github.com/fjballest/golang@v0.0.0-20151209143359-e4c5fe594ca8/src/reflect/value.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package reflect 6 7 import ( 8 "math" 9 "runtime" 10 "unsafe" 11 ) 12 13 const ptrSize = 4 << (^uintptr(0) >> 63) // unsafe.Sizeof(uintptr(0)) but an ideal const 14 const cannotSet = "cannot set value obtained from unexported struct field" 15 16 // Value is the reflection interface to a Go value. 17 // 18 // Not all methods apply to all kinds of values. Restrictions, 19 // if any, are noted in the documentation for each method. 20 // Use the Kind method to find out the kind of value before 21 // calling kind-specific methods. Calling a method 22 // inappropriate to the kind of type causes a run time panic. 23 // 24 // The zero Value represents no value. 25 // Its IsValid method returns false, its Kind method returns Invalid, 26 // its String method returns "<invalid Value>", and all other methods panic. 27 // Most functions and methods never return an invalid value. 28 // If one does, its documentation states the conditions explicitly. 29 // 30 // A Value can be used concurrently by multiple goroutines provided that 31 // the underlying Go value can be used concurrently for the equivalent 32 // direct operations. 33 // 34 // Using == on two Values does not compare the underlying values 35 // they represent, but rather the contents of the Value structs. 36 // To compare two Values, compare the results of the Interface method. 37 type Value struct { 38 // typ holds the type of the value represented by a Value. 39 typ *rtype 40 41 // Pointer-valued data or, if flagIndir is set, pointer to data. 42 // Valid when either flagIndir is set or typ.pointers() is true. 43 ptr unsafe.Pointer 44 45 // flag holds metadata about the value. 46 // The lowest bits are flag bits: 47 // - flagStickyRO: obtained via unexported not embedded field, so read-only 48 // - flagEmbedRO: obtained via unexported embedded field, so read-only 49 // - flagIndir: val holds a pointer to the data 50 // - flagAddr: v.CanAddr is true (implies flagIndir) 51 // - flagMethod: v is a method value. 52 // The next five bits give the Kind of the value. 53 // This repeats typ.Kind() except for method values. 54 // The remaining 23+ bits give a method number for method values. 55 // If flag.kind() != Func, code can assume that flagMethod is unset. 56 // If ifaceIndir(typ), code can assume that flagIndir is set. 57 flag 58 59 // A method value represents a curried method invocation 60 // like r.Read for some receiver r. The typ+val+flag bits describe 61 // the receiver r, but the flag's Kind bits say Func (methods are 62 // functions), and the top bits of the flag give the method number 63 // in r's type's method table. 64 } 65 66 type flag uintptr 67 68 const ( 69 flagKindWidth = 5 // there are 27 kinds 70 flagKindMask flag = 1<<flagKindWidth - 1 71 flagStickyRO flag = 1 << 5 72 flagEmbedRO flag = 1 << 6 73 flagIndir flag = 1 << 7 74 flagAddr flag = 1 << 8 75 flagMethod flag = 1 << 9 76 flagMethodShift = 10 77 flagRO flag = flagStickyRO | flagEmbedRO 78 ) 79 80 func (f flag) kind() Kind { 81 return Kind(f & flagKindMask) 82 } 83 84 // pointer returns the underlying pointer represented by v. 85 // v.Kind() must be Ptr, Map, Chan, Func, or UnsafePointer 86 func (v Value) pointer() unsafe.Pointer { 87 if v.typ.size != ptrSize || !v.typ.pointers() { 88 panic("can't call pointer on a non-pointer Value") 89 } 90 if v.flag&flagIndir != 0 { 91 return *(*unsafe.Pointer)(v.ptr) 92 } 93 return v.ptr 94 } 95 96 // packEface converts v to the empty interface. 97 func packEface(v Value) interface{} { 98 t := v.typ 99 var i interface{} 100 e := (*emptyInterface)(unsafe.Pointer(&i)) 101 // First, fill in the data portion of the interface. 102 switch { 103 case ifaceIndir(t): 104 if v.flag&flagIndir == 0 { 105 panic("bad indir") 106 } 107 // Value is indirect, and so is the interface we're making. 108 ptr := v.ptr 109 if v.flag&flagAddr != 0 { 110 // TODO: pass safe boolean from valueInterface so 111 // we don't need to copy if safe==true? 112 c := unsafe_New(t) 113 typedmemmove(t, c, ptr) 114 ptr = c 115 } 116 e.word = ptr 117 case v.flag&flagIndir != 0: 118 // Value is indirect, but interface is direct. We need 119 // to load the data at v.ptr into the interface data word. 120 e.word = *(*unsafe.Pointer)(v.ptr) 121 default: 122 // Value is direct, and so is the interface. 123 e.word = v.ptr 124 } 125 // Now, fill in the type portion. We're very careful here not 126 // to have any operation between the e.word and e.typ assignments 127 // that would let the garbage collector observe the partially-built 128 // interface value. 129 e.typ = t 130 return i 131 } 132 133 // unpackEface converts the empty interface i to a Value. 134 func unpackEface(i interface{}) Value { 135 e := (*emptyInterface)(unsafe.Pointer(&i)) 136 // NOTE: don't read e.word until we know whether it is really a pointer or not. 137 t := e.typ 138 if t == nil { 139 return Value{} 140 } 141 f := flag(t.Kind()) 142 if ifaceIndir(t) { 143 f |= flagIndir 144 } 145 return Value{t, e.word, f} 146 } 147 148 // A ValueError occurs when a Value method is invoked on 149 // a Value that does not support it. Such cases are documented 150 // in the description of each method. 151 type ValueError struct { 152 Method string 153 Kind Kind 154 } 155 156 func (e *ValueError) Error() string { 157 if e.Kind == 0 { 158 return "reflect: call of " + e.Method + " on zero Value" 159 } 160 return "reflect: call of " + e.Method + " on " + e.Kind.String() + " Value" 161 } 162 163 // methodName returns the name of the calling method, 164 // assumed to be two stack frames above. 165 func methodName() string { 166 pc, _, _, _ := runtime.Caller(2) 167 f := runtime.FuncForPC(pc) 168 if f == nil { 169 return "unknown method" 170 } 171 return f.Name() 172 } 173 174 // emptyInterface is the header for an interface{} value. 175 type emptyInterface struct { 176 typ *rtype 177 word unsafe.Pointer 178 } 179 180 // nonEmptyInterface is the header for a interface value with methods. 181 type nonEmptyInterface struct { 182 // see ../runtime/iface.go:/Itab 183 itab *struct { 184 ityp *rtype // static interface type 185 typ *rtype // dynamic concrete type 186 link unsafe.Pointer 187 bad int32 188 unused int32 189 fun [100000]unsafe.Pointer // method table 190 } 191 word unsafe.Pointer 192 } 193 194 // mustBe panics if f's kind is not expected. 195 // Making this a method on flag instead of on Value 196 // (and embedding flag in Value) means that we can write 197 // the very clear v.mustBe(Bool) and have it compile into 198 // v.flag.mustBe(Bool), which will only bother to copy the 199 // single important word for the receiver. 200 func (f flag) mustBe(expected Kind) { 201 if f.kind() != expected { 202 panic(&ValueError{methodName(), f.kind()}) 203 } 204 } 205 206 // mustBeExported panics if f records that the value was obtained using 207 // an unexported field. 208 func (f flag) mustBeExported() { 209 if f == 0 { 210 panic(&ValueError{methodName(), 0}) 211 } 212 if f&flagRO != 0 { 213 panic("reflect: " + methodName() + " using value obtained using unexported field") 214 } 215 } 216 217 // mustBeAssignable panics if f records that the value is not assignable, 218 // which is to say that either it was obtained using an unexported field 219 // or it is not addressable. 220 func (f flag) mustBeAssignable() { 221 if f == 0 { 222 panic(&ValueError{methodName(), Invalid}) 223 } 224 // Assignable if addressable and not read-only. 225 if f&flagRO != 0 { 226 panic("reflect: " + methodName() + " using value obtained using unexported field") 227 } 228 if f&flagAddr == 0 { 229 panic("reflect: " + methodName() + " using unaddressable value") 230 } 231 } 232 233 // Addr returns a pointer value representing the address of v. 234 // It panics if CanAddr() returns false. 235 // Addr is typically used to obtain a pointer to a struct field 236 // or slice element in order to call a method that requires a 237 // pointer receiver. 238 func (v Value) Addr() Value { 239 if v.flag&flagAddr == 0 { 240 panic("reflect.Value.Addr of unaddressable value") 241 } 242 return Value{v.typ.ptrTo(), v.ptr, (v.flag & flagRO) | flag(Ptr)} 243 } 244 245 // Bool returns v's underlying value. 246 // It panics if v's kind is not Bool. 247 func (v Value) Bool() bool { 248 v.mustBe(Bool) 249 return *(*bool)(v.ptr) 250 } 251 252 // Bytes returns v's underlying value. 253 // It panics if v's underlying value is not a slice of bytes. 254 func (v Value) Bytes() []byte { 255 v.mustBe(Slice) 256 if v.typ.Elem().Kind() != Uint8 { 257 panic("reflect.Value.Bytes of non-byte slice") 258 } 259 // Slice is always bigger than a word; assume flagIndir. 260 return *(*[]byte)(v.ptr) 261 } 262 263 // runes returns v's underlying value. 264 // It panics if v's underlying value is not a slice of runes (int32s). 265 func (v Value) runes() []rune { 266 v.mustBe(Slice) 267 if v.typ.Elem().Kind() != Int32 { 268 panic("reflect.Value.Bytes of non-rune slice") 269 } 270 // Slice is always bigger than a word; assume flagIndir. 271 return *(*[]rune)(v.ptr) 272 } 273 274 // CanAddr reports whether the value's address can be obtained with Addr. 275 // Such values are called addressable. A value is addressable if it is 276 // an element of a slice, an element of an addressable array, 277 // a field of an addressable struct, or the result of dereferencing a pointer. 278 // If CanAddr returns false, calling Addr will panic. 279 func (v Value) CanAddr() bool { 280 return v.flag&flagAddr != 0 281 } 282 283 // CanSet reports whether the value of v can be changed. 284 // A Value can be changed only if it is addressable and was not 285 // obtained by the use of unexported struct fields. 286 // If CanSet returns false, calling Set or any type-specific 287 // setter (e.g., SetBool, SetInt) will panic. 288 func (v Value) CanSet() bool { 289 return v.flag&(flagAddr|flagRO) == flagAddr 290 } 291 292 // Call calls the function v with the input arguments in. 293 // For example, if len(in) == 3, v.Call(in) represents the Go call v(in[0], in[1], in[2]). 294 // Call panics if v's Kind is not Func. 295 // It returns the output results as Values. 296 // As in Go, each input argument must be assignable to the 297 // type of the function's corresponding input parameter. 298 // If v is a variadic function, Call creates the variadic slice parameter 299 // itself, copying in the corresponding values. 300 func (v Value) Call(in []Value) []Value { 301 v.mustBe(Func) 302 v.mustBeExported() 303 return v.call("Call", in) 304 } 305 306 // CallSlice calls the variadic function v with the input arguments in, 307 // assigning the slice in[len(in)-1] to v's final variadic argument. 308 // For example, if len(in) == 3, v.CallSlice(in) represents the Go call v(in[0], in[1], in[2]...). 309 // CallSlice panics if v's Kind is not Func or if v is not variadic. 310 // It returns the output results as Values. 311 // As in Go, each input argument must be assignable to the 312 // type of the function's corresponding input parameter. 313 func (v Value) CallSlice(in []Value) []Value { 314 v.mustBe(Func) 315 v.mustBeExported() 316 return v.call("CallSlice", in) 317 } 318 319 var callGC bool // for testing; see TestCallMethodJump 320 321 func (v Value) call(op string, in []Value) []Value { 322 // Get function pointer, type. 323 t := v.typ 324 var ( 325 fn unsafe.Pointer 326 rcvr Value 327 rcvrtype *rtype 328 ) 329 if v.flag&flagMethod != 0 { 330 rcvr = v 331 rcvrtype, t, fn = methodReceiver(op, v, int(v.flag)>>flagMethodShift) 332 } else if v.flag&flagIndir != 0 { 333 fn = *(*unsafe.Pointer)(v.ptr) 334 } else { 335 fn = v.ptr 336 } 337 338 if fn == nil { 339 panic("reflect.Value.Call: call of nil function") 340 } 341 342 isSlice := op == "CallSlice" 343 n := t.NumIn() 344 if isSlice { 345 if !t.IsVariadic() { 346 panic("reflect: CallSlice of non-variadic function") 347 } 348 if len(in) < n { 349 panic("reflect: CallSlice with too few input arguments") 350 } 351 if len(in) > n { 352 panic("reflect: CallSlice with too many input arguments") 353 } 354 } else { 355 if t.IsVariadic() { 356 n-- 357 } 358 if len(in) < n { 359 panic("reflect: Call with too few input arguments") 360 } 361 if !t.IsVariadic() && len(in) > n { 362 panic("reflect: Call with too many input arguments") 363 } 364 } 365 for _, x := range in { 366 if x.Kind() == Invalid { 367 panic("reflect: " + op + " using zero Value argument") 368 } 369 } 370 for i := 0; i < n; i++ { 371 if xt, targ := in[i].Type(), t.In(i); !xt.AssignableTo(targ) { 372 panic("reflect: " + op + " using " + xt.String() + " as type " + targ.String()) 373 } 374 } 375 if !isSlice && t.IsVariadic() { 376 // prepare slice for remaining values 377 m := len(in) - n 378 slice := MakeSlice(t.In(n), m, m) 379 elem := t.In(n).Elem() 380 for i := 0; i < m; i++ { 381 x := in[n+i] 382 if xt := x.Type(); !xt.AssignableTo(elem) { 383 panic("reflect: cannot use " + xt.String() + " as type " + elem.String() + " in " + op) 384 } 385 slice.Index(i).Set(x) 386 } 387 origIn := in 388 in = make([]Value, n+1) 389 copy(in[:n], origIn) 390 in[n] = slice 391 } 392 393 nin := len(in) 394 if nin != t.NumIn() { 395 panic("reflect.Value.Call: wrong argument count") 396 } 397 nout := t.NumOut() 398 399 // Compute frame type. 400 frametype, _, retOffset, _, framePool := funcLayout(t, rcvrtype) 401 402 // Allocate a chunk of memory for frame. 403 var args unsafe.Pointer 404 if nout == 0 { 405 args = framePool.Get().(unsafe.Pointer) 406 } else { 407 // Can't use pool if the function has return values. 408 // We will leak pointer to args in ret, so its lifetime is not scoped. 409 args = unsafe_New(frametype) 410 } 411 off := uintptr(0) 412 413 // Copy inputs into args. 414 if rcvrtype != nil { 415 storeRcvr(rcvr, args) 416 off = ptrSize 417 } 418 for i, v := range in { 419 v.mustBeExported() 420 targ := t.In(i).(*rtype) 421 a := uintptr(targ.align) 422 off = (off + a - 1) &^ (a - 1) 423 n := targ.size 424 addr := unsafe.Pointer(uintptr(args) + off) 425 v = v.assignTo("reflect.Value.Call", targ, addr) 426 if v.flag&flagIndir != 0 { 427 typedmemmove(targ, addr, v.ptr) 428 } else { 429 *(*unsafe.Pointer)(addr) = v.ptr 430 } 431 off += n 432 } 433 434 // Call. 435 call(frametype, fn, args, uint32(frametype.size), uint32(retOffset)) 436 437 // For testing; see TestCallMethodJump. 438 if callGC { 439 runtime.GC() 440 } 441 442 var ret []Value 443 if nout == 0 { 444 memclr(args, frametype.size) 445 framePool.Put(args) 446 } else { 447 // Zero the now unused input area of args, 448 // because the Values returned by this function contain pointers to the args object, 449 // and will thus keep the args object alive indefinitely. 450 memclr(args, retOffset) 451 // Copy return values out of args. 452 ret = make([]Value, nout) 453 off = retOffset 454 for i := 0; i < nout; i++ { 455 tv := t.Out(i) 456 a := uintptr(tv.Align()) 457 off = (off + a - 1) &^ (a - 1) 458 fl := flagIndir | flag(tv.Kind()) 459 ret[i] = Value{tv.common(), unsafe.Pointer(uintptr(args) + off), fl} 460 off += tv.Size() 461 } 462 } 463 464 return ret 465 } 466 467 // callReflect is the call implementation used by a function 468 // returned by MakeFunc. In many ways it is the opposite of the 469 // method Value.call above. The method above converts a call using Values 470 // into a call of a function with a concrete argument frame, while 471 // callReflect converts a call of a function with a concrete argument 472 // frame into a call using Values. 473 // It is in this file so that it can be next to the call method above. 474 // The remainder of the MakeFunc implementation is in makefunc.go. 475 // 476 // NOTE: This function must be marked as a "wrapper" in the generated code, 477 // so that the linker can make it work correctly for panic and recover. 478 // The gc compilers know to do that for the name "reflect.callReflect". 479 func callReflect(ctxt *makeFuncImpl, frame unsafe.Pointer) { 480 ftyp := ctxt.typ 481 f := ctxt.fn 482 483 // Copy argument frame into Values. 484 ptr := frame 485 off := uintptr(0) 486 in := make([]Value, 0, len(ftyp.in)) 487 for _, arg := range ftyp.in { 488 typ := arg 489 off += -off & uintptr(typ.align-1) 490 addr := unsafe.Pointer(uintptr(ptr) + off) 491 v := Value{typ, nil, flag(typ.Kind())} 492 if ifaceIndir(typ) { 493 // value cannot be inlined in interface data. 494 // Must make a copy, because f might keep a reference to it, 495 // and we cannot let f keep a reference to the stack frame 496 // after this function returns, not even a read-only reference. 497 v.ptr = unsafe_New(typ) 498 typedmemmove(typ, v.ptr, addr) 499 v.flag |= flagIndir 500 } else { 501 v.ptr = *(*unsafe.Pointer)(addr) 502 } 503 in = append(in, v) 504 off += typ.size 505 } 506 507 // Call underlying function. 508 out := f(in) 509 if len(out) != len(ftyp.out) { 510 panic("reflect: wrong return count from function created by MakeFunc") 511 } 512 513 // Copy results back into argument frame. 514 if len(ftyp.out) > 0 { 515 off += -off & (ptrSize - 1) 516 if runtime.GOARCH == "amd64p32" { 517 off = align(off, 8) 518 } 519 for i, arg := range ftyp.out { 520 typ := arg 521 v := out[i] 522 if v.typ != typ { 523 panic("reflect: function created by MakeFunc using " + funcName(f) + 524 " returned wrong type: have " + 525 out[i].typ.String() + " for " + typ.String()) 526 } 527 if v.flag&flagRO != 0 { 528 panic("reflect: function created by MakeFunc using " + funcName(f) + 529 " returned value obtained from unexported field") 530 } 531 off += -off & uintptr(typ.align-1) 532 addr := unsafe.Pointer(uintptr(ptr) + off) 533 if v.flag&flagIndir != 0 { 534 typedmemmove(typ, addr, v.ptr) 535 } else { 536 *(*unsafe.Pointer)(addr) = v.ptr 537 } 538 off += typ.size 539 } 540 } 541 } 542 543 // methodReceiver returns information about the receiver 544 // described by v. The Value v may or may not have the 545 // flagMethod bit set, so the kind cached in v.flag should 546 // not be used. 547 // The return value rcvrtype gives the method's actual receiver type. 548 // The return value t gives the method type signature (without the receiver). 549 // The return value fn is a pointer to the method code. 550 func methodReceiver(op string, v Value, methodIndex int) (rcvrtype, t *rtype, fn unsafe.Pointer) { 551 i := methodIndex 552 if v.typ.Kind() == Interface { 553 tt := (*interfaceType)(unsafe.Pointer(v.typ)) 554 if uint(i) >= uint(len(tt.methods)) { 555 panic("reflect: internal error: invalid method index") 556 } 557 m := &tt.methods[i] 558 if m.pkgPath != nil { 559 panic("reflect: " + op + " of unexported method") 560 } 561 iface := (*nonEmptyInterface)(v.ptr) 562 if iface.itab == nil { 563 panic("reflect: " + op + " of method on nil interface value") 564 } 565 rcvrtype = iface.itab.typ 566 fn = unsafe.Pointer(&iface.itab.fun[i]) 567 t = m.typ 568 } else { 569 rcvrtype = v.typ 570 ut := v.typ.uncommon() 571 if ut == nil || uint(i) >= uint(len(ut.methods)) { 572 panic("reflect: internal error: invalid method index") 573 } 574 m := &ut.methods[i] 575 if m.pkgPath != nil { 576 panic("reflect: " + op + " of unexported method") 577 } 578 fn = unsafe.Pointer(&m.ifn) 579 t = m.mtyp 580 } 581 return 582 } 583 584 // v is a method receiver. Store at p the word which is used to 585 // encode that receiver at the start of the argument list. 586 // Reflect uses the "interface" calling convention for 587 // methods, which always uses one word to record the receiver. 588 func storeRcvr(v Value, p unsafe.Pointer) { 589 t := v.typ 590 if t.Kind() == Interface { 591 // the interface data word becomes the receiver word 592 iface := (*nonEmptyInterface)(v.ptr) 593 *(*unsafe.Pointer)(p) = iface.word 594 } else if v.flag&flagIndir != 0 && !ifaceIndir(t) { 595 *(*unsafe.Pointer)(p) = *(*unsafe.Pointer)(v.ptr) 596 } else { 597 *(*unsafe.Pointer)(p) = v.ptr 598 } 599 } 600 601 // align returns the result of rounding x up to a multiple of n. 602 // n must be a power of two. 603 func align(x, n uintptr) uintptr { 604 return (x + n - 1) &^ (n - 1) 605 } 606 607 // callMethod is the call implementation used by a function returned 608 // by makeMethodValue (used by v.Method(i).Interface()). 609 // It is a streamlined version of the usual reflect call: the caller has 610 // already laid out the argument frame for us, so we don't have 611 // to deal with individual Values for each argument. 612 // It is in this file so that it can be next to the two similar functions above. 613 // The remainder of the makeMethodValue implementation is in makefunc.go. 614 // 615 // NOTE: This function must be marked as a "wrapper" in the generated code, 616 // so that the linker can make it work correctly for panic and recover. 617 // The gc compilers know to do that for the name "reflect.callMethod". 618 func callMethod(ctxt *methodValue, frame unsafe.Pointer) { 619 rcvr := ctxt.rcvr 620 rcvrtype, t, fn := methodReceiver("call", rcvr, ctxt.method) 621 frametype, argSize, retOffset, _, framePool := funcLayout(t, rcvrtype) 622 623 // Make a new frame that is one word bigger so we can store the receiver. 624 args := framePool.Get().(unsafe.Pointer) 625 626 // Copy in receiver and rest of args. 627 storeRcvr(rcvr, args) 628 typedmemmovepartial(frametype, unsafe.Pointer(uintptr(args)+ptrSize), frame, ptrSize, argSize-ptrSize) 629 630 // Call. 631 call(frametype, fn, args, uint32(frametype.size), uint32(retOffset)) 632 633 // Copy return values. On amd64p32, the beginning of return values 634 // is 64-bit aligned, so the caller's frame layout (which doesn't have 635 // a receiver) is different from the layout of the fn call, which has 636 // a receiver. 637 // Ignore any changes to args and just copy return values. 638 callerRetOffset := retOffset - ptrSize 639 if runtime.GOARCH == "amd64p32" { 640 callerRetOffset = align(argSize-ptrSize, 8) 641 } 642 typedmemmovepartial(frametype, 643 unsafe.Pointer(uintptr(frame)+callerRetOffset), 644 unsafe.Pointer(uintptr(args)+retOffset), 645 retOffset, 646 frametype.size-retOffset) 647 648 memclr(args, frametype.size) 649 framePool.Put(args) 650 } 651 652 // funcName returns the name of f, for use in error messages. 653 func funcName(f func([]Value) []Value) string { 654 pc := *(*uintptr)(unsafe.Pointer(&f)) 655 rf := runtime.FuncForPC(pc) 656 if rf != nil { 657 return rf.Name() 658 } 659 return "closure" 660 } 661 662 // Cap returns v's capacity. 663 // It panics if v's Kind is not Array, Chan, or Slice. 664 func (v Value) Cap() int { 665 k := v.kind() 666 switch k { 667 case Array: 668 return v.typ.Len() 669 case Chan: 670 return int(chancap(v.pointer())) 671 case Slice: 672 // Slice is always bigger than a word; assume flagIndir. 673 return (*sliceHeader)(v.ptr).Cap 674 } 675 panic(&ValueError{"reflect.Value.Cap", v.kind()}) 676 } 677 678 // Close closes the channel v. 679 // It panics if v's Kind is not Chan. 680 func (v Value) Close() { 681 v.mustBe(Chan) 682 v.mustBeExported() 683 chanclose(v.pointer()) 684 } 685 686 // Complex returns v's underlying value, as a complex128. 687 // It panics if v's Kind is not Complex64 or Complex128 688 func (v Value) Complex() complex128 { 689 k := v.kind() 690 switch k { 691 case Complex64: 692 return complex128(*(*complex64)(v.ptr)) 693 case Complex128: 694 return *(*complex128)(v.ptr) 695 } 696 panic(&ValueError{"reflect.Value.Complex", v.kind()}) 697 } 698 699 // Elem returns the value that the interface v contains 700 // or that the pointer v points to. 701 // It panics if v's Kind is not Interface or Ptr. 702 // It returns the zero Value if v is nil. 703 func (v Value) Elem() Value { 704 k := v.kind() 705 switch k { 706 case Interface: 707 var eface interface{} 708 if v.typ.NumMethod() == 0 { 709 eface = *(*interface{})(v.ptr) 710 } else { 711 eface = (interface{})(*(*interface { 712 M() 713 })(v.ptr)) 714 } 715 x := unpackEface(eface) 716 if x.flag != 0 { 717 x.flag |= v.flag & flagRO 718 } 719 return x 720 case Ptr: 721 ptr := v.ptr 722 if v.flag&flagIndir != 0 { 723 ptr = *(*unsafe.Pointer)(ptr) 724 } 725 // The returned value's address is v's value. 726 if ptr == nil { 727 return Value{} 728 } 729 tt := (*ptrType)(unsafe.Pointer(v.typ)) 730 typ := tt.elem 731 fl := v.flag&flagRO | flagIndir | flagAddr 732 fl |= flag(typ.Kind()) 733 return Value{typ, ptr, fl} 734 } 735 panic(&ValueError{"reflect.Value.Elem", v.kind()}) 736 } 737 738 // Field returns the i'th field of the struct v. 739 // It panics if v's Kind is not Struct or i is out of range. 740 func (v Value) Field(i int) Value { 741 if v.kind() != Struct { 742 panic(&ValueError{"reflect.Value.Field", v.kind()}) 743 } 744 tt := (*structType)(unsafe.Pointer(v.typ)) 745 if uint(i) >= uint(len(tt.fields)) { 746 panic("reflect: Field index out of range") 747 } 748 field := &tt.fields[i] 749 typ := field.typ 750 751 // Inherit permission bits from v, but clear flagEmbedRO. 752 fl := v.flag&(flagStickyRO|flagIndir|flagAddr) | flag(typ.Kind()) 753 // Using an unexported field forces flagRO. 754 if field.pkgPath != nil { 755 if field.name == nil { 756 fl |= flagEmbedRO 757 } else { 758 fl |= flagStickyRO 759 } 760 } 761 // Either flagIndir is set and v.ptr points at struct, 762 // or flagIndir is not set and v.ptr is the actual struct data. 763 // In the former case, we want v.ptr + offset. 764 // In the latter case, we must have field.offset = 0, 765 // so v.ptr + field.offset is still okay. 766 ptr := unsafe.Pointer(uintptr(v.ptr) + field.offset) 767 return Value{typ, ptr, fl} 768 } 769 770 // FieldByIndex returns the nested field corresponding to index. 771 // It panics if v's Kind is not struct. 772 func (v Value) FieldByIndex(index []int) Value { 773 if len(index) == 1 { 774 return v.Field(index[0]) 775 } 776 v.mustBe(Struct) 777 for i, x := range index { 778 if i > 0 { 779 if v.Kind() == Ptr && v.typ.Elem().Kind() == Struct { 780 if v.IsNil() { 781 panic("reflect: indirection through nil pointer to embedded struct") 782 } 783 v = v.Elem() 784 } 785 } 786 v = v.Field(x) 787 } 788 return v 789 } 790 791 // FieldByName returns the struct field with the given name. 792 // It returns the zero Value if no field was found. 793 // It panics if v's Kind is not struct. 794 func (v Value) FieldByName(name string) Value { 795 v.mustBe(Struct) 796 if f, ok := v.typ.FieldByName(name); ok { 797 return v.FieldByIndex(f.Index) 798 } 799 return Value{} 800 } 801 802 // FieldByNameFunc returns the struct field with a name 803 // that satisfies the match function. 804 // It panics if v's Kind is not struct. 805 // It returns the zero Value if no field was found. 806 func (v Value) FieldByNameFunc(match func(string) bool) Value { 807 if f, ok := v.typ.FieldByNameFunc(match); ok { 808 return v.FieldByIndex(f.Index) 809 } 810 return Value{} 811 } 812 813 // Float returns v's underlying value, as a float64. 814 // It panics if v's Kind is not Float32 or Float64 815 func (v Value) Float() float64 { 816 k := v.kind() 817 switch k { 818 case Float32: 819 return float64(*(*float32)(v.ptr)) 820 case Float64: 821 return *(*float64)(v.ptr) 822 } 823 panic(&ValueError{"reflect.Value.Float", v.kind()}) 824 } 825 826 var uint8Type = TypeOf(uint8(0)).(*rtype) 827 828 // Index returns v's i'th element. 829 // It panics if v's Kind is not Array, Slice, or String or i is out of range. 830 func (v Value) Index(i int) Value { 831 switch v.kind() { 832 case Array: 833 tt := (*arrayType)(unsafe.Pointer(v.typ)) 834 if uint(i) >= uint(tt.len) { 835 panic("reflect: array index out of range") 836 } 837 typ := tt.elem 838 offset := uintptr(i) * typ.size 839 840 // Either flagIndir is set and v.ptr points at array, 841 // or flagIndir is not set and v.ptr is the actual array data. 842 // In the former case, we want v.ptr + offset. 843 // In the latter case, we must be doing Index(0), so offset = 0, 844 // so v.ptr + offset is still okay. 845 val := unsafe.Pointer(uintptr(v.ptr) + offset) 846 fl := v.flag&(flagRO|flagIndir|flagAddr) | flag(typ.Kind()) // bits same as overall array 847 return Value{typ, val, fl} 848 849 case Slice: 850 // Element flag same as Elem of Ptr. 851 // Addressable, indirect, possibly read-only. 852 s := (*sliceHeader)(v.ptr) 853 if uint(i) >= uint(s.Len) { 854 panic("reflect: slice index out of range") 855 } 856 tt := (*sliceType)(unsafe.Pointer(v.typ)) 857 typ := tt.elem 858 val := arrayAt(s.Data, i, typ.size) 859 fl := flagAddr | flagIndir | v.flag&flagRO | flag(typ.Kind()) 860 return Value{typ, val, fl} 861 862 case String: 863 s := (*stringHeader)(v.ptr) 864 if uint(i) >= uint(s.Len) { 865 panic("reflect: string index out of range") 866 } 867 p := arrayAt(s.Data, i, 1) 868 fl := v.flag&flagRO | flag(Uint8) | flagIndir 869 return Value{uint8Type, p, fl} 870 } 871 panic(&ValueError{"reflect.Value.Index", v.kind()}) 872 } 873 874 // Int returns v's underlying value, as an int64. 875 // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64. 876 func (v Value) Int() int64 { 877 k := v.kind() 878 p := v.ptr 879 switch k { 880 case Int: 881 return int64(*(*int)(p)) 882 case Int8: 883 return int64(*(*int8)(p)) 884 case Int16: 885 return int64(*(*int16)(p)) 886 case Int32: 887 return int64(*(*int32)(p)) 888 case Int64: 889 return int64(*(*int64)(p)) 890 } 891 panic(&ValueError{"reflect.Value.Int", v.kind()}) 892 } 893 894 // CanInterface reports whether Interface can be used without panicking. 895 func (v Value) CanInterface() bool { 896 if v.flag == 0 { 897 panic(&ValueError{"reflect.Value.CanInterface", Invalid}) 898 } 899 return v.flag&flagRO == 0 900 } 901 902 // Interface returns v's current value as an interface{}. 903 // It is equivalent to: 904 // var i interface{} = (v's underlying value) 905 // It panics if the Value was obtained by accessing 906 // unexported struct fields. 907 func (v Value) Interface() (i interface{}) { 908 return valueInterface(v, true) 909 } 910 911 func valueInterface(v Value, safe bool) interface{} { 912 if v.flag == 0 { 913 panic(&ValueError{"reflect.Value.Interface", 0}) 914 } 915 if safe && v.flag&flagRO != 0 { 916 // Do not allow access to unexported values via Interface, 917 // because they might be pointers that should not be 918 // writable or methods or function that should not be callable. 919 panic("reflect.Value.Interface: cannot return value obtained from unexported field or method") 920 } 921 if v.flag&flagMethod != 0 { 922 v = makeMethodValue("Interface", v) 923 } 924 925 if v.kind() == Interface { 926 // Special case: return the element inside the interface. 927 // Empty interface has one layout, all interfaces with 928 // methods have a second layout. 929 if v.NumMethod() == 0 { 930 return *(*interface{})(v.ptr) 931 } 932 return *(*interface { 933 M() 934 })(v.ptr) 935 } 936 937 // TODO: pass safe to packEface so we don't need to copy if safe==true? 938 return packEface(v) 939 } 940 941 // InterfaceData returns the interface v's value as a uintptr pair. 942 // It panics if v's Kind is not Interface. 943 func (v Value) InterfaceData() [2]uintptr { 944 // TODO: deprecate this 945 v.mustBe(Interface) 946 // We treat this as a read operation, so we allow 947 // it even for unexported data, because the caller 948 // has to import "unsafe" to turn it into something 949 // that can be abused. 950 // Interface value is always bigger than a word; assume flagIndir. 951 return *(*[2]uintptr)(v.ptr) 952 } 953 954 // IsNil reports whether its argument v is nil. The argument must be 955 // a chan, func, interface, map, pointer, or slice value; if it is 956 // not, IsNil panics. Note that IsNil is not always equivalent to a 957 // regular comparison with nil in Go. For example, if v was created 958 // by calling ValueOf with an uninitialized interface variable i, 959 // i==nil will be true but v.IsNil will panic as v will be the zero 960 // Value. 961 func (v Value) IsNil() bool { 962 k := v.kind() 963 switch k { 964 case Chan, Func, Map, Ptr: 965 if v.flag&flagMethod != 0 { 966 return false 967 } 968 ptr := v.ptr 969 if v.flag&flagIndir != 0 { 970 ptr = *(*unsafe.Pointer)(ptr) 971 } 972 return ptr == nil 973 case Interface, Slice: 974 // Both interface and slice are nil if first word is 0. 975 // Both are always bigger than a word; assume flagIndir. 976 return *(*unsafe.Pointer)(v.ptr) == nil 977 } 978 panic(&ValueError{"reflect.Value.IsNil", v.kind()}) 979 } 980 981 // IsValid reports whether v represents a value. 982 // It returns false if v is the zero Value. 983 // If IsValid returns false, all other methods except String panic. 984 // Most functions and methods never return an invalid value. 985 // If one does, its documentation states the conditions explicitly. 986 func (v Value) IsValid() bool { 987 return v.flag != 0 988 } 989 990 // Kind returns v's Kind. 991 // If v is the zero Value (IsValid returns false), Kind returns Invalid. 992 func (v Value) Kind() Kind { 993 return v.kind() 994 } 995 996 // Len returns v's length. 997 // It panics if v's Kind is not Array, Chan, Map, Slice, or String. 998 func (v Value) Len() int { 999 k := v.kind() 1000 switch k { 1001 case Array: 1002 tt := (*arrayType)(unsafe.Pointer(v.typ)) 1003 return int(tt.len) 1004 case Chan: 1005 return chanlen(v.pointer()) 1006 case Map: 1007 return maplen(v.pointer()) 1008 case Slice: 1009 // Slice is bigger than a word; assume flagIndir. 1010 return (*sliceHeader)(v.ptr).Len 1011 case String: 1012 // String is bigger than a word; assume flagIndir. 1013 return (*stringHeader)(v.ptr).Len 1014 } 1015 panic(&ValueError{"reflect.Value.Len", v.kind()}) 1016 } 1017 1018 // MapIndex returns the value associated with key in the map v. 1019 // It panics if v's Kind is not Map. 1020 // It returns the zero Value if key is not found in the map or if v represents a nil map. 1021 // As in Go, the key's value must be assignable to the map's key type. 1022 func (v Value) MapIndex(key Value) Value { 1023 v.mustBe(Map) 1024 tt := (*mapType)(unsafe.Pointer(v.typ)) 1025 1026 // Do not require key to be exported, so that DeepEqual 1027 // and other programs can use all the keys returned by 1028 // MapKeys as arguments to MapIndex. If either the map 1029 // or the key is unexported, though, the result will be 1030 // considered unexported. This is consistent with the 1031 // behavior for structs, which allow read but not write 1032 // of unexported fields. 1033 key = key.assignTo("reflect.Value.MapIndex", tt.key, nil) 1034 1035 var k unsafe.Pointer 1036 if key.flag&flagIndir != 0 { 1037 k = key.ptr 1038 } else { 1039 k = unsafe.Pointer(&key.ptr) 1040 } 1041 e := mapaccess(v.typ, v.pointer(), k) 1042 if e == nil { 1043 return Value{} 1044 } 1045 typ := tt.elem 1046 fl := (v.flag | key.flag) & flagRO 1047 fl |= flag(typ.Kind()) 1048 if ifaceIndir(typ) { 1049 // Copy result so future changes to the map 1050 // won't change the underlying value. 1051 c := unsafe_New(typ) 1052 typedmemmove(typ, c, e) 1053 return Value{typ, c, fl | flagIndir} 1054 } else { 1055 return Value{typ, *(*unsafe.Pointer)(e), fl} 1056 } 1057 } 1058 1059 // MapKeys returns a slice containing all the keys present in the map, 1060 // in unspecified order. 1061 // It panics if v's Kind is not Map. 1062 // It returns an empty slice if v represents a nil map. 1063 func (v Value) MapKeys() []Value { 1064 v.mustBe(Map) 1065 tt := (*mapType)(unsafe.Pointer(v.typ)) 1066 keyType := tt.key 1067 1068 fl := v.flag&flagRO | flag(keyType.Kind()) 1069 1070 m := v.pointer() 1071 mlen := int(0) 1072 if m != nil { 1073 mlen = maplen(m) 1074 } 1075 it := mapiterinit(v.typ, m) 1076 a := make([]Value, mlen) 1077 var i int 1078 for i = 0; i < len(a); i++ { 1079 key := mapiterkey(it) 1080 if key == nil { 1081 // Someone deleted an entry from the map since we 1082 // called maplen above. It's a data race, but nothing 1083 // we can do about it. 1084 break 1085 } 1086 if ifaceIndir(keyType) { 1087 // Copy result so future changes to the map 1088 // won't change the underlying value. 1089 c := unsafe_New(keyType) 1090 typedmemmove(keyType, c, key) 1091 a[i] = Value{keyType, c, fl | flagIndir} 1092 } else { 1093 a[i] = Value{keyType, *(*unsafe.Pointer)(key), fl} 1094 } 1095 mapiternext(it) 1096 } 1097 return a[:i] 1098 } 1099 1100 // Method returns a function value corresponding to v's i'th method. 1101 // The arguments to a Call on the returned function should not include 1102 // a receiver; the returned function will always use v as the receiver. 1103 // Method panics if i is out of range or if v is a nil interface value. 1104 func (v Value) Method(i int) Value { 1105 if v.typ == nil { 1106 panic(&ValueError{"reflect.Value.Method", Invalid}) 1107 } 1108 if v.flag&flagMethod != 0 || uint(i) >= uint(v.typ.NumMethod()) { 1109 panic("reflect: Method index out of range") 1110 } 1111 if v.typ.Kind() == Interface && v.IsNil() { 1112 panic("reflect: Method on nil interface value") 1113 } 1114 fl := v.flag & (flagStickyRO | flagIndir) // Clear flagEmbedRO 1115 fl |= flag(Func) 1116 fl |= flag(i)<<flagMethodShift | flagMethod 1117 return Value{v.typ, v.ptr, fl} 1118 } 1119 1120 // NumMethod returns the number of methods in the value's method set. 1121 func (v Value) NumMethod() int { 1122 if v.typ == nil { 1123 panic(&ValueError{"reflect.Value.NumMethod", Invalid}) 1124 } 1125 if v.flag&flagMethod != 0 { 1126 return 0 1127 } 1128 return v.typ.NumMethod() 1129 } 1130 1131 // MethodByName returns a function value corresponding to the method 1132 // of v with the given name. 1133 // The arguments to a Call on the returned function should not include 1134 // a receiver; the returned function will always use v as the receiver. 1135 // It returns the zero Value if no method was found. 1136 func (v Value) MethodByName(name string) Value { 1137 if v.typ == nil { 1138 panic(&ValueError{"reflect.Value.MethodByName", Invalid}) 1139 } 1140 if v.flag&flagMethod != 0 { 1141 return Value{} 1142 } 1143 m, ok := v.typ.MethodByName(name) 1144 if !ok { 1145 return Value{} 1146 } 1147 return v.Method(m.Index) 1148 } 1149 1150 // NumField returns the number of fields in the struct v. 1151 // It panics if v's Kind is not Struct. 1152 func (v Value) NumField() int { 1153 v.mustBe(Struct) 1154 tt := (*structType)(unsafe.Pointer(v.typ)) 1155 return len(tt.fields) 1156 } 1157 1158 // OverflowComplex reports whether the complex128 x cannot be represented by v's type. 1159 // It panics if v's Kind is not Complex64 or Complex128. 1160 func (v Value) OverflowComplex(x complex128) bool { 1161 k := v.kind() 1162 switch k { 1163 case Complex64: 1164 return overflowFloat32(real(x)) || overflowFloat32(imag(x)) 1165 case Complex128: 1166 return false 1167 } 1168 panic(&ValueError{"reflect.Value.OverflowComplex", v.kind()}) 1169 } 1170 1171 // OverflowFloat reports whether the float64 x cannot be represented by v's type. 1172 // It panics if v's Kind is not Float32 or Float64. 1173 func (v Value) OverflowFloat(x float64) bool { 1174 k := v.kind() 1175 switch k { 1176 case Float32: 1177 return overflowFloat32(x) 1178 case Float64: 1179 return false 1180 } 1181 panic(&ValueError{"reflect.Value.OverflowFloat", v.kind()}) 1182 } 1183 1184 func overflowFloat32(x float64) bool { 1185 if x < 0 { 1186 x = -x 1187 } 1188 return math.MaxFloat32 < x && x <= math.MaxFloat64 1189 } 1190 1191 // OverflowInt reports whether the int64 x cannot be represented by v's type. 1192 // It panics if v's Kind is not Int, Int8, int16, Int32, or Int64. 1193 func (v Value) OverflowInt(x int64) bool { 1194 k := v.kind() 1195 switch k { 1196 case Int, Int8, Int16, Int32, Int64: 1197 bitSize := v.typ.size * 8 1198 trunc := (x << (64 - bitSize)) >> (64 - bitSize) 1199 return x != trunc 1200 } 1201 panic(&ValueError{"reflect.Value.OverflowInt", v.kind()}) 1202 } 1203 1204 // OverflowUint reports whether the uint64 x cannot be represented by v's type. 1205 // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64. 1206 func (v Value) OverflowUint(x uint64) bool { 1207 k := v.kind() 1208 switch k { 1209 case Uint, Uintptr, Uint8, Uint16, Uint32, Uint64: 1210 bitSize := v.typ.size * 8 1211 trunc := (x << (64 - bitSize)) >> (64 - bitSize) 1212 return x != trunc 1213 } 1214 panic(&ValueError{"reflect.Value.OverflowUint", v.kind()}) 1215 } 1216 1217 // Pointer returns v's value as a uintptr. 1218 // It returns uintptr instead of unsafe.Pointer so that 1219 // code using reflect cannot obtain unsafe.Pointers 1220 // without importing the unsafe package explicitly. 1221 // It panics if v's Kind is not Chan, Func, Map, Ptr, Slice, or UnsafePointer. 1222 // 1223 // If v's Kind is Func, the returned pointer is an underlying 1224 // code pointer, but not necessarily enough to identify a 1225 // single function uniquely. The only guarantee is that the 1226 // result is zero if and only if v is a nil func Value. 1227 // 1228 // If v's Kind is Slice, the returned pointer is to the first 1229 // element of the slice. If the slice is nil the returned value 1230 // is 0. If the slice is empty but non-nil the return value is non-zero. 1231 func (v Value) Pointer() uintptr { 1232 // TODO: deprecate 1233 k := v.kind() 1234 switch k { 1235 case Chan, Map, Ptr, UnsafePointer: 1236 return uintptr(v.pointer()) 1237 case Func: 1238 if v.flag&flagMethod != 0 { 1239 // As the doc comment says, the returned pointer is an 1240 // underlying code pointer but not necessarily enough to 1241 // identify a single function uniquely. All method expressions 1242 // created via reflect have the same underlying code pointer, 1243 // so their Pointers are equal. The function used here must 1244 // match the one used in makeMethodValue. 1245 f := methodValueCall 1246 return **(**uintptr)(unsafe.Pointer(&f)) 1247 } 1248 p := v.pointer() 1249 // Non-nil func value points at data block. 1250 // First word of data block is actual code. 1251 if p != nil { 1252 p = *(*unsafe.Pointer)(p) 1253 } 1254 return uintptr(p) 1255 1256 case Slice: 1257 return (*SliceHeader)(v.ptr).Data 1258 } 1259 panic(&ValueError{"reflect.Value.Pointer", v.kind()}) 1260 } 1261 1262 // Recv receives and returns a value from the channel v. 1263 // It panics if v's Kind is not Chan. 1264 // The receive blocks until a value is ready. 1265 // The boolean value ok is true if the value x corresponds to a send 1266 // on the channel, false if it is a zero value received because the channel is closed. 1267 func (v Value) Recv() (x Value, ok bool) { 1268 v.mustBe(Chan) 1269 v.mustBeExported() 1270 return v.recv(false) 1271 } 1272 1273 // internal recv, possibly non-blocking (nb). 1274 // v is known to be a channel. 1275 func (v Value) recv(nb bool) (val Value, ok bool) { 1276 tt := (*chanType)(unsafe.Pointer(v.typ)) 1277 if ChanDir(tt.dir)&RecvDir == 0 { 1278 panic("reflect: recv on send-only channel") 1279 } 1280 t := tt.elem 1281 val = Value{t, nil, flag(t.Kind())} 1282 var p unsafe.Pointer 1283 if ifaceIndir(t) { 1284 p = unsafe_New(t) 1285 val.ptr = p 1286 val.flag |= flagIndir 1287 } else { 1288 p = unsafe.Pointer(&val.ptr) 1289 } 1290 selected, ok := chanrecv(v.typ, v.pointer(), nb, p) 1291 if !selected { 1292 val = Value{} 1293 } 1294 return 1295 } 1296 1297 // Send sends x on the channel v. 1298 // It panics if v's kind is not Chan or if x's type is not the same type as v's element type. 1299 // As in Go, x's value must be assignable to the channel's element type. 1300 func (v Value) Send(x Value) { 1301 v.mustBe(Chan) 1302 v.mustBeExported() 1303 v.send(x, false) 1304 } 1305 1306 // internal send, possibly non-blocking. 1307 // v is known to be a channel. 1308 func (v Value) send(x Value, nb bool) (selected bool) { 1309 tt := (*chanType)(unsafe.Pointer(v.typ)) 1310 if ChanDir(tt.dir)&SendDir == 0 { 1311 panic("reflect: send on recv-only channel") 1312 } 1313 x.mustBeExported() 1314 x = x.assignTo("reflect.Value.Send", tt.elem, nil) 1315 var p unsafe.Pointer 1316 if x.flag&flagIndir != 0 { 1317 p = x.ptr 1318 } else { 1319 p = unsafe.Pointer(&x.ptr) 1320 } 1321 return chansend(v.typ, v.pointer(), p, nb) 1322 } 1323 1324 // Set assigns x to the value v. 1325 // It panics if CanSet returns false. 1326 // As in Go, x's value must be assignable to v's type. 1327 func (v Value) Set(x Value) { 1328 v.mustBeAssignable() 1329 x.mustBeExported() // do not let unexported x leak 1330 var target unsafe.Pointer 1331 if v.kind() == Interface { 1332 target = v.ptr 1333 } 1334 x = x.assignTo("reflect.Set", v.typ, target) 1335 if x.flag&flagIndir != 0 { 1336 typedmemmove(v.typ, v.ptr, x.ptr) 1337 } else { 1338 *(*unsafe.Pointer)(v.ptr) = x.ptr 1339 } 1340 } 1341 1342 // SetBool sets v's underlying value. 1343 // It panics if v's Kind is not Bool or if CanSet() is false. 1344 func (v Value) SetBool(x bool) { 1345 v.mustBeAssignable() 1346 v.mustBe(Bool) 1347 *(*bool)(v.ptr) = x 1348 } 1349 1350 // SetBytes sets v's underlying value. 1351 // It panics if v's underlying value is not a slice of bytes. 1352 func (v Value) SetBytes(x []byte) { 1353 v.mustBeAssignable() 1354 v.mustBe(Slice) 1355 if v.typ.Elem().Kind() != Uint8 { 1356 panic("reflect.Value.SetBytes of non-byte slice") 1357 } 1358 *(*[]byte)(v.ptr) = x 1359 } 1360 1361 // setRunes sets v's underlying value. 1362 // It panics if v's underlying value is not a slice of runes (int32s). 1363 func (v Value) setRunes(x []rune) { 1364 v.mustBeAssignable() 1365 v.mustBe(Slice) 1366 if v.typ.Elem().Kind() != Int32 { 1367 panic("reflect.Value.setRunes of non-rune slice") 1368 } 1369 *(*[]rune)(v.ptr) = x 1370 } 1371 1372 // SetComplex sets v's underlying value to x. 1373 // It panics if v's Kind is not Complex64 or Complex128, or if CanSet() is false. 1374 func (v Value) SetComplex(x complex128) { 1375 v.mustBeAssignable() 1376 switch k := v.kind(); k { 1377 default: 1378 panic(&ValueError{"reflect.Value.SetComplex", v.kind()}) 1379 case Complex64: 1380 *(*complex64)(v.ptr) = complex64(x) 1381 case Complex128: 1382 *(*complex128)(v.ptr) = x 1383 } 1384 } 1385 1386 // SetFloat sets v's underlying value to x. 1387 // It panics if v's Kind is not Float32 or Float64, or if CanSet() is false. 1388 func (v Value) SetFloat(x float64) { 1389 v.mustBeAssignable() 1390 switch k := v.kind(); k { 1391 default: 1392 panic(&ValueError{"reflect.Value.SetFloat", v.kind()}) 1393 case Float32: 1394 *(*float32)(v.ptr) = float32(x) 1395 case Float64: 1396 *(*float64)(v.ptr) = x 1397 } 1398 } 1399 1400 // SetInt sets v's underlying value to x. 1401 // It panics if v's Kind is not Int, Int8, Int16, Int32, or Int64, or if CanSet() is false. 1402 func (v Value) SetInt(x int64) { 1403 v.mustBeAssignable() 1404 switch k := v.kind(); k { 1405 default: 1406 panic(&ValueError{"reflect.Value.SetInt", v.kind()}) 1407 case Int: 1408 *(*int)(v.ptr) = int(x) 1409 case Int8: 1410 *(*int8)(v.ptr) = int8(x) 1411 case Int16: 1412 *(*int16)(v.ptr) = int16(x) 1413 case Int32: 1414 *(*int32)(v.ptr) = int32(x) 1415 case Int64: 1416 *(*int64)(v.ptr) = x 1417 } 1418 } 1419 1420 // SetLen sets v's length to n. 1421 // It panics if v's Kind is not Slice or if n is negative or 1422 // greater than the capacity of the slice. 1423 func (v Value) SetLen(n int) { 1424 v.mustBeAssignable() 1425 v.mustBe(Slice) 1426 s := (*sliceHeader)(v.ptr) 1427 if uint(n) > uint(s.Cap) { 1428 panic("reflect: slice length out of range in SetLen") 1429 } 1430 s.Len = n 1431 } 1432 1433 // SetCap sets v's capacity to n. 1434 // It panics if v's Kind is not Slice or if n is smaller than the length or 1435 // greater than the capacity of the slice. 1436 func (v Value) SetCap(n int) { 1437 v.mustBeAssignable() 1438 v.mustBe(Slice) 1439 s := (*sliceHeader)(v.ptr) 1440 if n < int(s.Len) || n > int(s.Cap) { 1441 panic("reflect: slice capacity out of range in SetCap") 1442 } 1443 s.Cap = n 1444 } 1445 1446 // SetMapIndex sets the value associated with key in the map v to val. 1447 // It panics if v's Kind is not Map. 1448 // If val is the zero Value, SetMapIndex deletes the key from the map. 1449 // Otherwise if v holds a nil map, SetMapIndex will panic. 1450 // As in Go, key's value must be assignable to the map's key type, 1451 // and val's value must be assignable to the map's value type. 1452 func (v Value) SetMapIndex(key, val Value) { 1453 v.mustBe(Map) 1454 v.mustBeExported() 1455 key.mustBeExported() 1456 tt := (*mapType)(unsafe.Pointer(v.typ)) 1457 key = key.assignTo("reflect.Value.SetMapIndex", tt.key, nil) 1458 var k unsafe.Pointer 1459 if key.flag&flagIndir != 0 { 1460 k = key.ptr 1461 } else { 1462 k = unsafe.Pointer(&key.ptr) 1463 } 1464 if val.typ == nil { 1465 mapdelete(v.typ, v.pointer(), k) 1466 return 1467 } 1468 val.mustBeExported() 1469 val = val.assignTo("reflect.Value.SetMapIndex", tt.elem, nil) 1470 var e unsafe.Pointer 1471 if val.flag&flagIndir != 0 { 1472 e = val.ptr 1473 } else { 1474 e = unsafe.Pointer(&val.ptr) 1475 } 1476 mapassign(v.typ, v.pointer(), k, e) 1477 } 1478 1479 // SetUint sets v's underlying value to x. 1480 // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64, or if CanSet() is false. 1481 func (v Value) SetUint(x uint64) { 1482 v.mustBeAssignable() 1483 switch k := v.kind(); k { 1484 default: 1485 panic(&ValueError{"reflect.Value.SetUint", v.kind()}) 1486 case Uint: 1487 *(*uint)(v.ptr) = uint(x) 1488 case Uint8: 1489 *(*uint8)(v.ptr) = uint8(x) 1490 case Uint16: 1491 *(*uint16)(v.ptr) = uint16(x) 1492 case Uint32: 1493 *(*uint32)(v.ptr) = uint32(x) 1494 case Uint64: 1495 *(*uint64)(v.ptr) = x 1496 case Uintptr: 1497 *(*uintptr)(v.ptr) = uintptr(x) 1498 } 1499 } 1500 1501 // SetPointer sets the unsafe.Pointer value v to x. 1502 // It panics if v's Kind is not UnsafePointer. 1503 func (v Value) SetPointer(x unsafe.Pointer) { 1504 v.mustBeAssignable() 1505 v.mustBe(UnsafePointer) 1506 *(*unsafe.Pointer)(v.ptr) = x 1507 } 1508 1509 // SetString sets v's underlying value to x. 1510 // It panics if v's Kind is not String or if CanSet() is false. 1511 func (v Value) SetString(x string) { 1512 v.mustBeAssignable() 1513 v.mustBe(String) 1514 *(*string)(v.ptr) = x 1515 } 1516 1517 // Slice returns v[i:j]. 1518 // It panics if v's Kind is not Array, Slice or String, or if v is an unaddressable array, 1519 // or if the indexes are out of bounds. 1520 func (v Value) Slice(i, j int) Value { 1521 var ( 1522 cap int 1523 typ *sliceType 1524 base unsafe.Pointer 1525 ) 1526 switch kind := v.kind(); kind { 1527 default: 1528 panic(&ValueError{"reflect.Value.Slice", v.kind()}) 1529 1530 case Array: 1531 if v.flag&flagAddr == 0 { 1532 panic("reflect.Value.Slice: slice of unaddressable array") 1533 } 1534 tt := (*arrayType)(unsafe.Pointer(v.typ)) 1535 cap = int(tt.len) 1536 typ = (*sliceType)(unsafe.Pointer(tt.slice)) 1537 base = v.ptr 1538 1539 case Slice: 1540 typ = (*sliceType)(unsafe.Pointer(v.typ)) 1541 s := (*sliceHeader)(v.ptr) 1542 base = unsafe.Pointer(s.Data) 1543 cap = s.Cap 1544 1545 case String: 1546 s := (*stringHeader)(v.ptr) 1547 if i < 0 || j < i || j > s.Len { 1548 panic("reflect.Value.Slice: string slice index out of bounds") 1549 } 1550 t := stringHeader{arrayAt(s.Data, i, 1), j - i} 1551 return Value{v.typ, unsafe.Pointer(&t), v.flag} 1552 } 1553 1554 if i < 0 || j < i || j > cap { 1555 panic("reflect.Value.Slice: slice index out of bounds") 1556 } 1557 1558 // Declare slice so that gc can see the base pointer in it. 1559 var x []unsafe.Pointer 1560 1561 // Reinterpret as *sliceHeader to edit. 1562 s := (*sliceHeader)(unsafe.Pointer(&x)) 1563 s.Len = j - i 1564 s.Cap = cap - i 1565 if cap-i > 0 { 1566 s.Data = arrayAt(base, i, typ.elem.Size()) 1567 } else { 1568 // do not advance pointer, to avoid pointing beyond end of slice 1569 s.Data = base 1570 } 1571 1572 fl := v.flag&flagRO | flagIndir | flag(Slice) 1573 return Value{typ.common(), unsafe.Pointer(&x), fl} 1574 } 1575 1576 // Slice3 is the 3-index form of the slice operation: it returns v[i:j:k]. 1577 // It panics if v's Kind is not Array or Slice, or if v is an unaddressable array, 1578 // or if the indexes are out of bounds. 1579 func (v Value) Slice3(i, j, k int) Value { 1580 var ( 1581 cap int 1582 typ *sliceType 1583 base unsafe.Pointer 1584 ) 1585 switch kind := v.kind(); kind { 1586 default: 1587 panic(&ValueError{"reflect.Value.Slice3", v.kind()}) 1588 1589 case Array: 1590 if v.flag&flagAddr == 0 { 1591 panic("reflect.Value.Slice3: slice of unaddressable array") 1592 } 1593 tt := (*arrayType)(unsafe.Pointer(v.typ)) 1594 cap = int(tt.len) 1595 typ = (*sliceType)(unsafe.Pointer(tt.slice)) 1596 base = v.ptr 1597 1598 case Slice: 1599 typ = (*sliceType)(unsafe.Pointer(v.typ)) 1600 s := (*sliceHeader)(v.ptr) 1601 base = s.Data 1602 cap = s.Cap 1603 } 1604 1605 if i < 0 || j < i || k < j || k > cap { 1606 panic("reflect.Value.Slice3: slice index out of bounds") 1607 } 1608 1609 // Declare slice so that the garbage collector 1610 // can see the base pointer in it. 1611 var x []unsafe.Pointer 1612 1613 // Reinterpret as *sliceHeader to edit. 1614 s := (*sliceHeader)(unsafe.Pointer(&x)) 1615 s.Len = j - i 1616 s.Cap = k - i 1617 if k-i > 0 { 1618 s.Data = arrayAt(base, i, typ.elem.Size()) 1619 } else { 1620 // do not advance pointer, to avoid pointing beyond end of slice 1621 s.Data = base 1622 } 1623 1624 fl := v.flag&flagRO | flagIndir | flag(Slice) 1625 return Value{typ.common(), unsafe.Pointer(&x), fl} 1626 } 1627 1628 // String returns the string v's underlying value, as a string. 1629 // String is a special case because of Go's String method convention. 1630 // Unlike the other getters, it does not panic if v's Kind is not String. 1631 // Instead, it returns a string of the form "<T value>" where T is v's type. 1632 // The fmt package treats Values specially. It does not call their String 1633 // method implicitly but instead prints the concrete values they hold. 1634 func (v Value) String() string { 1635 switch k := v.kind(); k { 1636 case Invalid: 1637 return "<invalid Value>" 1638 case String: 1639 return *(*string)(v.ptr) 1640 } 1641 // If you call String on a reflect.Value of other type, it's better to 1642 // print something than to panic. Useful in debugging. 1643 return "<" + v.Type().String() + " Value>" 1644 } 1645 1646 // TryRecv attempts to receive a value from the channel v but will not block. 1647 // It panics if v's Kind is not Chan. 1648 // If the receive delivers a value, x is the transferred value and ok is true. 1649 // If the receive cannot finish without blocking, x is the zero Value and ok is false. 1650 // If the channel is closed, x is the zero value for the channel's element type and ok is false. 1651 func (v Value) TryRecv() (x Value, ok bool) { 1652 v.mustBe(Chan) 1653 v.mustBeExported() 1654 return v.recv(true) 1655 } 1656 1657 // TrySend attempts to send x on the channel v but will not block. 1658 // It panics if v's Kind is not Chan. 1659 // It reports whether the value was sent. 1660 // As in Go, x's value must be assignable to the channel's element type. 1661 func (v Value) TrySend(x Value) bool { 1662 v.mustBe(Chan) 1663 v.mustBeExported() 1664 return v.send(x, true) 1665 } 1666 1667 // Type returns v's type. 1668 func (v Value) Type() Type { 1669 f := v.flag 1670 if f == 0 { 1671 panic(&ValueError{"reflect.Value.Type", Invalid}) 1672 } 1673 if f&flagMethod == 0 { 1674 // Easy case 1675 return v.typ 1676 } 1677 1678 // Method value. 1679 // v.typ describes the receiver, not the method type. 1680 i := int(v.flag) >> flagMethodShift 1681 if v.typ.Kind() == Interface { 1682 // Method on interface. 1683 tt := (*interfaceType)(unsafe.Pointer(v.typ)) 1684 if uint(i) >= uint(len(tt.methods)) { 1685 panic("reflect: internal error: invalid method index") 1686 } 1687 m := &tt.methods[i] 1688 return m.typ 1689 } 1690 // Method on concrete type. 1691 ut := v.typ.uncommon() 1692 if ut == nil || uint(i) >= uint(len(ut.methods)) { 1693 panic("reflect: internal error: invalid method index") 1694 } 1695 m := &ut.methods[i] 1696 return m.mtyp 1697 } 1698 1699 // Uint returns v's underlying value, as a uint64. 1700 // It panics if v's Kind is not Uint, Uintptr, Uint8, Uint16, Uint32, or Uint64. 1701 func (v Value) Uint() uint64 { 1702 k := v.kind() 1703 p := v.ptr 1704 switch k { 1705 case Uint: 1706 return uint64(*(*uint)(p)) 1707 case Uint8: 1708 return uint64(*(*uint8)(p)) 1709 case Uint16: 1710 return uint64(*(*uint16)(p)) 1711 case Uint32: 1712 return uint64(*(*uint32)(p)) 1713 case Uint64: 1714 return uint64(*(*uint64)(p)) 1715 case Uintptr: 1716 return uint64(*(*uintptr)(p)) 1717 } 1718 panic(&ValueError{"reflect.Value.Uint", v.kind()}) 1719 } 1720 1721 // UnsafeAddr returns a pointer to v's data. 1722 // It is for advanced clients that also import the "unsafe" package. 1723 // It panics if v is not addressable. 1724 func (v Value) UnsafeAddr() uintptr { 1725 // TODO: deprecate 1726 if v.typ == nil { 1727 panic(&ValueError{"reflect.Value.UnsafeAddr", Invalid}) 1728 } 1729 if v.flag&flagAddr == 0 { 1730 panic("reflect.Value.UnsafeAddr of unaddressable value") 1731 } 1732 return uintptr(v.ptr) 1733 } 1734 1735 // StringHeader is the runtime representation of a string. 1736 // It cannot be used safely or portably and its representation may 1737 // change in a later release. 1738 // Moreover, the Data field is not sufficient to guarantee the data 1739 // it references will not be garbage collected, so programs must keep 1740 // a separate, correctly typed pointer to the underlying data. 1741 type StringHeader struct { 1742 Data uintptr 1743 Len int 1744 } 1745 1746 // stringHeader is a safe version of StringHeader used within this package. 1747 type stringHeader struct { 1748 Data unsafe.Pointer 1749 Len int 1750 } 1751 1752 // SliceHeader is the runtime representation of a slice. 1753 // It cannot be used safely or portably and its representation may 1754 // change in a later release. 1755 // Moreover, the Data field is not sufficient to guarantee the data 1756 // it references will not be garbage collected, so programs must keep 1757 // a separate, correctly typed pointer to the underlying data. 1758 type SliceHeader struct { 1759 Data uintptr 1760 Len int 1761 Cap int 1762 } 1763 1764 // sliceHeader is a safe version of SliceHeader used within this package. 1765 type sliceHeader struct { 1766 Data unsafe.Pointer 1767 Len int 1768 Cap int 1769 } 1770 1771 func typesMustMatch(what string, t1, t2 Type) { 1772 if t1 != t2 { 1773 panic(what + ": " + t1.String() + " != " + t2.String()) 1774 } 1775 } 1776 1777 // arrayAt returns the i-th element of p, a C-array whose elements are 1778 // eltSize wide (in bytes). 1779 func arrayAt(p unsafe.Pointer, i int, eltSize uintptr) unsafe.Pointer { 1780 return unsafe.Pointer(uintptr(p) + uintptr(i)*eltSize) 1781 } 1782 1783 // grow grows the slice s so that it can hold extra more values, allocating 1784 // more capacity if needed. It also returns the old and new slice lengths. 1785 func grow(s Value, extra int) (Value, int, int) { 1786 i0 := s.Len() 1787 i1 := i0 + extra 1788 if i1 < i0 { 1789 panic("reflect.Append: slice overflow") 1790 } 1791 m := s.Cap() 1792 if i1 <= m { 1793 return s.Slice(0, i1), i0, i1 1794 } 1795 if m == 0 { 1796 m = extra 1797 } else { 1798 for m < i1 { 1799 if i0 < 1024 { 1800 m += m 1801 } else { 1802 m += m / 4 1803 } 1804 } 1805 } 1806 t := MakeSlice(s.Type(), i1, m) 1807 Copy(t, s) 1808 return t, i0, i1 1809 } 1810 1811 // Append appends the values x to a slice s and returns the resulting slice. 1812 // As in Go, each x's value must be assignable to the slice's element type. 1813 func Append(s Value, x ...Value) Value { 1814 s.mustBe(Slice) 1815 s, i0, i1 := grow(s, len(x)) 1816 for i, j := i0, 0; i < i1; i, j = i+1, j+1 { 1817 s.Index(i).Set(x[j]) 1818 } 1819 return s 1820 } 1821 1822 // AppendSlice appends a slice t to a slice s and returns the resulting slice. 1823 // The slices s and t must have the same element type. 1824 func AppendSlice(s, t Value) Value { 1825 s.mustBe(Slice) 1826 t.mustBe(Slice) 1827 typesMustMatch("reflect.AppendSlice", s.Type().Elem(), t.Type().Elem()) 1828 s, i0, i1 := grow(s, t.Len()) 1829 Copy(s.Slice(i0, i1), t) 1830 return s 1831 } 1832 1833 // Copy copies the contents of src into dst until either 1834 // dst has been filled or src has been exhausted. 1835 // It returns the number of elements copied. 1836 // Dst and src each must have kind Slice or Array, and 1837 // dst and src must have the same element type. 1838 func Copy(dst, src Value) int { 1839 dk := dst.kind() 1840 if dk != Array && dk != Slice { 1841 panic(&ValueError{"reflect.Copy", dk}) 1842 } 1843 if dk == Array { 1844 dst.mustBeAssignable() 1845 } 1846 dst.mustBeExported() 1847 1848 sk := src.kind() 1849 if sk != Array && sk != Slice { 1850 panic(&ValueError{"reflect.Copy", sk}) 1851 } 1852 src.mustBeExported() 1853 1854 de := dst.typ.Elem() 1855 se := src.typ.Elem() 1856 typesMustMatch("reflect.Copy", de, se) 1857 1858 var ds, ss sliceHeader 1859 if dk == Array { 1860 ds.Data = dst.ptr 1861 ds.Len = dst.Len() 1862 ds.Cap = ds.Len 1863 } else { 1864 ds = *(*sliceHeader)(dst.ptr) 1865 } 1866 if sk == Array { 1867 ss.Data = src.ptr 1868 ss.Len = src.Len() 1869 ss.Cap = ss.Len 1870 } else { 1871 ss = *(*sliceHeader)(src.ptr) 1872 } 1873 1874 return typedslicecopy(de.common(), ds, ss) 1875 } 1876 1877 // A runtimeSelect is a single case passed to rselect. 1878 // This must match ../runtime/select.go:/runtimeSelect 1879 type runtimeSelect struct { 1880 dir uintptr // 0, SendDir, or RecvDir 1881 typ *rtype // channel type 1882 ch unsafe.Pointer // channel 1883 val unsafe.Pointer // ptr to data (SendDir) or ptr to receive buffer (RecvDir) 1884 } 1885 1886 // rselect runs a select. It returns the index of the chosen case. 1887 // If the case was a receive, val is filled in with the received value. 1888 // The conventional OK bool indicates whether the receive corresponds 1889 // to a sent value. 1890 //go:noescape 1891 func rselect([]runtimeSelect) (chosen int, recvOK bool) 1892 1893 // A SelectDir describes the communication direction of a select case. 1894 type SelectDir int 1895 1896 // NOTE: These values must match ../runtime/select.go:/selectDir. 1897 1898 const ( 1899 _ SelectDir = iota 1900 SelectSend // case Chan <- Send 1901 SelectRecv // case <-Chan: 1902 SelectDefault // default 1903 ) 1904 1905 // A SelectCase describes a single case in a select operation. 1906 // The kind of case depends on Dir, the communication direction. 1907 // 1908 // If Dir is SelectDefault, the case represents a default case. 1909 // Chan and Send must be zero Values. 1910 // 1911 // If Dir is SelectSend, the case represents a send operation. 1912 // Normally Chan's underlying value must be a channel, and Send's underlying value must be 1913 // assignable to the channel's element type. As a special case, if Chan is a zero Value, 1914 // then the case is ignored, and the field Send will also be ignored and may be either zero 1915 // or non-zero. 1916 // 1917 // If Dir is SelectRecv, the case represents a receive operation. 1918 // Normally Chan's underlying value must be a channel and Send must be a zero Value. 1919 // If Chan is a zero Value, then the case is ignored, but Send must still be a zero Value. 1920 // When a receive operation is selected, the received Value is returned by Select. 1921 // 1922 type SelectCase struct { 1923 Dir SelectDir // direction of case 1924 Chan Value // channel to use (for send or receive) 1925 Send Value // value to send (for send) 1926 } 1927 1928 // Select executes a select operation described by the list of cases. 1929 // Like the Go select statement, it blocks until at least one of the cases 1930 // can proceed, makes a uniform pseudo-random choice, 1931 // and then executes that case. It returns the index of the chosen case 1932 // and, if that case was a receive operation, the value received and a 1933 // boolean indicating whether the value corresponds to a send on the channel 1934 // (as opposed to a zero value received because the channel is closed). 1935 func Select(cases []SelectCase) (chosen int, recv Value, recvOK bool) { 1936 // NOTE: Do not trust that caller is not modifying cases data underfoot. 1937 // The range is safe because the caller cannot modify our copy of the len 1938 // and each iteration makes its own copy of the value c. 1939 runcases := make([]runtimeSelect, len(cases)) 1940 haveDefault := false 1941 for i, c := range cases { 1942 rc := &runcases[i] 1943 rc.dir = uintptr(c.Dir) 1944 switch c.Dir { 1945 default: 1946 panic("reflect.Select: invalid Dir") 1947 1948 case SelectDefault: // default 1949 if haveDefault { 1950 panic("reflect.Select: multiple default cases") 1951 } 1952 haveDefault = true 1953 if c.Chan.IsValid() { 1954 panic("reflect.Select: default case has Chan value") 1955 } 1956 if c.Send.IsValid() { 1957 panic("reflect.Select: default case has Send value") 1958 } 1959 1960 case SelectSend: 1961 ch := c.Chan 1962 if !ch.IsValid() { 1963 break 1964 } 1965 ch.mustBe(Chan) 1966 ch.mustBeExported() 1967 tt := (*chanType)(unsafe.Pointer(ch.typ)) 1968 if ChanDir(tt.dir)&SendDir == 0 { 1969 panic("reflect.Select: SendDir case using recv-only channel") 1970 } 1971 rc.ch = ch.pointer() 1972 rc.typ = &tt.rtype 1973 v := c.Send 1974 if !v.IsValid() { 1975 panic("reflect.Select: SendDir case missing Send value") 1976 } 1977 v.mustBeExported() 1978 v = v.assignTo("reflect.Select", tt.elem, nil) 1979 if v.flag&flagIndir != 0 { 1980 rc.val = v.ptr 1981 } else { 1982 rc.val = unsafe.Pointer(&v.ptr) 1983 } 1984 1985 case SelectRecv: 1986 if c.Send.IsValid() { 1987 panic("reflect.Select: RecvDir case has Send value") 1988 } 1989 ch := c.Chan 1990 if !ch.IsValid() { 1991 break 1992 } 1993 ch.mustBe(Chan) 1994 ch.mustBeExported() 1995 tt := (*chanType)(unsafe.Pointer(ch.typ)) 1996 if ChanDir(tt.dir)&RecvDir == 0 { 1997 panic("reflect.Select: RecvDir case using send-only channel") 1998 } 1999 rc.ch = ch.pointer() 2000 rc.typ = &tt.rtype 2001 rc.val = unsafe_New(tt.elem) 2002 } 2003 } 2004 2005 chosen, recvOK = rselect(runcases) 2006 if runcases[chosen].dir == uintptr(SelectRecv) { 2007 tt := (*chanType)(unsafe.Pointer(runcases[chosen].typ)) 2008 t := tt.elem 2009 p := runcases[chosen].val 2010 fl := flag(t.Kind()) 2011 if ifaceIndir(t) { 2012 recv = Value{t, p, fl | flagIndir} 2013 } else { 2014 recv = Value{t, *(*unsafe.Pointer)(p), fl} 2015 } 2016 } 2017 return chosen, recv, recvOK 2018 } 2019 2020 /* 2021 * constructors 2022 */ 2023 2024 // implemented in package runtime 2025 func unsafe_New(*rtype) unsafe.Pointer 2026 func unsafe_NewArray(*rtype, int) unsafe.Pointer 2027 2028 // MakeSlice creates a new zero-initialized slice value 2029 // for the specified slice type, length, and capacity. 2030 func MakeSlice(typ Type, len, cap int) Value { 2031 if typ.Kind() != Slice { 2032 panic("reflect.MakeSlice of non-slice type") 2033 } 2034 if len < 0 { 2035 panic("reflect.MakeSlice: negative len") 2036 } 2037 if cap < 0 { 2038 panic("reflect.MakeSlice: negative cap") 2039 } 2040 if len > cap { 2041 panic("reflect.MakeSlice: len > cap") 2042 } 2043 2044 s := sliceHeader{unsafe_NewArray(typ.Elem().(*rtype), cap), len, cap} 2045 return Value{typ.common(), unsafe.Pointer(&s), flagIndir | flag(Slice)} 2046 } 2047 2048 // MakeChan creates a new channel with the specified type and buffer size. 2049 func MakeChan(typ Type, buffer int) Value { 2050 if typ.Kind() != Chan { 2051 panic("reflect.MakeChan of non-chan type") 2052 } 2053 if buffer < 0 { 2054 panic("reflect.MakeChan: negative buffer size") 2055 } 2056 if typ.ChanDir() != BothDir { 2057 panic("reflect.MakeChan: unidirectional channel type") 2058 } 2059 ch := makechan(typ.(*rtype), uint64(buffer)) 2060 return Value{typ.common(), ch, flag(Chan)} 2061 } 2062 2063 // MakeMap creates a new map of the specified type. 2064 func MakeMap(typ Type) Value { 2065 if typ.Kind() != Map { 2066 panic("reflect.MakeMap of non-map type") 2067 } 2068 m := makemap(typ.(*rtype)) 2069 return Value{typ.common(), m, flag(Map)} 2070 } 2071 2072 // Indirect returns the value that v points to. 2073 // If v is a nil pointer, Indirect returns a zero Value. 2074 // If v is not a pointer, Indirect returns v. 2075 func Indirect(v Value) Value { 2076 if v.Kind() != Ptr { 2077 return v 2078 } 2079 return v.Elem() 2080 } 2081 2082 // ValueOf returns a new Value initialized to the concrete value 2083 // stored in the interface i. ValueOf(nil) returns the zero Value. 2084 func ValueOf(i interface{}) Value { 2085 if i == nil { 2086 return Value{} 2087 } 2088 2089 // TODO: Maybe allow contents of a Value to live on the stack. 2090 // For now we make the contents always escape to the heap. It 2091 // makes life easier in a few places (see chanrecv/mapassign 2092 // comment below). 2093 escapes(i) 2094 2095 return unpackEface(i) 2096 } 2097 2098 // Zero returns a Value representing the zero value for the specified type. 2099 // The result is different from the zero value of the Value struct, 2100 // which represents no value at all. 2101 // For example, Zero(TypeOf(42)) returns a Value with Kind Int and value 0. 2102 // The returned value is neither addressable nor settable. 2103 func Zero(typ Type) Value { 2104 if typ == nil { 2105 panic("reflect: Zero(nil)") 2106 } 2107 t := typ.common() 2108 fl := flag(t.Kind()) 2109 if ifaceIndir(t) { 2110 return Value{t, unsafe_New(typ.(*rtype)), fl | flagIndir} 2111 } 2112 return Value{t, nil, fl} 2113 } 2114 2115 // New returns a Value representing a pointer to a new zero value 2116 // for the specified type. That is, the returned Value's Type is PtrTo(typ). 2117 func New(typ Type) Value { 2118 if typ == nil { 2119 panic("reflect: New(nil)") 2120 } 2121 ptr := unsafe_New(typ.(*rtype)) 2122 fl := flag(Ptr) 2123 return Value{typ.common().ptrTo(), ptr, fl} 2124 } 2125 2126 // NewAt returns a Value representing a pointer to a value of the 2127 // specified type, using p as that pointer. 2128 func NewAt(typ Type, p unsafe.Pointer) Value { 2129 fl := flag(Ptr) 2130 return Value{typ.common().ptrTo(), p, fl} 2131 } 2132 2133 // assignTo returns a value v that can be assigned directly to typ. 2134 // It panics if v is not assignable to typ. 2135 // For a conversion to an interface type, target is a suggested scratch space to use. 2136 func (v Value) assignTo(context string, dst *rtype, target unsafe.Pointer) Value { 2137 if v.flag&flagMethod != 0 { 2138 v = makeMethodValue(context, v) 2139 } 2140 2141 switch { 2142 case directlyAssignable(dst, v.typ): 2143 // Overwrite type so that they match. 2144 // Same memory layout, so no harm done. 2145 v.typ = dst 2146 fl := v.flag & (flagRO | flagAddr | flagIndir) 2147 fl |= flag(dst.Kind()) 2148 return Value{dst, v.ptr, fl} 2149 2150 case implements(dst, v.typ): 2151 if target == nil { 2152 target = unsafe_New(dst) 2153 } 2154 x := valueInterface(v, false) 2155 if dst.NumMethod() == 0 { 2156 *(*interface{})(target) = x 2157 } else { 2158 ifaceE2I(dst, x, target) 2159 } 2160 return Value{dst, target, flagIndir | flag(Interface)} 2161 } 2162 2163 // Failed. 2164 panic(context + ": value of type " + v.typ.String() + " is not assignable to type " + dst.String()) 2165 } 2166 2167 // Convert returns the value v converted to type t. 2168 // If the usual Go conversion rules do not allow conversion 2169 // of the value v to type t, Convert panics. 2170 func (v Value) Convert(t Type) Value { 2171 if v.flag&flagMethod != 0 { 2172 v = makeMethodValue("Convert", v) 2173 } 2174 op := convertOp(t.common(), v.typ) 2175 if op == nil { 2176 panic("reflect.Value.Convert: value of type " + v.typ.String() + " cannot be converted to type " + t.String()) 2177 } 2178 return op(v, t) 2179 } 2180 2181 // convertOp returns the function to convert a value of type src 2182 // to a value of type dst. If the conversion is illegal, convertOp returns nil. 2183 func convertOp(dst, src *rtype) func(Value, Type) Value { 2184 switch src.Kind() { 2185 case Int, Int8, Int16, Int32, Int64: 2186 switch dst.Kind() { 2187 case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: 2188 return cvtInt 2189 case Float32, Float64: 2190 return cvtIntFloat 2191 case String: 2192 return cvtIntString 2193 } 2194 2195 case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: 2196 switch dst.Kind() { 2197 case Int, Int8, Int16, Int32, Int64, Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: 2198 return cvtUint 2199 case Float32, Float64: 2200 return cvtUintFloat 2201 case String: 2202 return cvtUintString 2203 } 2204 2205 case Float32, Float64: 2206 switch dst.Kind() { 2207 case Int, Int8, Int16, Int32, Int64: 2208 return cvtFloatInt 2209 case Uint, Uint8, Uint16, Uint32, Uint64, Uintptr: 2210 return cvtFloatUint 2211 case Float32, Float64: 2212 return cvtFloat 2213 } 2214 2215 case Complex64, Complex128: 2216 switch dst.Kind() { 2217 case Complex64, Complex128: 2218 return cvtComplex 2219 } 2220 2221 case String: 2222 if dst.Kind() == Slice && dst.Elem().PkgPath() == "" { 2223 switch dst.Elem().Kind() { 2224 case Uint8: 2225 return cvtStringBytes 2226 case Int32: 2227 return cvtStringRunes 2228 } 2229 } 2230 2231 case Slice: 2232 if dst.Kind() == String && src.Elem().PkgPath() == "" { 2233 switch src.Elem().Kind() { 2234 case Uint8: 2235 return cvtBytesString 2236 case Int32: 2237 return cvtRunesString 2238 } 2239 } 2240 } 2241 2242 // dst and src have same underlying type. 2243 if haveIdenticalUnderlyingType(dst, src) { 2244 return cvtDirect 2245 } 2246 2247 // dst and src are unnamed pointer types with same underlying base type. 2248 if dst.Kind() == Ptr && dst.Name() == "" && 2249 src.Kind() == Ptr && src.Name() == "" && 2250 haveIdenticalUnderlyingType(dst.Elem().common(), src.Elem().common()) { 2251 return cvtDirect 2252 } 2253 2254 if implements(dst, src) { 2255 if src.Kind() == Interface { 2256 return cvtI2I 2257 } 2258 return cvtT2I 2259 } 2260 2261 return nil 2262 } 2263 2264 // makeInt returns a Value of type t equal to bits (possibly truncated), 2265 // where t is a signed or unsigned int type. 2266 func makeInt(f flag, bits uint64, t Type) Value { 2267 typ := t.common() 2268 ptr := unsafe_New(typ) 2269 switch typ.size { 2270 case 1: 2271 *(*uint8)(unsafe.Pointer(ptr)) = uint8(bits) 2272 case 2: 2273 *(*uint16)(unsafe.Pointer(ptr)) = uint16(bits) 2274 case 4: 2275 *(*uint32)(unsafe.Pointer(ptr)) = uint32(bits) 2276 case 8: 2277 *(*uint64)(unsafe.Pointer(ptr)) = bits 2278 } 2279 return Value{typ, ptr, f | flagIndir | flag(typ.Kind())} 2280 } 2281 2282 // makeFloat returns a Value of type t equal to v (possibly truncated to float32), 2283 // where t is a float32 or float64 type. 2284 func makeFloat(f flag, v float64, t Type) Value { 2285 typ := t.common() 2286 ptr := unsafe_New(typ) 2287 switch typ.size { 2288 case 4: 2289 *(*float32)(unsafe.Pointer(ptr)) = float32(v) 2290 case 8: 2291 *(*float64)(unsafe.Pointer(ptr)) = v 2292 } 2293 return Value{typ, ptr, f | flagIndir | flag(typ.Kind())} 2294 } 2295 2296 // makeComplex returns a Value of type t equal to v (possibly truncated to complex64), 2297 // where t is a complex64 or complex128 type. 2298 func makeComplex(f flag, v complex128, t Type) Value { 2299 typ := t.common() 2300 ptr := unsafe_New(typ) 2301 switch typ.size { 2302 case 8: 2303 *(*complex64)(unsafe.Pointer(ptr)) = complex64(v) 2304 case 16: 2305 *(*complex128)(unsafe.Pointer(ptr)) = v 2306 } 2307 return Value{typ, ptr, f | flagIndir | flag(typ.Kind())} 2308 } 2309 2310 func makeString(f flag, v string, t Type) Value { 2311 ret := New(t).Elem() 2312 ret.SetString(v) 2313 ret.flag = ret.flag&^flagAddr | f 2314 return ret 2315 } 2316 2317 func makeBytes(f flag, v []byte, t Type) Value { 2318 ret := New(t).Elem() 2319 ret.SetBytes(v) 2320 ret.flag = ret.flag&^flagAddr | f 2321 return ret 2322 } 2323 2324 func makeRunes(f flag, v []rune, t Type) Value { 2325 ret := New(t).Elem() 2326 ret.setRunes(v) 2327 ret.flag = ret.flag&^flagAddr | f 2328 return ret 2329 } 2330 2331 // These conversion functions are returned by convertOp 2332 // for classes of conversions. For example, the first function, cvtInt, 2333 // takes any value v of signed int type and returns the value converted 2334 // to type t, where t is any signed or unsigned int type. 2335 2336 // convertOp: intXX -> [u]intXX 2337 func cvtInt(v Value, t Type) Value { 2338 return makeInt(v.flag&flagRO, uint64(v.Int()), t) 2339 } 2340 2341 // convertOp: uintXX -> [u]intXX 2342 func cvtUint(v Value, t Type) Value { 2343 return makeInt(v.flag&flagRO, v.Uint(), t) 2344 } 2345 2346 // convertOp: floatXX -> intXX 2347 func cvtFloatInt(v Value, t Type) Value { 2348 return makeInt(v.flag&flagRO, uint64(int64(v.Float())), t) 2349 } 2350 2351 // convertOp: floatXX -> uintXX 2352 func cvtFloatUint(v Value, t Type) Value { 2353 return makeInt(v.flag&flagRO, uint64(v.Float()), t) 2354 } 2355 2356 // convertOp: intXX -> floatXX 2357 func cvtIntFloat(v Value, t Type) Value { 2358 return makeFloat(v.flag&flagRO, float64(v.Int()), t) 2359 } 2360 2361 // convertOp: uintXX -> floatXX 2362 func cvtUintFloat(v Value, t Type) Value { 2363 return makeFloat(v.flag&flagRO, float64(v.Uint()), t) 2364 } 2365 2366 // convertOp: floatXX -> floatXX 2367 func cvtFloat(v Value, t Type) Value { 2368 return makeFloat(v.flag&flagRO, v.Float(), t) 2369 } 2370 2371 // convertOp: complexXX -> complexXX 2372 func cvtComplex(v Value, t Type) Value { 2373 return makeComplex(v.flag&flagRO, v.Complex(), t) 2374 } 2375 2376 // convertOp: intXX -> string 2377 func cvtIntString(v Value, t Type) Value { 2378 return makeString(v.flag&flagRO, string(v.Int()), t) 2379 } 2380 2381 // convertOp: uintXX -> string 2382 func cvtUintString(v Value, t Type) Value { 2383 return makeString(v.flag&flagRO, string(v.Uint()), t) 2384 } 2385 2386 // convertOp: []byte -> string 2387 func cvtBytesString(v Value, t Type) Value { 2388 return makeString(v.flag&flagRO, string(v.Bytes()), t) 2389 } 2390 2391 // convertOp: string -> []byte 2392 func cvtStringBytes(v Value, t Type) Value { 2393 return makeBytes(v.flag&flagRO, []byte(v.String()), t) 2394 } 2395 2396 // convertOp: []rune -> string 2397 func cvtRunesString(v Value, t Type) Value { 2398 return makeString(v.flag&flagRO, string(v.runes()), t) 2399 } 2400 2401 // convertOp: string -> []rune 2402 func cvtStringRunes(v Value, t Type) Value { 2403 return makeRunes(v.flag&flagRO, []rune(v.String()), t) 2404 } 2405 2406 // convertOp: direct copy 2407 func cvtDirect(v Value, typ Type) Value { 2408 f := v.flag 2409 t := typ.common() 2410 ptr := v.ptr 2411 if f&flagAddr != 0 { 2412 // indirect, mutable word - make a copy 2413 c := unsafe_New(t) 2414 typedmemmove(t, c, ptr) 2415 ptr = c 2416 f &^= flagAddr 2417 } 2418 return Value{t, ptr, v.flag&flagRO | f} // v.flag&flagRO|f == f? 2419 } 2420 2421 // convertOp: concrete -> interface 2422 func cvtT2I(v Value, typ Type) Value { 2423 target := unsafe_New(typ.common()) 2424 x := valueInterface(v, false) 2425 if typ.NumMethod() == 0 { 2426 *(*interface{})(target) = x 2427 } else { 2428 ifaceE2I(typ.(*rtype), x, target) 2429 } 2430 return Value{typ.common(), target, v.flag&flagRO | flagIndir | flag(Interface)} 2431 } 2432 2433 // convertOp: interface -> interface 2434 func cvtI2I(v Value, typ Type) Value { 2435 if v.IsNil() { 2436 ret := Zero(typ) 2437 ret.flag |= v.flag & flagRO 2438 return ret 2439 } 2440 return cvtT2I(v.Elem(), typ) 2441 } 2442 2443 // implemented in ../runtime 2444 func chancap(ch unsafe.Pointer) int 2445 func chanclose(ch unsafe.Pointer) 2446 func chanlen(ch unsafe.Pointer) int 2447 2448 // Note: some of the noescape annotations below are technically a lie, 2449 // but safe in the context of this package. Functions like chansend 2450 // and mapassign don't escape the referent, but may escape anything 2451 // the referent points to (they do shallow copies of the referent). 2452 // It is safe in this package because the referent may only point 2453 // to something a Value may point to, and that is always in the heap 2454 // (due to the escapes() call in ValueOf). 2455 2456 //go:noescape 2457 func chanrecv(t *rtype, ch unsafe.Pointer, nb bool, val unsafe.Pointer) (selected, received bool) 2458 2459 //go:noescape 2460 func chansend(t *rtype, ch unsafe.Pointer, val unsafe.Pointer, nb bool) bool 2461 2462 func makechan(typ *rtype, size uint64) (ch unsafe.Pointer) 2463 func makemap(t *rtype) (m unsafe.Pointer) 2464 2465 //go:noescape 2466 func mapaccess(t *rtype, m unsafe.Pointer, key unsafe.Pointer) (val unsafe.Pointer) 2467 2468 //go:noescape 2469 func mapassign(t *rtype, m unsafe.Pointer, key, val unsafe.Pointer) 2470 2471 //go:noescape 2472 func mapdelete(t *rtype, m unsafe.Pointer, key unsafe.Pointer) 2473 2474 // m escapes into the return value, but the caller of mapiterinit 2475 // doesn't let the return value escape. 2476 //go:noescape 2477 func mapiterinit(t *rtype, m unsafe.Pointer) unsafe.Pointer 2478 2479 //go:noescape 2480 func mapiterkey(it unsafe.Pointer) (key unsafe.Pointer) 2481 2482 //go:noescape 2483 func mapiternext(it unsafe.Pointer) 2484 2485 //go:noescape 2486 func maplen(m unsafe.Pointer) int 2487 2488 // call calls fn with a copy of the n argument bytes pointed at by arg. 2489 // After fn returns, reflectcall copies n-retoffset result bytes 2490 // back into arg+retoffset before returning. If copying result bytes back, 2491 // the caller must pass the argument frame type as argtype, so that 2492 // call can execute appropriate write barriers during the copy. 2493 func call(argtype *rtype, fn, arg unsafe.Pointer, n uint32, retoffset uint32) 2494 2495 func ifaceE2I(t *rtype, src interface{}, dst unsafe.Pointer) 2496 2497 // typedmemmove copies a value of type t to dst from src. 2498 //go:noescape 2499 func typedmemmove(t *rtype, dst, src unsafe.Pointer) 2500 2501 // typedmemmovepartial is like typedmemmove but assumes that 2502 // dst and src point off bytes into the value and only copies size bytes. 2503 //go:noescape 2504 func typedmemmovepartial(t *rtype, dst, src unsafe.Pointer, off, size uintptr) 2505 2506 // typedslicecopy copies a slice of elemType values from src to dst, 2507 // returning the number of elements copied. 2508 //go:noescape 2509 func typedslicecopy(elemType *rtype, dst, src sliceHeader) int 2510 2511 //go:noescape 2512 func memclr(ptr unsafe.Pointer, n uintptr) 2513 2514 // Dummy annotation marking that the value x escapes, 2515 // for use in cases where the reflect code is so clever that 2516 // the compiler cannot follow. 2517 func escapes(x interface{}) { 2518 if dummy.b { 2519 dummy.x = x 2520 } 2521 } 2522 2523 var dummy struct { 2524 b bool 2525 x interface{} 2526 }