github.com/fisco-bcos/crypto@v0.0.0-20200202032121-bd8ab0b5d4f1/ecdsa/ecdsa.go (about) 1 // Copyright 2011 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package ecdsa implements the Elliptic Curve Digital Signature Algorithm, as 6 // defined in FIPS 186-3. 7 // 8 // This implementation derives the nonce from an AES-CTR CSPRNG keyed by 9 // ChopMD(256, SHA2-512(priv.D || entropy || hash)). The CSPRNG key is IRO by 10 // a result of Coron; the AES-CTR stream is IRO under standard assumptions. 11 package ecdsa 12 13 // References: 14 // [NSA]: Suite B implementer's guide to FIPS 186-3, 15 // https://apps.nsa.gov/iaarchive/library/ia-guidance/ia-solutions-for-classified/algorithm-guidance/suite-b-implementers-guide-to-fips-186-3-ecdsa.cfm 16 // [SECG]: SECG, SEC1 17 // http://www.secg.org/sec1-v2.pdf 18 19 import ( 20 "crypto" 21 "crypto/aes" 22 "crypto/cipher" 23 "github.com/FISCO-BCOS/crypto/elliptic" 24 "github.com/FISCO-BCOS/crypto/internal/randutil" 25 "crypto/sha512" 26 "encoding/asn1" 27 "errors" 28 "io" 29 "math/big" 30 ) 31 32 // A invertible implements fast inverse mod Curve.Params().N 33 type invertible interface { 34 // Inverse returns the inverse of k in GF(P) 35 Inverse(k *big.Int) *big.Int 36 } 37 38 // combinedMult implements fast multiplication S1*g + S2*p (g - generator, p - arbitrary point) 39 type combinedMult interface { 40 CombinedMult(bigX, bigY *big.Int, baseScalar, scalar []byte) (x, y *big.Int) 41 } 42 43 const ( 44 aesIV = "IV for ECDSA CTR" 45 ) 46 47 // PublicKey represents an ECDSA public key. 48 type PublicKey struct { 49 elliptic.Curve 50 X, Y *big.Int 51 } 52 53 // PrivateKey represents an ECDSA private key. 54 type PrivateKey struct { 55 PublicKey 56 D *big.Int 57 } 58 59 type ecdsaSignature struct { 60 R, S *big.Int 61 } 62 63 // Public returns the public key corresponding to priv. 64 func (priv *PrivateKey) Public() crypto.PublicKey { 65 return &priv.PublicKey 66 } 67 68 // Sign signs digest with priv, reading randomness from rand. The opts argument 69 // is not currently used but, in keeping with the crypto.Signer interface, 70 // should be the hash function used to digest the message. 71 // 72 // This method implements crypto.Signer, which is an interface to support keys 73 // where the private part is kept in, for example, a hardware module. Common 74 // uses should use the Sign function in this package directly. 75 func (priv *PrivateKey) Sign(rand io.Reader, digest []byte, opts crypto.SignerOpts) ([]byte, error) { 76 r, s, err := Sign(rand, priv, digest) 77 if err != nil { 78 return nil, err 79 } 80 81 return asn1.Marshal(ecdsaSignature{r, s}) 82 } 83 84 var one = new(big.Int).SetInt64(1) 85 86 // randFieldElement returns a random element of the field underlying the given 87 // curve using the procedure given in [NSA] A.2.1. 88 func randFieldElement(c elliptic.Curve, rand io.Reader) (k *big.Int, err error) { 89 params := c.Params() 90 b := make([]byte, params.BitSize/8+8) 91 _, err = io.ReadFull(rand, b) 92 if err != nil { 93 return 94 } 95 96 k = new(big.Int).SetBytes(b) 97 n := new(big.Int).Sub(params.N, one) 98 k.Mod(k, n) 99 k.Add(k, one) 100 return 101 } 102 103 // GenerateKey generates a public and private key pair. 104 func GenerateKey(c elliptic.Curve, rand io.Reader) (*PrivateKey, error) { 105 k, err := randFieldElement(c, rand) 106 if err != nil { 107 return nil, err 108 } 109 110 priv := new(PrivateKey) 111 priv.PublicKey.Curve = c 112 priv.D = k 113 priv.PublicKey.X, priv.PublicKey.Y = c.ScalarBaseMult(k.Bytes()) 114 return priv, nil 115 } 116 117 // hashToInt converts a hash value to an integer. There is some disagreement 118 // about how this is done. [NSA] suggests that this is done in the obvious 119 // manner, but [SECG] truncates the hash to the bit-length of the curve order 120 // first. We follow [SECG] because that's what OpenSSL does. Additionally, 121 // OpenSSL right shifts excess bits from the number if the hash is too large 122 // and we mirror that too. 123 func hashToInt(hash []byte, c elliptic.Curve) *big.Int { 124 orderBits := c.Params().N.BitLen() 125 orderBytes := (orderBits + 7) / 8 126 if len(hash) > orderBytes { 127 hash = hash[:orderBytes] 128 } 129 130 ret := new(big.Int).SetBytes(hash) 131 excess := len(hash)*8 - orderBits 132 if excess > 0 { 133 ret.Rsh(ret, uint(excess)) 134 } 135 return ret 136 } 137 138 // fermatInverse calculates the inverse of k in GF(P) using Fermat's method. 139 // This has better constant-time properties than Euclid's method (implemented 140 // in math/big.Int.ModInverse) although math/big itself isn't strictly 141 // constant-time so it's not perfect. 142 func fermatInverse(k, N *big.Int) *big.Int { 143 two := big.NewInt(2) 144 nMinus2 := new(big.Int).Sub(N, two) 145 return new(big.Int).Exp(k, nMinus2, N) 146 } 147 148 var errZeroParam = errors.New("zero parameter") 149 150 // Sign signs a hash (which should be the result of hashing a larger message) 151 // using the private key, priv. If the hash is longer than the bit-length of the 152 // private key's curve order, the hash will be truncated to that length. It 153 // returns the signature as a pair of integers. The security of the private key 154 // depends on the entropy of rand. 155 func Sign(rand io.Reader, priv *PrivateKey, hash []byte) (r, s *big.Int, err error) { 156 randutil.MaybeReadByte(rand) 157 158 // Get min(log2(q) / 2, 256) bits of entropy from rand. 159 entropylen := (priv.Curve.Params().BitSize + 7) / 16 160 if entropylen > 32 { 161 entropylen = 32 162 } 163 entropy := make([]byte, entropylen) 164 _, err = io.ReadFull(rand, entropy) 165 if err != nil { 166 return 167 } 168 169 // Initialize an SHA-512 hash context; digest ... 170 md := sha512.New() 171 md.Write(priv.D.Bytes()) // the private key, 172 md.Write(entropy) // the entropy, 173 md.Write(hash) // and the input hash; 174 key := md.Sum(nil)[:32] // and compute ChopMD-256(SHA-512), 175 // which is an indifferentiable MAC. 176 177 // Create an AES-CTR instance to use as a CSPRNG. 178 block, err := aes.NewCipher(key) 179 if err != nil { 180 return nil, nil, err 181 } 182 183 // Create a CSPRNG that xors a stream of zeros with 184 // the output of the AES-CTR instance. 185 csprng := cipher.StreamReader{ 186 R: zeroReader, 187 S: cipher.NewCTR(block, []byte(aesIV)), 188 } 189 190 // See [NSA] 3.4.1 191 c := priv.PublicKey.Curve 192 N := c.Params().N 193 if N.Sign() == 0 { 194 return nil, nil, errZeroParam 195 } 196 var k, kInv *big.Int 197 for { 198 for { 199 k, err = randFieldElement(c, csprng) 200 if err != nil { 201 r = nil 202 return 203 } 204 205 if in, ok := priv.Curve.(invertible); ok { 206 kInv = in.Inverse(k) 207 } else { 208 kInv = fermatInverse(k, N) // N != 0 209 } 210 211 r, _ = priv.Curve.ScalarBaseMult(k.Bytes()) 212 r.Mod(r, N) 213 if r.Sign() != 0 { 214 break 215 } 216 } 217 218 e := hashToInt(hash, c) 219 s = new(big.Int).Mul(priv.D, r) 220 s.Add(s, e) 221 s.Mul(s, kInv) 222 s.Mod(s, N) // N != 0 223 if s.Sign() != 0 { 224 break 225 } 226 } 227 228 return 229 } 230 231 // Verify verifies the signature in r, s of hash using the public key, pub. Its 232 // return value records whether the signature is valid. 233 func Verify(pub *PublicKey, hash []byte, r, s *big.Int) bool { 234 // See [NSA] 3.4.2 235 c := pub.Curve 236 N := c.Params().N 237 238 if r.Sign() <= 0 || s.Sign() <= 0 { 239 return false 240 } 241 if r.Cmp(N) >= 0 || s.Cmp(N) >= 0 { 242 return false 243 } 244 e := hashToInt(hash, c) 245 246 var w *big.Int 247 if in, ok := c.(invertible); ok { 248 w = in.Inverse(s) 249 } else { 250 w = new(big.Int).ModInverse(s, N) 251 } 252 253 u1 := e.Mul(e, w) 254 u1.Mod(u1, N) 255 u2 := w.Mul(r, w) 256 u2.Mod(u2, N) 257 258 // Check if implements S1*g + S2*p 259 var x, y *big.Int 260 if opt, ok := c.(combinedMult); ok { 261 x, y = opt.CombinedMult(pub.X, pub.Y, u1.Bytes(), u2.Bytes()) 262 } else { 263 x1, y1 := c.ScalarBaseMult(u1.Bytes()) 264 x2, y2 := c.ScalarMult(pub.X, pub.Y, u2.Bytes()) 265 x, y = c.Add(x1, y1, x2, y2) 266 } 267 268 if x.Sign() == 0 && y.Sign() == 0 { 269 return false 270 } 271 x.Mod(x, N) 272 return x.Cmp(r) == 0 273 } 274 275 type zr struct { 276 io.Reader 277 } 278 279 // Read replaces the contents of dst with zeros. 280 func (z *zr) Read(dst []byte) (n int, err error) { 281 for i := range dst { 282 dst[i] = 0 283 } 284 return len(dst), nil 285 } 286 287 var zeroReader = &zr{}