github.com/fiatjaf/generic-ristretto@v0.0.1/z/btree.go (about)

     1  /*
     2   * Copyright 2020 Dgraph Labs, Inc. and Contributors
     3   *
     4   * Licensed under the Apache License, Version 2.0 (the "License");
     5   * you may not use this file except in compliance with the License.
     6   * You may obtain a copy of the License at
     7   *
     8   *     http://www.apache.org/licenses/LICENSE-2.0
     9   *
    10   * Unless required by applicable law or agreed to in writing, software
    11   * distributed under the License is distributed on an "AS IS" BASIS,
    12   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    13   * See the License for the specific language governing permissions and
    14   * limitations under the License.
    15   */
    16  
    17  package z
    18  
    19  import (
    20  	"fmt"
    21  	"math"
    22  	"os"
    23  	"reflect"
    24  	"strings"
    25  	"unsafe"
    26  
    27  	"github.com/fiatjaf/generic-ristretto/z/simd"
    28  )
    29  
    30  var (
    31  	pageSize = os.Getpagesize()
    32  	maxKeys  = (pageSize / 16) - 1
    33  	oneThird = int(float64(maxKeys) / 3)
    34  )
    35  
    36  const (
    37  	absoluteMax = uint64(math.MaxUint64 - 1)
    38  	minSize     = 1 << 20
    39  )
    40  
    41  // Tree represents the structure for custom mmaped B+ tree.
    42  // It supports keys in range [1, math.MaxUint64-1] and values [1, math.Uint64].
    43  type Tree struct {
    44  	buffer   *Buffer
    45  	data     []byte
    46  	nextPage uint64
    47  	freePage uint64
    48  	stats    TreeStats
    49  }
    50  
    51  func (t *Tree) initRootNode() {
    52  	// This is the root node.
    53  	t.newNode(0)
    54  	// This acts as the rightmost pointer (all the keys are <= this key).
    55  	t.Set(absoluteMax, 0)
    56  }
    57  
    58  // NewTree returns an in-memory B+ tree.
    59  func NewTree(tag string) *Tree {
    60  	const defaultTag = "tree"
    61  	if tag == "" {
    62  		tag = defaultTag
    63  	}
    64  	t := &Tree{buffer: NewBuffer(minSize, tag)}
    65  	t.Reset()
    66  	return t
    67  }
    68  
    69  // NewTree returns a persistent on-disk B+ tree.
    70  func NewTreePersistent(path string) (*Tree, error) {
    71  	t := &Tree{}
    72  	var err error
    73  
    74  	// Open the buffer from disk and set it to the maximum allocated size.
    75  	t.buffer, err = NewBufferPersistent(path, minSize)
    76  	if err != nil {
    77  		return nil, err
    78  	}
    79  	t.buffer.offset = uint64(len(t.buffer.buf))
    80  	t.data = t.buffer.Bytes()
    81  
    82  	// pageID can never be 0 if the tree has been initialized.
    83  	root := t.node(1)
    84  	isInitialized := root.pageID() != 0
    85  
    86  	if !isInitialized {
    87  		t.nextPage = 1
    88  		t.freePage = 0
    89  		t.initRootNode()
    90  	} else {
    91  		t.reinit()
    92  	}
    93  
    94  	return t, nil
    95  }
    96  
    97  // reinit sets the internal variables of a Tree, which are normally stored
    98  // in-memory, but are lost when loading from disk.
    99  func (t *Tree) reinit() {
   100  	// Calculate t.nextPage by finding the first node whose pageID is not set.
   101  	t.nextPage = 1
   102  	for int(t.nextPage)*pageSize < len(t.data) {
   103  		n := t.node(t.nextPage)
   104  		if n.pageID() == 0 {
   105  			break
   106  		}
   107  		t.nextPage++
   108  	}
   109  	maxPageId := t.nextPage - 1
   110  
   111  	// Calculate t.freePage by finding the page to which no other page points.
   112  	// This would be the head of the page linked list.
   113  	// tailPages[i] is true if pageId i+1 is not the head of the list.
   114  	tailPages := make([]bool, maxPageId)
   115  	// Mark all pages containing nodes as tail pages.
   116  	t.Iterate(func(n node) {
   117  		i := n.pageID() - 1
   118  		tailPages[i] = true
   119  		// If this is a leaf node, increment the stats.
   120  		if n.isLeaf() {
   121  			t.stats.NumLeafKeys += n.numKeys()
   122  		}
   123  	})
   124  	// pointedPages is a list of page IDs that the tail pages point to.
   125  	pointedPages := make([]uint64, 0)
   126  	for i, isTail := range tailPages {
   127  		if !isTail {
   128  			pageId := uint64(i) + 1
   129  			// Skip if nextPageId = 0, as that is equivalent to null page.
   130  			if nextPageId := t.node(pageId).uint64(0); nextPageId != 0 {
   131  				pointedPages = append(pointedPages, nextPageId)
   132  			}
   133  			t.stats.NumPagesFree++
   134  		}
   135  	}
   136  
   137  	// Mark all pages being pointed to as tail pages.
   138  	for _, pageId := range pointedPages {
   139  		i := pageId - 1
   140  		tailPages[i] = true
   141  	}
   142  	// There should only be one head page left.
   143  	for i, isTail := range tailPages {
   144  		if !isTail {
   145  			pageId := uint64(i) + 1
   146  			t.freePage = pageId
   147  			break
   148  		}
   149  	}
   150  }
   151  
   152  // Reset resets the tree and truncates it to maxSz.
   153  func (t *Tree) Reset() {
   154  	// Tree relies on uninitialized data being zeroed out, so we need to Memclr
   155  	// the data before using it again.
   156  	Memclr(t.buffer.buf)
   157  	t.buffer.Reset()
   158  	t.buffer.AllocateOffset(minSize)
   159  	t.data = t.buffer.Bytes()
   160  	t.stats = TreeStats{}
   161  	t.nextPage = 1
   162  	t.freePage = 0
   163  	t.initRootNode()
   164  }
   165  
   166  // Close releases the memory used by the tree.
   167  func (t *Tree) Close() error {
   168  	if t == nil {
   169  		return nil
   170  	}
   171  	return t.buffer.Release()
   172  }
   173  
   174  type TreeStats struct {
   175  	Allocated    int     // Derived.
   176  	Bytes        int     // Derived.
   177  	NumLeafKeys  int     // Calculated.
   178  	NumPages     int     // Derived.
   179  	NumPagesFree int     // Calculated.
   180  	Occupancy    float64 // Derived.
   181  	PageSize     int     // Derived.
   182  }
   183  
   184  // Stats returns stats about the tree.
   185  func (t *Tree) Stats() TreeStats {
   186  	numPages := int(t.nextPage - 1)
   187  	out := TreeStats{
   188  		Bytes:        numPages * pageSize,
   189  		Allocated:    len(t.data),
   190  		NumLeafKeys:  t.stats.NumLeafKeys,
   191  		NumPages:     numPages,
   192  		NumPagesFree: t.stats.NumPagesFree,
   193  		PageSize:     pageSize,
   194  	}
   195  	out.Occupancy = 100.0 * float64(out.NumLeafKeys) / float64(maxKeys*numPages)
   196  	return out
   197  }
   198  
   199  // BytesToUint64Slice converts a byte slice to a uint64 slice.
   200  func BytesToUint64Slice(b []byte) []uint64 {
   201  	if len(b) == 0 {
   202  		return nil
   203  	}
   204  	var u64s []uint64
   205  	hdr := (*reflect.SliceHeader)(unsafe.Pointer(&u64s))
   206  	hdr.Len = len(b) / 8
   207  	hdr.Cap = hdr.Len
   208  	hdr.Data = uintptr(unsafe.Pointer(&b[0]))
   209  	return u64s
   210  }
   211  
   212  func (t *Tree) newNode(bit uint64) node {
   213  	var pageId uint64
   214  	if t.freePage > 0 {
   215  		pageId = t.freePage
   216  		t.stats.NumPagesFree--
   217  	} else {
   218  		pageId = t.nextPage
   219  		t.nextPage++
   220  		offset := int(pageId) * pageSize
   221  		reqSize := offset + pageSize
   222  		if reqSize > len(t.data) {
   223  			t.buffer.AllocateOffset(reqSize - len(t.data))
   224  			t.data = t.buffer.Bytes()
   225  		}
   226  	}
   227  	n := t.node(pageId)
   228  	if t.freePage > 0 {
   229  		t.freePage = n.uint64(0)
   230  	}
   231  	zeroOut(n)
   232  	n.setBit(bit)
   233  	n.setAt(keyOffset(maxKeys), pageId)
   234  	return n
   235  }
   236  
   237  func getNode(data []byte) node {
   238  	return node(BytesToUint64Slice(data))
   239  }
   240  
   241  func zeroOut(data []uint64) {
   242  	for i := 0; i < len(data); i++ {
   243  		data[i] = 0
   244  	}
   245  }
   246  
   247  func (t *Tree) node(pid uint64) node {
   248  	// page does not exist
   249  	if pid == 0 {
   250  		return nil
   251  	}
   252  	start := pageSize * int(pid)
   253  	return getNode(t.data[start : start+pageSize])
   254  }
   255  
   256  // Set sets the key-value pair in the tree.
   257  func (t *Tree) Set(k, v uint64) {
   258  	if k == math.MaxUint64 || k == 0 {
   259  		panic("Error setting zero or MaxUint64")
   260  	}
   261  	root := t.set(1, k, v)
   262  	if root.isFull() {
   263  		right := t.split(1)
   264  		left := t.newNode(root.bits())
   265  		// Re-read the root as the underlying buffer for tree might have changed during split.
   266  		root = t.node(1)
   267  		copy(left[:keyOffset(maxKeys)], root)
   268  		left.setNumKeys(root.numKeys())
   269  
   270  		// reset the root node.
   271  		zeroOut(root[:keyOffset(maxKeys)])
   272  		root.setNumKeys(0)
   273  
   274  		// set the pointers for left and right child in the root node.
   275  		root.set(left.maxKey(), left.pageID())
   276  		root.set(right.maxKey(), right.pageID())
   277  	}
   278  }
   279  
   280  // For internal nodes, they contain <key, ptr>.
   281  // where all entries <= key are stored in the corresponding ptr.
   282  func (t *Tree) set(pid, k, v uint64) node {
   283  	n := t.node(pid)
   284  	if n.isLeaf() {
   285  		t.stats.NumLeafKeys += n.set(k, v)
   286  		return n
   287  	}
   288  
   289  	// This is an internal node.
   290  	idx := n.search(k)
   291  	if idx >= maxKeys {
   292  		panic("search returned index >= maxKeys")
   293  	}
   294  	// If no key at idx.
   295  	if n.key(idx) == 0 {
   296  		n.setAt(keyOffset(idx), k)
   297  		n.setNumKeys(n.numKeys() + 1)
   298  	}
   299  	child := t.node(n.val(idx))
   300  	if child == nil {
   301  		child = t.newNode(bitLeaf)
   302  		n = t.node(pid)
   303  		n.setAt(valOffset(idx), child.pageID())
   304  	}
   305  	child = t.set(child.pageID(), k, v)
   306  	// Re-read n as the underlying buffer for tree might have changed during set.
   307  	n = t.node(pid)
   308  	if child.isFull() {
   309  		// Just consider the left sibling for simplicity.
   310  		// if t.shareWithSibling(n, idx) {
   311  		// 	return n
   312  		// }
   313  
   314  		nn := t.split(child.pageID())
   315  		// Re-read n and child as the underlying buffer for tree might have changed during split.
   316  		n = t.node(pid)
   317  		child = t.node(n.uint64(valOffset(idx)))
   318  		// Set child pointers in the node n.
   319  		// Note that key for right node (nn) already exist in node n, but the
   320  		// pointer is updated.
   321  		n.set(child.maxKey(), child.pageID())
   322  		n.set(nn.maxKey(), nn.pageID())
   323  	}
   324  	return n
   325  }
   326  
   327  // Get looks for key and returns the corresponding value.
   328  // If key is not found, 0 is returned.
   329  func (t *Tree) Get(k uint64) uint64 {
   330  	if k == math.MaxUint64 || k == 0 {
   331  		panic("Does not support getting MaxUint64/Zero")
   332  	}
   333  	root := t.node(1)
   334  	return t.get(root, k)
   335  }
   336  
   337  func (t *Tree) get(n node, k uint64) uint64 {
   338  	if n.isLeaf() {
   339  		return n.get(k)
   340  	}
   341  	// This is internal node
   342  	idx := n.search(k)
   343  	if idx == n.numKeys() || n.key(idx) == 0 {
   344  		return 0
   345  	}
   346  	child := t.node(n.uint64(valOffset(idx)))
   347  	assert(child != nil)
   348  	return t.get(child, k)
   349  }
   350  
   351  // DeleteBelow deletes all keys with value under ts.
   352  func (t *Tree) DeleteBelow(ts uint64) {
   353  	root := t.node(1)
   354  	t.stats.NumLeafKeys = 0
   355  	t.compact(root, ts)
   356  	assert(root.numKeys() >= 1)
   357  }
   358  
   359  func (t *Tree) compact(n node, ts uint64) int {
   360  	if n.isLeaf() {
   361  		numKeys := n.compact(ts)
   362  		t.stats.NumLeafKeys += n.numKeys()
   363  		return numKeys
   364  	}
   365  	// Not leaf.
   366  	N := n.numKeys()
   367  	for i := 0; i < N; i++ {
   368  		assert(n.key(i) > 0)
   369  		childID := n.uint64(valOffset(i))
   370  		child := t.node(childID)
   371  		if rem := t.compact(child, ts); rem == 0 && i < N-1 {
   372  			// If no valid key is remaining we can drop this child. However, don't do that if this
   373  			// is the max key.
   374  			t.stats.NumLeafKeys -= child.numKeys()
   375  			child.setAt(0, t.freePage)
   376  			t.freePage = childID
   377  			n.setAt(valOffset(i), 0)
   378  			t.stats.NumPagesFree++
   379  		}
   380  	}
   381  	// We use ts=1 here because we want to delete all the keys whose value is 0, which means they no
   382  	// longer have a valid page for that key.
   383  	return n.compact(1)
   384  }
   385  
   386  func (t *Tree) iterate(n node, fn func(node)) {
   387  	fn(n)
   388  	if n.isLeaf() {
   389  		return
   390  	}
   391  	// Explore children.
   392  	for i := 0; i < maxKeys; i++ {
   393  		if n.key(i) == 0 {
   394  			return
   395  		}
   396  		childID := n.uint64(valOffset(i))
   397  		assert(childID > 0)
   398  
   399  		child := t.node(childID)
   400  		t.iterate(child, fn)
   401  	}
   402  }
   403  
   404  // Iterate iterates over the tree and executes the fn on each node.
   405  func (t *Tree) Iterate(fn func(node)) {
   406  	root := t.node(1)
   407  	t.iterate(root, fn)
   408  }
   409  
   410  // IterateKV iterates through all keys and values in the tree.
   411  // If newVal is non-zero, it will be set in the tree.
   412  func (t *Tree) IterateKV(f func(key, val uint64) (newVal uint64)) {
   413  	t.Iterate(func(n node) {
   414  		// Only leaf nodes contain keys.
   415  		if !n.isLeaf() {
   416  			return
   417  		}
   418  
   419  		for i := 0; i < n.numKeys(); i++ {
   420  			key := n.key(i)
   421  			val := n.val(i)
   422  
   423  			// A zero value here means that this is a bogus entry.
   424  			if val == 0 {
   425  				continue
   426  			}
   427  
   428  			newVal := f(key, val)
   429  			if newVal != 0 {
   430  				n.setAt(valOffset(i), newVal)
   431  			}
   432  		}
   433  	})
   434  }
   435  
   436  func (t *Tree) print(n node, parentID uint64) {
   437  	n.print(parentID)
   438  	if n.isLeaf() {
   439  		return
   440  	}
   441  	pid := n.pageID()
   442  	for i := 0; i < maxKeys; i++ {
   443  		if n.key(i) == 0 {
   444  			return
   445  		}
   446  		childID := n.uint64(valOffset(i))
   447  		child := t.node(childID)
   448  		t.print(child, pid)
   449  	}
   450  }
   451  
   452  // Print iterates over the tree and prints all valid KVs.
   453  func (t *Tree) Print() {
   454  	root := t.node(1)
   455  	t.print(root, 0)
   456  }
   457  
   458  // Splits the node into two. It moves right half of the keys from the original node to a newly
   459  // created right node. It returns the right node.
   460  func (t *Tree) split(pid uint64) node {
   461  	n := t.node(pid)
   462  	if !n.isFull() {
   463  		panic("This should be called only when n is full")
   464  	}
   465  
   466  	// Create a new node nn, copy over half the keys from n, and set the parent to n's parent.
   467  	nn := t.newNode(n.bits())
   468  	// Re-read n as the underlying buffer for tree might have changed during newNode.
   469  	n = t.node(pid)
   470  	rightHalf := n[keyOffset(maxKeys/2):keyOffset(maxKeys)]
   471  	copy(nn, rightHalf)
   472  	nn.setNumKeys(maxKeys - maxKeys/2)
   473  
   474  	// Remove entries from node n.
   475  	zeroOut(rightHalf)
   476  	n.setNumKeys(maxKeys / 2)
   477  	return nn
   478  }
   479  
   480  // shareWithSiblingXXX is unused for now. The idea is to move some keys to
   481  // sibling when a node is full. But, I don't see any special benefits in our
   482  // access pattern. It doesn't result in better occupancy ratios.
   483  func (t *Tree) shareWithSiblingXXX(n node, idx int) bool {
   484  	if idx == 0 {
   485  		return false
   486  	}
   487  	left := t.node(n.val(idx - 1))
   488  	ns := left.numKeys()
   489  	if ns >= maxKeys/2 {
   490  		// Sibling is already getting full.
   491  		return false
   492  	}
   493  
   494  	right := t.node(n.val(idx))
   495  	// Copy over keys from right child to left child.
   496  	copied := copy(left[keyOffset(ns):], right[:keyOffset(oneThird)])
   497  	copied /= 2 // Considering that key-val constitute one key.
   498  	left.setNumKeys(ns + copied)
   499  
   500  	// Update the max key in parent node n for the left sibling.
   501  	n.setAt(keyOffset(idx-1), left.maxKey())
   502  
   503  	// Now move keys to left for the right sibling.
   504  	until := copy(right, right[keyOffset(oneThird):keyOffset(maxKeys)])
   505  	right.setNumKeys(until / 2)
   506  	zeroOut(right[until:keyOffset(maxKeys)])
   507  	return true
   508  }
   509  
   510  // Each node in the node is of size pageSize. Two kinds of nodes. Leaf nodes and internal nodes.
   511  // Leaf nodes only contain the data. Internal nodes would contain the key and the offset to the
   512  // child node.
   513  // Internal node would have first entry as
   514  // <0 offset to child>, <1000 offset>, <5000 offset>, and so on...
   515  // Leaf nodes would just have: <key, value>, <key, value>, and so on...
   516  // Last 16 bytes of the node are off limits.
   517  // | pageID (8 bytes) | metaBits (1 byte) | 3 free bytes | numKeys (4 bytes) |
   518  type node []uint64
   519  
   520  func (n node) uint64(start int) uint64 { return n[start] }
   521  
   522  // func (n node) uint32(start int) uint32 { return *(*uint32)(unsafe.Pointer(&n[start])) }
   523  
   524  func keyOffset(i int) int          { return 2 * i }
   525  func valOffset(i int) int          { return 2*i + 1 }
   526  func (n node) numKeys() int        { return int(n.uint64(valOffset(maxKeys)) & 0xFFFFFFFF) }
   527  func (n node) pageID() uint64      { return n.uint64(keyOffset(maxKeys)) }
   528  func (n node) key(i int) uint64    { return n.uint64(keyOffset(i)) }
   529  func (n node) val(i int) uint64    { return n.uint64(valOffset(i)) }
   530  func (n node) data(i int) []uint64 { return n[keyOffset(i):keyOffset(i+1)] }
   531  
   532  func (n node) setAt(start int, k uint64) {
   533  	n[start] = k
   534  }
   535  
   536  func (n node) setNumKeys(num int) {
   537  	idx := valOffset(maxKeys)
   538  	val := n[idx]
   539  	val &= 0xFFFFFFFF00000000
   540  	val |= uint64(num)
   541  	n[idx] = val
   542  }
   543  
   544  func (n node) moveRight(lo int) {
   545  	hi := n.numKeys()
   546  	assert(hi != maxKeys)
   547  	// copy works despite of overlap in src and dst.
   548  	// See https://golang.org/pkg/builtin/#copy
   549  	copy(n[keyOffset(lo+1):keyOffset(hi+1)], n[keyOffset(lo):keyOffset(hi)])
   550  }
   551  
   552  const (
   553  	bitLeaf = uint64(1 << 63)
   554  )
   555  
   556  func (n node) setBit(b uint64) {
   557  	vo := valOffset(maxKeys)
   558  	val := n[vo]
   559  	val &= 0xFFFFFFFF
   560  	val |= b
   561  	n[vo] = val
   562  }
   563  func (n node) bits() uint64 {
   564  	return n.val(maxKeys) & 0xFF00000000000000
   565  }
   566  func (n node) isLeaf() bool {
   567  	return n.bits()&bitLeaf > 0
   568  }
   569  
   570  // isFull checks that the node is already full.
   571  func (n node) isFull() bool {
   572  	return n.numKeys() == maxKeys
   573  }
   574  
   575  // Search returns the index of a smallest key >= k in a node.
   576  func (n node) search(k uint64) int {
   577  	N := n.numKeys()
   578  	if N < 4 {
   579  		for i := 0; i < N; i++ {
   580  			if ki := n.key(i); ki >= k {
   581  				return i
   582  			}
   583  		}
   584  		return N
   585  	}
   586  	return int(simd.Search(n[:2*N], k))
   587  	// lo, hi := 0, N
   588  	// // Reduce the search space using binary seach and then do linear search.
   589  	// for hi-lo > 32 {
   590  	// 	mid := (hi + lo) / 2
   591  	// 	km := n.key(mid)
   592  	// 	if k == km {
   593  	// 		return mid
   594  	// 	}
   595  	// 	if k > km {
   596  	// 		// key is greater than the key at mid, so move right.
   597  	// 		lo = mid + 1
   598  	// 	} else {
   599  	// 		// else move left.
   600  	// 		hi = mid
   601  	// 	}
   602  	// }
   603  	// for i := lo; i <= hi; i++ {
   604  	// 	if ki := n.key(i); ki >= k {
   605  	// 		return i
   606  	// 	}
   607  	// }
   608  	// return N
   609  }
   610  func (n node) maxKey() uint64 {
   611  	idx := n.numKeys()
   612  	// idx points to the first key which is zero.
   613  	if idx > 0 {
   614  		idx--
   615  	}
   616  	return n.key(idx)
   617  }
   618  
   619  // compacts the node i.e., remove all the kvs with value < lo. It returns the remaining number of
   620  // keys.
   621  func (n node) compact(lo uint64) int {
   622  	N := n.numKeys()
   623  	mk := n.maxKey()
   624  	var left, right int
   625  	for right = 0; right < N; right++ {
   626  		if n.val(right) < lo && n.key(right) < mk {
   627  			// Skip over this key. Don't copy it.
   628  			continue
   629  		}
   630  		// Valid data. Copy it from right to left. Advance left.
   631  		if left != right {
   632  			copy(n.data(left), n.data(right))
   633  		}
   634  		left++
   635  	}
   636  	// zero out rest of the kv pairs.
   637  	zeroOut(n[keyOffset(left):keyOffset(right)])
   638  	n.setNumKeys(left)
   639  
   640  	// If the only key we have is the max key, and its value is less than lo, then we can indicate
   641  	// to the caller by returning a zero that it's OK to drop the node.
   642  	if left == 1 && n.key(0) == mk && n.val(0) < lo {
   643  		return 0
   644  	}
   645  	return left
   646  }
   647  
   648  func (n node) get(k uint64) uint64 {
   649  	idx := n.search(k)
   650  	// key is not found
   651  	if idx == n.numKeys() {
   652  		return 0
   653  	}
   654  	if ki := n.key(idx); ki == k {
   655  		return n.val(idx)
   656  	}
   657  	return 0
   658  }
   659  
   660  // set returns true if it added a new key.
   661  func (n node) set(k, v uint64) (numAdded int) {
   662  	idx := n.search(k)
   663  	ki := n.key(idx)
   664  	if n.numKeys() == maxKeys {
   665  		// This happens during split of non-root node, when we are updating the child pointer of
   666  		// right node. Hence, the key should already exist.
   667  		assert(ki == k)
   668  	}
   669  	if ki > k {
   670  		// Found the first entry which is greater than k. So, we need to fit k
   671  		// just before it. For that, we should move the rest of the data in the
   672  		// node to the right to make space for k.
   673  		n.moveRight(idx)
   674  	}
   675  	// If the k does not exist already, increment the number of keys.
   676  	if ki != k {
   677  		n.setNumKeys(n.numKeys() + 1)
   678  		numAdded = 1
   679  	}
   680  	if ki == 0 || ki >= k {
   681  		n.setAt(keyOffset(idx), k)
   682  		n.setAt(valOffset(idx), v)
   683  		return
   684  	}
   685  	panic("shouldn't reach here")
   686  }
   687  
   688  func (n node) iterate(fn func(node, int)) {
   689  	for i := 0; i < maxKeys; i++ {
   690  		if k := n.key(i); k > 0 {
   691  			fn(n, i)
   692  		} else {
   693  			break
   694  		}
   695  	}
   696  }
   697  
   698  func (n node) print(parentID uint64) {
   699  	var keys []string
   700  	n.iterate(func(n node, i int) {
   701  		keys = append(keys, fmt.Sprintf("%d", n.key(i)))
   702  	})
   703  	if len(keys) > 8 {
   704  		copy(keys[4:], keys[len(keys)-4:])
   705  		keys[3] = "..."
   706  		keys = keys[:8]
   707  	}
   708  	fmt.Printf("%d Child of: %d num keys: %d keys: %s\n",
   709  		n.pageID(), parentID, n.numKeys(), strings.Join(keys, " "))
   710  }