github.com/filosottile/go@v0.0.0-20170906193555-dbed9972d994/src/runtime/hashmap.go (about)

     1  // Copyright 2014 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package runtime
     6  
     7  // This file contains the implementation of Go's map type.
     8  //
     9  // A map is just a hash table. The data is arranged
    10  // into an array of buckets. Each bucket contains up to
    11  // 8 key/value pairs. The low-order bits of the hash are
    12  // used to select a bucket. Each bucket contains a few
    13  // high-order bits of each hash to distinguish the entries
    14  // within a single bucket.
    15  //
    16  // If more than 8 keys hash to a bucket, we chain on
    17  // extra buckets.
    18  //
    19  // When the hashtable grows, we allocate a new array
    20  // of buckets twice as big. Buckets are incrementally
    21  // copied from the old bucket array to the new bucket array.
    22  //
    23  // Map iterators walk through the array of buckets and
    24  // return the keys in walk order (bucket #, then overflow
    25  // chain order, then bucket index).  To maintain iteration
    26  // semantics, we never move keys within their bucket (if
    27  // we did, keys might be returned 0 or 2 times).  When
    28  // growing the table, iterators remain iterating through the
    29  // old table and must check the new table if the bucket
    30  // they are iterating through has been moved ("evacuated")
    31  // to the new table.
    32  
    33  // Picking loadFactor: too large and we have lots of overflow
    34  // buckets, too small and we waste a lot of space. I wrote
    35  // a simple program to check some stats for different loads:
    36  // (64-bit, 8 byte keys and values)
    37  //  loadFactor    %overflow  bytes/entry     hitprobe    missprobe
    38  //        4.00         2.13        20.77         3.00         4.00
    39  //        4.50         4.05        17.30         3.25         4.50
    40  //        5.00         6.85        14.77         3.50         5.00
    41  //        5.50        10.55        12.94         3.75         5.50
    42  //        6.00        15.27        11.67         4.00         6.00
    43  //        6.50        20.90        10.79         4.25         6.50
    44  //        7.00        27.14        10.15         4.50         7.00
    45  //        7.50        34.03         9.73         4.75         7.50
    46  //        8.00        41.10         9.40         5.00         8.00
    47  //
    48  // %overflow   = percentage of buckets which have an overflow bucket
    49  // bytes/entry = overhead bytes used per key/value pair
    50  // hitprobe    = # of entries to check when looking up a present key
    51  // missprobe   = # of entries to check when looking up an absent key
    52  //
    53  // Keep in mind this data is for maximally loaded tables, i.e. just
    54  // before the table grows. Typical tables will be somewhat less loaded.
    55  
    56  import (
    57  	"runtime/internal/atomic"
    58  	"runtime/internal/sys"
    59  	"unsafe"
    60  )
    61  
    62  const (
    63  	// Maximum number of key/value pairs a bucket can hold.
    64  	bucketCntBits = 3
    65  	bucketCnt     = 1 << bucketCntBits
    66  
    67  	// Maximum average load of a bucket that triggers growth is 6.5.
    68  	// Represent as loadFactorNum/loadFactDen, to allow integer math.
    69  	loadFactorNum = 13
    70  	loadFactorDen = 2
    71  
    72  	// Maximum key or value size to keep inline (instead of mallocing per element).
    73  	// Must fit in a uint8.
    74  	// Fast versions cannot handle big values - the cutoff size for
    75  	// fast versions in ../../cmd/internal/gc/walk.go must be at most this value.
    76  	maxKeySize   = 128
    77  	maxValueSize = 128
    78  
    79  	// data offset should be the size of the bmap struct, but needs to be
    80  	// aligned correctly. For amd64p32 this means 64-bit alignment
    81  	// even though pointers are 32 bit.
    82  	dataOffset = unsafe.Offsetof(struct {
    83  		b bmap
    84  		v int64
    85  	}{}.v)
    86  
    87  	// Possible tophash values. We reserve a few possibilities for special marks.
    88  	// Each bucket (including its overflow buckets, if any) will have either all or none of its
    89  	// entries in the evacuated* states (except during the evacuate() method, which only happens
    90  	// during map writes and thus no one else can observe the map during that time).
    91  	empty          = 0 // cell is empty
    92  	evacuatedEmpty = 1 // cell is empty, bucket is evacuated.
    93  	evacuatedX     = 2 // key/value is valid.  Entry has been evacuated to first half of larger table.
    94  	evacuatedY     = 3 // same as above, but evacuated to second half of larger table.
    95  	minTopHash     = 4 // minimum tophash for a normal filled cell.
    96  
    97  	// flags
    98  	iterator     = 1 // there may be an iterator using buckets
    99  	oldIterator  = 2 // there may be an iterator using oldbuckets
   100  	hashWriting  = 4 // a goroutine is writing to the map
   101  	sameSizeGrow = 8 // the current map growth is to a new map of the same size
   102  
   103  	// sentinel bucket ID for iterator checks
   104  	noCheck = 1<<(8*sys.PtrSize) - 1
   105  )
   106  
   107  // A header for a Go map.
   108  type hmap struct {
   109  	// Note: the format of the Hmap is encoded in ../../cmd/internal/gc/reflect.go and
   110  	// ../reflect/type.go. Don't change this structure without also changing that code!
   111  	count     int // # live cells == size of map.  Must be first (used by len() builtin)
   112  	flags     uint8
   113  	B         uint8  // log_2 of # of buckets (can hold up to loadFactor * 2^B items)
   114  	noverflow uint16 // approximate number of overflow buckets; see incrnoverflow for details
   115  	hash0     uint32 // hash seed
   116  
   117  	buckets    unsafe.Pointer // array of 2^B Buckets. may be nil if count==0.
   118  	oldbuckets unsafe.Pointer // previous bucket array of half the size, non-nil only when growing
   119  	nevacuate  uintptr        // progress counter for evacuation (buckets less than this have been evacuated)
   120  
   121  	extra *mapextra // optional fields
   122  }
   123  
   124  // mapextra holds fields that are not present on all maps.
   125  type mapextra struct {
   126  	// If both key and value do not contain pointers and are inline, then we mark bucket
   127  	// type as containing no pointers. This avoids scanning such maps.
   128  	// However, bmap.overflow is a pointer. In order to keep overflow buckets
   129  	// alive, we store pointers to all overflow buckets in hmap.overflow.
   130  	// Overflow is used only if key and value do not contain pointers.
   131  	// overflow[0] contains overflow buckets for hmap.buckets.
   132  	// overflow[1] contains overflow buckets for hmap.oldbuckets.
   133  	// The indirection allows to store a pointer to the slice in hiter.
   134  	overflow [2]*[]*bmap
   135  
   136  	// nextOverflow holds a pointer to a free overflow bucket.
   137  	nextOverflow *bmap
   138  }
   139  
   140  // A bucket for a Go map.
   141  type bmap struct {
   142  	// tophash generally contains the top byte of the hash value
   143  	// for each key in this bucket. If tophash[0] < minTopHash,
   144  	// tophash[0] is a bucket evacuation state instead.
   145  	tophash [bucketCnt]uint8
   146  	// Followed by bucketCnt keys and then bucketCnt values.
   147  	// NOTE: packing all the keys together and then all the values together makes the
   148  	// code a bit more complicated than alternating key/value/key/value/... but it allows
   149  	// us to eliminate padding which would be needed for, e.g., map[int64]int8.
   150  	// Followed by an overflow pointer.
   151  }
   152  
   153  // A hash iteration structure.
   154  // If you modify hiter, also change cmd/internal/gc/reflect.go to indicate
   155  // the layout of this structure.
   156  type hiter struct {
   157  	key         unsafe.Pointer // Must be in first position.  Write nil to indicate iteration end (see cmd/internal/gc/range.go).
   158  	value       unsafe.Pointer // Must be in second position (see cmd/internal/gc/range.go).
   159  	t           *maptype
   160  	h           *hmap
   161  	buckets     unsafe.Pointer // bucket ptr at hash_iter initialization time
   162  	bptr        *bmap          // current bucket
   163  	overflow    [2]*[]*bmap    // keeps overflow buckets alive
   164  	startBucket uintptr        // bucket iteration started at
   165  	offset      uint8          // intra-bucket offset to start from during iteration (should be big enough to hold bucketCnt-1)
   166  	wrapped     bool           // already wrapped around from end of bucket array to beginning
   167  	B           uint8
   168  	i           uint8
   169  	bucket      uintptr
   170  	checkBucket uintptr
   171  }
   172  
   173  // bucketShift returns 1<<b, optimized for code generation.
   174  func bucketShift(b uint8) uintptr {
   175  	if sys.GoarchAmd64|sys.GoarchAmd64p32|sys.Goarch386 != 0 {
   176  		b &= sys.PtrSize*8 - 1 // help x86 archs remove shift overflow checks
   177  	}
   178  	return uintptr(1) << b
   179  }
   180  
   181  // bucketMask returns 1<<b - 1, optimized for code generation.
   182  func bucketMask(b uint8) uintptr {
   183  	return bucketShift(b) - 1
   184  }
   185  
   186  // tophash calculates the tophash value for hash.
   187  func tophash(hash uintptr) uint8 {
   188  	top := uint8(hash >> (sys.PtrSize*8 - 8))
   189  	if top < minTopHash {
   190  		top += minTopHash
   191  	}
   192  	return top
   193  }
   194  
   195  func evacuated(b *bmap) bool {
   196  	h := b.tophash[0]
   197  	return h > empty && h < minTopHash
   198  }
   199  
   200  func (b *bmap) overflow(t *maptype) *bmap {
   201  	return *(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-sys.PtrSize))
   202  }
   203  
   204  func (b *bmap) setoverflow(t *maptype, ovf *bmap) {
   205  	*(**bmap)(add(unsafe.Pointer(b), uintptr(t.bucketsize)-sys.PtrSize)) = ovf
   206  }
   207  
   208  func (b *bmap) keys() unsafe.Pointer {
   209  	return add(unsafe.Pointer(b), dataOffset)
   210  }
   211  
   212  // incrnoverflow increments h.noverflow.
   213  // noverflow counts the number of overflow buckets.
   214  // This is used to trigger same-size map growth.
   215  // See also tooManyOverflowBuckets.
   216  // To keep hmap small, noverflow is a uint16.
   217  // When there are few buckets, noverflow is an exact count.
   218  // When there are many buckets, noverflow is an approximate count.
   219  func (h *hmap) incrnoverflow() {
   220  	// We trigger same-size map growth if there are
   221  	// as many overflow buckets as buckets.
   222  	// We need to be able to count to 1<<h.B.
   223  	if h.B < 16 {
   224  		h.noverflow++
   225  		return
   226  	}
   227  	// Increment with probability 1/(1<<(h.B-15)).
   228  	// When we reach 1<<15 - 1, we will have approximately
   229  	// as many overflow buckets as buckets.
   230  	mask := uint32(1)<<(h.B-15) - 1
   231  	// Example: if h.B == 18, then mask == 7,
   232  	// and fastrand & 7 == 0 with probability 1/8.
   233  	if fastrand()&mask == 0 {
   234  		h.noverflow++
   235  	}
   236  }
   237  
   238  func (h *hmap) newoverflow(t *maptype, b *bmap) *bmap {
   239  	var ovf *bmap
   240  	if h.extra != nil && h.extra.nextOverflow != nil {
   241  		// We have preallocated overflow buckets available.
   242  		// See makeBucketArray for more details.
   243  		ovf = h.extra.nextOverflow
   244  		if ovf.overflow(t) == nil {
   245  			// We're not at the end of the preallocated overflow buckets. Bump the pointer.
   246  			h.extra.nextOverflow = (*bmap)(add(unsafe.Pointer(ovf), uintptr(t.bucketsize)))
   247  		} else {
   248  			// This is the last preallocated overflow bucket.
   249  			// Reset the overflow pointer on this bucket,
   250  			// which was set to a non-nil sentinel value.
   251  			ovf.setoverflow(t, nil)
   252  			h.extra.nextOverflow = nil
   253  		}
   254  	} else {
   255  		ovf = (*bmap)(newobject(t.bucket))
   256  	}
   257  	h.incrnoverflow()
   258  	if t.bucket.kind&kindNoPointers != 0 {
   259  		h.createOverflow()
   260  		*h.extra.overflow[0] = append(*h.extra.overflow[0], ovf)
   261  	}
   262  	b.setoverflow(t, ovf)
   263  	return ovf
   264  }
   265  
   266  func (h *hmap) createOverflow() {
   267  	if h.extra == nil {
   268  		h.extra = new(mapextra)
   269  	}
   270  	if h.extra.overflow[0] == nil {
   271  		h.extra.overflow[0] = new([]*bmap)
   272  	}
   273  }
   274  
   275  func makemap64(t *maptype, hint int64, h *hmap) *hmap {
   276  	if int64(int(hint)) != hint {
   277  		hint = 0
   278  	}
   279  	return makemap(t, int(hint), h)
   280  }
   281  
   282  // makemap implements a Go map creation make(map[k]v, hint)
   283  // If the compiler has determined that the map or the first bucket
   284  // can be created on the stack, h and/or bucket may be non-nil.
   285  // If h != nil, the map can be created directly in h.
   286  // If h.buckets != nil, bucket pointed to can be used as the first bucket.
   287  func makemap(t *maptype, hint int, h *hmap) *hmap {
   288  	// The size of hmap should be 48 bytes on 64 bit
   289  	// and 28 bytes on 32 bit platforms.
   290  	if sz := unsafe.Sizeof(hmap{}); sz != 8+5*sys.PtrSize {
   291  		println("runtime: sizeof(hmap) =", sz, ", t.hmap.size =", t.hmap.size)
   292  		throw("bad hmap size")
   293  	}
   294  
   295  	if hint < 0 || hint > int(maxSliceCap(t.bucket.size)) {
   296  		hint = 0
   297  	}
   298  
   299  	if !ismapkey(t.key) {
   300  		throw("runtime.makemap: unsupported map key type")
   301  	}
   302  
   303  	if evacuatedX+1 != evacuatedY {
   304  		// evacuate relies on this relationship
   305  		throw("bad evacuatedN")
   306  	}
   307  
   308  	// initialize Hmap
   309  	if h == nil {
   310  		h = (*hmap)(newobject(t.hmap))
   311  	}
   312  	h.hash0 = fastrand()
   313  
   314  	// find size parameter which will hold the requested # of elements
   315  	B := uint8(0)
   316  	for overLoadFactor(hint, B) {
   317  		B++
   318  	}
   319  	h.B = B
   320  
   321  	// allocate initial hash table
   322  	// if B == 0, the buckets field is allocated lazily later (in mapassign)
   323  	// If hint is large zeroing this memory could take a while.
   324  	if h.B != 0 {
   325  		var nextOverflow *bmap
   326  		h.buckets, nextOverflow = makeBucketArray(t, h.B)
   327  		if nextOverflow != nil {
   328  			h.extra = new(mapextra)
   329  			h.extra.nextOverflow = nextOverflow
   330  		}
   331  	}
   332  
   333  	return h
   334  }
   335  
   336  // mapaccess1 returns a pointer to h[key].  Never returns nil, instead
   337  // it will return a reference to the zero object for the value type if
   338  // the key is not in the map.
   339  // NOTE: The returned pointer may keep the whole map live, so don't
   340  // hold onto it for very long.
   341  func mapaccess1(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
   342  	if raceenabled && h != nil {
   343  		callerpc := getcallerpc(unsafe.Pointer(&t))
   344  		pc := funcPC(mapaccess1)
   345  		racereadpc(unsafe.Pointer(h), callerpc, pc)
   346  		raceReadObjectPC(t.key, key, callerpc, pc)
   347  	}
   348  	if msanenabled && h != nil {
   349  		msanread(key, t.key.size)
   350  	}
   351  	if h == nil || h.count == 0 {
   352  		return unsafe.Pointer(&zeroVal[0])
   353  	}
   354  	if h.flags&hashWriting != 0 {
   355  		throw("concurrent map read and map write")
   356  	}
   357  	alg := t.key.alg
   358  	hash := alg.hash(key, uintptr(h.hash0))
   359  	m := bucketMask(h.B)
   360  	b := (*bmap)(add(h.buckets, (hash&m)*uintptr(t.bucketsize)))
   361  	if c := h.oldbuckets; c != nil {
   362  		if !h.sameSizeGrow() {
   363  			// There used to be half as many buckets; mask down one more power of two.
   364  			m >>= 1
   365  		}
   366  		oldb := (*bmap)(add(c, (hash&m)*uintptr(t.bucketsize)))
   367  		if !evacuated(oldb) {
   368  			b = oldb
   369  		}
   370  	}
   371  	top := tophash(hash)
   372  	for ; b != nil; b = b.overflow(t) {
   373  		for i := uintptr(0); i < bucketCnt; i++ {
   374  			if b.tophash[i] != top {
   375  				continue
   376  			}
   377  			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
   378  			if t.indirectkey {
   379  				k = *((*unsafe.Pointer)(k))
   380  			}
   381  			if alg.equal(key, k) {
   382  				v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
   383  				if t.indirectvalue {
   384  					v = *((*unsafe.Pointer)(v))
   385  				}
   386  				return v
   387  			}
   388  		}
   389  	}
   390  	return unsafe.Pointer(&zeroVal[0])
   391  }
   392  
   393  func mapaccess2(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, bool) {
   394  	if raceenabled && h != nil {
   395  		callerpc := getcallerpc(unsafe.Pointer(&t))
   396  		pc := funcPC(mapaccess2)
   397  		racereadpc(unsafe.Pointer(h), callerpc, pc)
   398  		raceReadObjectPC(t.key, key, callerpc, pc)
   399  	}
   400  	if msanenabled && h != nil {
   401  		msanread(key, t.key.size)
   402  	}
   403  	if h == nil || h.count == 0 {
   404  		return unsafe.Pointer(&zeroVal[0]), false
   405  	}
   406  	if h.flags&hashWriting != 0 {
   407  		throw("concurrent map read and map write")
   408  	}
   409  	alg := t.key.alg
   410  	hash := alg.hash(key, uintptr(h.hash0))
   411  	m := bucketMask(h.B)
   412  	b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize)))
   413  	if c := h.oldbuckets; c != nil {
   414  		if !h.sameSizeGrow() {
   415  			// There used to be half as many buckets; mask down one more power of two.
   416  			m >>= 1
   417  		}
   418  		oldb := (*bmap)(unsafe.Pointer(uintptr(c) + (hash&m)*uintptr(t.bucketsize)))
   419  		if !evacuated(oldb) {
   420  			b = oldb
   421  		}
   422  	}
   423  	top := tophash(hash)
   424  	for ; b != nil; b = b.overflow(t) {
   425  		for i := uintptr(0); i < bucketCnt; i++ {
   426  			if b.tophash[i] != top {
   427  				continue
   428  			}
   429  			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
   430  			if t.indirectkey {
   431  				k = *((*unsafe.Pointer)(k))
   432  			}
   433  			if alg.equal(key, k) {
   434  				v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
   435  				if t.indirectvalue {
   436  					v = *((*unsafe.Pointer)(v))
   437  				}
   438  				return v, true
   439  			}
   440  		}
   441  	}
   442  	return unsafe.Pointer(&zeroVal[0]), false
   443  }
   444  
   445  // returns both key and value. Used by map iterator
   446  func mapaccessK(t *maptype, h *hmap, key unsafe.Pointer) (unsafe.Pointer, unsafe.Pointer) {
   447  	if h == nil || h.count == 0 {
   448  		return nil, nil
   449  	}
   450  	alg := t.key.alg
   451  	hash := alg.hash(key, uintptr(h.hash0))
   452  	m := bucketMask(h.B)
   453  	b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + (hash&m)*uintptr(t.bucketsize)))
   454  	if c := h.oldbuckets; c != nil {
   455  		if !h.sameSizeGrow() {
   456  			// There used to be half as many buckets; mask down one more power of two.
   457  			m >>= 1
   458  		}
   459  		oldb := (*bmap)(unsafe.Pointer(uintptr(c) + (hash&m)*uintptr(t.bucketsize)))
   460  		if !evacuated(oldb) {
   461  			b = oldb
   462  		}
   463  	}
   464  	top := tophash(hash)
   465  	for ; b != nil; b = b.overflow(t) {
   466  		for i := uintptr(0); i < bucketCnt; i++ {
   467  			if b.tophash[i] != top {
   468  				continue
   469  			}
   470  			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
   471  			if t.indirectkey {
   472  				k = *((*unsafe.Pointer)(k))
   473  			}
   474  			if alg.equal(key, k) {
   475  				v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
   476  				if t.indirectvalue {
   477  					v = *((*unsafe.Pointer)(v))
   478  				}
   479  				return k, v
   480  			}
   481  		}
   482  	}
   483  	return nil, nil
   484  }
   485  
   486  func mapaccess1_fat(t *maptype, h *hmap, key, zero unsafe.Pointer) unsafe.Pointer {
   487  	v := mapaccess1(t, h, key)
   488  	if v == unsafe.Pointer(&zeroVal[0]) {
   489  		return zero
   490  	}
   491  	return v
   492  }
   493  
   494  func mapaccess2_fat(t *maptype, h *hmap, key, zero unsafe.Pointer) (unsafe.Pointer, bool) {
   495  	v := mapaccess1(t, h, key)
   496  	if v == unsafe.Pointer(&zeroVal[0]) {
   497  		return zero, false
   498  	}
   499  	return v, true
   500  }
   501  
   502  // Like mapaccess, but allocates a slot for the key if it is not present in the map.
   503  func mapassign(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
   504  	if h == nil {
   505  		panic(plainError("assignment to entry in nil map"))
   506  	}
   507  	if raceenabled {
   508  		callerpc := getcallerpc(unsafe.Pointer(&t))
   509  		pc := funcPC(mapassign)
   510  		racewritepc(unsafe.Pointer(h), callerpc, pc)
   511  		raceReadObjectPC(t.key, key, callerpc, pc)
   512  	}
   513  	if msanenabled {
   514  		msanread(key, t.key.size)
   515  	}
   516  	if h.flags&hashWriting != 0 {
   517  		throw("concurrent map writes")
   518  	}
   519  	alg := t.key.alg
   520  	hash := alg.hash(key, uintptr(h.hash0))
   521  
   522  	// Set hashWriting after calling alg.hash, since alg.hash may panic,
   523  	// in which case we have not actually done a write.
   524  	h.flags |= hashWriting
   525  
   526  	if h.buckets == nil {
   527  		h.buckets = newobject(t.bucket) // newarray(t.bucket, 1)
   528  	}
   529  
   530  again:
   531  	bucket := hash & bucketMask(h.B)
   532  	if h.growing() {
   533  		growWork(t, h, bucket)
   534  	}
   535  	b := (*bmap)(unsafe.Pointer(uintptr(h.buckets) + bucket*uintptr(t.bucketsize)))
   536  	top := tophash(hash)
   537  
   538  	var inserti *uint8
   539  	var insertk unsafe.Pointer
   540  	var val unsafe.Pointer
   541  	for {
   542  		for i := uintptr(0); i < bucketCnt; i++ {
   543  			if b.tophash[i] != top {
   544  				if b.tophash[i] == empty && inserti == nil {
   545  					inserti = &b.tophash[i]
   546  					insertk = add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
   547  					val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
   548  				}
   549  				continue
   550  			}
   551  			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
   552  			if t.indirectkey {
   553  				k = *((*unsafe.Pointer)(k))
   554  			}
   555  			if !alg.equal(key, k) {
   556  				continue
   557  			}
   558  			// already have a mapping for key. Update it.
   559  			if t.needkeyupdate {
   560  				typedmemmove(t.key, k, key)
   561  			}
   562  			val = add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
   563  			goto done
   564  		}
   565  		ovf := b.overflow(t)
   566  		if ovf == nil {
   567  			break
   568  		}
   569  		b = ovf
   570  	}
   571  
   572  	// Did not find mapping for key. Allocate new cell & add entry.
   573  
   574  	// If we hit the max load factor or we have too many overflow buckets,
   575  	// and we're not already in the middle of growing, start growing.
   576  	if !h.growing() && (overLoadFactor(h.count+1, h.B) || tooManyOverflowBuckets(h.noverflow, h.B)) {
   577  		hashGrow(t, h)
   578  		goto again // Growing the table invalidates everything, so try again
   579  	}
   580  
   581  	if inserti == nil {
   582  		// all current buckets are full, allocate a new one.
   583  		newb := h.newoverflow(t, b)
   584  		inserti = &newb.tophash[0]
   585  		insertk = add(unsafe.Pointer(newb), dataOffset)
   586  		val = add(insertk, bucketCnt*uintptr(t.keysize))
   587  	}
   588  
   589  	// store new key/value at insert position
   590  	if t.indirectkey {
   591  		kmem := newobject(t.key)
   592  		*(*unsafe.Pointer)(insertk) = kmem
   593  		insertk = kmem
   594  	}
   595  	if t.indirectvalue {
   596  		vmem := newobject(t.elem)
   597  		*(*unsafe.Pointer)(val) = vmem
   598  	}
   599  	typedmemmove(t.key, insertk, key)
   600  	*inserti = top
   601  	h.count++
   602  
   603  done:
   604  	if h.flags&hashWriting == 0 {
   605  		throw("concurrent map writes")
   606  	}
   607  	h.flags &^= hashWriting
   608  	if t.indirectvalue {
   609  		val = *((*unsafe.Pointer)(val))
   610  	}
   611  	return val
   612  }
   613  
   614  func mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
   615  	if raceenabled && h != nil {
   616  		callerpc := getcallerpc(unsafe.Pointer(&t))
   617  		pc := funcPC(mapdelete)
   618  		racewritepc(unsafe.Pointer(h), callerpc, pc)
   619  		raceReadObjectPC(t.key, key, callerpc, pc)
   620  	}
   621  	if msanenabled && h != nil {
   622  		msanread(key, t.key.size)
   623  	}
   624  	if h == nil || h.count == 0 {
   625  		return
   626  	}
   627  	if h.flags&hashWriting != 0 {
   628  		throw("concurrent map writes")
   629  	}
   630  
   631  	alg := t.key.alg
   632  	hash := alg.hash(key, uintptr(h.hash0))
   633  
   634  	// Set hashWriting after calling alg.hash, since alg.hash may panic,
   635  	// in which case we have not actually done a write (delete).
   636  	h.flags |= hashWriting
   637  
   638  	bucket := hash & bucketMask(h.B)
   639  	if h.growing() {
   640  		growWork(t, h, bucket)
   641  	}
   642  	b := (*bmap)(add(h.buckets, bucket*uintptr(t.bucketsize)))
   643  	top := tophash(hash)
   644  search:
   645  	for ; b != nil; b = b.overflow(t) {
   646  		for i := uintptr(0); i < bucketCnt; i++ {
   647  			if b.tophash[i] != top {
   648  				continue
   649  			}
   650  			k := add(unsafe.Pointer(b), dataOffset+i*uintptr(t.keysize))
   651  			k2 := k
   652  			if t.indirectkey {
   653  				k2 = *((*unsafe.Pointer)(k2))
   654  			}
   655  			if !alg.equal(key, k2) {
   656  				continue
   657  			}
   658  			// Only clear key if there are pointers in it.
   659  			if t.indirectkey {
   660  				*(*unsafe.Pointer)(k) = nil
   661  			} else if t.key.kind&kindNoPointers == 0 {
   662  				memclrHasPointers(k, t.key.size)
   663  			}
   664  			// Only clear value if there are pointers in it.
   665  			if t.indirectvalue || t.elem.kind&kindNoPointers == 0 {
   666  				v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+i*uintptr(t.valuesize))
   667  				if t.indirectvalue {
   668  					*(*unsafe.Pointer)(v) = nil
   669  				} else {
   670  					memclrHasPointers(v, t.elem.size)
   671  				}
   672  			}
   673  			b.tophash[i] = empty
   674  			h.count--
   675  			break search
   676  		}
   677  	}
   678  
   679  	if h.flags&hashWriting == 0 {
   680  		throw("concurrent map writes")
   681  	}
   682  	h.flags &^= hashWriting
   683  }
   684  
   685  func mapiterinit(t *maptype, h *hmap, it *hiter) {
   686  	// Clear pointer fields so garbage collector does not complain.
   687  	it.key = nil
   688  	it.value = nil
   689  	it.t = nil
   690  	it.h = nil
   691  	it.buckets = nil
   692  	it.bptr = nil
   693  	it.overflow[0] = nil
   694  	it.overflow[1] = nil
   695  
   696  	if raceenabled && h != nil {
   697  		callerpc := getcallerpc(unsafe.Pointer(&t))
   698  		racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiterinit))
   699  	}
   700  
   701  	if h == nil || h.count == 0 {
   702  		it.key = nil
   703  		it.value = nil
   704  		return
   705  	}
   706  
   707  	if unsafe.Sizeof(hiter{})/sys.PtrSize != 12 {
   708  		throw("hash_iter size incorrect") // see ../../cmd/internal/gc/reflect.go
   709  	}
   710  	it.t = t
   711  	it.h = h
   712  
   713  	// grab snapshot of bucket state
   714  	it.B = h.B
   715  	it.buckets = h.buckets
   716  	if t.bucket.kind&kindNoPointers != 0 {
   717  		// Allocate the current slice and remember pointers to both current and old.
   718  		// This preserves all relevant overflow buckets alive even if
   719  		// the table grows and/or overflow buckets are added to the table
   720  		// while we are iterating.
   721  		h.createOverflow()
   722  		it.overflow = h.extra.overflow
   723  	}
   724  
   725  	// decide where to start
   726  	r := uintptr(fastrand())
   727  	if h.B > 31-bucketCntBits {
   728  		r += uintptr(fastrand()) << 31
   729  	}
   730  	it.startBucket = r & bucketMask(h.B)
   731  	it.offset = uint8(r >> h.B & (bucketCnt - 1))
   732  
   733  	// iterator state
   734  	it.bucket = it.startBucket
   735  	it.wrapped = false
   736  	it.bptr = nil
   737  
   738  	// Remember we have an iterator.
   739  	// Can run concurrently with another hash_iter_init().
   740  	if old := h.flags; old&(iterator|oldIterator) != iterator|oldIterator {
   741  		atomic.Or8(&h.flags, iterator|oldIterator)
   742  	}
   743  
   744  	mapiternext(it)
   745  }
   746  
   747  func mapiternext(it *hiter) {
   748  	h := it.h
   749  	if raceenabled {
   750  		callerpc := getcallerpc(unsafe.Pointer(&it))
   751  		racereadpc(unsafe.Pointer(h), callerpc, funcPC(mapiternext))
   752  	}
   753  	if h.flags&hashWriting != 0 {
   754  		throw("concurrent map iteration and map write")
   755  	}
   756  	t := it.t
   757  	bucket := it.bucket
   758  	b := it.bptr
   759  	i := it.i
   760  	checkBucket := it.checkBucket
   761  	alg := t.key.alg
   762  
   763  next:
   764  	if b == nil {
   765  		if bucket == it.startBucket && it.wrapped {
   766  			// end of iteration
   767  			it.key = nil
   768  			it.value = nil
   769  			return
   770  		}
   771  		if h.growing() && it.B == h.B {
   772  			// Iterator was started in the middle of a grow, and the grow isn't done yet.
   773  			// If the bucket we're looking at hasn't been filled in yet (i.e. the old
   774  			// bucket hasn't been evacuated) then we need to iterate through the old
   775  			// bucket and only return the ones that will be migrated to this bucket.
   776  			oldbucket := bucket & it.h.oldbucketmask()
   777  			b = (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
   778  			if !evacuated(b) {
   779  				checkBucket = bucket
   780  			} else {
   781  				b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize)))
   782  				checkBucket = noCheck
   783  			}
   784  		} else {
   785  			b = (*bmap)(add(it.buckets, bucket*uintptr(t.bucketsize)))
   786  			checkBucket = noCheck
   787  		}
   788  		bucket++
   789  		if bucket == bucketShift(it.B) {
   790  			bucket = 0
   791  			it.wrapped = true
   792  		}
   793  		i = 0
   794  	}
   795  	for ; i < bucketCnt; i++ {
   796  		offi := (i + it.offset) & (bucketCnt - 1)
   797  		if b.tophash[offi] == empty || b.tophash[offi] == evacuatedEmpty {
   798  			continue
   799  		}
   800  		k := add(unsafe.Pointer(b), dataOffset+uintptr(offi)*uintptr(t.keysize))
   801  		if t.indirectkey {
   802  			k = *((*unsafe.Pointer)(k))
   803  		}
   804  		v := add(unsafe.Pointer(b), dataOffset+bucketCnt*uintptr(t.keysize)+uintptr(offi)*uintptr(t.valuesize))
   805  		if checkBucket != noCheck && !h.sameSizeGrow() {
   806  			// Special case: iterator was started during a grow to a larger size
   807  			// and the grow is not done yet. We're working on a bucket whose
   808  			// oldbucket has not been evacuated yet. Or at least, it wasn't
   809  			// evacuated when we started the bucket. So we're iterating
   810  			// through the oldbucket, skipping any keys that will go
   811  			// to the other new bucket (each oldbucket expands to two
   812  			// buckets during a grow).
   813  			if t.reflexivekey || alg.equal(k, k) {
   814  				// If the item in the oldbucket is not destined for
   815  				// the current new bucket in the iteration, skip it.
   816  				hash := alg.hash(k, uintptr(h.hash0))
   817  				if hash&bucketMask(it.B) != checkBucket {
   818  					continue
   819  				}
   820  			} else {
   821  				// Hash isn't repeatable if k != k (NaNs).  We need a
   822  				// repeatable and randomish choice of which direction
   823  				// to send NaNs during evacuation. We'll use the low
   824  				// bit of tophash to decide which way NaNs go.
   825  				// NOTE: this case is why we need two evacuate tophash
   826  				// values, evacuatedX and evacuatedY, that differ in
   827  				// their low bit.
   828  				if checkBucket>>(it.B-1) != uintptr(b.tophash[offi]&1) {
   829  					continue
   830  				}
   831  			}
   832  		}
   833  		if (b.tophash[offi] != evacuatedX && b.tophash[offi] != evacuatedY) ||
   834  			!(t.reflexivekey || alg.equal(k, k)) {
   835  			// This is the golden data, we can return it.
   836  			// OR
   837  			// key!=key, so the entry can't be deleted or updated, so we can just return it.
   838  			// That's lucky for us because when key!=key we can't look it up successfully.
   839  			it.key = k
   840  			if t.indirectvalue {
   841  				v = *((*unsafe.Pointer)(v))
   842  			}
   843  			it.value = v
   844  		} else {
   845  			// The hash table has grown since the iterator was started.
   846  			// The golden data for this key is now somewhere else.
   847  			// Check the current hash table for the data.
   848  			// This code handles the case where the key
   849  			// has been deleted, updated, or deleted and reinserted.
   850  			// NOTE: we need to regrab the key as it has potentially been
   851  			// updated to an equal() but not identical key (e.g. +0.0 vs -0.0).
   852  			rk, rv := mapaccessK(t, h, k)
   853  			if rk == nil {
   854  				continue // key has been deleted
   855  			}
   856  			it.key = rk
   857  			it.value = rv
   858  		}
   859  		it.bucket = bucket
   860  		if it.bptr != b { // avoid unnecessary write barrier; see issue 14921
   861  			it.bptr = b
   862  		}
   863  		it.i = i + 1
   864  		it.checkBucket = checkBucket
   865  		return
   866  	}
   867  	b = b.overflow(t)
   868  	i = 0
   869  	goto next
   870  }
   871  
   872  func makeBucketArray(t *maptype, b uint8) (buckets unsafe.Pointer, nextOverflow *bmap) {
   873  	base := bucketShift(b)
   874  	nbuckets := base
   875  	// For small b, overflow buckets are unlikely.
   876  	// Avoid the overhead of the calculation.
   877  	if b >= 4 {
   878  		// Add on the estimated number of overflow buckets
   879  		// required to insert the median number of elements
   880  		// used with this value of b.
   881  		nbuckets += bucketShift(b - 4)
   882  		sz := t.bucket.size * nbuckets
   883  		up := roundupsize(sz)
   884  		if up != sz {
   885  			nbuckets = up / t.bucket.size
   886  		}
   887  	}
   888  	buckets = newarray(t.bucket, int(nbuckets))
   889  	if base != nbuckets {
   890  		// We preallocated some overflow buckets.
   891  		// To keep the overhead of tracking these overflow buckets to a minimum,
   892  		// we use the convention that if a preallocated overflow bucket's overflow
   893  		// pointer is nil, then there are more available by bumping the pointer.
   894  		// We need a safe non-nil pointer for the last overflow bucket; just use buckets.
   895  		nextOverflow = (*bmap)(add(buckets, base*uintptr(t.bucketsize)))
   896  		last := (*bmap)(add(buckets, (nbuckets-1)*uintptr(t.bucketsize)))
   897  		last.setoverflow(t, (*bmap)(buckets))
   898  	}
   899  	return buckets, nextOverflow
   900  }
   901  
   902  func hashGrow(t *maptype, h *hmap) {
   903  	// If we've hit the load factor, get bigger.
   904  	// Otherwise, there are too many overflow buckets,
   905  	// so keep the same number of buckets and "grow" laterally.
   906  	bigger := uint8(1)
   907  	if !overLoadFactor(h.count+1, h.B) {
   908  		bigger = 0
   909  		h.flags |= sameSizeGrow
   910  	}
   911  	oldbuckets := h.buckets
   912  	newbuckets, nextOverflow := makeBucketArray(t, h.B+bigger)
   913  
   914  	flags := h.flags &^ (iterator | oldIterator)
   915  	if h.flags&iterator != 0 {
   916  		flags |= oldIterator
   917  	}
   918  	// commit the grow (atomic wrt gc)
   919  	h.B += bigger
   920  	h.flags = flags
   921  	h.oldbuckets = oldbuckets
   922  	h.buckets = newbuckets
   923  	h.nevacuate = 0
   924  	h.noverflow = 0
   925  
   926  	if h.extra != nil && h.extra.overflow[0] != nil {
   927  		// Promote current overflow buckets to the old generation.
   928  		if h.extra.overflow[1] != nil {
   929  			throw("overflow is not nil")
   930  		}
   931  		h.extra.overflow[1] = h.extra.overflow[0]
   932  		h.extra.overflow[0] = nil
   933  	}
   934  	if nextOverflow != nil {
   935  		if h.extra == nil {
   936  			h.extra = new(mapextra)
   937  		}
   938  		h.extra.nextOverflow = nextOverflow
   939  	}
   940  
   941  	// the actual copying of the hash table data is done incrementally
   942  	// by growWork() and evacuate().
   943  }
   944  
   945  // overLoadFactor reports whether count items placed in 1<<B buckets is over loadFactor.
   946  func overLoadFactor(count int, B uint8) bool {
   947  	return count > bucketCnt && uintptr(count) > loadFactorNum*(bucketShift(B)/loadFactorDen)
   948  }
   949  
   950  // tooManyOverflowBuckets reports whether noverflow buckets is too many for a map with 1<<B buckets.
   951  // Note that most of these overflow buckets must be in sparse use;
   952  // if use was dense, then we'd have already triggered regular map growth.
   953  func tooManyOverflowBuckets(noverflow uint16, B uint8) bool {
   954  	// If the threshold is too low, we do extraneous work.
   955  	// If the threshold is too high, maps that grow and shrink can hold on to lots of unused memory.
   956  	// "too many" means (approximately) as many overflow buckets as regular buckets.
   957  	// See incrnoverflow for more details.
   958  	if B > 15 {
   959  		B = 15
   960  	}
   961  	// The compiler doesn't see here that B < 16; mask B to generate shorter shift code.
   962  	return noverflow >= uint16(1)<<(B&15)
   963  }
   964  
   965  // growing reports whether h is growing. The growth may be to the same size or bigger.
   966  func (h *hmap) growing() bool {
   967  	return h.oldbuckets != nil
   968  }
   969  
   970  // sameSizeGrow reports whether the current growth is to a map of the same size.
   971  func (h *hmap) sameSizeGrow() bool {
   972  	return h.flags&sameSizeGrow != 0
   973  }
   974  
   975  // noldbuckets calculates the number of buckets prior to the current map growth.
   976  func (h *hmap) noldbuckets() uintptr {
   977  	oldB := h.B
   978  	if !h.sameSizeGrow() {
   979  		oldB--
   980  	}
   981  	return bucketShift(oldB)
   982  }
   983  
   984  // oldbucketmask provides a mask that can be applied to calculate n % noldbuckets().
   985  func (h *hmap) oldbucketmask() uintptr {
   986  	return h.noldbuckets() - 1
   987  }
   988  
   989  func growWork(t *maptype, h *hmap, bucket uintptr) {
   990  	// make sure we evacuate the oldbucket corresponding
   991  	// to the bucket we're about to use
   992  	evacuate(t, h, bucket&h.oldbucketmask())
   993  
   994  	// evacuate one more oldbucket to make progress on growing
   995  	if h.growing() {
   996  		evacuate(t, h, h.nevacuate)
   997  	}
   998  }
   999  
  1000  func bucketEvacuated(t *maptype, h *hmap, bucket uintptr) bool {
  1001  	b := (*bmap)(add(h.oldbuckets, bucket*uintptr(t.bucketsize)))
  1002  	return evacuated(b)
  1003  }
  1004  
  1005  // evacDst is an evacuation destination.
  1006  type evacDst struct {
  1007  	b *bmap          // current destination bucket
  1008  	i int            // key/val index into b
  1009  	k unsafe.Pointer // pointer to current key storage
  1010  	v unsafe.Pointer // pointer to current value storage
  1011  }
  1012  
  1013  func evacuate(t *maptype, h *hmap, oldbucket uintptr) {
  1014  	b := (*bmap)(add(h.oldbuckets, oldbucket*uintptr(t.bucketsize)))
  1015  	newbit := h.noldbuckets()
  1016  	if !evacuated(b) {
  1017  		// TODO: reuse overflow buckets instead of using new ones, if there
  1018  		// is no iterator using the old buckets.  (If !oldIterator.)
  1019  
  1020  		// xy contains the x and y (low and high) evacuation destinations.
  1021  		var xy [2]evacDst
  1022  		x := &xy[0]
  1023  		x.b = (*bmap)(add(h.buckets, oldbucket*uintptr(t.bucketsize)))
  1024  		x.k = add(unsafe.Pointer(x.b), dataOffset)
  1025  		x.v = add(x.k, bucketCnt*uintptr(t.keysize))
  1026  
  1027  		if !h.sameSizeGrow() {
  1028  			// Only calculate y pointers if we're growing bigger.
  1029  			// Otherwise GC can see bad pointers.
  1030  			y := &xy[1]
  1031  			y.b = (*bmap)(add(h.buckets, (oldbucket+newbit)*uintptr(t.bucketsize)))
  1032  			y.k = add(unsafe.Pointer(y.b), dataOffset)
  1033  			y.v = add(y.k, bucketCnt*uintptr(t.keysize))
  1034  		}
  1035  
  1036  		for ; b != nil; b = b.overflow(t) {
  1037  			k := add(unsafe.Pointer(b), dataOffset)
  1038  			v := add(k, bucketCnt*uintptr(t.keysize))
  1039  			for i := 0; i < bucketCnt; i, k, v = i+1, add(k, uintptr(t.keysize)), add(v, uintptr(t.valuesize)) {
  1040  				top := b.tophash[i]
  1041  				if top == empty {
  1042  					b.tophash[i] = evacuatedEmpty
  1043  					continue
  1044  				}
  1045  				if top < minTopHash {
  1046  					throw("bad map state")
  1047  				}
  1048  				k2 := k
  1049  				if t.indirectkey {
  1050  					k2 = *((*unsafe.Pointer)(k2))
  1051  				}
  1052  				var useY uint8
  1053  				if !h.sameSizeGrow() {
  1054  					// Compute hash to make our evacuation decision (whether we need
  1055  					// to send this key/value to bucket x or bucket y).
  1056  					hash := t.key.alg.hash(k2, uintptr(h.hash0))
  1057  					if h.flags&iterator != 0 && !t.reflexivekey && !t.key.alg.equal(k2, k2) {
  1058  						// If key != key (NaNs), then the hash could be (and probably
  1059  						// will be) entirely different from the old hash. Moreover,
  1060  						// it isn't reproducible. Reproducibility is required in the
  1061  						// presence of iterators, as our evacuation decision must
  1062  						// match whatever decision the iterator made.
  1063  						// Fortunately, we have the freedom to send these keys either
  1064  						// way. Also, tophash is meaningless for these kinds of keys.
  1065  						// We let the low bit of tophash drive the evacuation decision.
  1066  						// We recompute a new random tophash for the next level so
  1067  						// these keys will get evenly distributed across all buckets
  1068  						// after multiple grows.
  1069  						useY = top & 1
  1070  						top = tophash(hash)
  1071  					} else {
  1072  						if hash&newbit != 0 {
  1073  							useY = 1
  1074  						}
  1075  					}
  1076  				}
  1077  
  1078  				b.tophash[i] = evacuatedX + useY // evacuatedX + 1 == evacuatedY, enforced in makemap
  1079  				dst := &xy[useY]                 // evacuation destination
  1080  
  1081  				if dst.i == bucketCnt {
  1082  					dst.b = h.newoverflow(t, dst.b)
  1083  					dst.i = 0
  1084  					dst.k = add(unsafe.Pointer(dst.b), dataOffset)
  1085  					dst.v = add(dst.k, bucketCnt*uintptr(t.keysize))
  1086  				}
  1087  				dst.b.tophash[dst.i&(bucketCnt-1)] = top // mask dst.i as an optimization, to avoid a bounds check
  1088  				if t.indirectkey {
  1089  					*(*unsafe.Pointer)(dst.k) = k2 // copy pointer
  1090  				} else {
  1091  					typedmemmove(t.key, dst.k, k) // copy value
  1092  				}
  1093  				if t.indirectvalue {
  1094  					*(*unsafe.Pointer)(dst.v) = *(*unsafe.Pointer)(v)
  1095  				} else {
  1096  					typedmemmove(t.elem, dst.v, v)
  1097  				}
  1098  				dst.i++
  1099  				// These updates might push these pointers past the end of the
  1100  				// key or value arrays.  That's ok, as we have the overflow pointer
  1101  				// at the end of the bucket to protect against pointing past the
  1102  				// end of the bucket.
  1103  				dst.k = add(dst.k, uintptr(t.keysize))
  1104  				dst.v = add(dst.v, uintptr(t.valuesize))
  1105  			}
  1106  		}
  1107  		// Unlink the overflow buckets & clear key/value to help GC.
  1108  		if h.flags&oldIterator == 0 && t.bucket.kind&kindNoPointers == 0 {
  1109  			b := add(h.oldbuckets, oldbucket*uintptr(t.bucketsize))
  1110  			// Preserve b.tophash because the evacuation
  1111  			// state is maintained there.
  1112  			ptr := add(b, dataOffset)
  1113  			n := uintptr(t.bucketsize) - dataOffset
  1114  			memclrHasPointers(ptr, n)
  1115  		}
  1116  	}
  1117  
  1118  	if oldbucket == h.nevacuate {
  1119  		advanceEvacuationMark(h, t, newbit)
  1120  	}
  1121  }
  1122  
  1123  func advanceEvacuationMark(h *hmap, t *maptype, newbit uintptr) {
  1124  	h.nevacuate++
  1125  	// Experiments suggest that 1024 is overkill by at least an order of magnitude.
  1126  	// Put it in there as a safeguard anyway, to ensure O(1) behavior.
  1127  	stop := h.nevacuate + 1024
  1128  	if stop > newbit {
  1129  		stop = newbit
  1130  	}
  1131  	for h.nevacuate != stop && bucketEvacuated(t, h, h.nevacuate) {
  1132  		h.nevacuate++
  1133  	}
  1134  	if h.nevacuate == newbit { // newbit == # of oldbuckets
  1135  		// Growing is all done. Free old main bucket array.
  1136  		h.oldbuckets = nil
  1137  		// Can discard old overflow buckets as well.
  1138  		// If they are still referenced by an iterator,
  1139  		// then the iterator holds a pointers to the slice.
  1140  		if h.extra != nil {
  1141  			h.extra.overflow[1] = nil
  1142  		}
  1143  		h.flags &^= sameSizeGrow
  1144  	}
  1145  }
  1146  
  1147  func ismapkey(t *_type) bool {
  1148  	return t.alg.hash != nil
  1149  }
  1150  
  1151  // Reflect stubs. Called from ../reflect/asm_*.s
  1152  
  1153  //go:linkname reflect_makemap reflect.makemap
  1154  func reflect_makemap(t *maptype, cap int) *hmap {
  1155  	// Check invariants and reflects math.
  1156  	if sz := unsafe.Sizeof(hmap{}); sz != t.hmap.size {
  1157  		println("runtime: sizeof(hmap) =", sz, ", t.hmap.size =", t.hmap.size)
  1158  		throw("bad hmap size")
  1159  	}
  1160  	if t.key.size > maxKeySize && (!t.indirectkey || t.keysize != uint8(sys.PtrSize)) ||
  1161  		t.key.size <= maxKeySize && (t.indirectkey || t.keysize != uint8(t.key.size)) {
  1162  		throw("key size wrong")
  1163  	}
  1164  	if t.elem.size > maxValueSize && (!t.indirectvalue || t.valuesize != uint8(sys.PtrSize)) ||
  1165  		t.elem.size <= maxValueSize && (t.indirectvalue || t.valuesize != uint8(t.elem.size)) {
  1166  		throw("value size wrong")
  1167  	}
  1168  	if t.key.align > bucketCnt {
  1169  		throw("key align too big")
  1170  	}
  1171  	if t.elem.align > bucketCnt {
  1172  		throw("value align too big")
  1173  	}
  1174  	if t.key.size%uintptr(t.key.align) != 0 {
  1175  		throw("key size not a multiple of key align")
  1176  	}
  1177  	if t.elem.size%uintptr(t.elem.align) != 0 {
  1178  		throw("value size not a multiple of value align")
  1179  	}
  1180  	if bucketCnt < 8 {
  1181  		throw("bucketsize too small for proper alignment")
  1182  	}
  1183  	if dataOffset%uintptr(t.key.align) != 0 {
  1184  		throw("need padding in bucket (key)")
  1185  	}
  1186  	if dataOffset%uintptr(t.elem.align) != 0 {
  1187  		throw("need padding in bucket (value)")
  1188  	}
  1189  
  1190  	return makemap(t, cap, nil)
  1191  }
  1192  
  1193  //go:linkname reflect_mapaccess reflect.mapaccess
  1194  func reflect_mapaccess(t *maptype, h *hmap, key unsafe.Pointer) unsafe.Pointer {
  1195  	val, ok := mapaccess2(t, h, key)
  1196  	if !ok {
  1197  		// reflect wants nil for a missing element
  1198  		val = nil
  1199  	}
  1200  	return val
  1201  }
  1202  
  1203  //go:linkname reflect_mapassign reflect.mapassign
  1204  func reflect_mapassign(t *maptype, h *hmap, key unsafe.Pointer, val unsafe.Pointer) {
  1205  	p := mapassign(t, h, key)
  1206  	typedmemmove(t.elem, p, val)
  1207  }
  1208  
  1209  //go:linkname reflect_mapdelete reflect.mapdelete
  1210  func reflect_mapdelete(t *maptype, h *hmap, key unsafe.Pointer) {
  1211  	mapdelete(t, h, key)
  1212  }
  1213  
  1214  //go:linkname reflect_mapiterinit reflect.mapiterinit
  1215  func reflect_mapiterinit(t *maptype, h *hmap) *hiter {
  1216  	it := new(hiter)
  1217  	mapiterinit(t, h, it)
  1218  	return it
  1219  }
  1220  
  1221  //go:linkname reflect_mapiternext reflect.mapiternext
  1222  func reflect_mapiternext(it *hiter) {
  1223  	mapiternext(it)
  1224  }
  1225  
  1226  //go:linkname reflect_mapiterkey reflect.mapiterkey
  1227  func reflect_mapiterkey(it *hiter) unsafe.Pointer {
  1228  	return it.key
  1229  }
  1230  
  1231  //go:linkname reflect_maplen reflect.maplen
  1232  func reflect_maplen(h *hmap) int {
  1233  	if h == nil {
  1234  		return 0
  1235  	}
  1236  	if raceenabled {
  1237  		callerpc := getcallerpc(unsafe.Pointer(&h))
  1238  		racereadpc(unsafe.Pointer(h), callerpc, funcPC(reflect_maplen))
  1239  	}
  1240  	return h.count
  1241  }
  1242  
  1243  //go:linkname reflect_ismapkey reflect.ismapkey
  1244  func reflect_ismapkey(t *_type) bool {
  1245  	return ismapkey(t)
  1246  }
  1247  
  1248  const maxZero = 1024 // must match value in ../cmd/compile/internal/gc/walk.go
  1249  var zeroVal [maxZero]byte