github.com/fff-chain/go-fff@v0.0.0-20220726032732-1c84420b8a99/accounts/abi/argument.go (about) 1 // Copyright 2015 The go-ethereum Authors 2 // This file is part of the go-ethereum library. 3 // 4 // The go-ethereum library is free software: you can redistribute it and/or modify 5 // it under the terms of the GNU Lesser General Public License as published by 6 // the Free Software Foundation, either version 3 of the License, or 7 // (at your option) any later version. 8 // 9 // The go-ethereum library is distributed in the hope that it will be useful, 10 // but WITHOUT ANY WARRANTY; without even the implied warranty of 11 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 // GNU Lesser General Public License for more details. 13 // 14 // You should have received a copy of the GNU Lesser General Public License 15 // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>. 16 17 package abi 18 19 import ( 20 "encoding/json" 21 "fmt" 22 "reflect" 23 "strings" 24 ) 25 26 // Argument holds the name of the argument and the corresponding type. 27 // Types are used when packing and testing arguments. 28 type Argument struct { 29 Name string 30 Type Type 31 Indexed bool // indexed is only used by events 32 } 33 34 type Arguments []Argument 35 36 type ArgumentMarshaling struct { 37 Name string 38 Type string 39 InternalType string 40 Components []ArgumentMarshaling 41 Indexed bool 42 } 43 44 // UnmarshalJSON implements json.Unmarshaler interface. 45 func (argument *Argument) UnmarshalJSON(data []byte) error { 46 var arg ArgumentMarshaling 47 err := json.Unmarshal(data, &arg) 48 if err != nil { 49 return fmt.Errorf("argument json err: %v", err) 50 } 51 52 argument.Type, err = NewType(arg.Type, arg.InternalType, arg.Components) 53 if err != nil { 54 return err 55 } 56 argument.Name = arg.Name 57 argument.Indexed = arg.Indexed 58 59 return nil 60 } 61 62 // NonIndexed returns the arguments with indexed arguments filtered out. 63 func (arguments Arguments) NonIndexed() Arguments { 64 var ret []Argument 65 for _, arg := range arguments { 66 if !arg.Indexed { 67 ret = append(ret, arg) 68 } 69 } 70 return ret 71 } 72 73 // isTuple returns true for non-atomic constructs, like (uint,uint) or uint[]. 74 func (arguments Arguments) isTuple() bool { 75 return len(arguments) > 1 76 } 77 78 // Unpack performs the operation hexdata -> Go format. 79 func (arguments Arguments) Unpack(data []byte) ([]interface{}, error) { 80 if len(data) == 0 { 81 if len(arguments) != 0 { 82 return nil, fmt.Errorf("abi: attempting to unmarshall an empty string while arguments are expected") 83 } 84 // Nothing to unmarshal, return default variables 85 nonIndexedArgs := arguments.NonIndexed() 86 defaultVars := make([]interface{}, len(nonIndexedArgs)) 87 for index, arg := range nonIndexedArgs { 88 defaultVars[index] = reflect.New(arg.Type.GetType()) 89 } 90 return defaultVars, nil 91 } 92 return arguments.UnpackValues(data) 93 } 94 95 // UnpackIntoMap performs the operation hexdata -> mapping of argument name to argument value. 96 func (arguments Arguments) UnpackIntoMap(v map[string]interface{}, data []byte) error { 97 // Make sure map is not nil 98 if v == nil { 99 return fmt.Errorf("abi: cannot unpack into a nil map") 100 } 101 if len(data) == 0 { 102 if len(arguments) != 0 { 103 return fmt.Errorf("abi: attempting to unmarshall an empty string while arguments are expected") 104 } 105 return nil // Nothing to unmarshal, return 106 } 107 marshalledValues, err := arguments.UnpackValues(data) 108 if err != nil { 109 return err 110 } 111 for i, arg := range arguments.NonIndexed() { 112 v[arg.Name] = marshalledValues[i] 113 } 114 return nil 115 } 116 117 // Copy performs the operation go format -> provided struct. 118 func (arguments Arguments) Copy(v interface{}, values []interface{}) error { 119 // make sure the passed value is arguments pointer 120 if reflect.Ptr != reflect.ValueOf(v).Kind() { 121 return fmt.Errorf("abi: Unpack(non-pointer %T)", v) 122 } 123 if len(values) == 0 { 124 if len(arguments) != 0 { 125 return fmt.Errorf("abi: attempting to copy no values while %d arguments are expected", len(arguments)) 126 } 127 return nil // Nothing to copy, return 128 } 129 if arguments.isTuple() { 130 return arguments.copyTuple(v, values) 131 } 132 return arguments.copyAtomic(v, values[0]) 133 } 134 135 // unpackAtomic unpacks ( hexdata -> go ) a single value 136 func (arguments Arguments) copyAtomic(v interface{}, marshalledValues interface{}) error { 137 dst := reflect.ValueOf(v).Elem() 138 src := reflect.ValueOf(marshalledValues) 139 140 if dst.Kind() == reflect.Struct && src.Kind() != reflect.Struct { 141 return set(dst.Field(0), src) 142 } 143 return set(dst, src) 144 } 145 146 // copyTuple copies a batch of values from marshalledValues to v. 147 func (arguments Arguments) copyTuple(v interface{}, marshalledValues []interface{}) error { 148 value := reflect.ValueOf(v).Elem() 149 nonIndexedArgs := arguments.NonIndexed() 150 151 switch value.Kind() { 152 case reflect.Struct: 153 argNames := make([]string, len(nonIndexedArgs)) 154 for i, arg := range nonIndexedArgs { 155 argNames[i] = arg.Name 156 } 157 var err error 158 abi2struct, err := mapArgNamesToStructFields(argNames, value) 159 if err != nil { 160 return err 161 } 162 for i, arg := range nonIndexedArgs { 163 field := value.FieldByName(abi2struct[arg.Name]) 164 if !field.IsValid() { 165 return fmt.Errorf("abi: field %s can't be found in the given value", arg.Name) 166 } 167 if err := set(field, reflect.ValueOf(marshalledValues[i])); err != nil { 168 return err 169 } 170 } 171 case reflect.Slice, reflect.Array: 172 if value.Len() < len(marshalledValues) { 173 return fmt.Errorf("abi: insufficient number of arguments for unpack, want %d, got %d", len(arguments), value.Len()) 174 } 175 for i := range nonIndexedArgs { 176 if err := set(value.Index(i), reflect.ValueOf(marshalledValues[i])); err != nil { 177 return err 178 } 179 } 180 default: 181 return fmt.Errorf("abi:[2] cannot unmarshal tuple in to %v", value.Type()) 182 } 183 return nil 184 } 185 186 // UnpackValues can be used to unpack ABI-encoded hexdata according to the ABI-specification, 187 // without supplying a struct to unpack into. Instead, this method returns a list containing the 188 // values. An atomic argument will be a list with one element. 189 func (arguments Arguments) UnpackValues(data []byte) ([]interface{}, error) { 190 nonIndexedArgs := arguments.NonIndexed() 191 retval := make([]interface{}, 0, len(nonIndexedArgs)) 192 virtualArgs := 0 193 for index, arg := range nonIndexedArgs { 194 marshalledValue, err := toGoType((index+virtualArgs)*32, arg.Type, data) 195 if arg.Type.T == ArrayTy && !isDynamicType(arg.Type) { 196 // If we have a static array, like [3]uint256, these are coded as 197 // just like uint256,uint256,uint256. 198 // This means that we need to add two 'virtual' arguments when 199 // we count the index from now on. 200 // 201 // Array values nested multiple levels deep are also encoded inline: 202 // [2][3]uint256: uint256,uint256,uint256,uint256,uint256,uint256 203 // 204 // Calculate the full array size to get the correct offset for the next argument. 205 // Decrement it by 1, as the normal index increment is still applied. 206 virtualArgs += getTypeSize(arg.Type)/32 - 1 207 } else if arg.Type.T == TupleTy && !isDynamicType(arg.Type) { 208 // If we have a static tuple, like (uint256, bool, uint256), these are 209 // coded as just like uint256,bool,uint256 210 virtualArgs += getTypeSize(arg.Type)/32 - 1 211 } 212 if err != nil { 213 return nil, err 214 } 215 retval = append(retval, marshalledValue) 216 } 217 return retval, nil 218 } 219 220 // PackValues performs the operation Go format -> Hexdata. 221 // It is the semantic opposite of UnpackValues. 222 func (arguments Arguments) PackValues(args []interface{}) ([]byte, error) { 223 return arguments.Pack(args...) 224 } 225 226 // Pack performs the operation Go format -> Hexdata. 227 func (arguments Arguments) Pack(args ...interface{}) ([]byte, error) { 228 // Make sure arguments match up and pack them 229 abiArgs := arguments 230 if len(args) != len(abiArgs) { 231 return nil, fmt.Errorf("argument count mismatch: got %d for %d", len(args), len(abiArgs)) 232 } 233 // variable input is the output appended at the end of packed 234 // output. This is used for strings and bytes types input. 235 var variableInput []byte 236 237 // input offset is the bytes offset for packed output 238 inputOffset := 0 239 for _, abiArg := range abiArgs { 240 inputOffset += getTypeSize(abiArg.Type) 241 } 242 var ret []byte 243 for i, a := range args { 244 input := abiArgs[i] 245 // pack the input 246 packed, err := input.Type.pack(reflect.ValueOf(a)) 247 if err != nil { 248 return nil, err 249 } 250 // check for dynamic types 251 if isDynamicType(input.Type) { 252 // set the offset 253 ret = append(ret, packNum(reflect.ValueOf(inputOffset))...) 254 // calculate next offset 255 inputOffset += len(packed) 256 // append to variable input 257 variableInput = append(variableInput, packed...) 258 } else { 259 // append the packed value to the input 260 ret = append(ret, packed...) 261 } 262 } 263 // append the variable input at the end of the packed input 264 ret = append(ret, variableInput...) 265 266 return ret, nil 267 } 268 269 // ToCamelCase converts an under-score string to a camel-case string 270 func ToCamelCase(input string) string { 271 parts := strings.Split(input, "_") 272 for i, s := range parts { 273 if len(s) > 0 { 274 parts[i] = strings.ToUpper(s[:1]) + s[1:] 275 } 276 } 277 return strings.Join(parts, "") 278 }