0 = stackPreempt
   892  				}
   893  				casfrom_Gscanstatus(gp, _Gscanrunning, _Grunning)
   894  			}
   895  		}
   896  
   897  		if i == 0 {
   898  			nextYield = nanotime() + yieldDelay
   899  		}
   900  		if nanotime() < nextYield {
   901  			procyield(10)
   902  		} else {
   903  			osyield()
   904  			nextYield = nanotime() + yieldDelay/2
   905  		}
   906  	}
   907  
   908  	gp.preemptscan = false // cancel scan request if no longer needed
   909  }
   910  
   911  // The GC requests that this routine be moved from a scanmumble state to a mumble state.
   912  func restartg(gp *g) {
   913  	s := readgstatus(gp)
   914  	switch s {
   915  	default:
   916  		dumpgstatus(gp)
   917  		throw("restartg: unexpected status")
   918  
   919  	case _Gdead:
   920  	// ok
   921  
   922  	case _Gscanrunnable,
   923  		_Gscanwaiting,
   924  		_Gscansyscall:
   925  		casfrom_Gscanstatus(gp, s, s&^_Gscan)
   926  	}
   927  }
   928  
   929  // stopTheWorld stops all P's from executing goroutines, interrupting
   930  // all goroutines at GC safe points and records reason as the reason
   931  // for the stop. On return, only the current goroutine's P is running.
   932  // stopTheWorld must not be called from a system stack and the caller
   933  // must not hold worldsema. The caller must call startTheWorld when
   934  // other P's should resume execution.
   935  //
   936  // stopTheWorld is safe for multiple goroutines to call at the
   937  // same time. Each will execute its own stop, and the stops will
   938  // be serialized.
   939  //
   940  // This is also used by routines that do stack dumps. If the system is
   941  // in panic or being exited, this may not reliably stop all
   942  // goroutines.
   943  func stopTheWorld(reason string) {
   944  	semacquire(&worldsema, 0)
   945  	getg().m.preemptoff = reason
   946  	systemstack(stopTheWorldWithSema)
   947  }
   948  
   949  // startTheWorld undoes the effects of stopTheWorld.
   950  func startTheWorld() {
   951  	systemstack(startTheWorldWithSema)
   952  	// worldsema must be held over startTheWorldWithSema to ensure
   953  	// gomaxprocs cannot change while worldsema is held.
   954  	semrelease(&worldsema)
   955  	getg().m.preemptoff = ""
   956  }
   957  
   958  // Holding worldsema grants an M the right to try to stop the world
   959  // and prevents gomaxprocs from changing concurrently.
   960  var worldsema uint32 = 1
   961  
   962  // stopTheWorldWithSema is the core implementation of stopTheWorld.
   963  // The caller is responsible for acquiring worldsema and disabling
   964  // preemption first and then should stopTheWorldWithSema on the system
   965  // stack:
   966  //
   967  //	semacquire(&worldsema, 0)
   968  //	m.preemptoff = "reason"
   969  //	systemstack(stopTheWorldWithSema)
   970  //
   971  // When finished, the caller must either call startTheWorld or undo
   972  // these three operations separately:
   973  //
   974  //	m.preemptoff = ""
   975  //	systemstack(startTheWorldWithSema)
   976  //	semrelease(&worldsema)
   977  //
   978  // It is allowed to acquire worldsema once and then execute multiple
   979  // startTheWorldWithSema/stopTheWorldWithSema pairs.
   980  // Other P's are able to execute between successive calls to
   981  // startTheWorldWithSema and stopTheWorldWithSema.
   982  // Holding worldsema causes any other goroutines invoking
   983  // stopTheWorld to block.
   984  func stopTheWorldWithSema() {
   985  	_g_ := getg()
   986  
   987  	// If we hold a lock, then we won't be able to stop another M
   988  	// that is blocked trying to acquire the lock.
   989  	if _g_.m.locks > 0 {
   990  		throw("stopTheWorld: holding locks")
   991  	}
   992  
   993  	lock(&sched.lock)
   994  	sched.stopwait = gomaxprocs
   995  	atomic.Store(&sched.gcwaiting, 1)
   996  	preemptall()
   997  	// stop current P
   998  	_g_.m.p.ptr().status = _Pgcstop // Pgcstop is only diagnostic.
   999  	sched.stopwait--
  1000  	// try to retake all P's in Psyscall status
  1001  	for i := 0; i < int(gomaxprocs); i++ {
  1002  		p := allp[i]
  1003  		s := p.status
  1004  		if s == _Psyscall && atomic.Cas(&p.status, s, _Pgcstop) {
  1005  			if trace.enabled {
  1006  				traceGoSysBlock(p)
  1007  				traceProcStop(p)
  1008  			}
  1009  			p.syscalltick++
  1010  			sched.stopwait--
  1011  		}
  1012  	}
  1013  	// stop idle P's
  1014  	for {
  1015  		p := pidleget()
  1016  		if p == nil {
  1017  			break
  1018  		}
  1019  		p.status = _Pgcstop
  1020  		sched.stopwait--
  1021  	}
  1022  	wait := sched.stopwait > 0
  1023  	unlock(&sched.lock)
  1024  
  1025  	// wait for remaining P's to stop voluntarily
  1026  	if wait {
  1027  		for {
  1028  			// wait for 100us, then try to re-preempt in case of any races
  1029  			if notetsleep(&sched.stopnote, 100*1000) {
  1030  				noteclear(&sched.stopnote)
  1031  				break
  1032  			}
  1033  			preemptall()
  1034  		}
  1035  	}
  1036  
  1037  	// sanity checks
  1038  	bad := ""
  1039  	if sched.stopwait != 0 {
  1040  		bad = "stopTheWorld: not stopped (stopwait != 0)"
  1041  	} else {
  1042  		for i := 0; i < int(gomaxprocs); i++ {
  1043  			p := allp[i]
  1044  			if p.status != _Pgcstop {
  1045  				bad = "stopTheWorld: not stopped (status != _Pgcstop)"
  1046  			}
  1047  		}
  1048  	}
  1049  	if atomic.Load(&freezing) != 0 {
  1050  		// Some other thread is panicking. This can cause the
  1051  		// sanity checks above to fail if the panic happens in
  1052  		// the signal handler on a stopped thread. Either way,
  1053  		// we should halt this thread.
  1054  		lock(&deadlock)
  1055  		lock(&deadlock)
  1056  	}
  1057  	if bad != "" {
  1058  		throw(bad)
  1059  	}
  1060  }
  1061  
  1062  func mhelpgc() {
  1063  	_g_ := getg()
  1064  	_g_.m.helpgc = -1
  1065  }
  1066  
  1067  func startTheWorldWithSema() {
  1068  	_g_ := getg()
  1069  
  1070  	_g_.m.locks++        // disable preemption because it can be holding p in a local var
  1071  	gp := netpoll(false) // non-blocking
  1072  	injectglist(gp)
  1073  	add := needaddgcproc()
  1074  	lock(&sched.lock)
  1075  
  1076  	procs := gomaxprocs
  1077  	if newprocs != 0 {
  1078  		procs = newprocs
  1079  		newprocs = 0
  1080  	}
  1081  	p1 := procresize(procs)
  1082  	sched.gcwaiting = 0
  1083  	if sched.sysmonwait != 0 {
  1084  		sched.sysmonwait = 0
  1085  		notewakeup(&sched.sysmonnote)
  1086  	}
  1087  	unlock(&sched.lock)
  1088  
  1089  	for p1 != nil {
  1090  		p := p1
  1091  		p1 = p1.link.ptr()
  1092  		if p.m != 0 {
  1093  			mp := p.m.ptr()
  1094  			p.m = 0
  1095  			if mp.nextp != 0 {
  1096  				throw("startTheWorld: inconsistent mp->nextp")
  1097  			}
  1098  			mp.nextp.set(p)
  1099  			notewakeup(&mp.park)
  1100  		} else {
  1101  			// Start M to run P.  Do not start another M below.
  1102  			newm(nil, p)
  1103  			add = false
  1104  		}
  1105  	}
  1106  
  1107  	// Wakeup an additional proc in case we have excessive runnable goroutines
  1108  	// in local queues or in the global queue. If we don't, the proc will park itself.
  1109  	// If we have lots of excessive work, resetspinning will unpark additional procs as necessary.
  1110  	if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 {
  1111  		wakep()
  1112  	}
  1113  
  1114  	if add {
  1115  		// If GC could have used another helper proc, start one now,
  1116  		// in the hope that it will be available next time.
  1117  		// It would have been even better to start it before the collection,
  1118  		// but doing so requires allocating memory, so it's tricky to
  1119  		// coordinate. This lazy approach works out in practice:
  1120  		// we don't mind if the first couple gc rounds don't have quite
  1121  		// the maximum number of procs.
  1122  		newm(mhelpgc, nil)
  1123  	}
  1124  	_g_.m.locks--
  1125  	if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
  1126  		_g_.stackguard0 = stackPreempt
  1127  	}
  1128  }
  1129  
  1130  // Called to start an M.
  1131  //go:nosplit
  1132  func mstart() {
  1133  	_g_ := getg()
  1134  
  1135  	if _g_.stack.lo == 0 {
  1136  		// Initialize stack bounds from system stack.
  1137  		// Cgo may have left stack size in stack.hi.
  1138  		size := _g_.stack.hi
  1139  		if size == 0 {
  1140  			size = 8192 * sys.StackGuardMultiplier
  1141  		}
  1142  		_g_.stack.hi = uintptr(noescape(unsafe.Pointer(&size)))
  1143  		_g_.stack.lo = _g_.stack.hi - size + 1024
  1144  	}
  1145  	// Initialize stack guards so that we can start calling
  1146  	// both Go and C functions with stack growth prologues.
  1147  	_g_.stackguard0 = _g_.stack.lo + _StackGuard
  1148  	_g_.stackguard1 = _g_.stackguard0
  1149  	mstart1()
  1150  }
  1151  
  1152  func mstart1() {
  1153  	_g_ := getg()
  1154  
  1155  	if _g_ != _g_.m.g0 {
  1156  		throw("bad runtime·mstart")
  1157  	}
  1158  
  1159  	// Record top of stack for use by mcall.
  1160  	// Once we call schedule we're never coming back,
  1161  	// so other calls can reuse this stack space.
  1162  	gosave(&_g_.m.g0.sched)
  1163  	_g_.m.g0.sched.pc = ^uintptr(0) // make sure it is never used
  1164  	asminit()
  1165  	minit()
  1166  
  1167  	// Install signal handlers; after minit so that minit can
  1168  	// prepare the thread to be able to handle the signals.
  1169  	if _g_.m == &m0 {
  1170  		// Create an extra M for callbacks on threads not created by Go.
  1171  		if iscgo && !cgoHasExtraM {
  1172  			cgoHasExtraM = true
  1173  			newextram()
  1174  		}
  1175  		initsig(false)
  1176  	}
  1177  
  1178  	if fn := _g_.m.mstartfn; fn != nil {
  1179  		fn()
  1180  	}
  1181  
  1182  	if _g_.m.helpgc != 0 {
  1183  		_g_.m.helpgc = 0
  1184  		stopm()
  1185  	} else if _g_.m != &m0 {
  1186  		acquirep(_g_.m.nextp.ptr())
  1187  		_g_.m.nextp = 0
  1188  	}
  1189  	schedule()
  1190  }
  1191  
  1192  // forEachP calls fn(p) for every P p when p reaches a GC safe point.
  1193  // If a P is currently executing code, this will bring the P to a GC
  1194  // safe point and execute fn on that P. If the P is not executing code
  1195  // (it is idle or in a syscall), this will call fn(p) directly while
  1196  // preventing the P from exiting its state. This does not ensure that
  1197  // fn will run on every CPU executing Go code, but it acts as a global
  1198  // memory barrier. GC uses this as a "ragged barrier."
  1199  //
  1200  // The caller must hold worldsema.
  1201  //
  1202  //go:systemstack
  1203  func forEachP(fn func(*p)) {
  1204  	mp := acquirem()
  1205  	_p_ := getg().m.p.ptr()
  1206  
  1207  	lock(&sched.lock)
  1208  	if sched.safePointWait != 0 {
  1209  		throw("forEachP: sched.safePointWait != 0")
  1210  	}
  1211  	sched.safePointWait = gomaxprocs - 1
  1212  	sched.safePointFn = fn
  1213  
  1214  	// Ask all Ps to run the safe point function.
  1215  	for _, p := range allp[:gomaxprocs] {
  1216  		if p != _p_ {
  1217  			atomic.Store(&p.runSafePointFn, 1)
  1218  		}
  1219  	}
  1220  	preemptall()
  1221  
  1222  	// Any P entering _Pidle or _Psyscall from now on will observe
  1223  	// p.runSafePointFn == 1 and will call runSafePointFn when
  1224  	// changing its status to _Pidle/_Psyscall.
  1225  
  1226  	// Run safe point function for all idle Ps. sched.pidle will
  1227  	// not change because we hold sched.lock.
  1228  	for p := sched.pidle.ptr(); p != nil; p = p.link.ptr() {
  1229  		if atomic.Cas(&p.runSafePointFn, 1, 0) {
  1230  			fn(p)
  1231  			sched.safePointWait--
  1232  		}
  1233  	}
  1234  
  1235  	wait := sched.safePointWait > 0
  1236  	unlock(&sched.lock)
  1237  
  1238  	// Run fn for the current P.
  1239  	fn(_p_)
  1240  
  1241  	// Force Ps currently in _Psyscall into _Pidle and hand them
  1242  	// off to induce safe point function execution.
  1243  	for i := 0; i < int(gomaxprocs); i++ {
  1244  		p := allp[i]
  1245  		s := p.status
  1246  		if s == _Psyscall && p.runSafePointFn == 1 && atomic.Cas(&p.status, s, _Pidle) {
  1247  			if trace.enabled {
  1248  				traceGoSysBlock(p)
  1249  				traceProcStop(p)
  1250  			}
  1251  			p.syscalltick++
  1252  			handoffp(p)
  1253  		}
  1254  	}
  1255  
  1256  	// Wait for remaining Ps to run fn.
  1257  	if wait {
  1258  		for {
  1259  			// Wait for 100us, then try to re-preempt in
  1260  			// case of any races.
  1261  			//
  1262  			// Requires system stack.
  1263  			if notetsleep(&sched.safePointNote, 100*1000) {
  1264  				noteclear(&sched.safePointNote)
  1265  				break
  1266  			}
  1267  			preemptall()
  1268  		}
  1269  	}
  1270  	if sched.safePointWait != 0 {
  1271  		throw("forEachP: not done")
  1272  	}
  1273  	for i := 0; i < int(gomaxprocs); i++ {
  1274  		p := allp[i]
  1275  		if p.runSafePointFn != 0 {
  1276  			throw("forEachP: P did not run fn")
  1277  		}
  1278  	}
  1279  
  1280  	lock(&sched.lock)
  1281  	sched.safePointFn = nil
  1282  	unlock(&sched.lock)
  1283  	releasem(mp)
  1284  }
  1285  
  1286  // runSafePointFn runs the safe point function, if any, for this P.
  1287  // This should be called like
  1288  //
  1289  //     if getg().m.p.runSafePointFn != 0 {
  1290  //         runSafePointFn()
  1291  //     }
  1292  //
  1293  // runSafePointFn must be checked on any transition in to _Pidle or
  1294  // _Psyscall to avoid a race where forEachP sees that the P is running
  1295  // just before the P goes into _Pidle/_Psyscall and neither forEachP
  1296  // nor the P run the safe-point function.
  1297  func runSafePointFn() {
  1298  	p := getg().m.p.ptr()
  1299  	// Resolve the race between forEachP running the safe-point
  1300  	// function on this P's behalf and this P running the
  1301  	// safe-point function directly.
  1302  	if !atomic.Cas(&p.runSafePointFn, 1, 0) {
  1303  		return
  1304  	}
  1305  	sched.safePointFn(p)
  1306  	lock(&sched.lock)
  1307  	sched.safePointWait--
  1308  	if sched.safePointWait == 0 {
  1309  		notewakeup(&sched.safePointNote)
  1310  	}
  1311  	unlock(&sched.lock)
  1312  }
  1313  
  1314  // When running with cgo, we call _cgo_thread_start
  1315  // to start threads for us so that we can play nicely with
  1316  // foreign code.
  1317  var cgoThreadStart unsafe.Pointer
  1318  
  1319  type cgothreadstart struct {
  1320  	g   guintptr
  1321  	tls *uint64
  1322  	fn  unsafe.Pointer
  1323  }
  1324  
  1325  // Allocate a new m unassociated with any thread.
  1326  // Can use p for allocation context if needed.
  1327  // fn is recorded as the new m's m.mstartfn.
  1328  //
  1329  // This function is allowed to have write barriers even if the caller
  1330  // isn't because it borrows _p_.
  1331  //
  1332  //go:yeswritebarrierrec
  1333  func allocm(_p_ *p, fn func()) *m {
  1334  	_g_ := getg()
  1335  	_g_.m.locks++ // disable GC because it can be called from sysmon
  1336  	if _g_.m.p == 0 {
  1337  		acquirep(_p_) // temporarily borrow p for mallocs in this function
  1338  	}
  1339  	mp := new(m)
  1340  	mp.mstartfn = fn
  1341  	mcommoninit(mp)
  1342  
  1343  	// In case of cgo or Solaris, pthread_create will make us a stack.
  1344  	// Windows and Plan 9 will layout sched stack on OS stack.
  1345  	if iscgo || GOOS == "solaris" || GOOS == "windows" || GOOS == "plan9" {
  1346  		mp.g0 = malg(-1)
  1347  	} else {
  1348  		mp.g0 = malg(8192 * sys.StackGuardMultiplier)
  1349  	}
  1350  	mp.g0.m = mp
  1351  
  1352  	if _p_ == _g_.m.p.ptr() {
  1353  		releasep()
  1354  	}
  1355  	_g_.m.locks--
  1356  	if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
  1357  		_g_.stackguard0 = stackPreempt
  1358  	}
  1359  
  1360  	return mp
  1361  }
  1362  
  1363  // needm is called when a cgo callback happens on a
  1364  // thread without an m (a thread not created by Go).
  1365  // In this case, needm is expected to find an m to use
  1366  // and return with m, g initialized correctly.
  1367  // Since m and g are not set now (likely nil, but see below)
  1368  // needm is limited in what routines it can call. In particular
  1369  // it can only call nosplit functions (textflag 7) and cannot
  1370  // do any scheduling that requires an m.
  1371  //
  1372  // In order to avoid needing heavy lifting here, we adopt
  1373  // the following strategy: there is a stack of available m's
  1374  // that can be stolen. Using compare-and-swap
  1375  // to pop from the stack has ABA races, so we simulate
  1376  // a lock by doing an exchange (via casp) to steal the stack
  1377  // head and replace the top pointer with MLOCKED (1).
  1378  // This serves as a simple spin lock that we can use even
  1379  // without an m. The thread that locks the stack in this way
  1380  // unlocks the stack by storing a valid stack head pointer.
  1381  //
  1382  // In order to make sure that there is always an m structure
  1383  // available to be stolen, we maintain the invariant that there
  1384  // is always one more than needed. At the beginning of the
  1385  // program (if cgo is in use) the list is seeded with a single m.
  1386  // If needm finds that it has taken the last m off the list, its job
  1387  // is - once it has installed its own m so that it can do things like
  1388  // allocate memory - to create a spare m and put it on the list.
  1389  //
  1390  // Each of these extra m's also has a g0 and a curg that are
  1391  // pressed into service as the scheduling stack and current
  1392  // goroutine for the duration of the cgo callback.
  1393  //
  1394  // When the callback is done with the m, it calls dropm to
  1395  // put the m back on the list.
  1396  //go:nosplit
  1397  func needm(x byte) {
  1398  	if iscgo && !cgoHasExtraM {
  1399  		// Can happen if C/C++ code calls Go from a global ctor.
  1400  		// Can not throw, because scheduler is not initialized yet.
  1401  		write(2, unsafe.Pointer(&earlycgocallback[0]), int32(len(earlycgocallback)))
  1402  		exit(1)
  1403  	}
  1404  
  1405  	// Lock extra list, take head, unlock popped list.
  1406  	// nilokay=false is safe here because of the invariant above,
  1407  	// that the extra list always contains or will soon contain
  1408  	// at least one m.
  1409  	mp := lockextra(false)
  1410  
  1411  	// Set needextram when we've just emptied the list,
  1412  	// so that the eventual call into cgocallbackg will
  1413  	// allocate a new m for the extra list. We delay the
  1414  	// allocation until then so that it can be done
  1415  	// after exitsyscall makes sure it is okay to be
  1416  	// running at all (that is, there's no garbage collection
  1417  	// running right now).
  1418  	mp.needextram = mp.schedlink == 0
  1419  	unlockextra(mp.schedlink.ptr())
  1420  
  1421  	// Save and block signals before installing g.
  1422  	// Once g is installed, any incoming signals will try to execute,
  1423  	// but we won't have the sigaltstack settings and other data
  1424  	// set up appropriately until the end of minit, which will
  1425  	// unblock the signals. This is the same dance as when
  1426  	// starting a new m to run Go code via newosproc.
  1427  	msigsave(mp)
  1428  	sigblock()
  1429  
  1430  	// Install g (= m->g0) and set the stack bounds
  1431  	// to match the current stack. We don't actually know
  1432  	// how big the stack is, like we don't know how big any
  1433  	// scheduling stack is, but we assume there's at least 32 kB,
  1434  	// which is more than enough for us.
  1435  	setg(mp.g0)
  1436  	_g_ := getg()
  1437  	_g_.stack.hi = uintptr(noescape(unsafe.Pointer(&x))) + 1024
  1438  	_g_.stack.lo = uintptr(noescape(unsafe.Pointer(&x))) - 32*1024
  1439  	_g_.stackguard0 = _g_.stack.lo + _StackGuard
  1440  
  1441  	// Initialize this thread to use the m.
  1442  	asminit()
  1443  	minit()
  1444  }
  1445  
  1446  var earlycgocallback = []byte("fatal error: cgo callback before cgo call\n")
  1447  
  1448  // newextram allocates m's and puts them on the extra list.
  1449  // It is called with a working local m, so that it can do things
  1450  // like call schedlock and allocate.
  1451  func newextram() {
  1452  	c := atomic.Xchg(&extraMWaiters, 0)
  1453  	if c > 0 {
  1454  		for i := uint32(0); i < c; i++ {
  1455  			oneNewExtraM()
  1456  		}
  1457  	} else {
  1458  		// Make sure there is at least one extra M.
  1459  		mp := lockextra(true)
  1460  		unlockextra(mp)
  1461  		if mp == nil {
  1462  			oneNewExtraM()
  1463  		}
  1464  	}
  1465  }
  1466  
  1467  // oneNewExtraM allocates an m and puts it on the extra list.
  1468  func oneNewExtraM() {
  1469  	// Create extra goroutine locked to extra m.
  1470  	// The goroutine is the context in which the cgo callback will run.
  1471  	// The sched.pc will never be returned to, but setting it to
  1472  	// goexit makes clear to the traceback routines where
  1473  	// the goroutine stack ends.
  1474  	mp := allocm(nil, nil)
  1475  	gp := malg(4096)
  1476  	gp.sched.pc = funcPC(goexit) + sys.PCQuantum
  1477  	gp.sched.sp = gp.stack.hi
  1478  	gp.sched.sp -= 4 * sys.RegSize // extra space in case of reads slightly beyond frame
  1479  	gp.sched.lr = 0
  1480  	gp.sched.g = guintptr(unsafe.Pointer(gp))
  1481  	gp.syscallpc = gp.sched.pc
  1482  	gp.syscallsp = gp.sched.sp
  1483  	gp.stktopsp = gp.sched.sp
  1484  	gp.gcscanvalid = true // fresh G, so no dequeueRescan necessary
  1485  	gp.gcscandone = true
  1486  	gp.gcRescan = -1
  1487  	// malg returns status as Gidle, change to Gsyscall before adding to allg
  1488  	// where GC will see it.
  1489  	casgstatus(gp, _Gidle, _Gsyscall)
  1490  	gp.m = mp
  1491  	mp.curg = gp
  1492  	mp.locked = _LockInternal
  1493  	mp.lockedg = gp
  1494  	gp.lockedm = mp
  1495  	gp.goid = int64(atomic.Xadd64(&sched.goidgen, 1))
  1496  	if raceenabled {
  1497  		gp.racectx = racegostart(funcPC(newextram) + sys.PCQuantum)
  1498  	}
  1499  	// put on allg for garbage collector
  1500  	allgadd(gp)
  1501  
  1502  	// Add m to the extra list.
  1503  	mnext := lockextra(true)
  1504  	mp.schedlink.set(mnext)
  1505  	unlockextra(mp)
  1506  }
  1507  
  1508  // dropm is called when a cgo callback has called needm but is now
  1509  // done with the callback and returning back into the non-Go thread.
  1510  // It puts the current m back onto the extra list.
  1511  //
  1512  // The main expense here is the call to signalstack to release the
  1513  // m's signal stack, and then the call to needm on the next callback
  1514  // from this thread. It is tempting to try to save the m for next time,
  1515  // which would eliminate both these costs, but there might not be
  1516  // a next time: the current thread (which Go does not control) might exit.
  1517  // If we saved the m for that thread, there would be an m leak each time
  1518  // such a thread exited. Instead, we acquire and release an m on each
  1519  // call. These should typically not be scheduling operations, just a few
  1520  // atomics, so the cost should be small.
  1521  //
  1522  // TODO(rsc): An alternative would be to allocate a dummy pthread per-thread
  1523  // variable using pthread_key_create. Unlike the pthread keys we already use
  1524  // on OS X, this dummy key would never be read by Go code. It would exist
  1525  // only so that we could register at thread-exit-time destructor.
  1526  // That destructor would put the m back onto the extra list.
  1527  // This is purely a performance optimization. The current version,
  1528  // in which dropm happens on each cgo call, is still correct too.
  1529  // We may have to keep the current version on systems with cgo
  1530  // but without pthreads, like Windows.
  1531  func dropm() {
  1532  	// Clear m and g, and return m to the extra list.
  1533  	// After the call to setg we can only call nosplit functions
  1534  	// with no pointer manipulation.
  1535  	mp := getg().m
  1536  
  1537  	// Block signals before unminit.
  1538  	// Unminit unregisters the signal handling stack (but needs g on some systems).
  1539  	// Setg(nil) clears g, which is the signal handler's cue not to run Go handlers.
  1540  	// It's important not to try to handle a signal between those two steps.
  1541  	sigmask := mp.sigmask
  1542  	sigblock()
  1543  	unminit()
  1544  
  1545  	mnext := lockextra(true)
  1546  	mp.schedlink.set(mnext)
  1547  
  1548  	setg(nil)
  1549  
  1550  	// Commit the release of mp.
  1551  	unlockextra(mp)
  1552  
  1553  	msigrestore(sigmask)
  1554  }
  1555  
  1556  // A helper function for EnsureDropM.
  1557  func getm() uintptr {
  1558  	return uintptr(unsafe.Pointer(getg().m))
  1559  }
  1560  
  1561  var extram uintptr
  1562  var extraMWaiters uint32
  1563  
  1564  // lockextra locks the extra list and returns the list head.
  1565  // The caller must unlock the list by storing a new list head
  1566  // to extram. If nilokay is true, then lockextra will
  1567  // return a nil list head if that's what it finds. If nilokay is false,
  1568  // lockextra will keep waiting until the list head is no longer nil.
  1569  //go:nosplit
  1570  func lockextra(nilokay bool) *m {
  1571  	const locked = 1
  1572  
  1573  	incr := false
  1574  	for {
  1575  		old := atomic.Loaduintptr(&extram)
  1576  		if old == locked {
  1577  			yield := osyield
  1578  			yield()
  1579  			continue
  1580  		}
  1581  		if old == 0 && !nilokay {
  1582  			if !incr {
  1583  				// Add 1 to the number of threads
  1584  				// waiting for an M.
  1585  				// This is cleared by newextram.
  1586  				atomic.Xadd(&extraMWaiters, 1)
  1587  				incr = true
  1588  			}
  1589  			usleep(1)
  1590  			continue
  1591  		}
  1592  		if atomic.Casuintptr(&extram, old, locked) {
  1593  			return (*m)(unsafe.Pointer(old))
  1594  		}
  1595  		yield := osyield
  1596  		yield()
  1597  		continue
  1598  	}
  1599  }
  1600  
  1601  //go:nosplit
  1602  func unlockextra(mp *m) {
  1603  	atomic.Storeuintptr(&extram, uintptr(unsafe.Pointer(mp)))
  1604  }
  1605  
  1606  // Create a new m. It will start off with a call to fn, or else the scheduler.
  1607  // fn needs to be static and not a heap allocated closure.
  1608  // May run with m.p==nil, so write barriers are not allowed.
  1609  //go:nowritebarrierrec
  1610  func newm(fn func(), _p_ *p) {
  1611  	mp := allocm(_p_, fn)
  1612  	mp.nextp.set(_p_)
  1613  	mp.sigmask = initSigmask
  1614  	if iscgo {
  1615  		var ts cgothreadstart
  1616  		if _cgo_thread_start == nil {
  1617  			throw("_cgo_thread_start missing")
  1618  		}
  1619  		ts.g.set(mp.g0)
  1620  		ts.tls = (*uint64)(unsafe.Pointer(&mp.tls[0]))
  1621  		ts.fn = unsafe.Pointer(funcPC(mstart))
  1622  		if msanenabled {
  1623  			msanwrite(unsafe.Pointer(&ts), unsafe.Sizeof(ts))
  1624  		}
  1625  		asmcgocall(_cgo_thread_start, unsafe.Pointer(&ts))
  1626  		return
  1627  	}
  1628  	newosproc(mp, unsafe.Pointer(mp.g0.stack.hi))
  1629  }
  1630  
  1631  // Stops execution of the current m until new work is available.
  1632  // Returns with acquired P.
  1633  func stopm() {
  1634  	_g_ := getg()
  1635  
  1636  	if _g_.m.locks != 0 {
  1637  		throw("stopm holding locks")
  1638  	}
  1639  	if _g_.m.p != 0 {
  1640  		throw("stopm holding p")
  1641  	}
  1642  	if _g_.m.spinning {
  1643  		throw("stopm spinning")
  1644  	}
  1645  
  1646  retry:
  1647  	lock(&sched.lock)
  1648  	mput(_g_.m)
  1649  	unlock(&sched.lock)
  1650  	notesleep(&_g_.m.park)
  1651  	noteclear(&_g_.m.park)
  1652  	if _g_.m.helpgc != 0 {
  1653  		gchelper()
  1654  		_g_.m.helpgc = 0
  1655  		_g_.m.mcache = nil
  1656  		_g_.m.p = 0
  1657  		goto retry
  1658  	}
  1659  	acquirep(_g_.m.nextp.ptr())
  1660  	_g_.m.nextp = 0
  1661  }
  1662  
  1663  func mspinning() {
  1664  	// startm's caller incremented nmspinning. Set the new M's spinning.
  1665  	getg().m.spinning = true
  1666  }
  1667  
  1668  // Schedules some M to run the p (creates an M if necessary).
  1669  // If p==nil, tries to get an idle P, if no idle P's does nothing.
  1670  // May run with m.p==nil, so write barriers are not allowed.
  1671  // If spinning is set, the caller has incremented nmspinning and startm will
  1672  // either decrement nmspinning or set m.spinning in the newly started M.
  1673  //go:nowritebarrierrec
  1674  func startm(_p_ *p, spinning bool) {
  1675  	lock(&sched.lock)
  1676  	if _p_ == nil {
  1677  		_p_ = pidleget()
  1678  		if _p_ == nil {
  1679  			unlock(&sched.lock)
  1680  			if spinning {
  1681  				// The caller incremented nmspinning, but there are no idle Ps,
  1682  				// so it's okay to just undo the increment and give up.
  1683  				if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
  1684  					throw("startm: negative nmspinning")
  1685  				}
  1686  			}
  1687  			return
  1688  		}
  1689  	}
  1690  	mp := mget()
  1691  	unlock(&sched.lock)
  1692  	if mp == nil {
  1693  		var fn func()
  1694  		if spinning {
  1695  			// The caller incremented nmspinning, so set m.spinning in the new M.
  1696  			fn = mspinning
  1697  		}
  1698  		newm(fn, _p_)
  1699  		return
  1700  	}
  1701  	if mp.spinning {
  1702  		throw("startm: m is spinning")
  1703  	}
  1704  	if mp.nextp != 0 {
  1705  		throw("startm: m has p")
  1706  	}
  1707  	if spinning && !runqempty(_p_) {
  1708  		throw("startm: p has runnable gs")
  1709  	}
  1710  	// The caller incremented nmspinning, so set m.spinning in the new M.
  1711  	mp.spinning = spinning
  1712  	mp.nextp.set(_p_)
  1713  	notewakeup(&mp.park)
  1714  }
  1715  
  1716  // Hands off P from syscall or locked M.
  1717  // Always runs without a P, so write barriers are not allowed.
  1718  //go:nowritebarrierrec
  1719  func handoffp(_p_ *p) {
  1720  	// handoffp must start an M in any situation where
  1721  	// findrunnable would return a G to run on _p_.
  1722  
  1723  	// if it has local work, start it straight away
  1724  	if !runqempty(_p_) || sched.runqsize != 0 {
  1725  		startm(_p_, false)
  1726  		return
  1727  	}
  1728  	// if it has GC work, start it straight away
  1729  	if gcBlackenEnabled != 0 && gcMarkWorkAvailable(_p_) {
  1730  		startm(_p_, false)
  1731  		return
  1732  	}
  1733  	// no local work, check that there are no spinning/idle M's,
  1734  	// otherwise our help is not required
  1735  	if atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) == 0 && atomic.Cas(&sched.nmspinning, 0, 1) { // TODO: fast atomic
  1736  		startm(_p_, true)
  1737  		return
  1738  	}
  1739  	lock(&sched.lock)
  1740  	if sched.gcwaiting != 0 {
  1741  		_p_.status = _Pgcstop
  1742  		sched.stopwait--
  1743  		if sched.stopwait == 0 {
  1744  			notewakeup(&sched.stopnote)
  1745  		}
  1746  		unlock(&sched.lock)
  1747  		return
  1748  	}
  1749  	if _p_.runSafePointFn != 0 && atomic.Cas(&_p_.runSafePointFn, 1, 0) {
  1750  		sched.safePointFn(_p_)
  1751  		sched.safePointWait--
  1752  		if sched.safePointWait == 0 {
  1753  			notewakeup(&sched.safePointNote)
  1754  		}
  1755  	}
  1756  	if sched.runqsize != 0 {
  1757  		unlock(&sched.lock)
  1758  		startm(_p_, false)
  1759  		return
  1760  	}
  1761  	// If this is the last running P and nobody is polling network,
  1762  	// need to wakeup another M to poll network.
  1763  	if sched.npidle == uint32(gomaxprocs-1) && atomic.Load64(&sched.lastpoll) != 0 {
  1764  		unlock(&sched.lock)
  1765  		startm(_p_, false)
  1766  		return
  1767  	}
  1768  	pidleput(_p_)
  1769  	unlock(&sched.lock)
  1770  }
  1771  
  1772  // Tries to add one more P to execute G's.
  1773  // Called when a G is made runnable (newproc, ready).
  1774  func wakep() {
  1775  	// be conservative about spinning threads
  1776  	if !atomic.Cas(&sched.nmspinning, 0, 1) {
  1777  		return
  1778  	}
  1779  	startm(nil, true)
  1780  }
  1781  
  1782  // Stops execution of the current m that is locked to a g until the g is runnable again.
  1783  // Returns with acquired P.
  1784  func stoplockedm() {
  1785  	_g_ := getg()
  1786  
  1787  	if _g_.m.lockedg == nil || _g_.m.lockedg.lockedm != _g_.m {
  1788  		throw("stoplockedm: inconsistent locking")
  1789  	}
  1790  	if _g_.m.p != 0 {
  1791  		// Schedule another M to run this p.
  1792  		_p_ := releasep()
  1793  		handoffp(_p_)
  1794  	}
  1795  	incidlelocked(1)
  1796  	// Wait until another thread schedules lockedg again.
  1797  	notesleep(&_g_.m.park)
  1798  	noteclear(&_g_.m.park)
  1799  	status := readgstatus(_g_.m.lockedg)
  1800  	if status&^_Gscan != _Grunnable {
  1801  		print("runtime:stoplockedm: g is not Grunnable or Gscanrunnable\n")
  1802  		dumpgstatus(_g_)
  1803  		throw("stoplockedm: not runnable")
  1804  	}
  1805  	acquirep(_g_.m.nextp.ptr())
  1806  	_g_.m.nextp = 0
  1807  }
  1808  
  1809  // Schedules the locked m to run the locked gp.
  1810  // May run during STW, so write barriers are not allowed.
  1811  //go:nowritebarrierrec
  1812  func startlockedm(gp *g) {
  1813  	_g_ := getg()
  1814  
  1815  	mp := gp.lockedm
  1816  	if mp == _g_.m {
  1817  		throw("startlockedm: locked to me")
  1818  	}
  1819  	if mp.nextp != 0 {
  1820  		throw("startlockedm: m has p")
  1821  	}
  1822  	// directly handoff current P to the locked m
  1823  	incidlelocked(-1)
  1824  	_p_ := releasep()
  1825  	mp.nextp.set(_p_)
  1826  	notewakeup(&mp.park)
  1827  	stopm()
  1828  }
  1829  
  1830  // Stops the current m for stopTheWorld.
  1831  // Returns when the world is restarted.
  1832  func gcstopm() {
  1833  	_g_ := getg()
  1834  
  1835  	if sched.gcwaiting == 0 {
  1836  		throw("gcstopm: not waiting for gc")
  1837  	}
  1838  	if _g_.m.spinning {
  1839  		_g_.m.spinning = false
  1840  		// OK to just drop nmspinning here,
  1841  		// startTheWorld will unpark threads as necessary.
  1842  		if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
  1843  			throw("gcstopm: negative nmspinning")
  1844  		}
  1845  	}
  1846  	_p_ := releasep()
  1847  	lock(&sched.lock)
  1848  	_p_.status = _Pgcstop
  1849  	sched.stopwait--
  1850  	if sched.stopwait == 0 {
  1851  		notewakeup(&sched.stopnote)
  1852  	}
  1853  	unlock(&sched.lock)
  1854  	stopm()
  1855  }
  1856  
  1857  // Schedules gp to run on the current M.
  1858  // If inheritTime is true, gp inherits the remaining time in the
  1859  // current time slice. Otherwise, it starts a new time slice.
  1860  // Never returns.
  1861  //
  1862  // Write barriers are allowed because this is called immediately after
  1863  // acquiring a P in several places.
  1864  //
  1865  //go:yeswritebarrierrec
  1866  func execute(gp *g, inheritTime bool) {
  1867  	_g_ := getg()
  1868  
  1869  	casgstatus(gp, _Grunnable, _Grunning)
  1870  	gp.waitsince = 0
  1871  	gp.preempt = false
  1872  	gp.stackguard0 = gp.stack.lo + _StackGuard
  1873  	if !inheritTime {
  1874  		_g_.m.p.ptr().schedtick++
  1875  	}
  1876  	_g_.m.curg = gp
  1877  	gp.m = _g_.m
  1878  
  1879  	// Check whether the profiler needs to be turned on or off.
  1880  	hz := sched.profilehz
  1881  	if _g_.m.profilehz != hz {
  1882  		resetcpuprofiler(hz)
  1883  	}
  1884  
  1885  	if trace.enabled {
  1886  		// GoSysExit has to happen when we have a P, but before GoStart.
  1887  		// So we emit it here.
  1888  		if gp.syscallsp != 0 && gp.sysblocktraced {
  1889  			traceGoSysExit(gp.sysexitticks)
  1890  		}
  1891  		traceGoStart()
  1892  	}
  1893  
  1894  	gogo(&gp.sched)
  1895  }
  1896  
  1897  // Finds a runnable goroutine to execute.
  1898  // Tries to steal from other P's, get g from global queue, poll network.
  1899  func findrunnable() (gp *g, inheritTime bool) {
  1900  	_g_ := getg()
  1901  
  1902  	// The conditions here and in handoffp must agree: if
  1903  	// findrunnable would return a G to run, handoffp must start
  1904  	// an M.
  1905  
  1906  top:
  1907  	_p_ := _g_.m.p.ptr()
  1908  	if sched.gcwaiting != 0 {
  1909  		gcstopm()
  1910  		goto top
  1911  	}
  1912  	if _p_.runSafePointFn != 0 {
  1913  		runSafePointFn()
  1914  	}
  1915  	if fingwait && fingwake {
  1916  		if gp := wakefing(); gp != nil {
  1917  			ready(gp, 0, true)
  1918  		}
  1919  	}
  1920  
  1921  	// local runq
  1922  	if gp, inheritTime := runqget(_p_); gp != nil {
  1923  		return gp, inheritTime
  1924  	}
  1925  
  1926  	// global runq
  1927  	if sched.runqsize != 0 {
  1928  		lock(&sched.lock)
  1929  		gp := globrunqget(_p_, 0)
  1930  		unlock(&sched.lock)
  1931  		if gp != nil {
  1932  			return gp, false
  1933  		}
  1934  	}
  1935  
  1936  	// Poll network.
  1937  	// This netpoll is only an optimization before we resort to stealing.
  1938  	// We can safely skip it if there a thread blocked in netpoll already.
  1939  	// If there is any kind of logical race with that blocked thread
  1940  	// (e.g. it has already returned from netpoll, but does not set lastpoll yet),
  1941  	// this thread will do blocking netpoll below anyway.
  1942  	if netpollinited() && sched.lastpoll != 0 {
  1943  		if gp := netpoll(false); gp != nil { // non-blocking
  1944  			// netpoll returns list of goroutines linked by schedlink.
  1945  			injectglist(gp.schedlink.ptr())
  1946  			casgstatus(gp, _Gwaiting, _Grunnable)
  1947  			if trace.enabled {
  1948  				traceGoUnpark(gp, 0)
  1949  			}
  1950  			return gp, false
  1951  		}
  1952  	}
  1953  
  1954  	// Steal work from other P's.
  1955  	procs := uint32(gomaxprocs)
  1956  	if atomic.Load(&sched.npidle) == procs-1 {
  1957  		// Either GOMAXPROCS=1 or everybody, except for us, is idle already.
  1958  		// New work can appear from returning syscall/cgocall, network or timers.
  1959  		// Neither of that submits to local run queues, so no point in stealing.
  1960  		goto stop
  1961  	}
  1962  	// If number of spinning M's >= number of busy P's, block.
  1963  	// This is necessary to prevent excessive CPU consumption
  1964  	// when GOMAXPROCS>>1 but the program parallelism is low.
  1965  	if !_g_.m.spinning && 2*atomic.Load(&sched.nmspinning) >= procs-atomic.Load(&sched.npidle) {
  1966  		goto stop
  1967  	}
  1968  	if !_g_.m.spinning {
  1969  		_g_.m.spinning = true
  1970  		atomic.Xadd(&sched.nmspinning, 1)
  1971  	}
  1972  	for i := 0; i < 4; i++ {
  1973  		for enum := stealOrder.start(fastrand()); !enum.done(); enum.next() {
  1974  			if sched.gcwaiting != 0 {
  1975  				goto top
  1976  			}
  1977  			stealRunNextG := i > 2 // first look for ready queues with more than 1 g
  1978  			if gp := runqsteal(_p_, allp[enum.position()], stealRunNextG); gp != nil {
  1979  				return gp, false
  1980  			}
  1981  		}
  1982  	}
  1983  
  1984  stop:
  1985  
  1986  	// We have nothing to do. If we're in the GC mark phase, can
  1987  	// safely scan and blacken objects, and have work to do, run
  1988  	// idle-time marking rather than give up the P.
  1989  	if gcBlackenEnabled != 0 && _p_.gcBgMarkWorker != 0 && gcMarkWorkAvailable(_p_) {
  1990  		_p_.gcMarkWorkerMode = gcMarkWorkerIdleMode
  1991  		gp := _p_.gcBgMarkWorker.ptr()
  1992  		casgstatus(gp, _Gwaiting, _Grunnable)
  1993  		if trace.enabled {
  1994  			traceGoUnpark(gp, 0)
  1995  		}
  1996  		return gp, false
  1997  	}
  1998  
  1999  	// return P and block
  2000  	lock(&sched.lock)
  2001  	if sched.gcwaiting != 0 || _p_.runSafePointFn != 0 {
  2002  		unlock(&sched.lock)
  2003  		goto top
  2004  	}
  2005  	if sched.runqsize != 0 {
  2006  		gp := globrunqget(_p_, 0)
  2007  		unlock(&sched.lock)
  2008  		return gp, false
  2009  	}
  2010  	if releasep() != _p_ {
  2011  		throw("findrunnable: wrong p")
  2012  	}
  2013  	pidleput(_p_)
  2014  	unlock(&sched.lock)
  2015  
  2016  	// Delicate dance: thread transitions from spinning to non-spinning state,
  2017  	// potentially concurrently with submission of new goroutines. We must
  2018  	// drop nmspinning first and then check all per-P queues again (with
  2019  	// #StoreLoad memory barrier in between). If we do it the other way around,
  2020  	// another thread can submit a goroutine after we've checked all run queues
  2021  	// but before we drop nmspinning; as the result nobody will unpark a thread
  2022  	// to run the goroutine.
  2023  	// If we discover new work below, we need to restore m.spinning as a signal
  2024  	// for resetspinning to unpark a new worker thread (because there can be more
  2025  	// than one starving goroutine). However, if after discovering new work
  2026  	// we also observe no idle Ps, it is OK to just park the current thread:
  2027  	// the system is fully loaded so no spinning threads are required.
  2028  	// Also see "Worker thread parking/unparking" comment at the top of the file.
  2029  	wasSpinning := _g_.m.spinning
  2030  	if _g_.m.spinning {
  2031  		_g_.m.spinning = false
  2032  		if int32(atomic.Xadd(&sched.nmspinning, -1)) < 0 {
  2033  			throw("findrunnable: negative nmspinning")
  2034  		}
  2035  	}
  2036  
  2037  	// check all runqueues once again
  2038  	for i := 0; i < int(gomaxprocs); i++ {
  2039  		_p_ := allp[i]
  2040  		if _p_ != nil && !runqempty(_p_) {
  2041  			lock(&sched.lock)
  2042  			_p_ = pidleget()
  2043  			unlock(&sched.lock)
  2044  			if _p_ != nil {
  2045  				acquirep(_p_)
  2046  				if wasSpinning {
  2047  					_g_.m.spinning = true
  2048  					atomic.Xadd(&sched.nmspinning, 1)
  2049  				}
  2050  				goto top
  2051  			}
  2052  			break
  2053  		}
  2054  	}
  2055  
  2056  	// Check for idle-priority GC work again.
  2057  	if gcBlackenEnabled != 0 && gcMarkWorkAvailable(nil) {
  2058  		lock(&sched.lock)
  2059  		_p_ = pidleget()
  2060  		if _p_ != nil && _p_.gcBgMarkWorker == 0 {
  2061  			pidleput(_p_)
  2062  			_p_ = nil
  2063  		}
  2064  		unlock(&sched.lock)
  2065  		if _p_ != nil {
  2066  			acquirep(_p_)
  2067  			if wasSpinning {
  2068  				_g_.m.spinning = true
  2069  				atomic.Xadd(&sched.nmspinning, 1)
  2070  			}
  2071  			// Go back to idle GC check.
  2072  			goto stop
  2073  		}
  2074  	}
  2075  
  2076  	// poll network
  2077  	if netpollinited() && atomic.Xchg64(&sched.lastpoll, 0) != 0 {
  2078  		if _g_.m.p != 0 {
  2079  			throw("findrunnable: netpoll with p")
  2080  		}
  2081  		if _g_.m.spinning {
  2082  			throw("findrunnable: netpoll with spinning")
  2083  		}
  2084  		gp := netpoll(true) // block until new work is available
  2085  		atomic.Store64(&sched.lastpoll, uint64(nanotime()))
  2086  		if gp != nil {
  2087  			lock(&sched.lock)
  2088  			_p_ = pidleget()
  2089  			unlock(&sched.lock)
  2090  			if _p_ != nil {
  2091  				acquirep(_p_)
  2092  				injectglist(gp.schedlink.ptr())
  2093  				casgstatus(gp, _Gwaiting, _Grunnable)
  2094  				if trace.enabled {
  2095  					traceGoUnpark(gp, 0)
  2096  				}
  2097  				return gp, false
  2098  			}
  2099  			injectglist(gp)
  2100  		}
  2101  	}
  2102  	stopm()
  2103  	goto top
  2104  }
  2105  
  2106  // pollWork returns true if there is non-background work this P could
  2107  // be doing. This is a fairly lightweight check to be used for
  2108  // background work loops, like idle GC. It checks a subset of the
  2109  // conditions checked by the actual scheduler.
  2110  func pollWork() bool {
  2111  	if sched.runqsize != 0 {
  2112  		return true
  2113  	}
  2114  	p := getg().m.p.ptr()
  2115  	if !runqempty(p) {
  2116  		return true
  2117  	}
  2118  	if netpollinited() && sched.lastpoll != 0 {
  2119  		if gp := netpoll(false); gp != nil {
  2120  			injectglist(gp)
  2121  			return true
  2122  		}
  2123  	}
  2124  	return false
  2125  }
  2126  
  2127  func resetspinning() {
  2128  	_g_ := getg()
  2129  	if !_g_.m.spinning {
  2130  		throw("resetspinning: not a spinning m")
  2131  	}
  2132  	_g_.m.spinning = false
  2133  	nmspinning := atomic.Xadd(&sched.nmspinning, -1)
  2134  	if int32(nmspinning) < 0 {
  2135  		throw("findrunnable: negative nmspinning")
  2136  	}
  2137  	// M wakeup policy is deliberately somewhat conservative, so check if we
  2138  	// need to wakeup another P here. See "Worker thread parking/unparking"
  2139  	// comment at the top of the file for details.
  2140  	if nmspinning == 0 && atomic.Load(&sched.npidle) > 0 {
  2141  		wakep()
  2142  	}
  2143  }
  2144  
  2145  // Injects the list of runnable G's into the scheduler.
  2146  // Can run concurrently with GC.
  2147  func injectglist(glist *g) {
  2148  	if glist == nil {
  2149  		return
  2150  	}
  2151  	if trace.enabled {
  2152  		for gp := glist; gp != nil; gp = gp.schedlink.ptr() {
  2153  			traceGoUnpark(gp, 0)
  2154  		}
  2155  	}
  2156  	lock(&sched.lock)
  2157  	var n int
  2158  	for n = 0; glist != nil; n++ {
  2159  		gp := glist
  2160  		glist = gp.schedlink.ptr()
  2161  		casgstatus(gp, _Gwaiting, _Grunnable)
  2162  		globrunqput(gp)
  2163  	}
  2164  	unlock(&sched.lock)
  2165  	for ; n != 0 && sched.npidle != 0; n-- {
  2166  		startm(nil, false)
  2167  	}
  2168  }
  2169  
  2170  // One round of scheduler: find a runnable goroutine and execute it.
  2171  // Never returns.
  2172  func schedule() {
  2173  	_g_ := getg()
  2174  
  2175  	if _g_.m.locks != 0 {
  2176  		throw("schedule: holding locks")
  2177  	}
  2178  
  2179  	if _g_.m.lockedg != nil {
  2180  		stoplockedm()
  2181  		execute(_g_.m.lockedg, false) // Never returns.
  2182  	}
  2183  
  2184  top:
  2185  	if sched.gcwaiting != 0 {
  2186  		gcstopm()
  2187  		goto top
  2188  	}
  2189  	if _g_.m.p.ptr().runSafePointFn != 0 {
  2190  		runSafePointFn()
  2191  	}
  2192  
  2193  	var gp *g
  2194  	var inheritTime bool
  2195  	if trace.enabled || trace.shutdown {
  2196  		gp = traceReader()
  2197  		if gp != nil {
  2198  			casgstatus(gp, _Gwaiting, _Grunnable)
  2199  			traceGoUnpark(gp, 0)
  2200  		}
  2201  	}
  2202  	if gp == nil && gcBlackenEnabled != 0 {
  2203  		gp = gcController.findRunnableGCWorker(_g_.m.p.ptr())
  2204  	}
  2205  	if gp == nil {
  2206  		// Check the global runnable queue once in a while to ensure fairness.
  2207  		// Otherwise two goroutines can completely occupy the local runqueue
  2208  		// by constantly respawning each other.
  2209  		if _g_.m.p.ptr().schedtick%61 == 0 && sched.runqsize > 0 {
  2210  			lock(&sched.lock)
  2211  			gp = globrunqget(_g_.m.p.ptr(), 1)
  2212  			unlock(&sched.lock)
  2213  		}
  2214  	}
  2215  	if gp == nil {
  2216  		gp, inheritTime = runqget(_g_.m.p.ptr())
  2217  		if gp != nil && _g_.m.spinning {
  2218  			throw("schedule: spinning with local work")
  2219  		}
  2220  	}
  2221  	if gp == nil {
  2222  		gp, inheritTime = findrunnable() // blocks until work is available
  2223  	}
  2224  
  2225  	// This thread is going to run a goroutine and is not spinning anymore,
  2226  	// so if it was marked as spinning we need to reset it now and potentially
  2227  	// start a new spinning M.
  2228  	if _g_.m.spinning {
  2229  		resetspinning()
  2230  	}
  2231  
  2232  	if gp.lockedm != nil {
  2233  		// Hands off own p to the locked m,
  2234  		// then blocks waiting for a new p.
  2235  		startlockedm(gp)
  2236  		goto top
  2237  	}
  2238  
  2239  	execute(gp, inheritTime)
  2240  }
  2241  
  2242  // dropg removes the association between m and the current goroutine m->curg (gp for short).
  2243  // Typically a caller sets gp's status away from Grunning and then
  2244  // immediately calls dropg to finish the job. The caller is also responsible
  2245  // for arranging that gp will be restarted using ready at an
  2246  // appropriate time. After calling dropg and arranging for gp to be
  2247  // readied later, the caller can do other work but eventually should
  2248  // call schedule to restart the scheduling of goroutines on this m.
  2249  func dropg() {
  2250  	_g_ := getg()
  2251  
  2252  	setMNoWB(&_g_.m.curg.m, nil)
  2253  	setGNoWB(&_g_.m.curg, nil)
  2254  }
  2255  
  2256  func parkunlock_c(gp *g, lock unsafe.Pointer) bool {
  2257  	unlock((*mutex)(lock))
  2258  	return true
  2259  }
  2260  
  2261  // park continuation on g0.
  2262  func park_m(gp *g) {
  2263  	_g_ := getg()
  2264  
  2265  	if trace.enabled {
  2266  		traceGoPark(_g_.m.waittraceev, _g_.m.waittraceskip, gp)
  2267  	}
  2268  
  2269  	casgstatus(gp, _Grunning, _Gwaiting)
  2270  	dropg()
  2271  
  2272  	if _g_.m.waitunlockf != nil {
  2273  		fn := *(*func(*g, unsafe.Pointer) bool)(unsafe.Pointer(&_g_.m.waitunlockf))
  2274  		ok := fn(gp, _g_.m.waitlock)
  2275  		_g_.m.waitunlockf = nil
  2276  		_g_.m.waitlock = nil
  2277  		if !ok {
  2278  			if trace.enabled {
  2279  				traceGoUnpark(gp, 2)
  2280  			}
  2281  			casgstatus(gp, _Gwaiting, _Grunnable)
  2282  			execute(gp, true) // Schedule it back, never returns.
  2283  		}
  2284  	}
  2285  	schedule()
  2286  }
  2287  
  2288  func goschedImpl(gp *g) {
  2289  	status := readgstatus(gp)
  2290  	if status&^_Gscan != _Grunning {
  2291  		dumpgstatus(gp)
  2292  		throw("bad g status")
  2293  	}
  2294  	casgstatus(gp, _Grunning, _Grunnable)
  2295  	dropg()
  2296  	lock(&sched.lock)
  2297  	globrunqput(gp)
  2298  	unlock(&sched.lock)
  2299  
  2300  	schedule()
  2301  }
  2302  
  2303  // Gosched continuation on g0.
  2304  func gosched_m(gp *g) {
  2305  	if trace.enabled {
  2306  		traceGoSched()
  2307  	}
  2308  	goschedImpl(gp)
  2309  }
  2310  
  2311  func gopreempt_m(gp *g) {
  2312  	if trace.enabled {
  2313  		traceGoPreempt()
  2314  	}
  2315  	goschedImpl(gp)
  2316  }
  2317  
  2318  // Finishes execution of the current goroutine.
  2319  func goexit1() {
  2320  	if raceenabled {
  2321  		racegoend()
  2322  	}
  2323  	if trace.enabled {
  2324  		traceGoEnd()
  2325  	}
  2326  	mcall(goexit0)
  2327  }
  2328  
  2329  // goexit continuation on g0.
  2330  func goexit0(gp *g) {
  2331  	_g_ := getg()
  2332  
  2333  	casgstatus(gp, _Grunning, _Gdead)
  2334  	if isSystemGoroutine(gp) {
  2335  		atomic.Xadd(&sched.ngsys, -1)
  2336  	}
  2337  	gp.m = nil
  2338  	gp.lockedm = nil
  2339  	_g_.m.lockedg = nil
  2340  	gp.paniconfault = false
  2341  	gp._defer = nil // should be true already but just in case.
  2342  	gp._panic = nil // non-nil for Goexit during panic. points at stack-allocated data.
  2343  	gp.writebuf = nil
  2344  	gp.waitreason = ""
  2345  	gp.param = nil
  2346  
  2347  	// Note that gp's stack scan is now "valid" because it has no
  2348  	// stack. We could dequeueRescan, but that takes a lock and
  2349  	// isn't really necessary.
  2350  	gp.gcscanvalid = true
  2351  	dropg()
  2352  
  2353  	if _g_.m.locked&^_LockExternal != 0 {
  2354  		print("invalid m->locked = ", _g_.m.locked, "\n")
  2355  		throw("internal lockOSThread error")
  2356  	}
  2357  	_g_.m.locked = 0
  2358  	gfput(_g_.m.p.ptr(), gp)
  2359  	schedule()
  2360  }
  2361  
  2362  // save updates getg().sched to refer to pc and sp so that a following
  2363  // gogo will restore pc and sp.
  2364  //
  2365  // save must not have write barriers because invoking a write barrier
  2366  // can clobber getg().sched.
  2367  //
  2368  //go:nosplit
  2369  //go:nowritebarrierrec
  2370  func save(pc, sp uintptr) {
  2371  	_g_ := getg()
  2372  
  2373  	_g_.sched.pc = pc
  2374  	_g_.sched.sp = sp
  2375  	_g_.sched.lr = 0
  2376  	_g_.sched.ret = 0
  2377  	_g_.sched.g = guintptr(unsafe.Pointer(_g_))
  2378  	// We need to ensure ctxt is zero, but can't have a write
  2379  	// barrier here. However, it should always already be zero.
  2380  	// Assert that.
  2381  	if _g_.sched.ctxt != nil {
  2382  		badctxt()
  2383  	}
  2384  }
  2385  
  2386  // The goroutine g is about to enter a system call.
  2387  // Record that it's not using the cpu anymore.
  2388  // This is called only from the go syscall library and cgocall,
  2389  // not from the low-level system calls used by the runtime.
  2390  //
  2391  // Entersyscall cannot split the stack: the gosave must
  2392  // make g->sched refer to the caller's stack segment, because
  2393  // entersyscall is going to return immediately after.
  2394  //
  2395  // Nothing entersyscall calls can split the stack either.
  2396  // We cannot safely move the stack during an active call to syscall,
  2397  // because we do not know which of the uintptr arguments are
  2398  // really pointers (back into the stack).
  2399  // In practice, this means that we make the fast path run through
  2400  // entersyscall doing no-split things, and the slow path has to use systemstack
  2401  // to run bigger things on the system stack.
  2402  //
  2403  // reentersyscall is the entry point used by cgo callbacks, where explicitly
  2404  // saved SP and PC are restored. This is needed when exitsyscall will be called
  2405  // from a function further up in the call stack than the parent, as g->syscallsp
  2406  // must always point to a valid stack frame. entersyscall below is the normal
  2407  // entry point for syscalls, which obtains the SP and PC from the caller.
  2408  //
  2409  // Syscall tracing:
  2410  // At the start of a syscall we emit traceGoSysCall to capture the stack trace.
  2411  // If the syscall does not block, that is it, we do not emit any other events.
  2412  // If the syscall blocks (that is, P is retaken), retaker emits traceGoSysBlock;
  2413  // when syscall returns we emit traceGoSysExit and when the goroutine starts running
  2414  // (potentially instantly, if exitsyscallfast returns true) we emit traceGoStart.
  2415  // To ensure that traceGoSysExit is emitted strictly after traceGoSysBlock,
  2416  // we remember current value of syscalltick in m (_g_.m.syscalltick = _g_.m.p.ptr().syscalltick),
  2417  // whoever emits traceGoSysBlock increments p.syscalltick afterwards;
  2418  // and we wait for the increment before emitting traceGoSysExit.
  2419  // Note that the increment is done even if tracing is not enabled,
  2420  // because tracing can be enabled in the middle of syscall. We don't want the wait to hang.
  2421  //
  2422  //go:nosplit
  2423  func reentersyscall(pc, sp uintptr) {
  2424  	_g_ := getg()
  2425  
  2426  	// Disable preemption because during this function g is in Gsyscall status,
  2427  	// but can have inconsistent g->sched, do not let GC observe it.
  2428  	_g_.m.locks++
  2429  
  2430  	// Entersyscall must not call any function that might split/grow the stack.
  2431  	// (See details in comment above.)
  2432  	// Catch calls that might, by replacing the stack guard with something that
  2433  	// will trip any stack check and leaving a flag to tell newstack to die.
  2434  	_g_.stackguard0 = stackPreempt
  2435  	_g_.throwsplit = true
  2436  
  2437  	// Leave SP around for GC and traceback.
  2438  	save(pc, sp)
  2439  	_g_.syscallsp = sp
  2440  	_g_.syscallpc = pc
  2441  	casgstatus(_g_, _Grunning, _Gsyscall)
  2442  	if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
  2443  		systemstack(func() {
  2444  			print("entersyscall inconsistent ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
  2445  			throw("entersyscall")
  2446  		})
  2447  	}
  2448  
  2449  	if trace.enabled {
  2450  		systemstack(traceGoSysCall)
  2451  		// systemstack itself clobbers g.sched.{pc,sp} and we might
  2452  		// need them later when the G is genuinely blocked in a
  2453  		// syscall
  2454  		save(pc, sp)
  2455  	}
  2456  
  2457  	if atomic.Load(&sched.sysmonwait) != 0 {
  2458  		systemstack(entersyscall_sysmon)
  2459  		save(pc, sp)
  2460  	}
  2461  
  2462  	if _g_.m.p.ptr().runSafePointFn != 0 {
  2463  		// runSafePointFn may stack split if run on this stack
  2464  		systemstack(runSafePointFn)
  2465  		save(pc, sp)
  2466  	}
  2467  
  2468  	_g_.m.syscalltick = _g_.m.p.ptr().syscalltick
  2469  	_g_.sysblocktraced = true
  2470  	_g_.m.mcache = nil
  2471  	_g_.m.p.ptr().m = 0
  2472  	atomic.Store(&_g_.m.p.ptr().status, _Psyscall)
  2473  	if sched.gcwaiting != 0 {
  2474  		systemstack(entersyscall_gcwait)
  2475  		save(pc, sp)
  2476  	}
  2477  
  2478  	// Goroutines must not split stacks in Gsyscall status (it would corrupt g->sched).
  2479  	// We set _StackGuard to StackPreempt so that first split stack check calls morestack.
  2480  	// Morestack detects this case and throws.
  2481  	_g_.stackguard0 = stackPreempt
  2482  	_g_.m.locks--
  2483  }
  2484  
  2485  // Standard syscall entry used by the go syscall library and normal cgo calls.
  2486  //go:nosplit
  2487  func entersyscall(dummy int32) {
  2488  	reentersyscall(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy)))
  2489  }
  2490  
  2491  func entersyscall_sysmon() {
  2492  	lock(&sched.lock)
  2493  	if atomic.Load(&sched.sysmonwait) != 0 {
  2494  		atomic.Store(&sched.sysmonwait, 0)
  2495  		notewakeup(&sched.sysmonnote)
  2496  	}
  2497  	unlock(&sched.lock)
  2498  }
  2499  
  2500  func entersyscall_gcwait() {
  2501  	_g_ := getg()
  2502  	_p_ := _g_.m.p.ptr()
  2503  
  2504  	lock(&sched.lock)
  2505  	if sched.stopwait > 0 && atomic.Cas(&_p_.status, _Psyscall, _Pgcstop) {
  2506  		if trace.enabled {
  2507  			traceGoSysBlock(_p_)
  2508  			traceProcStop(_p_)
  2509  		}
  2510  		_p_.syscalltick++
  2511  		if sched.stopwait--; sched.stopwait == 0 {
  2512  			notewakeup(&sched.stopnote)
  2513  		}
  2514  	}
  2515  	unlock(&sched.lock)
  2516  }
  2517  
  2518  // The same as entersyscall(), but with a hint that the syscall is blocking.
  2519  //go:nosplit
  2520  func entersyscallblock(dummy int32) {
  2521  	_g_ := getg()
  2522  
  2523  	_g_.m.locks++ // see comment in entersyscall
  2524  	_g_.throwsplit = true
  2525  	_g_.stackguard0 = stackPreempt // see comment in entersyscall
  2526  	_g_.m.syscalltick = _g_.m.p.ptr().syscalltick
  2527  	_g_.sysblocktraced = true
  2528  	_g_.m.p.ptr().syscalltick++
  2529  
  2530  	// Leave SP around for GC and traceback.
  2531  	pc := getcallerpc(unsafe.Pointer(&dummy))
  2532  	sp := getcallersp(unsafe.Pointer(&dummy))
  2533  	save(pc, sp)
  2534  	_g_.syscallsp = _g_.sched.sp
  2535  	_g_.syscallpc = _g_.sched.pc
  2536  	if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
  2537  		sp1 := sp
  2538  		sp2 := _g_.sched.sp
  2539  		sp3 := _g_.syscallsp
  2540  		systemstack(func() {
  2541  			print("entersyscallblock inconsistent ", hex(sp1), " ", hex(sp2), " ", hex(sp3), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
  2542  			throw("entersyscallblock")
  2543  		})
  2544  	}
  2545  	casgstatus(_g_, _Grunning, _Gsyscall)
  2546  	if _g_.syscallsp < _g_.stack.lo || _g_.stack.hi < _g_.syscallsp {
  2547  		systemstack(func() {
  2548  			print("entersyscallblock inconsistent ", hex(sp), " ", hex(_g_.sched.sp), " ", hex(_g_.syscallsp), " [", hex(_g_.stack.lo), ",", hex(_g_.stack.hi), "]\n")
  2549  			throw("entersyscallblock")
  2550  		})
  2551  	}
  2552  
  2553  	systemstack(entersyscallblock_handoff)
  2554  
  2555  	// Resave for traceback during blocked call.
  2556  	save(getcallerpc(unsafe.Pointer(&dummy)), getcallersp(unsafe.Pointer(&dummy)))
  2557  
  2558  	_g_.m.locks--
  2559  }
  2560  
  2561  func entersyscallblock_handoff() {
  2562  	if trace.enabled {
  2563  		traceGoSysCall()
  2564  		traceGoSysBlock(getg().m.p.ptr())
  2565  	}
  2566  	handoffp(releasep())
  2567  }
  2568  
  2569  // The goroutine g exited its system call.
  2570  // Arrange for it to run on a cpu again.
  2571  // This is called only from the go syscall library, not
  2572  // from the low-level system calls used by the runtime.
  2573  //
  2574  // Write barriers are not allowed because our P may have been stolen.
  2575  //
  2576  //go:nosplit
  2577  //go:nowritebarrierrec
  2578  func exitsyscall(dummy int32) {
  2579  	_g_ := getg()
  2580  
  2581  	_g_.m.locks++ // see comment in entersyscall
  2582  	if getcallersp(unsafe.Pointer(&dummy)) > _g_.syscallsp {
  2583  		// throw calls print which may try to grow the stack,
  2584  		// but throwsplit == true so the stack can not be grown;
  2585  		// use systemstack to avoid that possible problem.
  2586  		systemstack(func() {
  2587  			throw("exitsyscall: syscall frame is no longer valid")
  2588  		})
  2589  	}
  2590  
  2591  	_g_.waitsince = 0
  2592  	oldp := _g_.m.p.ptr()
  2593  	if exitsyscallfast() {
  2594  		if _g_.m.mcache == nil {
  2595  			throw("lost mcache")
  2596  		}
  2597  		if trace.enabled {
  2598  			if oldp != _g_.m.p.ptr() || _g_.m.syscalltick != _g_.m.p.ptr().syscalltick {
  2599  				systemstack(traceGoStart)
  2600  			}
  2601  		}
  2602  		// There's a cpu for us, so we can run.
  2603  		_g_.m.p.ptr().syscalltick++
  2604  		// We need to cas the status and scan before resuming...
  2605  		casgstatus(_g_, _Gsyscall, _Grunning)
  2606  
  2607  		// Garbage collector isn't running (since we are),
  2608  		// so okay to clear syscallsp.
  2609  		_g_.syscallsp = 0
  2610  		_g_.m.locks--
  2611  		if _g_.preempt {
  2612  			// restore the preemption request in case we've cleared it in newstack
  2613  			_g_.stackguard0 = stackPreempt
  2614  		} else {
  2615  			// otherwise restore the real _StackGuard, we've spoiled it in entersyscall/entersyscallblock
  2616  			_g_.stackguard0 = _g_.stack.lo + _StackGuard
  2617  		}
  2618  		_g_.throwsplit = false
  2619  		return
  2620  	}
  2621  
  2622  	_g_.sysexitticks = 0
  2623  	if trace.enabled {
  2624  		// Wait till traceGoSysBlock event is emitted.
  2625  		// This ensures consistency of the trace (the goroutine is started after it is blocked).
  2626  		for oldp != nil && oldp.syscalltick == _g_.m.syscalltick {
  2627  			osyield()
  2628  		}
  2629  		// We can't trace syscall exit right now because we don't have a P.
  2630  		// Tracing code can invoke write barriers that cannot run without a P.
  2631  		// So instead we remember the syscall exit time and emit the event
  2632  		// in execute when we have a P.
  2633  		_g_.sysexitticks = cputicks()
  2634  	}
  2635  
  2636  	_g_.m.locks--
  2637  
  2638  	// Call the scheduler.
  2639  	mcall(exitsyscall0)
  2640  
  2641  	if _g_.m.mcache == nil {
  2642  		throw("lost mcache")
  2643  	}
  2644  
  2645  	// Scheduler returned, so we're allowed to run now.
  2646  	// Delete the syscallsp information that we left for
  2647  	// the garbage collector during the system call.
  2648  	// Must wait until now because until gosched returns
  2649  	// we don't know for sure that the garbage collector
  2650  	// is not running.
  2651  	_g_.syscallsp = 0
  2652  	_g_.m.p.ptr().syscalltick++
  2653  	_g_.throwsplit = false
  2654  }
  2655  
  2656  //go:nosplit
  2657  func exitsyscallfast() bool {
  2658  	_g_ := getg()
  2659  
  2660  	// Freezetheworld sets stopwait but does not retake P's.
  2661  	if sched.stopwait == freezeStopWait {
  2662  		_g_.m.mcache = nil
  2663  		_g_.m.p = 0
  2664  		return false
  2665  	}
  2666  
  2667  	// Try to re-acquire the last P.
  2668  	if _g_.m.p != 0 && _g_.m.p.ptr().status == _Psyscall && atomic.Cas(&_g_.m.p.ptr().status, _Psyscall, _Prunning) {
  2669  		// There's a cpu for us, so we can run.
  2670  		exitsyscallfast_reacquired()
  2671  		return true
  2672  	}
  2673  
  2674  	// Try to get any other idle P.
  2675  	oldp := _g_.m.p.ptr()
  2676  	_g_.m.mcache = nil
  2677  	_g_.m.p = 0
  2678  	if sched.pidle != 0 {
  2679  		var ok bool
  2680  		systemstack(func() {
  2681  			ok = exitsyscallfast_pidle()
  2682  			if ok && trace.enabled {
  2683  				if oldp != nil {
  2684  					// Wait till traceGoSysBlock event is emitted.
  2685  					// This ensures consistency of the trace (the goroutine is started after it is blocked).
  2686  					for oldp.syscalltick == _g_.m.syscalltick {
  2687  						osyield()
  2688  					}
  2689  				}
  2690  				traceGoSysExit(0)
  2691  			}
  2692  		})
  2693  		if ok {
  2694  			return true
  2695  		}
  2696  	}
  2697  	return false
  2698  }
  2699  
  2700  // exitsyscallfast_reacquired is the exitsyscall path on which this G
  2701  // has successfully reacquired the P it was running on before the
  2702  // syscall.
  2703  //
  2704  // This function is allowed to have write barriers because exitsyscall
  2705  // has acquired a P at this point.
  2706  //
  2707  //go:yeswritebarrierrec
  2708  //go:nosplit
  2709  func exitsyscallfast_reacquired() {
  2710  	_g_ := getg()
  2711  	_g_.m.mcache = _g_.m.p.ptr().mcache
  2712  	_g_.m.p.ptr().m.set(_g_.m)
  2713  	if _g_.m.syscalltick != _g_.m.p.ptr().syscalltick {
  2714  		if trace.enabled {
  2715  			// The p was retaken and then enter into syscall again (since _g_.m.syscalltick has changed).
  2716  			// traceGoSysBlock for this syscall was already emitted,
  2717  			// but here we effectively retake the p from the new syscall running on the same p.
  2718  			systemstack(func() {
  2719  				// Denote blocking of the new syscall.
  2720  				traceGoSysBlock(_g_.m.p.ptr())
  2721  				// Denote completion of the current syscall.
  2722  				traceGoSysExit(0)
  2723  			})
  2724  		}
  2725  		_g_.m.p.ptr().syscalltick++
  2726  	}
  2727  }
  2728  
  2729  func exitsyscallfast_pidle() bool {
  2730  	lock(&sched.lock)
  2731  	_p_ := pidleget()
  2732  	if _p_ != nil && atomic.Load(&sched.sysmonwait) != 0 {
  2733  		atomic.Store(&sched.sysmonwait, 0)
  2734  		notewakeup(&sched.sysmonnote)
  2735  	}
  2736  	unlock(&sched.lock)
  2737  	if _p_ != nil {
  2738  		acquirep(_p_)
  2739  		return true
  2740  	}
  2741  	return false
  2742  }
  2743  
  2744  // exitsyscall slow path on g0.
  2745  // Failed to acquire P, enqueue gp as runnable.
  2746  //
  2747  //go:nowritebarrierrec
  2748  func exitsyscall0(gp *g) {
  2749  	_g_ := getg()
  2750  
  2751  	casgstatus(gp, _Gsyscall, _Grunnable)
  2752  	dropg()
  2753  	lock(&sched.lock)
  2754  	_p_ := pidleget()
  2755  	if _p_ == nil {
  2756  		globrunqput(gp)
  2757  	} else if atomic.Load(&sched.sysmonwait) != 0 {
  2758  		atomic.Store(&sched.sysmonwait, 0)
  2759  		notewakeup(&sched.sysmonnote)
  2760  	}
  2761  	unlock(&sched.lock)
  2762  	if _p_ != nil {
  2763  		acquirep(_p_)
  2764  		execute(gp, false) // Never returns.
  2765  	}
  2766  	if _g_.m.lockedg != nil {
  2767  		// Wait until another thread schedules gp and so m again.
  2768  		stoplockedm()
  2769  		execute(gp, false) // Never returns.
  2770  	}
  2771  	stopm()
  2772  	schedule() // Never returns.
  2773  }
  2774  
  2775  func beforefork() {
  2776  	gp := getg().m.curg
  2777  
  2778  	// Fork can hang if preempted with signals frequently enough (see issue 5517).
  2779  	// Ensure that we stay on the same M where we disable profiling.
  2780  	gp.m.locks++
  2781  	if gp.m.profilehz != 0 {
  2782  		resetcpuprofiler(0)
  2783  	}
  2784  
  2785  	// This function is called before fork in syscall package.
  2786  	// Code between fork and exec must not allocate memory nor even try to grow stack.
  2787  	// Here we spoil g->_StackGuard to reliably detect any attempts to grow stack.
  2788  	// runtime_AfterFork will undo this in parent process, but not in child.
  2789  	gp.stackguard0 = stackFork
  2790  }
  2791  
  2792  // Called from syscall package before fork.
  2793  //go:linkname syscall_runtime_BeforeFork syscall.runtime_BeforeFork
  2794  //go:nosplit
  2795  func syscall_runtime_BeforeFork() {
  2796  	systemstack(beforefork)
  2797  }
  2798  
  2799  func afterfork() {
  2800  	gp := getg().m.curg
  2801  
  2802  	// See the comment in beforefork.
  2803  	gp.stackguard0 = gp.stack.lo + _StackGuard
  2804  
  2805  	hz := sched.profilehz
  2806  	if hz != 0 {
  2807  		resetcpuprofiler(hz)
  2808  	}
  2809  	gp.m.locks--
  2810  }
  2811  
  2812  // Called from syscall package after fork in parent.
  2813  //go:linkname syscall_runtime_AfterFork syscall.runtime_AfterFork
  2814  //go:nosplit
  2815  func syscall_runtime_AfterFork() {
  2816  	systemstack(afterfork)
  2817  }
  2818  
  2819  // Allocate a new g, with a stack big enough for stacksize bytes.
  2820  func malg(stacksize int32) *g {
  2821  	newg := new(g)
  2822  	if stacksize >= 0 {
  2823  		stacksize = round2(_StackSystem + stacksize)
  2824  		systemstack(func() {
  2825  			newg.stack, newg.stkbar = stackalloc(uint32(stacksize))
  2826  		})
  2827  		newg.stackguard0 = newg.stack.lo + _StackGuard
  2828  		newg.stackguard1 = ^uintptr(0)
  2829  		newg.stackAlloc = uintptr(stacksize)
  2830  	}
  2831  	return newg
  2832  }
  2833  
  2834  // Create a new g running fn with siz bytes of arguments.
  2835  // Put it on the queue of g's waiting to run.
  2836  // The compiler turns a go statement into a call to this.
  2837  // Cannot split the stack because it assumes that the arguments
  2838  // are available sequentially after &fn; they would not be
  2839  // copied if a stack split occurred.
  2840  //go:nosplit
  2841  func newproc(siz int32, fn *funcval) {
  2842  	argp := add(unsafe.Pointer(&fn), sys.PtrSize)
  2843  	pc := getcallerpc(unsafe.Pointer(&siz))
  2844  	systemstack(func() {
  2845  		newproc1(fn, (*uint8)(argp), siz, 0, pc)
  2846  	})
  2847  }
  2848  
  2849  // Create a new g running fn with narg bytes of arguments starting
  2850  // at argp and returning nret bytes of results.  callerpc is the
  2851  // address of the go statement that created this. The new g is put
  2852  // on the queue of g's waiting to run.
  2853  func newproc1(fn *funcval, argp *uint8, narg int32, nret int32, callerpc uintptr) *g {
  2854  	_g_ := getg()
  2855  
  2856  	if fn == nil {
  2857  		_g_.m.throwing = -1 // do not dump full stacks
  2858  		throw("go of nil func value")
  2859  	}
  2860  	_g_.m.locks++ // disable preemption because it can be holding p in a local var
  2861  	siz := narg + nret
  2862  	siz = (siz + 7) &^ 7
  2863  
  2864  	// We could allocate a larger initial stack if necessary.
  2865  	// Not worth it: this is almost always an error.
  2866  	// 4*sizeof(uintreg): extra space added below
  2867  	// sizeof(uintreg): caller's LR (arm) or return address (x86, in gostartcall).
  2868  	if siz >= _StackMin-4*sys.RegSize-sys.RegSize {
  2869  		throw("newproc: function arguments too large for new goroutine")
  2870  	}
  2871  
  2872  	_p_ := _g_.m.p.ptr()
  2873  	newg := gfget(_p_)
  2874  	if newg == nil {
  2875  		newg = malg(_StackMin)
  2876  		casgstatus(newg, _Gidle, _Gdead)
  2877  		newg.gcRescan = -1
  2878  		allgadd(newg) // publishes with a g->status of Gdead so GC scanner doesn't look at uninitialized stack.
  2879  	}
  2880  	if newg.stack.hi == 0 {
  2881  		throw("newproc1: newg missing stack")
  2882  	}
  2883  
  2884  	if readgstatus(newg) != _Gdead {
  2885  		throw("newproc1: new g is not Gdead")
  2886  	}
  2887  
  2888  	totalSize := 4*sys.RegSize + uintptr(siz) + sys.MinFrameSize // extra space in case of reads slightly beyond frame
  2889  	totalSize += -totalSize & (sys.SpAlign - 1)                  // align to spAlign
  2890  	sp := newg.stack.hi - totalSize
  2891  	spArg := sp
  2892  	if usesLR {
  2893  		// caller's LR
  2894  		*(*uintptr)(unsafe.Pointer(sp)) = 0
  2895  		prepGoExitFrame(sp)
  2896  		spArg += sys.MinFrameSize
  2897  	}
  2898  	if narg > 0 {
  2899  		memmove(unsafe.Pointer(spArg), unsafe.Pointer(argp), uintptr(narg))
  2900  		// This is a stack-to-stack copy. If write barriers
  2901  		// are enabled and the source stack is grey (the
  2902  		// destination is always black), then perform a
  2903  		// barrier copy. We do this *after* the memmove
  2904  		// because the destination stack may have garbage on
  2905  		// it.
  2906  		if writeBarrier.needed && !_g_.m.curg.gcscandone {
  2907  			f := findfunc(fn.fn)
  2908  			stkmap := (*stackmap)(funcdata(f, _FUNCDATA_ArgsPointerMaps))
  2909  			// We're in the prologue, so it's always stack map index 0.
  2910  			bv := stackmapdata(stkmap, 0)
  2911  			bulkBarrierBitmap(spArg, spArg, uintptr(narg), 0, bv.bytedata)
  2912  		}
  2913  	}
  2914  
  2915  	memclrNoHeapPointers(unsafe.Pointer(&newg.sched), unsafe.Sizeof(newg.sched))
  2916  	newg.sched.sp = sp
  2917  	newg.stktopsp = sp
  2918  	newg.sched.pc = funcPC(goexit) + sys.PCQuantum // +PCQuantum so that previous instruction is in same function
  2919  	newg.sched.g = guintptr(unsafe.Pointer(newg))
  2920  	gostartcallfn(&newg.sched, fn)
  2921  	newg.gopc = callerpc
  2922  	newg.startpc = fn.fn
  2923  	if isSystemGoroutine(newg) {
  2924  		atomic.Xadd(&sched.ngsys, +1)
  2925  	}
  2926  	// The stack is dirty from the argument frame, so queue it for
  2927  	// scanning. Do this before setting it to runnable so we still
  2928  	// own the G. If we're recycling a G, it may already be on the
  2929  	// rescan list.
  2930  	if newg.gcRescan == -1 {
  2931  		queueRescan(newg)
  2932  	} else {
  2933  		// The recycled G is already on the rescan list. Just
  2934  		// mark the stack dirty.
  2935  		newg.gcscanvalid = false
  2936  	}
  2937  	casgstatus(newg, _Gdead, _Grunnable)
  2938  
  2939  	if _p_.goidcache == _p_.goidcacheend {
  2940  		// Sched.goidgen is the last allocated id,
  2941  		// this batch must be [sched.goidgen+1, sched.goidgen+GoidCacheBatch].
  2942  		// At startup sched.goidgen=0, so main goroutine receives goid=1.
  2943  		_p_.goidcache = atomic.Xadd64(&sched.goidgen, _GoidCacheBatch)
  2944  		_p_.goidcache -= _GoidCacheBatch - 1
  2945  		_p_.goidcacheend = _p_.goidcache + _GoidCacheBatch
  2946  	}
  2947  	newg.goid = int64(_p_.goidcache)
  2948  	_p_.goidcache++
  2949  	if raceenabled {
  2950  		newg.racectx = racegostart(callerpc)
  2951  	}
  2952  	if trace.enabled {
  2953  		traceGoCreate(newg, newg.startpc)
  2954  	}
  2955  	runqput(_p_, newg, true)
  2956  
  2957  	if atomic.Load(&sched.npidle) != 0 && atomic.Load(&sched.nmspinning) == 0 && runtimeInitTime != 0 {
  2958  		wakep()
  2959  	}
  2960  	_g_.m.locks--
  2961  	if _g_.m.locks == 0 && _g_.preempt { // restore the preemption request in case we've cleared it in newstack
  2962  		_g_.stackguard0 = stackPreempt
  2963  	}
  2964  	return newg
  2965  }
  2966  
  2967  // Put on gfree list.
  2968  // If local list is too long, transfer a batch to the global list.
  2969  func gfput(_p_ *p, gp *g) {
  2970  	if readgstatus(gp) != _Gdead {
  2971  		throw("gfput: bad status (not Gdead)")
  2972  	}
  2973  
  2974  	stksize := gp.stackAlloc
  2975  
  2976  	if stksize != _FixedStack {
  2977  		// non-standard stack size - free it.
  2978  		stackfree(gp.stack, gp.stackAlloc)
  2979  		gp.stack.lo = 0
  2980  		gp.stack.hi = 0
  2981  		gp.stackguard0 = 0
  2982  		gp.stkbar = nil
  2983  		gp.stkbarPos = 0
  2984  	} else {
  2985  		// Reset stack barriers.
  2986  		gp.stkbar = gp.stkbar[:0]
  2987  		gp.stkbarPos = 0
  2988  	}
  2989  
  2990  	gp.schedlink.set(_p_.gfree)
  2991  	_p_.gfree = gp
  2992  	_p_.gfreecnt++
  2993  	if _p_.gfreecnt >= 64 {
  2994  		lock(&sched.gflock)
  2995  		for _p_.gfreecnt >= 32 {
  2996  			_p_.gfreecnt--
  2997  			gp = _p_.gfree
  2998  			_p_.gfree = gp.schedlink.ptr()
  2999  			if gp.stack.lo == 0 {
  3000  				gp.schedlink.set(sched.gfreeNoStack)
  3001  				sched.gfreeNoStack = gp
  3002  			} else {
  3003  				gp.schedlink.set(sched.gfreeStack)
  3004  				sched.gfreeStack = gp
  3005  			}
  3006  			sched.ngfree++
  3007  		}
  3008  		unlock(&sched.gflock)
  3009  	}
  3010  }
  3011  
  3012  // Get from gfree list.
  3013  // If local list is empty, grab a batch from global list.
  3014  func gfget(_p_ *p) *g {
  3015  retry:
  3016  	gp := _p_.gfree
  3017  	if gp == nil && (sched.gfreeStack != nil || sched.gfreeNoStack != nil) {
  3018  		lock(&sched.gflock)
  3019  		for _p_.gfreecnt < 32 {
  3020  			if sched.gfreeStack != nil {
  3021  				// Prefer Gs with stacks.
  3022  				gp = sched.gfreeStack
  3023  				sched.gfreeStack = gp.schedlink.ptr()
  3024  			} else if sched.gfreeNoStack != nil {
  3025  				gp = sched.gfreeNoStack
  3026  				sched.gfreeNoStack = gp.schedlink.ptr()
  3027  			} else {
  3028  				break
  3029  			}
  3030  			_p_.gfreecnt++
  3031  			sched.ngfree--
  3032  			gp.schedlink.set(_p_.gfree)
  3033  			_p_.gfree = gp
  3034  		}
  3035  		unlock(&sched.gflock)
  3036  		goto retry
  3037  	}
  3038  	if gp != nil {
  3039  		_p_.gfree = gp.schedlink.ptr()
  3040  		_p_.gfreecnt--
  3041  		if gp.stack.lo == 0 {
  3042  			// Stack was deallocated in gfput. Allocate a new one.
  3043  			systemstack(func() {
  3044  				gp.stack, gp.stkbar = stackalloc(_FixedStack)
  3045  			})
  3046  			gp.stackguard0 = gp.stack.lo + _StackGuard
  3047  			gp.stackAlloc = _FixedStack
  3048  		} else {
  3049  			if raceenabled {
  3050  				racemalloc(unsafe.Pointer(gp.stack.lo), gp.stackAlloc)
  3051  			}
  3052  			if msanenabled {
  3053  				msanmalloc(unsafe.Pointer(gp.stack.lo), gp.stackAlloc)
  3054  			}
  3055  		}
  3056  	}
  3057  	return gp
  3058  }
  3059  
  3060  // Purge all cached G's from gfree list to the global list.
  3061  func gfpurge(_p_ *p) {
  3062  	lock(&sched.gflock)
  3063  	for _p_.gfreecnt != 0 {
  3064  		_p_.gfreecnt--
  3065  		gp := _p_.gfree
  3066  		_p_.gfree = gp.schedlink.ptr()
  3067  		if gp.stack.lo == 0 {
  3068  			gp.schedlink.set(sched.gfreeNoStack)
  3069  			sched.gfreeNoStack = gp
  3070  		} else {
  3071  			gp.schedlink.set(sched.gfreeStack)
  3072  			sched.gfreeStack = gp
  3073  		}
  3074  		sched.ngfree++
  3075  	}
  3076  	unlock(&sched.gflock)
  3077  }
  3078  
  3079  // Breakpoint executes a breakpoint trap.
  3080  func Breakpoint() {
  3081  	breakpoint()
  3082  }
  3083  
  3084  // dolockOSThread is called by LockOSThread and lockOSThread below
  3085  // after they modify m.locked. Do not allow preemption during this call,
  3086  // or else the m might be different in this function than in the caller.
  3087  //go:nosplit
  3088  func dolockOSThread() {
  3089  	_g_ := getg()
  3090  	_g_.m.lockedg = _g_
  3091  	_g_.lockedm = _g_.m
  3092  }
  3093  
  3094  //go:nosplit
  3095  
  3096  // LockOSThread wires the calling goroutine to its current operating system thread.
  3097  // Until the calling goroutine exits or calls UnlockOSThread, it will always
  3098  // execute in that thread, and no other goroutine can.
  3099  func LockOSThread() {
  3100  	getg().m.locked |= _LockExternal
  3101  	dolockOSThread()
  3102  }
  3103  
  3104  //go:nosplit
  3105  func lockOSThread() {
  3106  	getg().m.locked += _LockInternal
  3107  	dolockOSThread()
  3108  }
  3109  
  3110  // dounlockOSThread is called by UnlockOSThread and unlockOSThread below
  3111  // after they update m->locked. Do not allow preemption during this call,
  3112  // or else the m might be in different in this function than in the caller.
  3113  //go:nosplit
  3114  func dounlockOSThread() {
  3115  	_g_ := getg()
  3116  	if _g_.m.locked != 0 {
  3117  		return
  3118  	}
  3119  	_g_.m.lockedg = nil
  3120  	_g_.lockedm = nil
  3121  }
  3122  
  3123  //go:nosplit
  3124  
  3125  // UnlockOSThread unwires the calling goroutine from its fixed operating system thread.
  3126  // If the calling goroutine has not called LockOSThread, UnlockOSThread is a no-op.
  3127  func UnlockOSThread() {
  3128  	getg().m.locked &^= _LockExternal
  3129  	dounlockOSThread()
  3130  }
  3131  
  3132  //go:nosplit
  3133  func unlockOSThread() {
  3134  	_g_ := getg()
  3135  	if _g_.m.locked < _LockInternal {
  3136  		systemstack(badunlockosthread)
  3137  	}
  3138  	_g_.m.locked -= _LockInternal
  3139  	dounlockOSThread()
  3140  }
  3141  
  3142  func badunlockosthread() {
  3143  	throw("runtime: internal error: misuse of lockOSThread/unlockOSThread")
  3144  }
  3145  
  3146  func gcount() int32 {
  3147  	n := int32(allglen) - sched.ngfree - int32(atomic.Load(&sched.ngsys))
  3148  	for i := 0; ; i++ {
  3149  		_p_ := allp[i]
  3150  		if _p_ == nil {
  3151  			break
  3152  		}
  3153  		n -= _p_.gfreecnt
  3154  	}
  3155  
  3156  	// All these variables can be changed concurrently, so the result can be inconsistent.
  3157  	// But at least the current goroutine is running.
  3158  	if n < 1 {
  3159  		n = 1
  3160  	}
  3161  	return n
  3162  }
  3163  
  3164  func mcount() int32 {
  3165  	return sched.mcount
  3166  }
  3167  
  3168  var prof struct {
  3169  	lock uint32
  3170  	hz   int32
  3171  }
  3172  
  3173  func _System()       { _System() }
  3174  func _ExternalCode() { _ExternalCode() }
  3175  func _GC()           { _GC() }
  3176  
  3177  // Called if we receive a SIGPROF signal.
  3178  // Called by the signal handler, may run during STW.
  3179  //go:nowritebarrierrec
  3180  func sigprof(pc, sp, lr uintptr, gp *g, mp *m) {
  3181  	if prof.hz == 0 {
  3182  		return
  3183  	}
  3184  
  3185  	// Profiling runs concurrently with GC, so it must not allocate.
  3186  	// Set a trap in case the code does allocate.
  3187  	// Note that on windows, one thread takes profiles of all the
  3188  	// other threads, so mp is usually not getg().m.
  3189  	// In fact mp may not even be stopped.
  3190  	// See golang.org/issue/17165.
  3191  	getg().m.mallocing++
  3192  
  3193  	// Define that a "user g" is a user-created goroutine, and a "system g"
  3194  	// is one that is m->g0 or m->gsignal.
  3195  	//
  3196  	// We might be interrupted for profiling halfway through a
  3197  	// goroutine switch. The switch involves updating three (or four) values:
  3198  	// g, PC, SP, and (on arm) LR. The PC must be the last to be updated,
  3199  	// because once it gets updated the new g is running.
  3200  	//
  3201  	// When switching from a user g to a system g, LR is not considered live,
  3202  	// so the update only affects g, SP, and PC. Since PC must be last, there
  3203  	// the possible partial transitions in ordinary execution are (1) g alone is updated,
  3204  	// (2) both g and SP are updated, and (3) SP alone is updated.
  3205  	// If SP or g alone is updated, we can detect the partial transition by checking
  3206  	// whether the SP is within g's stack bounds. (We could also require that SP
  3207  	// be changed only after g, but the stack bounds check is needed by other
  3208  	// cases, so there is no need to impose an additional requirement.)
  3209  	//
  3210  	// There is one exceptional transition to a system g, not in ordinary execution.
  3211  	// When a signal arrives, the operating system starts the signal handler running
  3212  	// with an updated PC and SP. The g is updated last, at the beginning of the
  3213  	// handler. There are two reasons this is okay. First, until g is updated the
  3214  	// g and SP do not match, so the stack bounds check detects the partial transition.
  3215  	// Second, signal handlers currently run with signals disabled, so a profiling
  3216  	// signal cannot arrive during the handler.
  3217  	//
  3218  	// When switching from a system g to a user g, there are three possibilities.
  3219  	//
  3220  	// First, it may be that the g switch has no PC update, because the SP
  3221  	// either corresponds to a user g throughout (as in asmcgocall)
  3222  	// or because it has been arranged to look like a user g frame
  3223  	// (as in cgocallback_gofunc). In this case, since the entire
  3224  	// transition is a g+SP update, a partial transition updating just one of
  3225  	// those will be detected by the stack bounds check.
  3226  	//
  3227  	// Second, when returning from a signal handler, the PC and SP updates
  3228  	// are performed by the operating system in an atomic update, so the g
  3229  	// update must be done before them. The stack bounds check detects
  3230  	// the partial transition here, and (again) signal handlers run with signals
  3231  	// disabled, so a profiling signal cannot arrive then anyway.
  3232  	//
  3233  	// Third, the common case: it may be that the switch updates g, SP, and PC
  3234  	// separately. If the PC is within any of the functions that does this,
  3235  	// we don't ask for a traceback. C.F. the function setsSP for more about this.
  3236  	//
  3237  	// There is another apparently viable approach, recorded here in case
  3238  	// the "PC within setsSP function" check turns out not to be usable.
  3239  	// It would be possible to delay the update of either g or SP until immediately
  3240  	// before the PC update instruction. Then, because of the stack bounds check,
  3241  	// the only problematic interrupt point is just before that PC update instruction,
  3242  	// and the sigprof handler can detect that instruction and simulate stepping past
  3243  	// it in order to reach a consistent state. On ARM, the update of g must be made
  3244  	// in two places (in R10 and also in a TLS slot), so the delayed update would
  3245  	// need to be the SP update. The sigprof handler must read the instruction at
  3246  	// the current PC and if it was the known instruction (for example, JMP BX or
  3247  	// MOV R2, PC), use that other register in place of the PC value.
  3248  	// The biggest drawback to this solution is that it requires that we can tell
  3249  	// whether it's safe to read from the memory pointed at by PC.
  3250  	// In a correct program, we can test PC == nil and otherwise read,
  3251  	// but if a profiling signal happens at the instant that a program executes
  3252  	// a bad jump (before the program manages to handle the resulting fault)
  3253  	// the profiling handler could fault trying to read nonexistent memory.
  3254  	//
  3255  	// To recap, there are no constraints on the assembly being used for the
  3256  	// transition. We simply require that g and SP match and that the PC is not
  3257  	// in gogo.
  3258  	traceback := true
  3259  	if gp == nil || sp < gp.stack.lo || gp.stack.hi < sp || setsSP(pc) {
  3260  		traceback = false
  3261  	}
  3262  	var stk [maxCPUProfStack]uintptr
  3263  	var haveStackLock *g
  3264  	n := 0
  3265  	if mp.ncgo > 0 && mp.curg != nil && mp.curg.syscallpc != 0 && mp.curg.syscallsp != 0 {
  3266  		cgoOff := 0
  3267  		// Check cgoCallersUse to make sure that we are not
  3268  		// interrupting other code that is fiddling with
  3269  		// cgoCallers.  We are running in a signal handler
  3270  		// with all signals blocked, so we don't have to worry
  3271  		// about any other code interrupting us.
  3272  		if atomic.Load(&mp.cgoCallersUse) == 0 && mp.cgoCallers != nil && mp.cgoCallers[0] != 0 {
  3273  			for cgoOff < len(mp.cgoCallers) && mp.cgoCallers[cgoOff] != 0 {
  3274  				cgoOff++
  3275  			}
  3276  			copy(stk[:], mp.cgoCallers[:cgoOff])
  3277  			mp.cgoCallers[0] = 0
  3278  		}
  3279  
  3280  		// Collect Go stack that leads to the cgo call.
  3281  		if gcTryLockStackBarriers(mp.curg) {
  3282  			haveStackLock = mp.curg
  3283  			n = gentraceback(mp.curg.syscallpc, mp.curg.syscallsp, 0, mp.curg, 0, &stk[cgoOff], len(stk)-cgoOff, nil, nil, 0)
  3284  		}
  3285  	} else if traceback {
  3286  		var flags uint = _TraceTrap
  3287  		if gp.m.curg != nil && gcTryLockStackBarriers(gp.m.curg) {
  3288  			// It's safe to traceback the user stack.
  3289  			haveStackLock = gp.m.curg
  3290  			flags |= _TraceJumpStack
  3291  		}
  3292  		// Traceback is safe if we're on the system stack (if
  3293  		// necessary, flags will stop it before switching to
  3294  		// the user stack), or if we locked the user stack.
  3295  		if gp != gp.m.curg || haveStackLock != nil {
  3296  			n = gentraceback(pc, sp, lr, gp, 0, &stk[0], len(stk), nil, nil, flags)
  3297  		}
  3298  	}
  3299  	if haveStackLock != nil {
  3300  		gcUnlockStackBarriers(haveStackLock)
  3301  	}
  3302  
  3303  	if n <= 0 {
  3304  		// Normal traceback is impossible or has failed.
  3305  		// See if it falls into several common cases.
  3306  		n = 0
  3307  		if GOOS == "windows" && mp.libcallg != 0 && mp.libcallpc != 0 && mp.libcallsp != 0 {
  3308  			// Libcall, i.e. runtime syscall on windows.
  3309  			// Collect Go stack that leads to the call.
  3310  			if gcTryLockStackBarriers(mp.libcallg.ptr()) {
  3311  				n = gentraceback(mp.libcallpc, mp.libcallsp, 0, mp.libcallg.ptr(), 0, &stk[0], len(stk), nil, nil, 0)
  3312  				gcUnlockStackBarriers(mp.libcallg.ptr())
  3313  			}
  3314  		}
  3315  		if n == 0 {
  3316  			// If all of the above has failed, account it against abstract "System" or "GC".
  3317  			n = 2
  3318  			// "ExternalCode" is better than "etext".
  3319  			if pc > firstmoduledata.etext {
  3320  				pc = funcPC(_ExternalCode) + sys.PCQuantum
  3321  			}
  3322  			stk[0] = pc
  3323  			if mp.preemptoff != "" || mp.helpgc != 0 {
  3324  				stk[1] = funcPC(_GC) + sys.PCQuantum
  3325  			} else {
  3326  				stk[1] = funcPC(_System) + sys.PCQuantum
  3327  			}
  3328  		}
  3329  	}
  3330  
  3331  	if prof.hz != 0 {
  3332  		// Simple cas-lock to coordinate with setcpuprofilerate.
  3333  		for !atomic.Cas(&prof.lock, 0, 1) {
  3334  			osyield()
  3335  		}
  3336  		if prof.hz != 0 {
  3337  			cpuprof.add(stk[:n])
  3338  		}
  3339  		atomic.Store(&prof.lock, 0)
  3340  	}
  3341  	getg().m.mallocing--
  3342  }
  3343  
  3344  // If the signal handler receives a SIGPROF signal on a non-Go thread,
  3345  // it tries to collect a traceback into sigprofCallers.
  3346  // sigprofCallersUse is set to non-zero while sigprofCallers holds a traceback.
  3347  var sigprofCallers cgoCallers
  3348  var sigprofCallersUse uint32
  3349  
  3350  // sigprofNonGo is called if we receive a SIGPROF signal on a non-Go thread,
  3351  // and the signal handler collected a stack trace in sigprofCallers.
  3352  // When this is called, sigprofCallersUse will be non-zero.
  3353  // g is nil, and what we can do is very limited.
  3354  //go:nosplit
  3355  //go:nowritebarrierrec
  3356  func sigprofNonGo() {
  3357  	if prof.hz != 0 {
  3358  		n := 0
  3359  		for n < len(sigprofCallers) && sigprofCallers[n] != 0 {
  3360  			n++
  3361  		}
  3362  
  3363  		// Simple cas-lock to coordinate with setcpuprofilerate.
  3364  		for !atomic.Cas(&prof.lock, 0, 1) {
  3365  			osyield()
  3366  		}
  3367  		if prof.hz != 0 {
  3368  			cpuprof.addNonGo(sigprofCallers[:n])
  3369  		}
  3370  		atomic.Store(&prof.lock, 0)
  3371  	}
  3372  
  3373  	atomic.Store(&sigprofCallersUse, 0)
  3374  }
  3375  
  3376  // sigprofNonGoPC is called when a profiling signal arrived on a
  3377  // non-Go thread and we have a single PC value, not a stack trace.
  3378  // g is nil, and what we can do is very limited.
  3379  //go:nosplit
  3380  //go:nowritebarrierrec
  3381  func sigprofNonGoPC(pc uintptr) {
  3382  	if prof.hz != 0 {
  3383  		pc := []uintptr{
  3384  			pc,
  3385  			funcPC(_ExternalCode) + sys.PCQuantum,
  3386  		}
  3387  
  3388  		// Simple cas-lock to coordinate with setcpuprofilerate.
  3389  		for !atomic.Cas(&prof.lock, 0, 1) {
  3390  			osyield()
  3391  		}
  3392  		if prof.hz != 0 {
  3393  			cpuprof.addNonGo(pc)
  3394  		}
  3395  		atomic.Store(&prof.lock, 0)
  3396  	}
  3397  }
  3398  
  3399  // Reports whether a function will set the SP
  3400  // to an absolute value. Important that
  3401  // we don't traceback when these are at the bottom
  3402  // of the stack since we can't be sure that we will
  3403  // find the caller.
  3404  //
  3405  // If the function is not on the bottom of the stack
  3406  // we assume that it will have set it up so that traceback will be consistent,
  3407  // either by being a traceback terminating function
  3408  // or putting one on the stack at the right offset.
  3409  func setsSP(pc uintptr) bool {
  3410  	f := findfunc(pc)
  3411  	if f == nil {
  3412  		// couldn't find the function for this PC,
  3413  		// so assume the worst and stop traceback
  3414  		return true
  3415  	}
  3416  	switch f.entry {
  3417  	case gogoPC, systemstackPC, mcallPC, morestackPC:
  3418  		return true
  3419  	}
  3420  	return false
  3421  }
  3422  
  3423  // Arrange to call fn with a traceback hz times a second.
  3424  func setcpuprofilerate_m(hz int32) {
  3425  	// Force sane arguments.
  3426  	if hz < 0 {
  3427  		hz = 0
  3428  	}
  3429  
  3430  	// Disable preemption, otherwise we can be rescheduled to another thread
  3431  	// that has profiling enabled.
  3432  	_g_ := getg()
  3433  	_g_.m.locks++
  3434  
  3435  	// Stop profiler on this thread so that it is safe to lock prof.
  3436  	// if a profiling signal came in while we had prof locked,
  3437  	// it would deadlock.
  3438  	resetcpuprofiler(0)
  3439  
  3440  	for !atomic.Cas(&prof.lock, 0, 1) {
  3441  		osyield()
  3442  	}
  3443  	prof.hz = hz
  3444  	atomic.Store(&prof.lock, 0)
  3445  
  3446  	lock(&sched.lock)
  3447  	sched.profilehz = hz
  3448  	unlock(&sched.lock)
  3449  
  3450  	if hz != 0 {
  3451  		resetcpuprofiler(hz)
  3452  	}
  3453  
  3454  	_g_.m.locks--
  3455  }
  3456  
  3457  // Change number of processors. The world is stopped, sched is locked.
  3458  // gcworkbufs are not being modified by either the GC or
  3459  // the write barrier code.
  3460  // Returns list of Ps with local work, they need to be scheduled by the caller.
  3461  func procresize(nprocs int32) *p {
  3462  	old := gomaxprocs
  3463  	if old < 0 || old > _MaxGomaxprocs || nprocs <= 0 || nprocs > _MaxGomaxprocs {
  3464  		throw("procresize: invalid arg")
  3465  	}
  3466  	if trace.enabled {
  3467  		traceGomaxprocs(nprocs)
  3468  	}
  3469  
  3470  	// update statistics
  3471  	now := nanotime()
  3472  	if sched.procresizetime != 0 {
  3473  		sched.totaltime += int64(old) * (now - sched.procresizetime)
  3474  	}
  3475  	sched.procresizetime = now
  3476  
  3477  	// initialize new P's
  3478  	for i := int32(0); i < nprocs; i++ {
  3479  		pp := allp[i]
  3480  		if pp == nil {
  3481  			pp = new(p)
  3482  			pp.id = i
  3483  			pp.status = _Pgcstop
  3484  			pp.sudogcache = pp.sudogbuf[:0]
  3485  			for i := range pp.deferpool {
  3486  				pp.deferpool[i] = pp.deferpoolbuf[i][:0]
  3487  			}
  3488  			atomicstorep(unsafe.Pointer(&allp[i]), unsafe.Pointer(pp))
  3489  		}
  3490  		if pp.mcache == nil {
  3491  			if old == 0 && i == 0 {
  3492  				if getg().m.mcache == nil {
  3493  					throw("missing mcache?")
  3494  				}
  3495  				pp.mcache = getg().m.mcache // bootstrap
  3496  			} else {
  3497  				pp.mcache = allocmcache()
  3498  			}
  3499  		}
  3500  		if raceenabled && pp.racectx == 0 {
  3501  			if old == 0 && i == 0 {
  3502  				pp.racectx = raceprocctx0
  3503  				raceprocctx0 = 0 // bootstrap
  3504  			} else {
  3505  				pp.racectx = raceproccreate()
  3506  			}
  3507  		}
  3508  	}
  3509  
  3510  	// free unused P's
  3511  	for i := nprocs; i < old; i++ {
  3512  		p := allp[i]
  3513  		if trace.enabled {
  3514  			if p == getg().m.p.ptr() {
  3515  				// moving to p[0], pretend that we were descheduled
  3516  				// and then scheduled again to keep the trace sane.
  3517  				traceGoSched()
  3518  				traceProcStop(p)
  3519  			}
  3520  		}
  3521  		// move all runnable goroutines to the global queue
  3522  		for p.runqhead != p.runqtail {
  3523  			// pop from tail of local queue
  3524  			p.runqtail--
  3525  			gp := p.runq[p.runqtail%uint32(len(p.runq))].ptr()
  3526  			// push onto head of global queue
  3527  			globrunqputhead(gp)
  3528  		}
  3529  		if p.runnext != 0 {
  3530  			globrunqputhead(p.runnext.ptr())
  3531  			p.runnext = 0
  3532  		}
  3533  		// if there's a background worker, make it runnable and put
  3534  		// it on the global queue so it can clean itself up
  3535  		if gp := p.gcBgMarkWorker.ptr(); gp != nil {
  3536  			casgstatus(gp, _Gwaiting, _Grunnable)
  3537  			if trace.enabled {
  3538  				traceGoUnpark(gp, 0)
  3539  			}
  3540  			globrunqput(gp)
  3541  			// This assignment doesn't race because the
  3542  			// world is stopped.
  3543  			p.gcBgMarkWorker.set(nil)
  3544  		}
  3545  		for i := range p.sudogbuf {
  3546  			p.sudogbuf[i] = nil
  3547  		}
  3548  		p.sudogcache = p.sudogbuf[:0]
  3549  		for i := range p.deferpool {
  3550  			for j := range p.deferpoolbuf[i] {
  3551  				p.deferpoolbuf[i][j] = nil
  3552  			}
  3553  			p.deferpool[i] = p.deferpoolbuf[i][:0]
  3554  		}
  3555  		freemcache(p.mcache)
  3556  		p.mcache = nil
  3557  		gfpurge(p)
  3558  		traceProcFree(p)
  3559  		if raceenabled {
  3560  			raceprocdestroy(p.racectx)
  3561  			p.racectx = 0
  3562  		}
  3563  		p.status = _Pdead
  3564  		// can't free P itself because it can be referenced by an M in syscall
  3565  	}
  3566  
  3567  	_g_ := getg()
  3568  	if _g_.m.p != 0 && _g_.m.p.ptr().id < nprocs {
  3569  		// continue to use the current P
  3570  		_g_.m.p.ptr().status = _Prunning
  3571  	} else {
  3572  		// release the current P and acquire allp[0]
  3573  		if _g_.m.p != 0 {
  3574  			_g_.m.p.ptr().m = 0
  3575  		}
  3576  		_g_.m.p = 0
  3577  		_g_.m.mcache = nil
  3578  		p := allp[0]
  3579  		p.m = 0
  3580  		p.status = _Pidle
  3581  		acquirep(p)
  3582  		if trace.enabled {
  3583  			traceGoStart()
  3584  		}
  3585  	}
  3586  	var runnablePs *p
  3587  	for i := nprocs - 1; i >= 0; i-- {
  3588  		p := allp[i]
  3589  		if _g_.m.p.ptr() == p {
  3590  			continue
  3591  		}
  3592  		p.status = _Pidle
  3593  		if runqempty(p) {
  3594  			pidleput(p)
  3595  		} else {
  3596  			p.m.set(mget())
  3597  			p.link.set(runnablePs)
  3598  			runnablePs = p
  3599  		}
  3600  	}
  3601  	stealOrder.reset(uint32(nprocs))
  3602  	var int32p *int32 = &gomaxprocs // make compiler check that gomaxprocs is an int32
  3603  	atomic.Store((*uint32)(unsafe.Pointer(int32p)), uint32(nprocs))
  3604  	return runnablePs
  3605  }
  3606  
  3607  // Associate p and the current m.
  3608  //
  3609  // This function is allowed to have write barriers even if the caller
  3610  // isn't because it immediately acquires _p_.
  3611  //
  3612  //go:yeswritebarrierrec
  3613  func acquirep(_p_ *p) {
  3614  	// Do the part that isn't allowed to have write barriers.
  3615  	acquirep1(_p_)
  3616  
  3617  	// have p; write barriers now allowed
  3618  	_g_ := getg()
  3619  	_g_.m.mcache = _p_.mcache
  3620  
  3621  	if trace.enabled {
  3622  		traceProcStart()
  3623  	}
  3624  }
  3625  
  3626  // acquirep1 is the first step of acquirep, which actually acquires
  3627  // _p_. This is broken out so we can disallow write barriers for this
  3628  // part, since we don't yet have a P.
  3629  //
  3630  //go:nowritebarrierrec
  3631  func acquirep1(_p_ *p) {
  3632  	_g_ := getg()
  3633  
  3634  	if _g_.m.p != 0 || _g_.m.mcache != nil {
  3635  		throw("acquirep: already in go")
  3636  	}
  3637  	if _p_.m != 0 || _p_.status != _Pidle {
  3638  		id := int32(0)
  3639  		if _p_.m != 0 {
  3640  			id = _p_.m.ptr().id
  3641  		}
  3642  		print("acquirep: p->m=", _p_.m, "(", id, ") p->status=", _p_.status, "\n")
  3643  		throw("acquirep: invalid p state")
  3644  	}
  3645  	_g_.m.p.set(_p_)
  3646  	_p_.m.set(_g_.m)
  3647  	_p_.status = _Prunning
  3648  }
  3649  
  3650  // Disassociate p and the current m.
  3651  func releasep() *p {
  3652  	_g_ := getg()
  3653  
  3654  	if _g_.m.p == 0 || _g_.m.mcache == nil {
  3655  		throw("releasep: invalid arg")
  3656  	}
  3657  	_p_ := _g_.m.p.ptr()
  3658  	if _p_.m.ptr() != _g_.m || _p_.mcache != _g_.m.mcache || _p_.status != _Prunning {
  3659  		print("releasep: m=", _g_.m, " m->p=", _g_.m.p.ptr(), " p->m=", _p_.m, " m->mcache=", _g_.m.mcache, " p->mcache=", _p_.mcache, " p->status=", _p_.status, "\n")
  3660  		throw("releasep: invalid p state")
  3661  	}
  3662  	if trace.enabled {
  3663  		traceProcStop(_g_.m.p.ptr())
  3664  	}
  3665  	_g_.m.p = 0
  3666  	_g_.m.mcache = nil
  3667  	_p_.m = 0
  3668  	_p_.status = _Pidle
  3669  	return _p_
  3670  }
  3671  
  3672  func incidlelocked(v int32) {
  3673  	lock(&sched.lock)
  3674  	sched.nmidlelocked += v
  3675  	if v > 0 {
  3676  		checkdead()
  3677  	}
  3678  	unlock(&sched.lock)
  3679  }
  3680  
  3681  // Check for deadlock situation.
  3682  // The check is based on number of running M's, if 0 -> deadlock.
  3683  func checkdead() {
  3684  	// For -buildmode=c-shared or -buildmode=c-archive it's OK if
  3685  	// there are no running goroutines. The calling program is
  3686  	// assumed to be running.
  3687  	if islibrary || isarchive {
  3688  		return
  3689  	}
  3690  
  3691  	// If we are dying because of a signal caught on an already idle thread,
  3692  	// freezetheworld will cause all running threads to block.
  3693  	// And runtime will essentially enter into deadlock state,
  3694  	// except that there is a thread that will call exit soon.
  3695  	if panicking > 0 {
  3696  		return
  3697  	}
  3698  
  3699  	// -1 for sysmon
  3700  	run := sched.mcount - sched.nmidle - sched.nmidlelocked - 1
  3701  	if run > 0 {
  3702  		return
  3703  	}
  3704  	if run < 0 {
  3705  		print("runtime: checkdead: nmidle=", sched.nmidle, " nmidlelocked=", sched.nmidlelocked, " mcount=", sched.mcount, "\n")
  3706  		throw("checkdead: inconsistent counts")
  3707  	}
  3708  
  3709  	grunning := 0
  3710  	lock(&allglock)
  3711  	for i := 0; i < len(allgs); i++ {
  3712  		gp := allgs[i]
  3713  		if isSystemGoroutine(gp) {
  3714  			continue
  3715  		}
  3716  		s := readgstatus(gp)
  3717  		switch s &^ _Gscan {
  3718  		case _Gwaiting:
  3719  			grunning++
  3720  		case _Grunnable,
  3721  			_Grunning,
  3722  			_Gsyscall:
  3723  			unlock(&allglock)
  3724  			print("runtime: checkdead: find g ", gp.goid, " in status ", s, "\n")
  3725  			throw("checkdead: runnable g")
  3726  		}
  3727  	}
  3728  	unlock(&allglock)
  3729  	if grunning == 0 { // possible if main goroutine calls runtime·Goexit()
  3730  		throw("no goroutines (main called runtime.Goexit) - deadlock!")
  3731  	}
  3732  
  3733  	// Maybe jump time forward for playground.
  3734  	gp := timejump()
  3735  	if gp != nil {
  3736  		casgstatus(gp, _Gwaiting, _Grunnable)
  3737  		globrunqput(gp)
  3738  		_p_ := pidleget()
  3739  		if _p_ == nil {
  3740  			throw("checkdead: no p for timer")
  3741  		}
  3742  		mp := mget()
  3743  		if mp == nil {
  3744  			// There should always be a free M since
  3745  			// nothing is running.
  3746  			throw("checkdead: no m for timer")
  3747  		}
  3748  		mp.nextp.set(_p_)
  3749  		notewakeup(&mp.park)
  3750  		return
  3751  	}
  3752  
  3753  	getg().m.throwing = -1 // do not dump full stacks
  3754  	throw("all goroutines are asleep - deadlock!")
  3755  }
  3756  
  3757  // forcegcperiod is the maximum time in nanoseconds between garbage
  3758  // collections. If we go this long without a garbage collection, one
  3759  // is forced to run.
  3760  //
  3761  // This is a variable for testing purposes. It normally doesn't change.
  3762  var forcegcperiod int64 = 2 * 60 * 1e9
  3763  
  3764  // Always runs without a P, so write barriers are not allowed.
  3765  //
  3766  //go:nowritebarrierrec
  3767  func sysmon() {
  3768  	// If a heap span goes unused for 5 minutes after a garbage collection,
  3769  	// we hand it back to the operating system.
  3770  	scavengelimit := int64(5 * 60 * 1e9)
  3771  
  3772  	if debug.scavenge > 0 {
  3773  		// Scavenge-a-lot for testing.
  3774  		forcegcperiod = 10 * 1e6
  3775  		scavengelimit = 20 * 1e6
  3776  	}
  3777  
  3778  	lastscavenge := nanotime()
  3779  	nscavenge := 0
  3780  
  3781  	lasttrace := int64(0)
  3782  	idle := 0 // how many cycles in succession we had not wokeup somebody
  3783  	delay := uint32(0)
  3784  	for {
  3785  		if idle == 0 { // start with 20us sleep...
  3786  			delay = 20
  3787  		} else if idle > 50 { // start doubling the sleep after 1ms...
  3788  			delay *= 2
  3789  		}
  3790  		if delay > 10*1000 { // up to 10ms
  3791  			delay = 10 * 1000
  3792  		}
  3793  		usleep(delay)
  3794  		if debug.schedtrace <= 0 && (sched.gcwaiting != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs)) {
  3795  			lock(&sched.lock)
  3796  			if atomic.Load(&sched.gcwaiting) != 0 || atomic.Load(&sched.npidle) == uint32(gomaxprocs) {
  3797  				atomic.Store(&sched.sysmonwait, 1)
  3798  				unlock(&sched.lock)
  3799  				// Make wake-up period small enough
  3800  				// for the sampling to be correct.
  3801  				maxsleep := forcegcperiod / 2
  3802  				if scavengelimit < forcegcperiod {
  3803  					maxsleep = scavengelimit / 2
  3804  				}
  3805  				notetsleep(&sched.sysmonnote, maxsleep)
  3806  				lock(&sched.lock)
  3807  				atomic.Store(&sched.sysmonwait, 0)
  3808  				noteclear(&sched.sysmonnote)
  3809  				idle = 0
  3810  				delay = 20
  3811  			}
  3812  			unlock(&sched.lock)
  3813  		}
  3814  		// poll network if not polled for more than 10ms
  3815  		lastpoll := int64(atomic.Load64(&sched.lastpoll))
  3816  		now := nanotime()
  3817  		unixnow := unixnanotime()
  3818  		if lastpoll != 0 && lastpoll+10*1000*1000 < now {
  3819  			atomic.Cas64(&sched.lastpoll, uint64(lastpoll), uint64(now))
  3820  			gp := netpoll(false) // non-blocking - returns list of goroutines
  3821  			if gp != nil {
  3822  				// Need to decrement number of idle locked M's
  3823  				// (pretending that one more is running) before injectglist.
  3824  				// Otherwise it can lead to the following situation:
  3825  				// injectglist grabs all P's but before it starts M's to run the P's,
  3826  				// another M returns from syscall, finishes running its G,
  3827  				// observes that there is no work to do and no other running M's
  3828  				// and reports deadlock.
  3829  				incidlelocked(-1)
  3830  				injectglist(gp)
  3831  				incidlelocked(1)
  3832  			}
  3833  		}
  3834  		// retake P's blocked in syscalls
  3835  		// and preempt long running G's
  3836  		if retake(now) != 0 {
  3837  			idle = 0
  3838  		} else {
  3839  			idle++
  3840  		}
  3841  		// check if we need to force a GC
  3842  		lastgc := int64(atomic.Load64(&memstats.last_gc))
  3843  		if gcphase == _GCoff && lastgc != 0 && unixnow-lastgc > forcegcperiod && atomic.Load(&forcegc.idle) != 0 {
  3844  			lock(&forcegc.lock)
  3845  			forcegc.idle = 0
  3846  			forcegc.g.schedlink = 0
  3847  			injectglist(forcegc.g)
  3848  			unlock(&forcegc.lock)
  3849  		}
  3850  		// scavenge heap once in a while
  3851  		if lastscavenge+scavengelimit/2 < now {
  3852  			mheap_.scavenge(int32(nscavenge), uint64(now), uint64(scavengelimit))
  3853  			lastscavenge = now
  3854  			nscavenge++
  3855  		}
  3856  		if debug.schedtrace > 0 && lasttrace+int64(debug.schedtrace)*1000000 <= now {
  3857  			lasttrace = now
  3858  			schedtrace(debug.scheddetail > 0)
  3859  		}
  3860  	}
  3861  }
  3862  
  3863  var pdesc [_MaxGomaxprocs]struct {
  3864  	schedtick   uint32
  3865  	schedwhen   int64
  3866  	syscalltick uint32
  3867  	syscallwhen int64
  3868  }
  3869  
  3870  // forcePreemptNS is the time slice given to a G before it is
  3871  // preempted.
  3872  const forcePreemptNS = 10 * 1000 * 1000 // 10ms
  3873  
  3874  func retake(now int64) uint32 {
  3875  	n := 0
  3876  	for i := int32(0); i < gomaxprocs; i++ {
  3877  		_p_ := allp[i]
  3878  		if _p_ == nil {
  3879  			continue
  3880  		}
  3881  		pd := &pdesc[i]
  3882  		s := _p_.status
  3883  		if s == _Psyscall {
  3884  			// Retake P from syscall if it's there for more than 1 sysmon tick (at least 20us).
  3885  			t := int64(_p_.syscalltick)
  3886  			if int64(pd.syscalltick) != t {
  3887  				pd.syscalltick = uint32(t)
  3888  				pd.syscallwhen = now
  3889  				continue
  3890  			}
  3891  			// On the one hand we don't want to retake Ps if there is no other work to do,
  3892  			// but on the other hand we want to retake them eventually
  3893  			// because they can prevent the sysmon thread from deep sleep.
  3894  			if runqempty(_p_) && atomic.Load(&sched.nmspinning)+atomic.Load(&sched.npidle) > 0 && pd.syscallwhen+10*1000*1000 > now {
  3895  				continue
  3896  			}
  3897  			// Need to decrement number of idle locked M's
  3898  			// (pretending that one more is running) before the CAS.
  3899  			// Otherwise the M from which we retake can exit the syscall,
  3900  			// increment nmidle and report deadlock.
  3901  			incidlelocked(-1)
  3902  			if atomic.Cas(&_p_.status, s, _Pidle) {
  3903  				if trace.enabled {
  3904  					traceGoSysBlock(_p_)
  3905  					traceProcStop(_p_)
  3906  				}
  3907  				n++
  3908  				_p_.syscalltick++
  3909  				handoffp(_p_)
  3910  			}
  3911  			incidlelocked(1)
  3912  		} else if s == _Prunning {
  3913  			// Preempt G if it's running for too long.
  3914  			t := int64(_p_.schedtick)
  3915  			if int64(pd.schedtick) != t {
  3916  				pd.schedtick = uint32(t)
  3917  				pd.schedwhen = now
  3918  				continue
  3919  			}
  3920  			if pd.schedwhen+forcePreemptNS > now {
  3921  				continue
  3922  			}
  3923  			preemptone(_p_)
  3924  		}
  3925  	}
  3926  	return uint32(n)
  3927  }
  3928  
  3929  // Tell all goroutines that they have been preempted and they should stop.
  3930  // This function is purely best-effort. It can fail to inform a goroutine if a
  3931  // processor just started running it.
  3932  // No locks need to be held.
  3933  // Returns true if preemption request was issued to at least one goroutine.
  3934  func preemptall() bool {
  3935  	res := false
  3936  	for i := int32(0); i < gomaxprocs; i++ {
  3937  		_p_ := allp[i]
  3938  		if _p_ == nil || _p_.status != _Prunning {
  3939  			continue
  3940  		}
  3941  		if preemptone(_p_) {
  3942  			res = true
  3943  		}
  3944  	}
  3945  	return res
  3946  }
  3947  
  3948  // Tell the goroutine running on processor P to stop.
  3949  // This function is purely best-effort. It can incorrectly fail to inform the
  3950  // goroutine. It can send inform the wrong goroutine. Even if it informs the
  3951  // correct goroutine, that goroutine might ignore the request if it is
  3952  // simultaneously executing newstack.
  3953  // No lock needs to be held.
  3954  // Returns true if preemption request was issued.
  3955  // The actual preemption will happen at some point in the future
  3956  // and will be indicated by the gp->status no longer being
  3957  // Grunning
  3958  func preemptone(_p_ *p) bool {
  3959  	mp := _p_.m.ptr()
  3960  	if mp == nil || mp == getg().m {
  3961  		return false
  3962  	}
  3963  	gp := mp.curg
  3964  	if gp == nil || gp == mp.g0 {
  3965  		return false
  3966  	}
  3967  
  3968  	gp.preempt = true
  3969  
  3970  	// Every call in a go routine checks for stack overflow by
  3971  	// comparing the current stack pointer to gp->stackguard0.
  3972  	// Setting gp->stackguard0 to StackPreempt folds
  3973  	// preemption into the normal stack overflow check.
  3974  	gp.stackguard0 = stackPreempt
  3975  	return true
  3976  }
  3977  
  3978  var starttime int64
  3979  
  3980  func schedtrace(detailed bool) {
  3981  	now := nanotime()
  3982  	if starttime == 0 {
  3983  		starttime = now
  3984  	}
  3985  
  3986  	lock(&sched.lock)
  3987  	print("SCHED ", (now-starttime)/1e6, "ms: gomaxprocs=", gomaxprocs, " idleprocs=", sched.npidle, " threads=", sched.mcount, " spinningthreads=", sched.nmspinning, " idlethreads=", sched.nmidle, " runqueue=", sched.runqsize)
  3988  	if detailed {
  3989  		print(" gcwaiting=", sched.gcwaiting, " nmidlelocked=", sched.nmidlelocked, " stopwait=", sched.stopwait, " sysmonwait=", sched.sysmonwait, "\n")
  3990  	}
  3991  	// We must be careful while reading data from P's, M's and G's.
  3992  	// Even if we hold schedlock, most data can be changed concurrently.
  3993  	// E.g. (p->m ? p->m->id : -1) can crash if p->m changes from non-nil to nil.
  3994  	for i := int32(0); i < gomaxprocs; i++ {
  3995  		_p_ := allp[i]
  3996  		if _p_ == nil {
  3997  			continue
  3998  		}
  3999  		mp := _p_.m.ptr()
  4000  		h := atomic.Load(&_p_.runqhead)
  4001  		t := atomic.Load(&_p_.runqtail)
  4002  		if detailed {
  4003  			id := int32(-1)
  4004  			if mp != nil {
  4005  				id = mp.id
  4006  			}
  4007  			print("  P", i, ": status=", _p_.status, " schedtick=", _p_.schedtick, " syscalltick=", _p_.syscalltick, " m=", id, " runqsize=", t-h, " gfreecnt=", _p_.gfreecnt, "\n")
  4008  		} else {
  4009  			// In non-detailed mode format lengths of per-P run queues as:
  4010  			// [len1 len2 len3 len4]
  4011  			print(" ")
  4012  			if i == 0 {
  4013  				print("[")
  4014  			}
  4015  			print(t - h)
  4016  			if i == gomaxprocs-1 {
  4017  				print("]\n")
  4018  			}
  4019  		}
  4020  	}
  4021  
  4022  	if !detailed {
  4023  		unlock(&sched.lock)
  4024  		return
  4025  	}
  4026  
  4027  	for mp := allm; mp != nil; mp = mp.alllink {
  4028  		_p_ := mp.p.ptr()
  4029  		gp := mp.curg
  4030  		lockedg := mp.lockedg
  4031  		id1 := int32(-1)
  4032  		if _p_ != nil {
  4033  			id1 = _p_.id
  4034  		}
  4035  		id2 := int64(-1)
  4036  		if gp != nil {
  4037  			id2 = gp.goid
  4038  		}
  4039  		id3 := int64(-1)
  4040  		if lockedg != nil {
  4041  			id3 = lockedg.goid
  4042  		}
  4043  		print("  M", mp.id, ": p=", id1, " curg=", id2, " mallocing=", mp.mallocing, " throwing=", mp.throwing, " preemptoff=", mp.preemptoff, ""+" locks=", mp.locks, " dying=", mp.dying, " helpgc=", mp.helpgc, " spinning=", mp.spinning, " blocked=", mp.blocked, " lockedg=", id3, "\n")
  4044  	}
  4045  
  4046  	lock(&allglock)
  4047  	for gi := 0; gi < len(allgs); gi++ {
  4048  		gp := allgs[gi]
  4049  		mp := gp.m
  4050  		lockedm := gp.lockedm
  4051  		id1 := int32(-1)
  4052  		if mp != nil {
  4053  			id1 = mp.id
  4054  		}
  4055  		id2 := int32(-1)
  4056  		if lockedm != nil {
  4057  			id2 = lockedm.id
  4058  		}
  4059  		print("  G", gp.goid, ": status=", readgstatus(gp), "(", gp.waitreason, ") m=", id1, " lockedm=", id2, "\n")
  4060  	}
  4061  	unlock(&allglock)
  4062  	unlock(&sched.lock)
  4063  }
  4064  
  4065  // Put mp on midle list.
  4066  // Sched must be locked.
  4067  // May run during STW, so write barriers are not allowed.
  4068  //go:nowritebarrierrec
  4069  func mput(mp *m) {
  4070  	mp.schedlink = sched.midle
  4071  	sched.midle.set(mp)
  4072  	sched.nmidle++
  4073  	checkdead()
  4074  }
  4075  
  4076  // Try to get an m from midle list.
  4077  // Sched must be locked.
  4078  // May run during STW, so write barriers are not allowed.
  4079  //go:nowritebarrierrec
  4080  func mget() *m {
  4081  	mp := sched.midle.ptr()
  4082  	if mp != nil {
  4083  		sched.midle = mp.schedlink
  4084  		sched.nmidle--
  4085  	}
  4086  	return mp
  4087  }
  4088  
  4089  // Put gp on the global runnable queue.
  4090  // Sched must be locked.
  4091  // May run during STW, so write barriers are not allowed.
  4092  //go:nowritebarrierrec
  4093  func globrunqput(gp *g) {
  4094  	gp.schedlink = 0
  4095  	if sched.runqtail != 0 {
  4096  		sched.runqtail.ptr().schedlink.set(gp)
  4097  	} else {
  4098  		sched.runqhead.set(gp)
  4099  	}
  4100  	sched.runqtail.set(gp)
  4101  	sched.runqsize++
  4102  }
  4103  
  4104  // Put gp at the head of the global runnable queue.
  4105  // Sched must be locked.
  4106  // May run during STW, so write barriers are not allowed.
  4107  //go:nowritebarrierrec
  4108  func globrunqputhead(gp *g) {
  4109  	gp.schedlink = sched.runqhead
  4110  	sched.runqhead.set(gp)
  4111  	if sched.runqtail == 0 {
  4112  		sched.runqtail.set(gp)
  4113  	}
  4114  	sched.runqsize++
  4115  }
  4116  
  4117  // Put a batch of runnable goroutines on the global runnable queue.
  4118  // Sched must be locked.
  4119  func globrunqputbatch(ghead *g, gtail *g, n int32) {
  4120  	gtail.schedlink = 0
  4121  	if sched.runqtail != 0 {
  4122  		sched.runqtail.ptr().schedlink.set(ghead)
  4123  	} else {
  4124  		sched.runqhead.set(ghead)
  4125  	}
  4126  	sched.runqtail.set(gtail)
  4127  	sched.runqsize += n
  4128  }
  4129  
  4130  // Try get a batch of G's from the global runnable queue.
  4131  // Sched must be locked.
  4132  func globrunqget(_p_ *p, max int32) *g {
  4133  	if sched.runqsize == 0 {
  4134  		return nil
  4135  	}
  4136  
  4137  	n := sched.runqsize/gomaxprocs + 1
  4138  	if n > sched.runqsize {
  4139  		n = sched.runqsize
  4140  	}
  4141  	if max > 0 && n > max {
  4142  		n = max
  4143  	}
  4144  	if n > int32(len(_p_.runq))/2 {
  4145  		n = int32(len(_p_.runq)) / 2
  4146  	}
  4147  
  4148  	sched.runqsize -= n
  4149  	if sched.runqsize == 0 {
  4150  		sched.runqtail = 0
  4151  	}
  4152  
  4153  	gp := sched.runqhead.ptr()
  4154  	sched.runqhead = gp.schedlink
  4155  	n--
  4156  	for ; n > 0; n-- {
  4157  		gp1 := sched.runqhead.ptr()
  4158  		sched.runqhead = gp1.schedlink
  4159  		runqput(_p_, gp1, false)
  4160  	}
  4161  	return gp
  4162  }
  4163  
  4164  // Put p to on _Pidle list.
  4165  // Sched must be locked.
  4166  // May run during STW, so write barriers are not allowed.
  4167  //go:nowritebarrierrec
  4168  func pidleput(_p_ *p) {
  4169  	if !runqempty(_p_) {
  4170  		throw("pidleput: P has non-empty run queue")
  4171  	}
  4172  	_p_.link = sched.pidle
  4173  	sched.pidle.set(_p_)
  4174  	atomic.Xadd(&sched.npidle, 1) // TODO: fast atomic
  4175  }
  4176  
  4177  // Try get a p from _Pidle list.
  4178  // Sched must be locked.
  4179  // May run during STW, so write barriers are not allowed.
  4180  //go:nowritebarrierrec
  4181  func pidleget() *p {
  4182  	_p_ := sched.pidle.ptr()
  4183  	if _p_ != nil {
  4184  		sched.pidle = _p_.link
  4185  		atomic.Xadd(&sched.npidle, -1) // TODO: fast atomic
  4186  	}
  4187  	return _p_
  4188  }
  4189  
  4190  // runqempty returns true if _p_ has no Gs on its local run queue.
  4191  // It never returns true spuriously.
  4192  func runqempty(_p_ *p) bool {
  4193  	// Defend against a race where 1) _p_ has G1 in runqnext but runqhead == runqtail,
  4194  	// 2) runqput on _p_ kicks G1 to the runq, 3) runqget on _p_ empties runqnext.
  4195  	// Simply observing that runqhead == runqtail and then observing that runqnext == nil
  4196  	// does not mean the queue is empty.
  4197  	for {
  4198  		head := atomic.Load(&_p_.runqhead)
  4199  		tail := atomic.Load(&_p_.runqtail)
  4200  		runnext := atomic.Loaduintptr((*uintptr)(unsafe.Pointer(&_p_.runnext)))
  4201  		if tail == atomic.Load(&_p_.runqtail) {
  4202  			return head == tail && runnext == 0
  4203  		}
  4204  	}
  4205  }
  4206  
  4207  // To shake out latent assumptions about scheduling order,
  4208  // we introduce some randomness into scheduling decisions
  4209  // when running with the race detector.
  4210  // The need for this was made obvious by changing the
  4211  // (deterministic) scheduling order in Go 1.5 and breaking
  4212  // many poorly-written tests.
  4213  // With the randomness here, as long as the tests pass
  4214  // consistently with -race, they shouldn't have latent scheduling
  4215  // assumptions.
  4216  const randomizeScheduler = raceenabled
  4217  
  4218  // runqput tries to put g on the local runnable queue.
  4219  // If next if false, runqput adds g to the tail of the runnable queue.
  4220  // If next is true, runqput puts g in the _p_.runnext slot.
  4221  // If the run queue is full, runnext puts g on the global queue.
  4222  // Executed only by the owner P.
  4223  func runqput(_p_ *p, gp *g, next bool) {
  4224  	if randomizeScheduler && next && fastrand()%2 == 0 {
  4225  		next = false
  4226  	}
  4227  
  4228  	if next {
  4229  	retryNext:
  4230  		oldnext := _p_.runnext
  4231  		if !_p_.runnext.cas(oldnext, guintptr(unsafe.Pointer(gp))) {
  4232  			goto retryNext
  4233  		}
  4234  		if oldnext == 0 {
  4235  			return
  4236  		}
  4237  		// Kick the old runnext out to the regular run queue.
  4238  		gp = oldnext.ptr()
  4239  	}
  4240  
  4241  retry:
  4242  	h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with consumers
  4243  	t := _p_.runqtail
  4244  	if t-h < uint32(len(_p_.runq)) {
  4245  		_p_.runq[t%uint32(len(_p_.runq))].set(gp)
  4246  		atomic.Store(&_p_.runqtail, t+1) // store-release, makes the item available for consumption
  4247  		return
  4248  	}
  4249  	if runqputslow(_p_, gp, h, t) {
  4250  		return
  4251  	}
  4252  	// the queue is not full, now the put above must succeed
  4253  	goto retry
  4254  }
  4255  
  4256  // Put g and a batch of work from local runnable queue on global queue.
  4257  // Executed only by the owner P.
  4258  func runqputslow(_p_ *p, gp *g, h, t uint32) bool {
  4259  	var batch [len(_p_.runq)/2 + 1]*g
  4260  
  4261  	// First, grab a batch from local queue.
  4262  	n := t - h
  4263  	n = n / 2
  4264  	if n != uint32(len(_p_.runq)/2) {
  4265  		throw("runqputslow: queue is not full")
  4266  	}
  4267  	for i := uint32(0); i < n; i++ {
  4268  		batch[i] = _p_.runq[(h+i)%uint32(len(_p_.runq))].ptr()
  4269  	}
  4270  	if !atomic.Cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
  4271  		return false
  4272  	}
  4273  	batch[n] = gp
  4274  
  4275  	if randomizeScheduler {
  4276  		for i := uint32(1); i <= n; i++ {
  4277  			j := fastrand() % (i + 1)
  4278  			batch[i], batch[j] = batch[j], batch[i]
  4279  		}
  4280  	}
  4281  
  4282  	// Link the goroutines.
  4283  	for i := uint32(0); i < n; i++ {
  4284  		batch[i].schedlink.set(batch[i+1])
  4285  	}
  4286  
  4287  	// Now put the batch on global queue.
  4288  	lock(&sched.lock)
  4289  	globrunqputbatch(batch[0], batch[n], int32(n+1))
  4290  	unlock(&sched.lock)
  4291  	return true
  4292  }
  4293  
  4294  // Get g from local runnable queue.
  4295  // If inheritTime is true, gp should inherit the remaining time in the
  4296  // current time slice. Otherwise, it should start a new time slice.
  4297  // Executed only by the owner P.
  4298  func runqget(_p_ *p) (gp *g, inheritTime bool) {
  4299  	// If there's a runnext, it's the next G to run.
  4300  	for {
  4301  		next := _p_.runnext
  4302  		if next == 0 {
  4303  			break
  4304  		}
  4305  		if _p_.runnext.cas(next, 0) {
  4306  			return next.ptr(), true
  4307  		}
  4308  	}
  4309  
  4310  	for {
  4311  		h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with other consumers
  4312  		t := _p_.runqtail
  4313  		if t == h {
  4314  			return nil, false
  4315  		}
  4316  		gp := _p_.runq[h%uint32(len(_p_.runq))].ptr()
  4317  		if atomic.Cas(&_p_.runqhead, h, h+1) { // cas-release, commits consume
  4318  			return gp, false
  4319  		}
  4320  	}
  4321  }
  4322  
  4323  // Grabs a batch of goroutines from _p_'s runnable queue into batch.
  4324  // Batch is a ring buffer starting at batchHead.
  4325  // Returns number of grabbed goroutines.
  4326  // Can be executed by any P.
  4327  func runqgrab(_p_ *p, batch *[256]guintptr, batchHead uint32, stealRunNextG bool) uint32 {
  4328  	for {
  4329  		h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with other consumers
  4330  		t := atomic.Load(&_p_.runqtail) // load-acquire, synchronize with the producer
  4331  		n := t - h
  4332  		n = n - n/2
  4333  		if n == 0 {
  4334  			if stealRunNextG {
  4335  				// Try to steal from _p_.runnext.
  4336  				if next := _p_.runnext; next != 0 {
  4337  					// Sleep to ensure that _p_ isn't about to run the g we
  4338  					// are about to steal.
  4339  					// The important use case here is when the g running on _p_
  4340  					// ready()s another g and then almost immediately blocks.
  4341  					// Instead of stealing runnext in this window, back off
  4342  					// to give _p_ a chance to schedule runnext. This will avoid
  4343  					// thrashing gs between different Ps.
  4344  					// A sync chan send/recv takes ~50ns as of time of writing,
  4345  					// so 3us gives ~50x overshoot.
  4346  					if GOOS != "windows" {
  4347  						usleep(3)
  4348  					} else {
  4349  						// On windows system timer granularity is 1-15ms,
  4350  						// which is way too much for this optimization.
  4351  						// So just yield.
  4352  						osyield()
  4353  					}
  4354  					if !_p_.runnext.cas(next, 0) {
  4355  						continue
  4356  					}
  4357  					batch[batchHead%uint32(len(batch))] = next
  4358  					return 1
  4359  				}
  4360  			}
  4361  			return 0
  4362  		}
  4363  		if n > uint32(len(_p_.runq)/2) { // read inconsistent h and t
  4364  			continue
  4365  		}
  4366  		for i := uint32(0); i < n; i++ {
  4367  			g := _p_.runq[(h+i)%uint32(len(_p_.runq))]
  4368  			batch[(batchHead+i)%uint32(len(batch))] = g
  4369  		}
  4370  		if atomic.Cas(&_p_.runqhead, h, h+n) { // cas-release, commits consume
  4371  			return n
  4372  		}
  4373  	}
  4374  }
  4375  
  4376  // Steal half of elements from local runnable queue of p2
  4377  // and put onto local runnable queue of p.
  4378  // Returns one of the stolen elements (or nil if failed).
  4379  func runqsteal(_p_, p2 *p, stealRunNextG bool) *g {
  4380  	t := _p_.runqtail
  4381  	n := runqgrab(p2, &_p_.runq, t, stealRunNextG)
  4382  	if n == 0 {
  4383  		return nil
  4384  	}
  4385  	n--
  4386  	gp := _p_.runq[(t+n)%uint32(len(_p_.runq))].ptr()
  4387  	if n == 0 {
  4388  		return gp
  4389  	}
  4390  	h := atomic.Load(&_p_.runqhead) // load-acquire, synchronize with consumers
  4391  	if t-h+n >= uint32(len(_p_.runq)) {
  4392  		throw("runqsteal: runq overflow")
  4393  	}
  4394  	atomic.Store(&_p_.runqtail, t+n) // store-release, makes the item available for consumption
  4395  	return gp
  4396  }
  4397  
  4398  //go:linkname setMaxThreads runtime/debug.setMaxThreads
  4399  func setMaxThreads(in int) (out int) {
  4400  	lock(&sched.lock)
  4401  	out = int(sched.maxmcount)
  4402  	if in > 0x7fffffff { // MaxInt32
  4403  		sched.maxmcount = 0x7fffffff
  4404  	} else {
  4405  		sched.maxmcount = int32(in)
  4406  	}
  4407  	checkmcount()
  4408  	unlock(&sched.lock)
  4409  	return
  4410  }
  4411  
  4412  func haveexperiment(name string) bool {
  4413  	if name == "framepointer" {
  4414  		return framepointer_enabled // set by linker
  4415  	}
  4416  	x := sys.Goexperiment
  4417  	for x != "" {
  4418  		xname := ""
  4419  		i := index(x, ",")
  4420  		if i < 0 {
  4421  			xname, x = x, ""
  4422  		} else {
  4423  			xname, x = x[:i], x[i+1:]
  4424  		}
  4425  		if xname == name {
  4426  			return true
  4427  		}
  4428  		if len(xname) > 2 && xname[:2] == "no" && xname[2:] == name {
  4429  			return false
  4430  		}
  4431  	}
  4432  	return false
  4433  }
  4434  
  4435  //go:nosplit
  4436  func procPin() int {
  4437  	_g_ := getg()
  4438  	mp := _g_.m
  4439  
  4440  	mp.locks++
  4441  	return int(mp.p.ptr().id)
  4442  }
  4443  
  4444  //go:nosplit
  4445  func procUnpin() {
  4446  	_g_ := getg()
  4447  	_g_.m.locks--
  4448  }
  4449  
  4450  //go:linkname sync_runtime_procPin sync.runtime_procPin
  4451  //go:nosplit
  4452  func sync_runtime_procPin() int {
  4453  	return procPin()
  4454  }
  4455  
  4456  //go:linkname sync_runtime_procUnpin sync.runtime_procUnpin
  4457  //go:nosplit
  4458  func sync_runtime_procUnpin() {
  4459  	procUnpin()
  4460  }
  4461  
  4462  //go:linkname sync_atomic_runtime_procPin sync/atomic.runtime_procPin
  4463  //go:nosplit
  4464  func sync_atomic_runtime_procPin() int {
  4465  	return procPin()
  4466  }
  4467  
  4468  //go:linkname sync_atomic_runtime_procUnpin sync/atomic.runtime_procUnpin
  4469  //go:nosplit
  4470  func sync_atomic_runtime_procUnpin() {
  4471  	procUnpin()
  4472  }
  4473  
  4474  // Active spinning for sync.Mutex.
  4475  //go:linkname sync_runtime_canSpin sync.runtime_canSpin
  4476  //go:nosplit
  4477  func sync_runtime_canSpin(i int) bool {
  4478  	// sync.Mutex is cooperative, so we are conservative with spinning.
  4479  	// Spin only few times and only if running on a multicore machine and
  4480  	// GOMAXPROCS>1 and there is at least one other running P and local runq is empty.
  4481  	// As opposed to runtime mutex we don't do passive spinning here,
  4482  	// because there can be work on global runq on on other Ps.
  4483  	if i >= active_spin || ncpu <= 1 || gomaxprocs <= int32(sched.npidle+sched.nmspinning)+1 {
  4484  		return false
  4485  	}
  4486  	if p := getg().m.p.ptr(); !runqempty(p) {
  4487  		return false
  4488  	}
  4489  	return true
  4490  }
  4491  
  4492  //go:linkname sync_runtime_doSpin sync.runtime_doSpin
  4493  //go:nosplit
  4494  func sync_runtime_doSpin() {
  4495  	procyield(active_spin_cnt)
  4496  }
  4497  
  4498  var stealOrder randomOrder
  4499  
  4500  // randomOrder/randomEnum are helper types for randomized work stealing.
  4501  // They allow to enumerate all Ps in different pseudo-random orders without repetitions.
  4502  // The algorithm is based on the fact that if we have X such that X and GOMAXPROCS
  4503  // are coprime, then a sequences of (i + X) % GOMAXPROCS gives the required enumeration.
  4504  type randomOrder struct {
  4505  	count    uint32
  4506  	coprimes []uint32
  4507  }
  4508  
  4509  type randomEnum struct {
  4510  	i     uint32
  4511  	count uint32
  4512  	pos   uint32
  4513  	inc   uint32
  4514  }
  4515  
  4516  func (ord *randomOrder) reset(count uint32) {
  4517  	ord.count = count
  4518  	ord.coprimes = ord.coprimes[:0]
  4519  	for i := uint32(1); i <= count; i++ {
  4520  		if gcd(i, count) == 1 {
  4521  			ord.coprimes = append(ord.coprimes, i)
  4522  		}
  4523  	}
  4524  }
  4525  
  4526  func (ord *randomOrder) start(i uint32) randomEnum {
  4527  	return randomEnum{
  4528  		count: ord.count,
  4529  		pos:   i % ord.count,
  4530  		inc:   ord.coprimes[i%uint32(len(ord.coprimes))],
  4531  	}
  4532  }
  4533  
  4534  func (enum *randomEnum) done() bool {
  4535  	return enum.i == enum.count
  4536  }
  4537  
  4538  func (enum *randomEnum) next() {
  4539  	enum.i++
  4540  	enum.pos = (enum.pos + enum.inc) % enum.count
  4541  }
  4542  
  4543  func (enum *randomEnum) position() uint32 {
  4544  	return enum.pos
  4545  }
  4546  
  4547  func gcd(a, b uint32) uint32 {
  4548  	for b != 0 {
  4549  		a, b = b, a%b
  4550  	}
  4551  	return a
  4552  }