github.com/fff-chain/go-fff@v0.0.0-20220726032732-1c84420b8a99/core/bloombits/matcher.go (about)

     1  // Copyright 2017 The go-ethereum Authors
     2  // This file is part of the go-ethereum library.
     3  //
     4  // The go-ethereum library is free software: you can redistribute it and/or modify
     5  // it under the terms of the GNU Lesser General Public License as published by
     6  // the Free Software Foundation, either version 3 of the License, or
     7  // (at your option) any later version.
     8  //
     9  // The go-ethereum library is distributed in the hope that it will be useful,
    10  // but WITHOUT ANY WARRANTY; without even the implied warranty of
    11  // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
    12  // GNU Lesser General Public License for more details.
    13  //
    14  // You should have received a copy of the GNU Lesser General Public License
    15  // along with the go-ethereum library. If not, see <http://www.gnu.org/licenses/>.
    16  
    17  package bloombits
    18  
    19  import (
    20  	"bytes"
    21  	"context"
    22  	"errors"
    23  	"math"
    24  	"sort"
    25  	"sync"
    26  	"sync/atomic"
    27  	"time"
    28  
    29  	"github.com/fff-chain/go-fff/common/bitutil"
    30  	"github.com/fff-chain/go-fff/common/gopool"
    31  	"github.com/fff-chain/go-fff/crypto"
    32  )
    33  
    34  // bloomIndexes represents the bit indexes inside the bloom filter that belong
    35  // to some key.
    36  type bloomIndexes [3]uint
    37  
    38  // calcBloomIndexes returns the bloom filter bit indexes belonging to the given key.
    39  func calcBloomIndexes(b []byte) bloomIndexes {
    40  	b = crypto.Keccak256(b)
    41  
    42  	var idxs bloomIndexes
    43  	for i := 0; i < len(idxs); i++ {
    44  		idxs[i] = (uint(b[2*i])<<8)&2047 + uint(b[2*i+1])
    45  	}
    46  	return idxs
    47  }
    48  
    49  // partialMatches with a non-nil vector represents a section in which some sub-
    50  // matchers have already found potential matches. Subsequent sub-matchers will
    51  // binary AND their matches with this vector. If vector is nil, it represents a
    52  // section to be processed by the first sub-matcher.
    53  type partialMatches struct {
    54  	section uint64
    55  	bitset  []byte
    56  }
    57  
    58  // Retrieval represents a request for retrieval task assignments for a given
    59  // bit with the given number of fetch elements, or a response for such a request.
    60  // It can also have the actual results set to be used as a delivery data struct.
    61  //
    62  // The contest and error fields are used by the light client to terminate matching
    63  // early if an error is encountered on some path of the pipeline.
    64  type Retrieval struct {
    65  	Bit      uint
    66  	Sections []uint64
    67  	Bitsets  [][]byte
    68  
    69  	Context context.Context
    70  	Error   error
    71  }
    72  
    73  // Matcher is a pipelined system of schedulers and logic matchers which perform
    74  // binary AND/OR operations on the bit-streams, creating a stream of potential
    75  // blocks to inspect for data content.
    76  type Matcher struct {
    77  	sectionSize uint64 // Size of the data batches to filter on
    78  
    79  	filters    [][]bloomIndexes    // Filter the system is matching for
    80  	schedulers map[uint]*scheduler // Retrieval schedulers for loading bloom bits
    81  
    82  	retrievers chan chan uint       // Retriever processes waiting for bit allocations
    83  	counters   chan chan uint       // Retriever processes waiting for task count reports
    84  	retrievals chan chan *Retrieval // Retriever processes waiting for task allocations
    85  	deliveries chan *Retrieval      // Retriever processes waiting for task response deliveries
    86  
    87  	running uint32 // Atomic flag whether a session is live or not
    88  }
    89  
    90  // NewMatcher creates a new pipeline for retrieving bloom bit streams and doing
    91  // address and topic filtering on them. Setting a filter component to `nil` is
    92  // allowed and will result in that filter rule being skipped (OR 0x11...1).
    93  func NewMatcher(sectionSize uint64, filters [][][]byte) *Matcher {
    94  	// Create the matcher instance
    95  	m := &Matcher{
    96  		sectionSize: sectionSize,
    97  		schedulers:  make(map[uint]*scheduler),
    98  		retrievers:  make(chan chan uint),
    99  		counters:    make(chan chan uint),
   100  		retrievals:  make(chan chan *Retrieval),
   101  		deliveries:  make(chan *Retrieval),
   102  	}
   103  	// Calculate the bloom bit indexes for the groups we're interested in
   104  	m.filters = nil
   105  
   106  	for _, filter := range filters {
   107  		// Gather the bit indexes of the filter rule, special casing the nil filter
   108  		if len(filter) == 0 {
   109  			continue
   110  		}
   111  		bloomBits := make([]bloomIndexes, len(filter))
   112  		for i, clause := range filter {
   113  			if clause == nil {
   114  				bloomBits = nil
   115  				break
   116  			}
   117  			bloomBits[i] = calcBloomIndexes(clause)
   118  		}
   119  		// Accumulate the filter rules if no nil rule was within
   120  		if bloomBits != nil {
   121  			m.filters = append(m.filters, bloomBits)
   122  		}
   123  	}
   124  	// For every bit, create a scheduler to load/download the bit vectors
   125  	for _, bloomIndexLists := range m.filters {
   126  		for _, bloomIndexList := range bloomIndexLists {
   127  			for _, bloomIndex := range bloomIndexList {
   128  				m.addScheduler(bloomIndex)
   129  			}
   130  		}
   131  	}
   132  	return m
   133  }
   134  
   135  // addScheduler adds a bit stream retrieval scheduler for the given bit index if
   136  // it has not existed before. If the bit is already selected for filtering, the
   137  // existing scheduler can be used.
   138  func (m *Matcher) addScheduler(idx uint) {
   139  	if _, ok := m.schedulers[idx]; ok {
   140  		return
   141  	}
   142  	m.schedulers[idx] = newScheduler(idx)
   143  }
   144  
   145  // Start starts the matching process and returns a stream of bloom matches in
   146  // a given range of blocks. If there are no more matches in the range, the result
   147  // channel is closed.
   148  func (m *Matcher) Start(ctx context.Context, begin, end uint64, results chan uint64) (*MatcherSession, error) {
   149  	// Make sure we're not creating concurrent sessions
   150  	if atomic.SwapUint32(&m.running, 1) == 1 {
   151  		return nil, errors.New("matcher already running")
   152  	}
   153  	defer atomic.StoreUint32(&m.running, 0)
   154  
   155  	// Initiate a new matching round
   156  	session := &MatcherSession{
   157  		matcher: m,
   158  		quit:    make(chan struct{}),
   159  		ctx:     ctx,
   160  	}
   161  	for _, scheduler := range m.schedulers {
   162  		scheduler.reset()
   163  	}
   164  	sink := m.run(begin, end, cap(results), session)
   165  
   166  	// Read the output from the result sink and deliver to the user
   167  	session.pend.Add(1)
   168  	gopool.Submit(func() {
   169  		defer session.pend.Done()
   170  		defer close(results)
   171  
   172  		for {
   173  			select {
   174  			case <-session.quit:
   175  				return
   176  
   177  			case res, ok := <-sink:
   178  				// New match result found
   179  				if !ok {
   180  					return
   181  				}
   182  				// Calculate the first and last blocks of the section
   183  				sectionStart := res.section * m.sectionSize
   184  
   185  				first := sectionStart
   186  				if begin > first {
   187  					first = begin
   188  				}
   189  				last := sectionStart + m.sectionSize - 1
   190  				if end < last {
   191  					last = end
   192  				}
   193  				// Iterate over all the blocks in the section and return the matching ones
   194  				for i := first; i <= last; i++ {
   195  					// Skip the entire byte if no matches are found inside (and we're processing an entire byte!)
   196  					next := res.bitset[(i-sectionStart)/8]
   197  					if next == 0 {
   198  						if i%8 == 0 {
   199  							i += 7
   200  						}
   201  						continue
   202  					}
   203  					// Some bit it set, do the actual submatching
   204  					if bit := 7 - i%8; next&(1<<bit) != 0 {
   205  						select {
   206  						case <-session.quit:
   207  							return
   208  						case results <- i:
   209  						}
   210  					}
   211  				}
   212  			}
   213  		}
   214  	})
   215  	return session, nil
   216  }
   217  
   218  // run creates a daisy-chain of sub-matchers, one for the address set and one
   219  // for each topic set, each sub-matcher receiving a section only if the previous
   220  // ones have all found a potential match in one of the blocks of the section,
   221  // then binary AND-ing its own matches and forwarding the result to the next one.
   222  //
   223  // The method starts feeding the section indexes into the first sub-matcher on a
   224  // new goroutine and returns a sink channel receiving the results.
   225  func (m *Matcher) run(begin, end uint64, buffer int, session *MatcherSession) chan *partialMatches {
   226  	// Create the source channel and feed section indexes into
   227  	source := make(chan *partialMatches, buffer)
   228  
   229  	session.pend.Add(1)
   230  	gopool.Submit(func() {
   231  		defer session.pend.Done()
   232  		defer close(source)
   233  
   234  		for i := begin / m.sectionSize; i <= end/m.sectionSize; i++ {
   235  			select {
   236  			case <-session.quit:
   237  				return
   238  			case source <- &partialMatches{i, bytes.Repeat([]byte{0xff}, int(m.sectionSize/8))}:
   239  			}
   240  		}
   241  	})
   242  	// Assemble the daisy-chained filtering pipeline
   243  	next := source
   244  	dist := make(chan *request, buffer)
   245  
   246  	for _, bloom := range m.filters {
   247  		next = m.subMatch(next, dist, bloom, session)
   248  	}
   249  	// Start the request distribution
   250  	session.pend.Add(1)
   251  	gopool.Submit(func() {
   252  		m.distributor(dist, session)
   253  	})
   254  
   255  	return next
   256  }
   257  
   258  // subMatch creates a sub-matcher that filters for a set of addresses or topics, binary OR-s those matches, then
   259  // binary AND-s the result to the daisy-chain input (source) and forwards it to the daisy-chain output.
   260  // The matches of each address/topic are calculated by fetching the given sections of the three bloom bit indexes belonging to
   261  // that address/topic, and binary AND-ing those vectors together.
   262  func (m *Matcher) subMatch(source chan *partialMatches, dist chan *request, bloom []bloomIndexes, session *MatcherSession) chan *partialMatches {
   263  	// Start the concurrent schedulers for each bit required by the bloom filter
   264  	sectionSources := make([][3]chan uint64, len(bloom))
   265  	sectionSinks := make([][3]chan []byte, len(bloom))
   266  	for i, bits := range bloom {
   267  		for j, bit := range bits {
   268  			sectionSources[i][j] = make(chan uint64, cap(source))
   269  			sectionSinks[i][j] = make(chan []byte, cap(source))
   270  
   271  			m.schedulers[bit].run(sectionSources[i][j], dist, sectionSinks[i][j], session.quit, &session.pend)
   272  		}
   273  	}
   274  
   275  	process := make(chan *partialMatches, cap(source)) // entries from source are forwarded here after fetches have been initiated
   276  	results := make(chan *partialMatches, cap(source))
   277  
   278  	session.pend.Add(2)
   279  	gopool.Submit(func() {
   280  		// Tear down the goroutine and terminate all source channels
   281  		defer session.pend.Done()
   282  		defer close(process)
   283  
   284  		defer func() {
   285  			for _, bloomSources := range sectionSources {
   286  				for _, bitSource := range bloomSources {
   287  					close(bitSource)
   288  				}
   289  			}
   290  		}()
   291  		// Read sections from the source channel and multiplex into all bit-schedulers
   292  		for {
   293  			select {
   294  			case <-session.quit:
   295  				return
   296  
   297  			case subres, ok := <-source:
   298  				// New subresult from previous link
   299  				if !ok {
   300  					return
   301  				}
   302  				// Multiplex the section index to all bit-schedulers
   303  				for _, bloomSources := range sectionSources {
   304  					for _, bitSource := range bloomSources {
   305  						select {
   306  						case <-session.quit:
   307  							return
   308  						case bitSource <- subres.section:
   309  						}
   310  					}
   311  				}
   312  				// Notify the processor that this section will become available
   313  				select {
   314  				case <-session.quit:
   315  					return
   316  				case process <- subres:
   317  				}
   318  			}
   319  		}
   320  	})
   321  
   322  	gopool.Submit(func() {
   323  		// Tear down the goroutine and terminate the final sink channel
   324  		defer session.pend.Done()
   325  		defer close(results)
   326  
   327  		// Read the source notifications and collect the delivered results
   328  		for {
   329  			select {
   330  			case <-session.quit:
   331  				return
   332  
   333  			case subres, ok := <-process:
   334  				// Notified of a section being retrieved
   335  				if !ok {
   336  					return
   337  				}
   338  				// Gather all the sub-results and merge them together
   339  				var orVector []byte
   340  				for _, bloomSinks := range sectionSinks {
   341  					var andVector []byte
   342  					for _, bitSink := range bloomSinks {
   343  						var data []byte
   344  						select {
   345  						case <-session.quit:
   346  							return
   347  						case data = <-bitSink:
   348  						}
   349  						if andVector == nil {
   350  							andVector = make([]byte, int(m.sectionSize/8))
   351  							copy(andVector, data)
   352  						} else {
   353  							bitutil.ANDBytes(andVector, andVector, data)
   354  						}
   355  					}
   356  					if orVector == nil {
   357  						orVector = andVector
   358  					} else {
   359  						bitutil.ORBytes(orVector, orVector, andVector)
   360  					}
   361  				}
   362  
   363  				if orVector == nil {
   364  					orVector = make([]byte, int(m.sectionSize/8))
   365  				}
   366  				if subres.bitset != nil {
   367  					bitutil.ANDBytes(orVector, orVector, subres.bitset)
   368  				}
   369  				if bitutil.TestBytes(orVector) {
   370  					select {
   371  					case <-session.quit:
   372  						return
   373  					case results <- &partialMatches{subres.section, orVector}:
   374  					}
   375  				}
   376  			}
   377  		}
   378  	})
   379  	return results
   380  }
   381  
   382  // distributor receives requests from the schedulers and queues them into a set
   383  // of pending requests, which are assigned to retrievers wanting to fulfil them.
   384  func (m *Matcher) distributor(dist chan *request, session *MatcherSession) {
   385  	defer session.pend.Done()
   386  
   387  	var (
   388  		requests   = make(map[uint][]uint64) // Per-bit list of section requests, ordered by section number
   389  		unallocs   = make(map[uint]struct{}) // Bits with pending requests but not allocated to any retriever
   390  		retrievers chan chan uint            // Waiting retrievers (toggled to nil if unallocs is empty)
   391  		allocs     int                       // Number of active allocations to handle graceful shutdown requests
   392  		shutdown   = session.quit            // Shutdown request channel, will gracefully wait for pending requests
   393  	)
   394  
   395  	// assign is a helper method fo try to assign a pending bit an actively
   396  	// listening servicer, or schedule it up for later when one arrives.
   397  	assign := func(bit uint) {
   398  		select {
   399  		case fetcher := <-m.retrievers:
   400  			allocs++
   401  			fetcher <- bit
   402  		default:
   403  			// No retrievers active, start listening for new ones
   404  			retrievers = m.retrievers
   405  			unallocs[bit] = struct{}{}
   406  		}
   407  	}
   408  
   409  	for {
   410  		select {
   411  		case <-shutdown:
   412  			// Shutdown requested. No more retrievers can be allocated,
   413  			// but we still need to wait until all pending requests have returned.
   414  			shutdown = nil
   415  			if allocs == 0 {
   416  				return
   417  			}
   418  
   419  		case req := <-dist:
   420  			// New retrieval request arrived to be distributed to some fetcher process
   421  			queue := requests[req.bit]
   422  			index := sort.Search(len(queue), func(i int) bool { return queue[i] >= req.section })
   423  			requests[req.bit] = append(queue[:index], append([]uint64{req.section}, queue[index:]...)...)
   424  
   425  			// If it's a new bit and we have waiting fetchers, allocate to them
   426  			if len(queue) == 0 {
   427  				assign(req.bit)
   428  			}
   429  
   430  		case fetcher := <-retrievers:
   431  			// New retriever arrived, find the lowest section-ed bit to assign
   432  			bit, best := uint(0), uint64(math.MaxUint64)
   433  			for idx := range unallocs {
   434  				if requests[idx][0] < best {
   435  					bit, best = idx, requests[idx][0]
   436  				}
   437  			}
   438  			// Stop tracking this bit (and alloc notifications if no more work is available)
   439  			delete(unallocs, bit)
   440  			if len(unallocs) == 0 {
   441  				retrievers = nil
   442  			}
   443  			allocs++
   444  			fetcher <- bit
   445  
   446  		case fetcher := <-m.counters:
   447  			// New task count request arrives, return number of items
   448  			fetcher <- uint(len(requests[<-fetcher]))
   449  
   450  		case fetcher := <-m.retrievals:
   451  			// New fetcher waiting for tasks to retrieve, assign
   452  			task := <-fetcher
   453  			if want := len(task.Sections); want >= len(requests[task.Bit]) {
   454  				task.Sections = requests[task.Bit]
   455  				delete(requests, task.Bit)
   456  			} else {
   457  				task.Sections = append(task.Sections[:0], requests[task.Bit][:want]...)
   458  				requests[task.Bit] = append(requests[task.Bit][:0], requests[task.Bit][want:]...)
   459  			}
   460  			fetcher <- task
   461  
   462  			// If anything was left unallocated, try to assign to someone else
   463  			if len(requests[task.Bit]) > 0 {
   464  				assign(task.Bit)
   465  			}
   466  
   467  		case result := <-m.deliveries:
   468  			// New retrieval task response from fetcher, split out missing sections and
   469  			// deliver complete ones
   470  			var (
   471  				sections = make([]uint64, 0, len(result.Sections))
   472  				bitsets  = make([][]byte, 0, len(result.Bitsets))
   473  				missing  = make([]uint64, 0, len(result.Sections))
   474  			)
   475  			for i, bitset := range result.Bitsets {
   476  				if len(bitset) == 0 {
   477  					missing = append(missing, result.Sections[i])
   478  					continue
   479  				}
   480  				sections = append(sections, result.Sections[i])
   481  				bitsets = append(bitsets, bitset)
   482  			}
   483  			m.schedulers[result.Bit].deliver(sections, bitsets)
   484  			allocs--
   485  
   486  			// Reschedule missing sections and allocate bit if newly available
   487  			if len(missing) > 0 {
   488  				queue := requests[result.Bit]
   489  				for _, section := range missing {
   490  					index := sort.Search(len(queue), func(i int) bool { return queue[i] >= section })
   491  					queue = append(queue[:index], append([]uint64{section}, queue[index:]...)...)
   492  				}
   493  				requests[result.Bit] = queue
   494  
   495  				if len(queue) == len(missing) {
   496  					assign(result.Bit)
   497  				}
   498  			}
   499  
   500  			// End the session when all pending deliveries have arrived.
   501  			if shutdown == nil && allocs == 0 {
   502  				return
   503  			}
   504  		}
   505  	}
   506  }
   507  
   508  // MatcherSession is returned by a started matcher to be used as a terminator
   509  // for the actively running matching operation.
   510  type MatcherSession struct {
   511  	matcher *Matcher
   512  
   513  	closer sync.Once     // Sync object to ensure we only ever close once
   514  	quit   chan struct{} // Quit channel to request pipeline termination
   515  
   516  	ctx context.Context // Context used by the light client to abort filtering
   517  	err atomic.Value    // Global error to track retrieval failures deep in the chain
   518  
   519  	pend sync.WaitGroup
   520  }
   521  
   522  // Close stops the matching process and waits for all subprocesses to terminate
   523  // before returning. The timeout may be used for graceful shutdown, allowing the
   524  // currently running retrievals to complete before this time.
   525  func (s *MatcherSession) Close() {
   526  	s.closer.Do(func() {
   527  		// Signal termination and wait for all goroutines to tear down
   528  		close(s.quit)
   529  		s.pend.Wait()
   530  	})
   531  }
   532  
   533  // Error returns any failure encountered during the matching session.
   534  func (s *MatcherSession) Error() error {
   535  	if err := s.err.Load(); err != nil {
   536  		return err.(error)
   537  	}
   538  	return nil
   539  }
   540  
   541  // allocateRetrieval assigns a bloom bit index to a client process that can either
   542  // immediately request and fetch the section contents assigned to this bit or wait
   543  // a little while for more sections to be requested.
   544  func (s *MatcherSession) allocateRetrieval() (uint, bool) {
   545  	fetcher := make(chan uint)
   546  
   547  	select {
   548  	case <-s.quit:
   549  		return 0, false
   550  	case s.matcher.retrievers <- fetcher:
   551  		bit, ok := <-fetcher
   552  		return bit, ok
   553  	}
   554  }
   555  
   556  // pendingSections returns the number of pending section retrievals belonging to
   557  // the given bloom bit index.
   558  func (s *MatcherSession) pendingSections(bit uint) int {
   559  	fetcher := make(chan uint)
   560  
   561  	select {
   562  	case <-s.quit:
   563  		return 0
   564  	case s.matcher.counters <- fetcher:
   565  		fetcher <- bit
   566  		return int(<-fetcher)
   567  	}
   568  }
   569  
   570  // allocateSections assigns all or part of an already allocated bit-task queue
   571  // to the requesting process.
   572  func (s *MatcherSession) allocateSections(bit uint, count int) []uint64 {
   573  	fetcher := make(chan *Retrieval)
   574  
   575  	select {
   576  	case <-s.quit:
   577  		return nil
   578  	case s.matcher.retrievals <- fetcher:
   579  		task := &Retrieval{
   580  			Bit:      bit,
   581  			Sections: make([]uint64, count),
   582  		}
   583  		fetcher <- task
   584  		return (<-fetcher).Sections
   585  	}
   586  }
   587  
   588  // deliverSections delivers a batch of section bit-vectors for a specific bloom
   589  // bit index to be injected into the processing pipeline.
   590  func (s *MatcherSession) deliverSections(bit uint, sections []uint64, bitsets [][]byte) {
   591  	s.matcher.deliveries <- &Retrieval{Bit: bit, Sections: sections, Bitsets: bitsets}
   592  }
   593  
   594  // Multiplex polls the matcher session for retrieval tasks and multiplexes it into
   595  // the requested retrieval queue to be serviced together with other sessions.
   596  //
   597  // This method will block for the lifetime of the session. Even after termination
   598  // of the session, any request in-flight need to be responded to! Empty responses
   599  // are fine though in that case.
   600  func (s *MatcherSession) Multiplex(batch int, wait time.Duration, mux chan chan *Retrieval) {
   601  	for {
   602  		// Allocate a new bloom bit index to retrieve data for, stopping when done
   603  		bit, ok := s.allocateRetrieval()
   604  		if !ok {
   605  			return
   606  		}
   607  		// Bit allocated, throttle a bit if we're below our batch limit
   608  		if s.pendingSections(bit) < batch {
   609  			select {
   610  			case <-s.quit:
   611  				// Session terminating, we can't meaningfully service, abort
   612  				s.allocateSections(bit, 0)
   613  				s.deliverSections(bit, []uint64{}, [][]byte{})
   614  				return
   615  
   616  			case <-time.After(wait):
   617  				// Throttling up, fetch whatever's available
   618  			}
   619  		}
   620  		// Allocate as much as we can handle and request servicing
   621  		sections := s.allocateSections(bit, batch)
   622  		request := make(chan *Retrieval)
   623  
   624  		select {
   625  		case <-s.quit:
   626  			// Session terminating, we can't meaningfully service, abort
   627  			s.deliverSections(bit, sections, make([][]byte, len(sections)))
   628  			return
   629  
   630  		case mux <- request:
   631  			// Retrieval accepted, something must arrive before we're aborting
   632  			request <- &Retrieval{Bit: bit, Sections: sections, Context: s.ctx}
   633  
   634  			result := <-request
   635  			if result.Error != nil {
   636  				s.err.Store(result.Error)
   637  				s.Close()
   638  			}
   639  			s.deliverSections(result.Bit, result.Sections, result.Bitsets)
   640  		}
   641  	}
   642  }