github.com/fiatjaf/generic-ristretto@v0.0.1/z/z.go (about)

     1  /*
     2   * Copyright 2019 Dgraph Labs, Inc. and Contributors
     3   *
     4   * Licensed under the Apache License, Version 2.0 (the "License");
     5   * you may not use this file except in compliance with the License.
     6   * You may obtain a copy of the License at
     7   *
     8   *     http://www.apache.org/licenses/LICENSE-2.0
     9   *
    10   * Unless required by applicable law or agreed to in writing, software
    11   * distributed under the License is distributed on an "AS IS" BASIS,
    12   * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
    13   * See the License for the specific language governing permissions and
    14   * limitations under the License.
    15   */
    16  
    17  package z
    18  
    19  import (
    20  	"context"
    21  	"github.com/cespare/xxhash/v2"
    22  	"log"
    23  	"sync"
    24  )
    25  
    26  // GetKeyToHash will get the default KeyToHash function for the primitive types.
    27  func GetKeyToHash[K any](emptyKey K) func(any) (uint64, uint64) {
    28  	keyAsAny := any(emptyKey)
    29  
    30  	if keyAsAny == nil {
    31  		log.Fatal("must provide custom KeyToHash function for pointer type")
    32  	}
    33  	switch keyAsAny.(type) {
    34  	case uint64:
    35  	case string:
    36  	case []byte:
    37  	case byte:
    38  	case int:
    39  	case int32:
    40  	case uint32:
    41  	case int64:
    42  	default:
    43  		log.Fatal("must provide custom KeyToHash function for type")
    44  	}
    45  
    46  	return KeyToHash
    47  }
    48  
    49  // TODO: Figure out a way to re-use memhash for the second uint64 hash, we
    50  //
    51  //	already know that appending bytes isn't reliable for generating a
    52  //	second hash (see Ristretto PR #88).
    53  //
    54  //	We also know that while the Go runtime has a runtime memhash128
    55  //	function, it's not possible to use it to generate [2]uint64 or
    56  //	anything resembling a 128bit hash, even though that's exactly what
    57  //	we need in this situation.
    58  
    59  func KeyToHash(key any) (uint64, uint64) {
    60  	switch k := key.(type) {
    61  	case uint64:
    62  		return k, 0
    63  	case string:
    64  		return MemHashString(k), xxhash.Sum64String(k)
    65  	case []byte:
    66  		return MemHash(k), xxhash.Sum64(k)
    67  	case byte:
    68  		return uint64(k), 0
    69  	case int:
    70  		return uint64(k), 0
    71  	case int32:
    72  		return uint64(k), 0
    73  	case uint32:
    74  		return uint64(k), 0
    75  	case int64:
    76  		return uint64(k), 0
    77  	default:
    78  		panic("Key type not supported")
    79  	}
    80  
    81  	return 0, 0
    82  }
    83  
    84  var (
    85  	dummyCloserChan <-chan struct{}
    86  	tmpDir          string
    87  )
    88  
    89  // Closer holds the two things we need to close a goroutine and wait for it to
    90  // finish: a chan to tell the goroutine to shut down, and a WaitGroup with
    91  // which to wait for it to finish shutting down.
    92  type Closer struct {
    93  	waiting sync.WaitGroup
    94  
    95  	ctx    context.Context
    96  	cancel context.CancelFunc
    97  }
    98  
    99  // SetTmpDir sets the temporary directory for the temporary buffers.
   100  func SetTmpDir(dir string) {
   101  	tmpDir = dir
   102  }
   103  
   104  // NewCloser constructs a new Closer, with an initial count on the WaitGroup.
   105  func NewCloser(initial int) *Closer {
   106  	ret := &Closer{}
   107  	ret.ctx, ret.cancel = context.WithCancel(context.Background())
   108  	ret.waiting.Add(initial)
   109  	return ret
   110  }
   111  
   112  // AddRunning Add()'s delta to the WaitGroup.
   113  func (lc *Closer) AddRunning(delta int) {
   114  	lc.waiting.Add(delta)
   115  }
   116  
   117  // Ctx can be used to get a context, which would automatically get cancelled when Signal is called.
   118  func (lc *Closer) Ctx() context.Context {
   119  	if lc == nil {
   120  		return context.Background()
   121  	}
   122  	return lc.ctx
   123  }
   124  
   125  // Signal signals the HasBeenClosed signal.
   126  func (lc *Closer) Signal() {
   127  	// Todo(ibrahim): Change Signal to return error on next badger breaking change.
   128  	lc.cancel()
   129  }
   130  
   131  // HasBeenClosed gets signaled when Signal() is called.
   132  func (lc *Closer) HasBeenClosed() <-chan struct{} {
   133  	if lc == nil {
   134  		return dummyCloserChan
   135  	}
   136  	return lc.ctx.Done()
   137  }
   138  
   139  // Done calls Done() on the WaitGroup.
   140  func (lc *Closer) Done() {
   141  	if lc == nil {
   142  		return
   143  	}
   144  	lc.waiting.Done()
   145  }
   146  
   147  // Wait waits on the WaitGroup. (It waits for NewCloser's initial value, AddRunning, and Done
   148  // calls to balance out.)
   149  func (lc *Closer) Wait() {
   150  	lc.waiting.Wait()
   151  }
   152  
   153  // SignalAndWait calls Signal(), then Wait().
   154  func (lc *Closer) SignalAndWait() {
   155  	lc.Signal()
   156  	lc.Wait()
   157  }
   158  
   159  // ZeroOut zeroes out all the bytes in the range [start, end).
   160  func ZeroOut(dst []byte, start, end int) {
   161  	if start < 0 || start >= len(dst) {
   162  		return // BAD
   163  	}
   164  	if end >= len(dst) {
   165  		end = len(dst)
   166  	}
   167  	if end-start <= 0 {
   168  		return
   169  	}
   170  	Memclr(dst[start:end])
   171  	// b := dst[start:end]
   172  	// for i := range b {
   173  	// 	b[i] = 0x0
   174  	// }
   175  }