github.com/fjballest/golang@v0.0.0-20151209143359-e4c5fe594ca8/src/regexp/regexp.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Package regexp implements regular expression search.
     6  //
     7  // The syntax of the regular expressions accepted is the same
     8  // general syntax used by Perl, Python, and other languages.
     9  // More precisely, it is the syntax accepted by RE2 and described at
    10  // https://golang.org/s/re2syntax, except for \C.
    11  // For an overview of the syntax, run
    12  //   go doc regexp/syntax
    13  //
    14  // The regexp implementation provided by this package is
    15  // guaranteed to run in time linear in the size of the input.
    16  // (This is a property not guaranteed by most open source
    17  // implementations of regular expressions.) For more information
    18  // about this property, see
    19  //	http://swtch.com/~rsc/regexp/regexp1.html
    20  // or any book about automata theory.
    21  //
    22  // All characters are UTF-8-encoded code points.
    23  //
    24  // There are 16 methods of Regexp that match a regular expression and identify
    25  // the matched text.  Their names are matched by this regular expression:
    26  //
    27  //	Find(All)?(String)?(Submatch)?(Index)?
    28  //
    29  // If 'All' is present, the routine matches successive non-overlapping
    30  // matches of the entire expression.  Empty matches abutting a preceding
    31  // match are ignored.  The return value is a slice containing the successive
    32  // return values of the corresponding non-'All' routine.  These routines take
    33  // an extra integer argument, n; if n >= 0, the function returns at most n
    34  // matches/submatches.
    35  //
    36  // If 'String' is present, the argument is a string; otherwise it is a slice
    37  // of bytes; return values are adjusted as appropriate.
    38  //
    39  // If 'Submatch' is present, the return value is a slice identifying the
    40  // successive submatches of the expression. Submatches are matches of
    41  // parenthesized subexpressions (also known as capturing groups) within the
    42  // regular expression, numbered from left to right in order of opening
    43  // parenthesis. Submatch 0 is the match of the entire expression, submatch 1
    44  // the match of the first parenthesized subexpression, and so on.
    45  //
    46  // If 'Index' is present, matches and submatches are identified by byte index
    47  // pairs within the input string: result[2*n:2*n+1] identifies the indexes of
    48  // the nth submatch.  The pair for n==0 identifies the match of the entire
    49  // expression.  If 'Index' is not present, the match is identified by the
    50  // text of the match/submatch.  If an index is negative, it means that
    51  // subexpression did not match any string in the input.
    52  //
    53  // There is also a subset of the methods that can be applied to text read
    54  // from a RuneReader:
    55  //
    56  //	MatchReader, FindReaderIndex, FindReaderSubmatchIndex
    57  //
    58  // This set may grow.  Note that regular expression matches may need to
    59  // examine text beyond the text returned by a match, so the methods that
    60  // match text from a RuneReader may read arbitrarily far into the input
    61  // before returning.
    62  //
    63  // (There are a few other methods that do not match this pattern.)
    64  //
    65  package regexp
    66  
    67  import (
    68  	"bytes"
    69  	"io"
    70  	"regexp/syntax"
    71  	"strconv"
    72  	"strings"
    73  	"sync"
    74  	"unicode"
    75  	"unicode/utf8"
    76  )
    77  
    78  var debug = false
    79  
    80  // Regexp is the representation of a compiled regular expression.
    81  // A Regexp is safe for concurrent use by multiple goroutines.
    82  type Regexp struct {
    83  	// read-only after Compile
    84  	expr           string         // as passed to Compile
    85  	prog           *syntax.Prog   // compiled program
    86  	onepass        *onePassProg   // onepass program or nil
    87  	prefix         string         // required prefix in unanchored matches
    88  	prefixBytes    []byte         // prefix, as a []byte
    89  	prefixComplete bool           // prefix is the entire regexp
    90  	prefixRune     rune           // first rune in prefix
    91  	prefixEnd      uint32         // pc for last rune in prefix
    92  	cond           syntax.EmptyOp // empty-width conditions required at start of match
    93  	numSubexp      int
    94  	subexpNames    []string
    95  	longest        bool
    96  
    97  	// cache of machines for running regexp
    98  	mu      sync.Mutex
    99  	machine []*machine
   100  }
   101  
   102  // String returns the source text used to compile the regular expression.
   103  func (re *Regexp) String() string {
   104  	return re.expr
   105  }
   106  
   107  // Copy returns a new Regexp object copied from re.
   108  //
   109  // When using a Regexp in multiple goroutines, giving each goroutine
   110  // its own copy helps to avoid lock contention.
   111  func (re *Regexp) Copy() *Regexp {
   112  	r := *re
   113  	r.mu = sync.Mutex{}
   114  	r.machine = nil
   115  	return &r
   116  }
   117  
   118  // Compile parses a regular expression and returns, if successful,
   119  // a Regexp object that can be used to match against text.
   120  //
   121  // When matching against text, the regexp returns a match that
   122  // begins as early as possible in the input (leftmost), and among those
   123  // it chooses the one that a backtracking search would have found first.
   124  // This so-called leftmost-first matching is the same semantics
   125  // that Perl, Python, and other implementations use, although this
   126  // package implements it without the expense of backtracking.
   127  // For POSIX leftmost-longest matching, see CompilePOSIX.
   128  func Compile(expr string) (*Regexp, error) {
   129  	return compile(expr, syntax.Perl, false)
   130  }
   131  
   132  // CompilePOSIX is like Compile but restricts the regular expression
   133  // to POSIX ERE (egrep) syntax and changes the match semantics to
   134  // leftmost-longest.
   135  //
   136  // That is, when matching against text, the regexp returns a match that
   137  // begins as early as possible in the input (leftmost), and among those
   138  // it chooses a match that is as long as possible.
   139  // This so-called leftmost-longest matching is the same semantics
   140  // that early regular expression implementations used and that POSIX
   141  // specifies.
   142  //
   143  // However, there can be multiple leftmost-longest matches, with different
   144  // submatch choices, and here this package diverges from POSIX.
   145  // Among the possible leftmost-longest matches, this package chooses
   146  // the one that a backtracking search would have found first, while POSIX
   147  // specifies that the match be chosen to maximize the length of the first
   148  // subexpression, then the second, and so on from left to right.
   149  // The POSIX rule is computationally prohibitive and not even well-defined.
   150  // See http://swtch.com/~rsc/regexp/regexp2.html#posix for details.
   151  func CompilePOSIX(expr string) (*Regexp, error) {
   152  	return compile(expr, syntax.POSIX, true)
   153  }
   154  
   155  // Longest makes future searches prefer the leftmost-longest match.
   156  // That is, when matching against text, the regexp returns a match that
   157  // begins as early as possible in the input (leftmost), and among those
   158  // it chooses a match that is as long as possible.
   159  func (re *Regexp) Longest() {
   160  	re.longest = true
   161  }
   162  
   163  func compile(expr string, mode syntax.Flags, longest bool) (*Regexp, error) {
   164  	re, err := syntax.Parse(expr, mode)
   165  	if err != nil {
   166  		return nil, err
   167  	}
   168  	maxCap := re.MaxCap()
   169  	capNames := re.CapNames()
   170  
   171  	re = re.Simplify()
   172  	prog, err := syntax.Compile(re)
   173  	if err != nil {
   174  		return nil, err
   175  	}
   176  	regexp := &Regexp{
   177  		expr:        expr,
   178  		prog:        prog,
   179  		onepass:     compileOnePass(prog),
   180  		numSubexp:   maxCap,
   181  		subexpNames: capNames,
   182  		cond:        prog.StartCond(),
   183  		longest:     longest,
   184  	}
   185  	if regexp.onepass == notOnePass {
   186  		regexp.prefix, regexp.prefixComplete = prog.Prefix()
   187  	} else {
   188  		regexp.prefix, regexp.prefixComplete, regexp.prefixEnd = onePassPrefix(prog)
   189  	}
   190  	if regexp.prefix != "" {
   191  		// TODO(rsc): Remove this allocation by adding
   192  		// IndexString to package bytes.
   193  		regexp.prefixBytes = []byte(regexp.prefix)
   194  		regexp.prefixRune, _ = utf8.DecodeRuneInString(regexp.prefix)
   195  	}
   196  	return regexp, nil
   197  }
   198  
   199  // get returns a machine to use for matching re.
   200  // It uses the re's machine cache if possible, to avoid
   201  // unnecessary allocation.
   202  func (re *Regexp) get() *machine {
   203  	re.mu.Lock()
   204  	if n := len(re.machine); n > 0 {
   205  		z := re.machine[n-1]
   206  		re.machine = re.machine[:n-1]
   207  		re.mu.Unlock()
   208  		return z
   209  	}
   210  	re.mu.Unlock()
   211  	z := progMachine(re.prog, re.onepass)
   212  	z.re = re
   213  	return z
   214  }
   215  
   216  // put returns a machine to the re's machine cache.
   217  // There is no attempt to limit the size of the cache, so it will
   218  // grow to the maximum number of simultaneous matches
   219  // run using re.  (The cache empties when re gets garbage collected.)
   220  func (re *Regexp) put(z *machine) {
   221  	re.mu.Lock()
   222  	re.machine = append(re.machine, z)
   223  	re.mu.Unlock()
   224  }
   225  
   226  // MustCompile is like Compile but panics if the expression cannot be parsed.
   227  // It simplifies safe initialization of global variables holding compiled regular
   228  // expressions.
   229  func MustCompile(str string) *Regexp {
   230  	regexp, error := Compile(str)
   231  	if error != nil {
   232  		panic(`regexp: Compile(` + quote(str) + `): ` + error.Error())
   233  	}
   234  	return regexp
   235  }
   236  
   237  // MustCompilePOSIX is like CompilePOSIX but panics if the expression cannot be parsed.
   238  // It simplifies safe initialization of global variables holding compiled regular
   239  // expressions.
   240  func MustCompilePOSIX(str string) *Regexp {
   241  	regexp, error := CompilePOSIX(str)
   242  	if error != nil {
   243  		panic(`regexp: CompilePOSIX(` + quote(str) + `): ` + error.Error())
   244  	}
   245  	return regexp
   246  }
   247  
   248  func quote(s string) string {
   249  	if strconv.CanBackquote(s) {
   250  		return "`" + s + "`"
   251  	}
   252  	return strconv.Quote(s)
   253  }
   254  
   255  // NumSubexp returns the number of parenthesized subexpressions in this Regexp.
   256  func (re *Regexp) NumSubexp() int {
   257  	return re.numSubexp
   258  }
   259  
   260  // SubexpNames returns the names of the parenthesized subexpressions
   261  // in this Regexp.  The name for the first sub-expression is names[1],
   262  // so that if m is a match slice, the name for m[i] is SubexpNames()[i].
   263  // Since the Regexp as a whole cannot be named, names[0] is always
   264  // the empty string.  The slice should not be modified.
   265  func (re *Regexp) SubexpNames() []string {
   266  	return re.subexpNames
   267  }
   268  
   269  const endOfText rune = -1
   270  
   271  // input abstracts different representations of the input text. It provides
   272  // one-character lookahead.
   273  type input interface {
   274  	step(pos int) (r rune, width int) // advance one rune
   275  	canCheckPrefix() bool             // can we look ahead without losing info?
   276  	hasPrefix(re *Regexp) bool
   277  	index(re *Regexp, pos int) int
   278  	context(pos int) syntax.EmptyOp
   279  }
   280  
   281  // inputString scans a string.
   282  type inputString struct {
   283  	str string
   284  }
   285  
   286  func (i *inputString) step(pos int) (rune, int) {
   287  	if pos < len(i.str) {
   288  		c := i.str[pos]
   289  		if c < utf8.RuneSelf {
   290  			return rune(c), 1
   291  		}
   292  		return utf8.DecodeRuneInString(i.str[pos:])
   293  	}
   294  	return endOfText, 0
   295  }
   296  
   297  func (i *inputString) canCheckPrefix() bool {
   298  	return true
   299  }
   300  
   301  func (i *inputString) hasPrefix(re *Regexp) bool {
   302  	return strings.HasPrefix(i.str, re.prefix)
   303  }
   304  
   305  func (i *inputString) index(re *Regexp, pos int) int {
   306  	return strings.Index(i.str[pos:], re.prefix)
   307  }
   308  
   309  func (i *inputString) context(pos int) syntax.EmptyOp {
   310  	r1, r2 := endOfText, endOfText
   311  	if pos > 0 && pos <= len(i.str) {
   312  		r1, _ = utf8.DecodeLastRuneInString(i.str[:pos])
   313  	}
   314  	if pos < len(i.str) {
   315  		r2, _ = utf8.DecodeRuneInString(i.str[pos:])
   316  	}
   317  	return syntax.EmptyOpContext(r1, r2)
   318  }
   319  
   320  // inputBytes scans a byte slice.
   321  type inputBytes struct {
   322  	str []byte
   323  }
   324  
   325  func (i *inputBytes) step(pos int) (rune, int) {
   326  	if pos < len(i.str) {
   327  		c := i.str[pos]
   328  		if c < utf8.RuneSelf {
   329  			return rune(c), 1
   330  		}
   331  		return utf8.DecodeRune(i.str[pos:])
   332  	}
   333  	return endOfText, 0
   334  }
   335  
   336  func (i *inputBytes) canCheckPrefix() bool {
   337  	return true
   338  }
   339  
   340  func (i *inputBytes) hasPrefix(re *Regexp) bool {
   341  	return bytes.HasPrefix(i.str, re.prefixBytes)
   342  }
   343  
   344  func (i *inputBytes) index(re *Regexp, pos int) int {
   345  	return bytes.Index(i.str[pos:], re.prefixBytes)
   346  }
   347  
   348  func (i *inputBytes) context(pos int) syntax.EmptyOp {
   349  	r1, r2 := endOfText, endOfText
   350  	if pos > 0 && pos <= len(i.str) {
   351  		r1, _ = utf8.DecodeLastRune(i.str[:pos])
   352  	}
   353  	if pos < len(i.str) {
   354  		r2, _ = utf8.DecodeRune(i.str[pos:])
   355  	}
   356  	return syntax.EmptyOpContext(r1, r2)
   357  }
   358  
   359  // inputReader scans a RuneReader.
   360  type inputReader struct {
   361  	r     io.RuneReader
   362  	atEOT bool
   363  	pos   int
   364  }
   365  
   366  func (i *inputReader) step(pos int) (rune, int) {
   367  	if !i.atEOT && pos != i.pos {
   368  		return endOfText, 0
   369  
   370  	}
   371  	r, w, err := i.r.ReadRune()
   372  	if err != nil {
   373  		i.atEOT = true
   374  		return endOfText, 0
   375  	}
   376  	i.pos += w
   377  	return r, w
   378  }
   379  
   380  func (i *inputReader) canCheckPrefix() bool {
   381  	return false
   382  }
   383  
   384  func (i *inputReader) hasPrefix(re *Regexp) bool {
   385  	return false
   386  }
   387  
   388  func (i *inputReader) index(re *Regexp, pos int) int {
   389  	return -1
   390  }
   391  
   392  func (i *inputReader) context(pos int) syntax.EmptyOp {
   393  	return 0
   394  }
   395  
   396  // LiteralPrefix returns a literal string that must begin any match
   397  // of the regular expression re.  It returns the boolean true if the
   398  // literal string comprises the entire regular expression.
   399  func (re *Regexp) LiteralPrefix() (prefix string, complete bool) {
   400  	return re.prefix, re.prefixComplete
   401  }
   402  
   403  // MatchReader reports whether the Regexp matches the text read by the
   404  // RuneReader.
   405  func (re *Regexp) MatchReader(r io.RuneReader) bool {
   406  	return re.doExecute(r, nil, "", 0, 0) != nil
   407  }
   408  
   409  // MatchString reports whether the Regexp matches the string s.
   410  func (re *Regexp) MatchString(s string) bool {
   411  	return re.doExecute(nil, nil, s, 0, 0) != nil
   412  }
   413  
   414  // Match reports whether the Regexp matches the byte slice b.
   415  func (re *Regexp) Match(b []byte) bool {
   416  	return re.doExecute(nil, b, "", 0, 0) != nil
   417  }
   418  
   419  // MatchReader checks whether a textual regular expression matches the text
   420  // read by the RuneReader.  More complicated queries need to use Compile and
   421  // the full Regexp interface.
   422  func MatchReader(pattern string, r io.RuneReader) (matched bool, err error) {
   423  	re, err := Compile(pattern)
   424  	if err != nil {
   425  		return false, err
   426  	}
   427  	return re.MatchReader(r), nil
   428  }
   429  
   430  // MatchString checks whether a textual regular expression
   431  // matches a string.  More complicated queries need
   432  // to use Compile and the full Regexp interface.
   433  func MatchString(pattern string, s string) (matched bool, err error) {
   434  	re, err := Compile(pattern)
   435  	if err != nil {
   436  		return false, err
   437  	}
   438  	return re.MatchString(s), nil
   439  }
   440  
   441  // Match checks whether a textual regular expression
   442  // matches a byte slice.  More complicated queries need
   443  // to use Compile and the full Regexp interface.
   444  func Match(pattern string, b []byte) (matched bool, err error) {
   445  	re, err := Compile(pattern)
   446  	if err != nil {
   447  		return false, err
   448  	}
   449  	return re.Match(b), nil
   450  }
   451  
   452  // ReplaceAllString returns a copy of src, replacing matches of the Regexp
   453  // with the replacement string repl.  Inside repl, $ signs are interpreted as
   454  // in Expand, so for instance $1 represents the text of the first submatch.
   455  func (re *Regexp) ReplaceAllString(src, repl string) string {
   456  	n := 2
   457  	if strings.Index(repl, "$") >= 0 {
   458  		n = 2 * (re.numSubexp + 1)
   459  	}
   460  	b := re.replaceAll(nil, src, n, func(dst []byte, match []int) []byte {
   461  		return re.expand(dst, repl, nil, src, match)
   462  	})
   463  	return string(b)
   464  }
   465  
   466  // ReplaceAllLiteralString returns a copy of src, replacing matches of the Regexp
   467  // with the replacement string repl.  The replacement repl is substituted directly,
   468  // without using Expand.
   469  func (re *Regexp) ReplaceAllLiteralString(src, repl string) string {
   470  	return string(re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
   471  		return append(dst, repl...)
   472  	}))
   473  }
   474  
   475  // ReplaceAllStringFunc returns a copy of src in which all matches of the
   476  // Regexp have been replaced by the return value of function repl applied
   477  // to the matched substring.  The replacement returned by repl is substituted
   478  // directly, without using Expand.
   479  func (re *Regexp) ReplaceAllStringFunc(src string, repl func(string) string) string {
   480  	b := re.replaceAll(nil, src, 2, func(dst []byte, match []int) []byte {
   481  		return append(dst, repl(src[match[0]:match[1]])...)
   482  	})
   483  	return string(b)
   484  }
   485  
   486  func (re *Regexp) replaceAll(bsrc []byte, src string, nmatch int, repl func(dst []byte, m []int) []byte) []byte {
   487  	lastMatchEnd := 0 // end position of the most recent match
   488  	searchPos := 0    // position where we next look for a match
   489  	var buf []byte
   490  	var endPos int
   491  	if bsrc != nil {
   492  		endPos = len(bsrc)
   493  	} else {
   494  		endPos = len(src)
   495  	}
   496  	if nmatch > re.prog.NumCap {
   497  		nmatch = re.prog.NumCap
   498  	}
   499  
   500  	for searchPos <= endPos {
   501  		a := re.doExecute(nil, bsrc, src, searchPos, nmatch)
   502  		if len(a) == 0 {
   503  			break // no more matches
   504  		}
   505  
   506  		// Copy the unmatched characters before this match.
   507  		if bsrc != nil {
   508  			buf = append(buf, bsrc[lastMatchEnd:a[0]]...)
   509  		} else {
   510  			buf = append(buf, src[lastMatchEnd:a[0]]...)
   511  		}
   512  
   513  		// Now insert a copy of the replacement string, but not for a
   514  		// match of the empty string immediately after another match.
   515  		// (Otherwise, we get double replacement for patterns that
   516  		// match both empty and nonempty strings.)
   517  		if a[1] > lastMatchEnd || a[0] == 0 {
   518  			buf = repl(buf, a)
   519  		}
   520  		lastMatchEnd = a[1]
   521  
   522  		// Advance past this match; always advance at least one character.
   523  		var width int
   524  		if bsrc != nil {
   525  			_, width = utf8.DecodeRune(bsrc[searchPos:])
   526  		} else {
   527  			_, width = utf8.DecodeRuneInString(src[searchPos:])
   528  		}
   529  		if searchPos+width > a[1] {
   530  			searchPos += width
   531  		} else if searchPos+1 > a[1] {
   532  			// This clause is only needed at the end of the input
   533  			// string.  In that case, DecodeRuneInString returns width=0.
   534  			searchPos++
   535  		} else {
   536  			searchPos = a[1]
   537  		}
   538  	}
   539  
   540  	// Copy the unmatched characters after the last match.
   541  	if bsrc != nil {
   542  		buf = append(buf, bsrc[lastMatchEnd:]...)
   543  	} else {
   544  		buf = append(buf, src[lastMatchEnd:]...)
   545  	}
   546  
   547  	return buf
   548  }
   549  
   550  // ReplaceAll returns a copy of src, replacing matches of the Regexp
   551  // with the replacement text repl.  Inside repl, $ signs are interpreted as
   552  // in Expand, so for instance $1 represents the text of the first submatch.
   553  func (re *Regexp) ReplaceAll(src, repl []byte) []byte {
   554  	n := 2
   555  	if bytes.IndexByte(repl, '$') >= 0 {
   556  		n = 2 * (re.numSubexp + 1)
   557  	}
   558  	srepl := ""
   559  	b := re.replaceAll(src, "", n, func(dst []byte, match []int) []byte {
   560  		if len(srepl) != len(repl) {
   561  			srepl = string(repl)
   562  		}
   563  		return re.expand(dst, srepl, src, "", match)
   564  	})
   565  	return b
   566  }
   567  
   568  // ReplaceAllLiteral returns a copy of src, replacing matches of the Regexp
   569  // with the replacement bytes repl.  The replacement repl is substituted directly,
   570  // without using Expand.
   571  func (re *Regexp) ReplaceAllLiteral(src, repl []byte) []byte {
   572  	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
   573  		return append(dst, repl...)
   574  	})
   575  }
   576  
   577  // ReplaceAllFunc returns a copy of src in which all matches of the
   578  // Regexp have been replaced by the return value of function repl applied
   579  // to the matched byte slice.  The replacement returned by repl is substituted
   580  // directly, without using Expand.
   581  func (re *Regexp) ReplaceAllFunc(src []byte, repl func([]byte) []byte) []byte {
   582  	return re.replaceAll(src, "", 2, func(dst []byte, match []int) []byte {
   583  		return append(dst, repl(src[match[0]:match[1]])...)
   584  	})
   585  }
   586  
   587  var specialBytes = []byte(`\.+*?()|[]{}^$`)
   588  
   589  func special(b byte) bool {
   590  	return bytes.IndexByte(specialBytes, b) >= 0
   591  }
   592  
   593  // QuoteMeta returns a string that quotes all regular expression metacharacters
   594  // inside the argument text; the returned string is a regular expression matching
   595  // the literal text.  For example, QuoteMeta(`[foo]`) returns `\[foo\]`.
   596  func QuoteMeta(s string) string {
   597  	b := make([]byte, 2*len(s))
   598  
   599  	// A byte loop is correct because all metacharacters are ASCII.
   600  	j := 0
   601  	for i := 0; i < len(s); i++ {
   602  		if special(s[i]) {
   603  			b[j] = '\\'
   604  			j++
   605  		}
   606  		b[j] = s[i]
   607  		j++
   608  	}
   609  	return string(b[0:j])
   610  }
   611  
   612  // The number of capture values in the program may correspond
   613  // to fewer capturing expressions than are in the regexp.
   614  // For example, "(a){0}" turns into an empty program, so the
   615  // maximum capture in the program is 0 but we need to return
   616  // an expression for \1.  Pad appends -1s to the slice a as needed.
   617  func (re *Regexp) pad(a []int) []int {
   618  	if a == nil {
   619  		// No match.
   620  		return nil
   621  	}
   622  	n := (1 + re.numSubexp) * 2
   623  	for len(a) < n {
   624  		a = append(a, -1)
   625  	}
   626  	return a
   627  }
   628  
   629  // Find matches in slice b if b is non-nil, otherwise find matches in string s.
   630  func (re *Regexp) allMatches(s string, b []byte, n int, deliver func([]int)) {
   631  	var end int
   632  	if b == nil {
   633  		end = len(s)
   634  	} else {
   635  		end = len(b)
   636  	}
   637  
   638  	for pos, i, prevMatchEnd := 0, 0, -1; i < n && pos <= end; {
   639  		matches := re.doExecute(nil, b, s, pos, re.prog.NumCap)
   640  		if len(matches) == 0 {
   641  			break
   642  		}
   643  
   644  		accept := true
   645  		if matches[1] == pos {
   646  			// We've found an empty match.
   647  			if matches[0] == prevMatchEnd {
   648  				// We don't allow an empty match right
   649  				// after a previous match, so ignore it.
   650  				accept = false
   651  			}
   652  			var width int
   653  			// TODO: use step()
   654  			if b == nil {
   655  				_, width = utf8.DecodeRuneInString(s[pos:end])
   656  			} else {
   657  				_, width = utf8.DecodeRune(b[pos:end])
   658  			}
   659  			if width > 0 {
   660  				pos += width
   661  			} else {
   662  				pos = end + 1
   663  			}
   664  		} else {
   665  			pos = matches[1]
   666  		}
   667  		prevMatchEnd = matches[1]
   668  
   669  		if accept {
   670  			deliver(re.pad(matches))
   671  			i++
   672  		}
   673  	}
   674  }
   675  
   676  // Find returns a slice holding the text of the leftmost match in b of the regular expression.
   677  // A return value of nil indicates no match.
   678  func (re *Regexp) Find(b []byte) []byte {
   679  	a := re.doExecute(nil, b, "", 0, 2)
   680  	if a == nil {
   681  		return nil
   682  	}
   683  	return b[a[0]:a[1]]
   684  }
   685  
   686  // FindIndex returns a two-element slice of integers defining the location of
   687  // the leftmost match in b of the regular expression.  The match itself is at
   688  // b[loc[0]:loc[1]].
   689  // A return value of nil indicates no match.
   690  func (re *Regexp) FindIndex(b []byte) (loc []int) {
   691  	a := re.doExecute(nil, b, "", 0, 2)
   692  	if a == nil {
   693  		return nil
   694  	}
   695  	return a[0:2]
   696  }
   697  
   698  // FindString returns a string holding the text of the leftmost match in s of the regular
   699  // expression.  If there is no match, the return value is an empty string,
   700  // but it will also be empty if the regular expression successfully matches
   701  // an empty string.  Use FindStringIndex or FindStringSubmatch if it is
   702  // necessary to distinguish these cases.
   703  func (re *Regexp) FindString(s string) string {
   704  	a := re.doExecute(nil, nil, s, 0, 2)
   705  	if a == nil {
   706  		return ""
   707  	}
   708  	return s[a[0]:a[1]]
   709  }
   710  
   711  // FindStringIndex returns a two-element slice of integers defining the
   712  // location of the leftmost match in s of the regular expression.  The match
   713  // itself is at s[loc[0]:loc[1]].
   714  // A return value of nil indicates no match.
   715  func (re *Regexp) FindStringIndex(s string) (loc []int) {
   716  	a := re.doExecute(nil, nil, s, 0, 2)
   717  	if a == nil {
   718  		return nil
   719  	}
   720  	return a[0:2]
   721  }
   722  
   723  // FindReaderIndex returns a two-element slice of integers defining the
   724  // location of the leftmost match of the regular expression in text read from
   725  // the RuneReader.  The match text was found in the input stream at
   726  // byte offset loc[0] through loc[1]-1.
   727  // A return value of nil indicates no match.
   728  func (re *Regexp) FindReaderIndex(r io.RuneReader) (loc []int) {
   729  	a := re.doExecute(r, nil, "", 0, 2)
   730  	if a == nil {
   731  		return nil
   732  	}
   733  	return a[0:2]
   734  }
   735  
   736  // FindSubmatch returns a slice of slices holding the text of the leftmost
   737  // match of the regular expression in b and the matches, if any, of its
   738  // subexpressions, as defined by the 'Submatch' descriptions in the package
   739  // comment.
   740  // A return value of nil indicates no match.
   741  func (re *Regexp) FindSubmatch(b []byte) [][]byte {
   742  	a := re.doExecute(nil, b, "", 0, re.prog.NumCap)
   743  	if a == nil {
   744  		return nil
   745  	}
   746  	ret := make([][]byte, 1+re.numSubexp)
   747  	for i := range ret {
   748  		if 2*i < len(a) && a[2*i] >= 0 {
   749  			ret[i] = b[a[2*i]:a[2*i+1]]
   750  		}
   751  	}
   752  	return ret
   753  }
   754  
   755  // Expand appends template to dst and returns the result; during the
   756  // append, Expand replaces variables in the template with corresponding
   757  // matches drawn from src.  The match slice should have been returned by
   758  // FindSubmatchIndex.
   759  //
   760  // In the template, a variable is denoted by a substring of the form
   761  // $name or ${name}, where name is a non-empty sequence of letters,
   762  // digits, and underscores.  A purely numeric name like $1 refers to
   763  // the submatch with the corresponding index; other names refer to
   764  // capturing parentheses named with the (?P<name>...) syntax.  A
   765  // reference to an out of range or unmatched index or a name that is not
   766  // present in the regular expression is replaced with an empty slice.
   767  //
   768  // In the $name form, name is taken to be as long as possible: $1x is
   769  // equivalent to ${1x}, not ${1}x, and, $10 is equivalent to ${10}, not ${1}0.
   770  //
   771  // To insert a literal $ in the output, use $$ in the template.
   772  func (re *Regexp) Expand(dst []byte, template []byte, src []byte, match []int) []byte {
   773  	return re.expand(dst, string(template), src, "", match)
   774  }
   775  
   776  // ExpandString is like Expand but the template and source are strings.
   777  // It appends to and returns a byte slice in order to give the calling
   778  // code control over allocation.
   779  func (re *Regexp) ExpandString(dst []byte, template string, src string, match []int) []byte {
   780  	return re.expand(dst, template, nil, src, match)
   781  }
   782  
   783  func (re *Regexp) expand(dst []byte, template string, bsrc []byte, src string, match []int) []byte {
   784  	for len(template) > 0 {
   785  		i := strings.Index(template, "$")
   786  		if i < 0 {
   787  			break
   788  		}
   789  		dst = append(dst, template[:i]...)
   790  		template = template[i:]
   791  		if len(template) > 1 && template[1] == '$' {
   792  			// Treat $$ as $.
   793  			dst = append(dst, '$')
   794  			template = template[2:]
   795  			continue
   796  		}
   797  		name, num, rest, ok := extract(template)
   798  		if !ok {
   799  			// Malformed; treat $ as raw text.
   800  			dst = append(dst, '$')
   801  			template = template[1:]
   802  			continue
   803  		}
   804  		template = rest
   805  		if num >= 0 {
   806  			if 2*num+1 < len(match) && match[2*num] >= 0 {
   807  				if bsrc != nil {
   808  					dst = append(dst, bsrc[match[2*num]:match[2*num+1]]...)
   809  				} else {
   810  					dst = append(dst, src[match[2*num]:match[2*num+1]]...)
   811  				}
   812  			}
   813  		} else {
   814  			for i, namei := range re.subexpNames {
   815  				if name == namei && 2*i+1 < len(match) && match[2*i] >= 0 {
   816  					if bsrc != nil {
   817  						dst = append(dst, bsrc[match[2*i]:match[2*i+1]]...)
   818  					} else {
   819  						dst = append(dst, src[match[2*i]:match[2*i+1]]...)
   820  					}
   821  					break
   822  				}
   823  			}
   824  		}
   825  	}
   826  	dst = append(dst, template...)
   827  	return dst
   828  }
   829  
   830  // extract returns the name from a leading "$name" or "${name}" in str.
   831  // If it is a number, extract returns num set to that number; otherwise num = -1.
   832  func extract(str string) (name string, num int, rest string, ok bool) {
   833  	if len(str) < 2 || str[0] != '$' {
   834  		return
   835  	}
   836  	brace := false
   837  	if str[1] == '{' {
   838  		brace = true
   839  		str = str[2:]
   840  	} else {
   841  		str = str[1:]
   842  	}
   843  	i := 0
   844  	for i < len(str) {
   845  		rune, size := utf8.DecodeRuneInString(str[i:])
   846  		if !unicode.IsLetter(rune) && !unicode.IsDigit(rune) && rune != '_' {
   847  			break
   848  		}
   849  		i += size
   850  	}
   851  	if i == 0 {
   852  		// empty name is not okay
   853  		return
   854  	}
   855  	name = str[:i]
   856  	if brace {
   857  		if i >= len(str) || str[i] != '}' {
   858  			// missing closing brace
   859  			return
   860  		}
   861  		i++
   862  	}
   863  
   864  	// Parse number.
   865  	num = 0
   866  	for i := 0; i < len(name); i++ {
   867  		if name[i] < '0' || '9' < name[i] || num >= 1e8 {
   868  			num = -1
   869  			break
   870  		}
   871  		num = num*10 + int(name[i]) - '0'
   872  	}
   873  	// Disallow leading zeros.
   874  	if name[0] == '0' && len(name) > 1 {
   875  		num = -1
   876  	}
   877  
   878  	rest = str[i:]
   879  	ok = true
   880  	return
   881  }
   882  
   883  // FindSubmatchIndex returns a slice holding the index pairs identifying the
   884  // leftmost match of the regular expression in b and the matches, if any, of
   885  // its subexpressions, as defined by the 'Submatch' and 'Index' descriptions
   886  // in the package comment.
   887  // A return value of nil indicates no match.
   888  func (re *Regexp) FindSubmatchIndex(b []byte) []int {
   889  	return re.pad(re.doExecute(nil, b, "", 0, re.prog.NumCap))
   890  }
   891  
   892  // FindStringSubmatch returns a slice of strings holding the text of the
   893  // leftmost match of the regular expression in s and the matches, if any, of
   894  // its subexpressions, as defined by the 'Submatch' description in the
   895  // package comment.
   896  // A return value of nil indicates no match.
   897  func (re *Regexp) FindStringSubmatch(s string) []string {
   898  	a := re.doExecute(nil, nil, s, 0, re.prog.NumCap)
   899  	if a == nil {
   900  		return nil
   901  	}
   902  	ret := make([]string, 1+re.numSubexp)
   903  	for i := range ret {
   904  		if 2*i < len(a) && a[2*i] >= 0 {
   905  			ret[i] = s[a[2*i]:a[2*i+1]]
   906  		}
   907  	}
   908  	return ret
   909  }
   910  
   911  // FindStringSubmatchIndex returns a slice holding the index pairs
   912  // identifying the leftmost match of the regular expression in s and the
   913  // matches, if any, of its subexpressions, as defined by the 'Submatch' and
   914  // 'Index' descriptions in the package comment.
   915  // A return value of nil indicates no match.
   916  func (re *Regexp) FindStringSubmatchIndex(s string) []int {
   917  	return re.pad(re.doExecute(nil, nil, s, 0, re.prog.NumCap))
   918  }
   919  
   920  // FindReaderSubmatchIndex returns a slice holding the index pairs
   921  // identifying the leftmost match of the regular expression of text read by
   922  // the RuneReader, and the matches, if any, of its subexpressions, as defined
   923  // by the 'Submatch' and 'Index' descriptions in the package comment.  A
   924  // return value of nil indicates no match.
   925  func (re *Regexp) FindReaderSubmatchIndex(r io.RuneReader) []int {
   926  	return re.pad(re.doExecute(r, nil, "", 0, re.prog.NumCap))
   927  }
   928  
   929  const startSize = 10 // The size at which to start a slice in the 'All' routines.
   930  
   931  // FindAll is the 'All' version of Find; it returns a slice of all successive
   932  // matches of the expression, as defined by the 'All' description in the
   933  // package comment.
   934  // A return value of nil indicates no match.
   935  func (re *Regexp) FindAll(b []byte, n int) [][]byte {
   936  	if n < 0 {
   937  		n = len(b) + 1
   938  	}
   939  	result := make([][]byte, 0, startSize)
   940  	re.allMatches("", b, n, func(match []int) {
   941  		result = append(result, b[match[0]:match[1]])
   942  	})
   943  	if len(result) == 0 {
   944  		return nil
   945  	}
   946  	return result
   947  }
   948  
   949  // FindAllIndex is the 'All' version of FindIndex; it returns a slice of all
   950  // successive matches of the expression, as defined by the 'All' description
   951  // in the package comment.
   952  // A return value of nil indicates no match.
   953  func (re *Regexp) FindAllIndex(b []byte, n int) [][]int {
   954  	if n < 0 {
   955  		n = len(b) + 1
   956  	}
   957  	result := make([][]int, 0, startSize)
   958  	re.allMatches("", b, n, func(match []int) {
   959  		result = append(result, match[0:2])
   960  	})
   961  	if len(result) == 0 {
   962  		return nil
   963  	}
   964  	return result
   965  }
   966  
   967  // FindAllString is the 'All' version of FindString; it returns a slice of all
   968  // successive matches of the expression, as defined by the 'All' description
   969  // in the package comment.
   970  // A return value of nil indicates no match.
   971  func (re *Regexp) FindAllString(s string, n int) []string {
   972  	if n < 0 {
   973  		n = len(s) + 1
   974  	}
   975  	result := make([]string, 0, startSize)
   976  	re.allMatches(s, nil, n, func(match []int) {
   977  		result = append(result, s[match[0]:match[1]])
   978  	})
   979  	if len(result) == 0 {
   980  		return nil
   981  	}
   982  	return result
   983  }
   984  
   985  // FindAllStringIndex is the 'All' version of FindStringIndex; it returns a
   986  // slice of all successive matches of the expression, as defined by the 'All'
   987  // description in the package comment.
   988  // A return value of nil indicates no match.
   989  func (re *Regexp) FindAllStringIndex(s string, n int) [][]int {
   990  	if n < 0 {
   991  		n = len(s) + 1
   992  	}
   993  	result := make([][]int, 0, startSize)
   994  	re.allMatches(s, nil, n, func(match []int) {
   995  		result = append(result, match[0:2])
   996  	})
   997  	if len(result) == 0 {
   998  		return nil
   999  	}
  1000  	return result
  1001  }
  1002  
  1003  // FindAllSubmatch is the 'All' version of FindSubmatch; it returns a slice
  1004  // of all successive matches of the expression, as defined by the 'All'
  1005  // description in the package comment.
  1006  // A return value of nil indicates no match.
  1007  func (re *Regexp) FindAllSubmatch(b []byte, n int) [][][]byte {
  1008  	if n < 0 {
  1009  		n = len(b) + 1
  1010  	}
  1011  	result := make([][][]byte, 0, startSize)
  1012  	re.allMatches("", b, n, func(match []int) {
  1013  		slice := make([][]byte, len(match)/2)
  1014  		for j := range slice {
  1015  			if match[2*j] >= 0 {
  1016  				slice[j] = b[match[2*j]:match[2*j+1]]
  1017  			}
  1018  		}
  1019  		result = append(result, slice)
  1020  	})
  1021  	if len(result) == 0 {
  1022  		return nil
  1023  	}
  1024  	return result
  1025  }
  1026  
  1027  // FindAllSubmatchIndex is the 'All' version of FindSubmatchIndex; it returns
  1028  // a slice of all successive matches of the expression, as defined by the
  1029  // 'All' description in the package comment.
  1030  // A return value of nil indicates no match.
  1031  func (re *Regexp) FindAllSubmatchIndex(b []byte, n int) [][]int {
  1032  	if n < 0 {
  1033  		n = len(b) + 1
  1034  	}
  1035  	result := make([][]int, 0, startSize)
  1036  	re.allMatches("", b, n, func(match []int) {
  1037  		result = append(result, match)
  1038  	})
  1039  	if len(result) == 0 {
  1040  		return nil
  1041  	}
  1042  	return result
  1043  }
  1044  
  1045  // FindAllStringSubmatch is the 'All' version of FindStringSubmatch; it
  1046  // returns a slice of all successive matches of the expression, as defined by
  1047  // the 'All' description in the package comment.
  1048  // A return value of nil indicates no match.
  1049  func (re *Regexp) FindAllStringSubmatch(s string, n int) [][]string {
  1050  	if n < 0 {
  1051  		n = len(s) + 1
  1052  	}
  1053  	result := make([][]string, 0, startSize)
  1054  	re.allMatches(s, nil, n, func(match []int) {
  1055  		slice := make([]string, len(match)/2)
  1056  		for j := range slice {
  1057  			if match[2*j] >= 0 {
  1058  				slice[j] = s[match[2*j]:match[2*j+1]]
  1059  			}
  1060  		}
  1061  		result = append(result, slice)
  1062  	})
  1063  	if len(result) == 0 {
  1064  		return nil
  1065  	}
  1066  	return result
  1067  }
  1068  
  1069  // FindAllStringSubmatchIndex is the 'All' version of
  1070  // FindStringSubmatchIndex; it returns a slice of all successive matches of
  1071  // the expression, as defined by the 'All' description in the package
  1072  // comment.
  1073  // A return value of nil indicates no match.
  1074  func (re *Regexp) FindAllStringSubmatchIndex(s string, n int) [][]int {
  1075  	if n < 0 {
  1076  		n = len(s) + 1
  1077  	}
  1078  	result := make([][]int, 0, startSize)
  1079  	re.allMatches(s, nil, n, func(match []int) {
  1080  		result = append(result, match)
  1081  	})
  1082  	if len(result) == 0 {
  1083  		return nil
  1084  	}
  1085  	return result
  1086  }
  1087  
  1088  // Split slices s into substrings separated by the expression and returns a slice of
  1089  // the substrings between those expression matches.
  1090  //
  1091  // The slice returned by this method consists of all the substrings of s
  1092  // not contained in the slice returned by FindAllString. When called on an expression
  1093  // that contains no metacharacters, it is equivalent to strings.SplitN.
  1094  //
  1095  // Example:
  1096  //   s := regexp.MustCompile("a*").Split("abaabaccadaaae", 5)
  1097  //   // s: ["", "b", "b", "c", "cadaaae"]
  1098  //
  1099  // The count determines the number of substrings to return:
  1100  //   n > 0: at most n substrings; the last substring will be the unsplit remainder.
  1101  //   n == 0: the result is nil (zero substrings)
  1102  //   n < 0: all substrings
  1103  func (re *Regexp) Split(s string, n int) []string {
  1104  
  1105  	if n == 0 {
  1106  		return nil
  1107  	}
  1108  
  1109  	if len(re.expr) > 0 && len(s) == 0 {
  1110  		return []string{""}
  1111  	}
  1112  
  1113  	matches := re.FindAllStringIndex(s, n)
  1114  	strings := make([]string, 0, len(matches))
  1115  
  1116  	beg := 0
  1117  	end := 0
  1118  	for _, match := range matches {
  1119  		if n > 0 && len(strings) >= n-1 {
  1120  			break
  1121  		}
  1122  
  1123  		end = match[0]
  1124  		if match[1] != 0 {
  1125  			strings = append(strings, s[beg:end])
  1126  		}
  1127  		beg = match[1]
  1128  	}
  1129  
  1130  	if end != len(s) {
  1131  		strings = append(strings, s[beg:])
  1132  	}
  1133  
  1134  	return strings
  1135  }