github.com/fletavendor/sys@v0.0.0-20181107165924-66b7b1311ac8/unix/syscall_linux.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Linux system calls.
     6  // This file is compiled as ordinary Go code,
     7  // but it is also input to mksyscall,
     8  // which parses the //sys lines and generates system call stubs.
     9  // Note that sometimes we use a lowercase //sys name and
    10  // wrap it in our own nicer implementation.
    11  
    12  package unix
    13  
    14  import (
    15  	"syscall"
    16  	"unsafe"
    17  )
    18  
    19  /*
    20   * Wrapped
    21   */
    22  
    23  func Access(path string, mode uint32) (err error) {
    24  	return Faccessat(AT_FDCWD, path, mode, 0)
    25  }
    26  
    27  func Chmod(path string, mode uint32) (err error) {
    28  	return Fchmodat(AT_FDCWD, path, mode, 0)
    29  }
    30  
    31  func Chown(path string, uid int, gid int) (err error) {
    32  	return Fchownat(AT_FDCWD, path, uid, gid, 0)
    33  }
    34  
    35  func Creat(path string, mode uint32) (fd int, err error) {
    36  	return Open(path, O_CREAT|O_WRONLY|O_TRUNC, mode)
    37  }
    38  
    39  //sys	fchmodat(dirfd int, path string, mode uint32) (err error)
    40  
    41  func Fchmodat(dirfd int, path string, mode uint32, flags int) (err error) {
    42  	// Linux fchmodat doesn't support the flags parameter. Mimick glibc's behavior
    43  	// and check the flags. Otherwise the mode would be applied to the symlink
    44  	// destination which is not what the user expects.
    45  	if flags&^AT_SYMLINK_NOFOLLOW != 0 {
    46  		return EINVAL
    47  	} else if flags&AT_SYMLINK_NOFOLLOW != 0 {
    48  		return EOPNOTSUPP
    49  	}
    50  	return fchmodat(dirfd, path, mode)
    51  }
    52  
    53  //sys	ioctl(fd int, req uint, arg uintptr) (err error)
    54  
    55  // ioctl itself should not be exposed directly, but additional get/set
    56  // functions for specific types are permissible.
    57  
    58  // IoctlSetInt performs an ioctl operation which sets an integer value
    59  // on fd, using the specified request number.
    60  func IoctlSetInt(fd int, req uint, value int) error {
    61  	return ioctl(fd, req, uintptr(value))
    62  }
    63  
    64  func ioctlSetWinsize(fd int, req uint, value *Winsize) error {
    65  	return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
    66  }
    67  
    68  func ioctlSetTermios(fd int, req uint, value *Termios) error {
    69  	return ioctl(fd, req, uintptr(unsafe.Pointer(value)))
    70  }
    71  
    72  // IoctlGetInt performs an ioctl operation which gets an integer value
    73  // from fd, using the specified request number.
    74  func IoctlGetInt(fd int, req uint) (int, error) {
    75  	var value int
    76  	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
    77  	return value, err
    78  }
    79  
    80  func IoctlGetWinsize(fd int, req uint) (*Winsize, error) {
    81  	var value Winsize
    82  	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
    83  	return &value, err
    84  }
    85  
    86  func IoctlGetTermios(fd int, req uint) (*Termios, error) {
    87  	var value Termios
    88  	err := ioctl(fd, req, uintptr(unsafe.Pointer(&value)))
    89  	return &value, err
    90  }
    91  
    92  //sys	Linkat(olddirfd int, oldpath string, newdirfd int, newpath string, flags int) (err error)
    93  
    94  func Link(oldpath string, newpath string) (err error) {
    95  	return Linkat(AT_FDCWD, oldpath, AT_FDCWD, newpath, 0)
    96  }
    97  
    98  func Mkdir(path string, mode uint32) (err error) {
    99  	return Mkdirat(AT_FDCWD, path, mode)
   100  }
   101  
   102  func Mknod(path string, mode uint32, dev int) (err error) {
   103  	return Mknodat(AT_FDCWD, path, mode, dev)
   104  }
   105  
   106  func Open(path string, mode int, perm uint32) (fd int, err error) {
   107  	return openat(AT_FDCWD, path, mode|O_LARGEFILE, perm)
   108  }
   109  
   110  //sys	openat(dirfd int, path string, flags int, mode uint32) (fd int, err error)
   111  
   112  func Openat(dirfd int, path string, flags int, mode uint32) (fd int, err error) {
   113  	return openat(dirfd, path, flags|O_LARGEFILE, mode)
   114  }
   115  
   116  //sys	ppoll(fds *PollFd, nfds int, timeout *Timespec, sigmask *Sigset_t) (n int, err error)
   117  
   118  func Ppoll(fds []PollFd, timeout *Timespec, sigmask *Sigset_t) (n int, err error) {
   119  	if len(fds) == 0 {
   120  		return ppoll(nil, 0, timeout, sigmask)
   121  	}
   122  	return ppoll(&fds[0], len(fds), timeout, sigmask)
   123  }
   124  
   125  //sys	Readlinkat(dirfd int, path string, buf []byte) (n int, err error)
   126  
   127  func Readlink(path string, buf []byte) (n int, err error) {
   128  	return Readlinkat(AT_FDCWD, path, buf)
   129  }
   130  
   131  func Rename(oldpath string, newpath string) (err error) {
   132  	return Renameat(AT_FDCWD, oldpath, AT_FDCWD, newpath)
   133  }
   134  
   135  func Rmdir(path string) error {
   136  	return Unlinkat(AT_FDCWD, path, AT_REMOVEDIR)
   137  }
   138  
   139  //sys	Symlinkat(oldpath string, newdirfd int, newpath string) (err error)
   140  
   141  func Symlink(oldpath string, newpath string) (err error) {
   142  	return Symlinkat(oldpath, AT_FDCWD, newpath)
   143  }
   144  
   145  func Unlink(path string) error {
   146  	return Unlinkat(AT_FDCWD, path, 0)
   147  }
   148  
   149  //sys	Unlinkat(dirfd int, path string, flags int) (err error)
   150  
   151  func Utimes(path string, tv []Timeval) error {
   152  	if tv == nil {
   153  		err := utimensat(AT_FDCWD, path, nil, 0)
   154  		if err != ENOSYS {
   155  			return err
   156  		}
   157  		return utimes(path, nil)
   158  	}
   159  	if len(tv) != 2 {
   160  		return EINVAL
   161  	}
   162  	var ts [2]Timespec
   163  	ts[0] = NsecToTimespec(TimevalToNsec(tv[0]))
   164  	ts[1] = NsecToTimespec(TimevalToNsec(tv[1]))
   165  	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
   166  	if err != ENOSYS {
   167  		return err
   168  	}
   169  	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
   170  }
   171  
   172  //sys	utimensat(dirfd int, path string, times *[2]Timespec, flags int) (err error)
   173  
   174  func UtimesNano(path string, ts []Timespec) error {
   175  	if ts == nil {
   176  		err := utimensat(AT_FDCWD, path, nil, 0)
   177  		if err != ENOSYS {
   178  			return err
   179  		}
   180  		return utimes(path, nil)
   181  	}
   182  	if len(ts) != 2 {
   183  		return EINVAL
   184  	}
   185  	err := utimensat(AT_FDCWD, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), 0)
   186  	if err != ENOSYS {
   187  		return err
   188  	}
   189  	// If the utimensat syscall isn't available (utimensat was added to Linux
   190  	// in 2.6.22, Released, 8 July 2007) then fall back to utimes
   191  	var tv [2]Timeval
   192  	for i := 0; i < 2; i++ {
   193  		tv[i] = NsecToTimeval(TimespecToNsec(ts[i]))
   194  	}
   195  	return utimes(path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
   196  }
   197  
   198  func UtimesNanoAt(dirfd int, path string, ts []Timespec, flags int) error {
   199  	if ts == nil {
   200  		return utimensat(dirfd, path, nil, flags)
   201  	}
   202  	if len(ts) != 2 {
   203  		return EINVAL
   204  	}
   205  	return utimensat(dirfd, path, (*[2]Timespec)(unsafe.Pointer(&ts[0])), flags)
   206  }
   207  
   208  func Futimesat(dirfd int, path string, tv []Timeval) error {
   209  	if tv == nil {
   210  		return futimesat(dirfd, path, nil)
   211  	}
   212  	if len(tv) != 2 {
   213  		return EINVAL
   214  	}
   215  	return futimesat(dirfd, path, (*[2]Timeval)(unsafe.Pointer(&tv[0])))
   216  }
   217  
   218  func Futimes(fd int, tv []Timeval) (err error) {
   219  	// Believe it or not, this is the best we can do on Linux
   220  	// (and is what glibc does).
   221  	return Utimes("/proc/self/fd/"+itoa(fd), tv)
   222  }
   223  
   224  const ImplementsGetwd = true
   225  
   226  //sys	Getcwd(buf []byte) (n int, err error)
   227  
   228  func Getwd() (wd string, err error) {
   229  	var buf [PathMax]byte
   230  	n, err := Getcwd(buf[0:])
   231  	if err != nil {
   232  		return "", err
   233  	}
   234  	// Getcwd returns the number of bytes written to buf, including the NUL.
   235  	if n < 1 || n > len(buf) || buf[n-1] != 0 {
   236  		return "", EINVAL
   237  	}
   238  	return string(buf[0 : n-1]), nil
   239  }
   240  
   241  func Getgroups() (gids []int, err error) {
   242  	n, err := getgroups(0, nil)
   243  	if err != nil {
   244  		return nil, err
   245  	}
   246  	if n == 0 {
   247  		return nil, nil
   248  	}
   249  
   250  	// Sanity check group count. Max is 1<<16 on Linux.
   251  	if n < 0 || n > 1<<20 {
   252  		return nil, EINVAL
   253  	}
   254  
   255  	a := make([]_Gid_t, n)
   256  	n, err = getgroups(n, &a[0])
   257  	if err != nil {
   258  		return nil, err
   259  	}
   260  	gids = make([]int, n)
   261  	for i, v := range a[0:n] {
   262  		gids[i] = int(v)
   263  	}
   264  	return
   265  }
   266  
   267  func Setgroups(gids []int) (err error) {
   268  	if len(gids) == 0 {
   269  		return setgroups(0, nil)
   270  	}
   271  
   272  	a := make([]_Gid_t, len(gids))
   273  	for i, v := range gids {
   274  		a[i] = _Gid_t(v)
   275  	}
   276  	return setgroups(len(a), &a[0])
   277  }
   278  
   279  type WaitStatus uint32
   280  
   281  // Wait status is 7 bits at bottom, either 0 (exited),
   282  // 0x7F (stopped), or a signal number that caused an exit.
   283  // The 0x80 bit is whether there was a core dump.
   284  // An extra number (exit code, signal causing a stop)
   285  // is in the high bits. At least that's the idea.
   286  // There are various irregularities. For example, the
   287  // "continued" status is 0xFFFF, distinguishing itself
   288  // from stopped via the core dump bit.
   289  
   290  const (
   291  	mask    = 0x7F
   292  	core    = 0x80
   293  	exited  = 0x00
   294  	stopped = 0x7F
   295  	shift   = 8
   296  )
   297  
   298  func (w WaitStatus) Exited() bool { return w&mask == exited }
   299  
   300  func (w WaitStatus) Signaled() bool { return w&mask != stopped && w&mask != exited }
   301  
   302  func (w WaitStatus) Stopped() bool { return w&0xFF == stopped }
   303  
   304  func (w WaitStatus) Continued() bool { return w == 0xFFFF }
   305  
   306  func (w WaitStatus) CoreDump() bool { return w.Signaled() && w&core != 0 }
   307  
   308  func (w WaitStatus) ExitStatus() int {
   309  	if !w.Exited() {
   310  		return -1
   311  	}
   312  	return int(w>>shift) & 0xFF
   313  }
   314  
   315  func (w WaitStatus) Signal() syscall.Signal {
   316  	if !w.Signaled() {
   317  		return -1
   318  	}
   319  	return syscall.Signal(w & mask)
   320  }
   321  
   322  func (w WaitStatus) StopSignal() syscall.Signal {
   323  	if !w.Stopped() {
   324  		return -1
   325  	}
   326  	return syscall.Signal(w>>shift) & 0xFF
   327  }
   328  
   329  func (w WaitStatus) TrapCause() int {
   330  	if w.StopSignal() != SIGTRAP {
   331  		return -1
   332  	}
   333  	return int(w>>shift) >> 8
   334  }
   335  
   336  //sys	wait4(pid int, wstatus *_C_int, options int, rusage *Rusage) (wpid int, err error)
   337  
   338  func Wait4(pid int, wstatus *WaitStatus, options int, rusage *Rusage) (wpid int, err error) {
   339  	var status _C_int
   340  	wpid, err = wait4(pid, &status, options, rusage)
   341  	if wstatus != nil {
   342  		*wstatus = WaitStatus(status)
   343  	}
   344  	return
   345  }
   346  
   347  func Mkfifo(path string, mode uint32) error {
   348  	return Mknod(path, mode|S_IFIFO, 0)
   349  }
   350  
   351  func Mkfifoat(dirfd int, path string, mode uint32) error {
   352  	return Mknodat(dirfd, path, mode|S_IFIFO, 0)
   353  }
   354  
   355  func (sa *SockaddrInet4) sockaddr() (unsafe.Pointer, _Socklen, error) {
   356  	if sa.Port < 0 || sa.Port > 0xFFFF {
   357  		return nil, 0, EINVAL
   358  	}
   359  	sa.raw.Family = AF_INET
   360  	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
   361  	p[0] = byte(sa.Port >> 8)
   362  	p[1] = byte(sa.Port)
   363  	for i := 0; i < len(sa.Addr); i++ {
   364  		sa.raw.Addr[i] = sa.Addr[i]
   365  	}
   366  	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet4, nil
   367  }
   368  
   369  func (sa *SockaddrInet6) sockaddr() (unsafe.Pointer, _Socklen, error) {
   370  	if sa.Port < 0 || sa.Port > 0xFFFF {
   371  		return nil, 0, EINVAL
   372  	}
   373  	sa.raw.Family = AF_INET6
   374  	p := (*[2]byte)(unsafe.Pointer(&sa.raw.Port))
   375  	p[0] = byte(sa.Port >> 8)
   376  	p[1] = byte(sa.Port)
   377  	sa.raw.Scope_id = sa.ZoneId
   378  	for i := 0; i < len(sa.Addr); i++ {
   379  		sa.raw.Addr[i] = sa.Addr[i]
   380  	}
   381  	return unsafe.Pointer(&sa.raw), SizeofSockaddrInet6, nil
   382  }
   383  
   384  func (sa *SockaddrUnix) sockaddr() (unsafe.Pointer, _Socklen, error) {
   385  	name := sa.Name
   386  	n := len(name)
   387  	if n >= len(sa.raw.Path) {
   388  		return nil, 0, EINVAL
   389  	}
   390  	sa.raw.Family = AF_UNIX
   391  	for i := 0; i < n; i++ {
   392  		sa.raw.Path[i] = int8(name[i])
   393  	}
   394  	// length is family (uint16), name, NUL.
   395  	sl := _Socklen(2)
   396  	if n > 0 {
   397  		sl += _Socklen(n) + 1
   398  	}
   399  	if sa.raw.Path[0] == '@' {
   400  		sa.raw.Path[0] = 0
   401  		// Don't count trailing NUL for abstract address.
   402  		sl--
   403  	}
   404  
   405  	return unsafe.Pointer(&sa.raw), sl, nil
   406  }
   407  
   408  // SockaddrLinklayer implements the Sockaddr interface for AF_PACKET type sockets.
   409  type SockaddrLinklayer struct {
   410  	Protocol uint16
   411  	Ifindex  int
   412  	Hatype   uint16
   413  	Pkttype  uint8
   414  	Halen    uint8
   415  	Addr     [8]byte
   416  	raw      RawSockaddrLinklayer
   417  }
   418  
   419  func (sa *SockaddrLinklayer) sockaddr() (unsafe.Pointer, _Socklen, error) {
   420  	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
   421  		return nil, 0, EINVAL
   422  	}
   423  	sa.raw.Family = AF_PACKET
   424  	sa.raw.Protocol = sa.Protocol
   425  	sa.raw.Ifindex = int32(sa.Ifindex)
   426  	sa.raw.Hatype = sa.Hatype
   427  	sa.raw.Pkttype = sa.Pkttype
   428  	sa.raw.Halen = sa.Halen
   429  	for i := 0; i < len(sa.Addr); i++ {
   430  		sa.raw.Addr[i] = sa.Addr[i]
   431  	}
   432  	return unsafe.Pointer(&sa.raw), SizeofSockaddrLinklayer, nil
   433  }
   434  
   435  // SockaddrNetlink implements the Sockaddr interface for AF_NETLINK type sockets.
   436  type SockaddrNetlink struct {
   437  	Family uint16
   438  	Pad    uint16
   439  	Pid    uint32
   440  	Groups uint32
   441  	raw    RawSockaddrNetlink
   442  }
   443  
   444  func (sa *SockaddrNetlink) sockaddr() (unsafe.Pointer, _Socklen, error) {
   445  	sa.raw.Family = AF_NETLINK
   446  	sa.raw.Pad = sa.Pad
   447  	sa.raw.Pid = sa.Pid
   448  	sa.raw.Groups = sa.Groups
   449  	return unsafe.Pointer(&sa.raw), SizeofSockaddrNetlink, nil
   450  }
   451  
   452  // SockaddrHCI implements the Sockaddr interface for AF_BLUETOOTH type sockets
   453  // using the HCI protocol.
   454  type SockaddrHCI struct {
   455  	Dev     uint16
   456  	Channel uint16
   457  	raw     RawSockaddrHCI
   458  }
   459  
   460  func (sa *SockaddrHCI) sockaddr() (unsafe.Pointer, _Socklen, error) {
   461  	sa.raw.Family = AF_BLUETOOTH
   462  	sa.raw.Dev = sa.Dev
   463  	sa.raw.Channel = sa.Channel
   464  	return unsafe.Pointer(&sa.raw), SizeofSockaddrHCI, nil
   465  }
   466  
   467  // SockaddrL2 implements the Sockaddr interface for AF_BLUETOOTH type sockets
   468  // using the L2CAP protocol.
   469  type SockaddrL2 struct {
   470  	PSM      uint16
   471  	CID      uint16
   472  	Addr     [6]uint8
   473  	AddrType uint8
   474  	raw      RawSockaddrL2
   475  }
   476  
   477  func (sa *SockaddrL2) sockaddr() (unsafe.Pointer, _Socklen, error) {
   478  	sa.raw.Family = AF_BLUETOOTH
   479  	psm := (*[2]byte)(unsafe.Pointer(&sa.raw.Psm))
   480  	psm[0] = byte(sa.PSM)
   481  	psm[1] = byte(sa.PSM >> 8)
   482  	for i := 0; i < len(sa.Addr); i++ {
   483  		sa.raw.Bdaddr[i] = sa.Addr[len(sa.Addr)-1-i]
   484  	}
   485  	cid := (*[2]byte)(unsafe.Pointer(&sa.raw.Cid))
   486  	cid[0] = byte(sa.CID)
   487  	cid[1] = byte(sa.CID >> 8)
   488  	sa.raw.Bdaddr_type = sa.AddrType
   489  	return unsafe.Pointer(&sa.raw), SizeofSockaddrL2, nil
   490  }
   491  
   492  // SockaddrRFCOMM implements the Sockaddr interface for AF_BLUETOOTH type sockets
   493  // using the RFCOMM protocol.
   494  //
   495  // Server example:
   496  //
   497  //      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
   498  //      _ = unix.Bind(fd, &unix.SockaddrRFCOMM{
   499  //      	Channel: 1,
   500  //      	Addr:    [6]uint8{0, 0, 0, 0, 0, 0}, // BDADDR_ANY or 00:00:00:00:00:00
   501  //      })
   502  //      _ = Listen(fd, 1)
   503  //      nfd, sa, _ := Accept(fd)
   504  //      fmt.Printf("conn addr=%v fd=%d", sa.(*unix.SockaddrRFCOMM).Addr, nfd)
   505  //      Read(nfd, buf)
   506  //
   507  // Client example:
   508  //
   509  //      fd, _ := Socket(AF_BLUETOOTH, SOCK_STREAM, BTPROTO_RFCOMM)
   510  //      _ = Connect(fd, &SockaddrRFCOMM{
   511  //      	Channel: 1,
   512  //      	Addr:    [6]byte{0x11, 0x22, 0x33, 0xaa, 0xbb, 0xcc}, // CC:BB:AA:33:22:11
   513  //      })
   514  //      Write(fd, []byte(`hello`))
   515  type SockaddrRFCOMM struct {
   516  	// Addr represents a bluetooth address, byte ordering is little-endian.
   517  	Addr [6]uint8
   518  
   519  	// Channel is a designated bluetooth channel, only 1-30 are available for use.
   520  	// Since Linux 2.6.7 and further zero value is the first available channel.
   521  	Channel uint8
   522  
   523  	raw RawSockaddrRFCOMM
   524  }
   525  
   526  func (sa *SockaddrRFCOMM) sockaddr() (unsafe.Pointer, _Socklen, error) {
   527  	sa.raw.Family = AF_BLUETOOTH
   528  	sa.raw.Channel = sa.Channel
   529  	sa.raw.Bdaddr = sa.Addr
   530  	return unsafe.Pointer(&sa.raw), SizeofSockaddrRFCOMM, nil
   531  }
   532  
   533  // SockaddrCAN implements the Sockaddr interface for AF_CAN type sockets.
   534  // The RxID and TxID fields are used for transport protocol addressing in
   535  // (CAN_TP16, CAN_TP20, CAN_MCNET, and CAN_ISOTP), they can be left with
   536  // zero values for CAN_RAW and CAN_BCM sockets as they have no meaning.
   537  //
   538  // The SockaddrCAN struct must be bound to the socket file descriptor
   539  // using Bind before the CAN socket can be used.
   540  //
   541  //      // Read one raw CAN frame
   542  //      fd, _ := Socket(AF_CAN, SOCK_RAW, CAN_RAW)
   543  //      addr := &SockaddrCAN{Ifindex: index}
   544  //      Bind(fd, addr)
   545  //      frame := make([]byte, 16)
   546  //      Read(fd, frame)
   547  //
   548  // The full SocketCAN documentation can be found in the linux kernel
   549  // archives at: https://www.kernel.org/doc/Documentation/networking/can.txt
   550  type SockaddrCAN struct {
   551  	Ifindex int
   552  	RxID    uint32
   553  	TxID    uint32
   554  	raw     RawSockaddrCAN
   555  }
   556  
   557  func (sa *SockaddrCAN) sockaddr() (unsafe.Pointer, _Socklen, error) {
   558  	if sa.Ifindex < 0 || sa.Ifindex > 0x7fffffff {
   559  		return nil, 0, EINVAL
   560  	}
   561  	sa.raw.Family = AF_CAN
   562  	sa.raw.Ifindex = int32(sa.Ifindex)
   563  	rx := (*[4]byte)(unsafe.Pointer(&sa.RxID))
   564  	for i := 0; i < 4; i++ {
   565  		sa.raw.Addr[i] = rx[i]
   566  	}
   567  	tx := (*[4]byte)(unsafe.Pointer(&sa.TxID))
   568  	for i := 0; i < 4; i++ {
   569  		sa.raw.Addr[i+4] = tx[i]
   570  	}
   571  	return unsafe.Pointer(&sa.raw), SizeofSockaddrCAN, nil
   572  }
   573  
   574  // SockaddrALG implements the Sockaddr interface for AF_ALG type sockets.
   575  // SockaddrALG enables userspace access to the Linux kernel's cryptography
   576  // subsystem. The Type and Name fields specify which type of hash or cipher
   577  // should be used with a given socket.
   578  //
   579  // To create a file descriptor that provides access to a hash or cipher, both
   580  // Bind and Accept must be used. Once the setup process is complete, input
   581  // data can be written to the socket, processed by the kernel, and then read
   582  // back as hash output or ciphertext.
   583  //
   584  // Here is an example of using an AF_ALG socket with SHA1 hashing.
   585  // The initial socket setup process is as follows:
   586  //
   587  //      // Open a socket to perform SHA1 hashing.
   588  //      fd, _ := unix.Socket(unix.AF_ALG, unix.SOCK_SEQPACKET, 0)
   589  //      addr := &unix.SockaddrALG{Type: "hash", Name: "sha1"}
   590  //      unix.Bind(fd, addr)
   591  //      // Note: unix.Accept does not work at this time; must invoke accept()
   592  //      // manually using unix.Syscall.
   593  //      hashfd, _, _ := unix.Syscall(unix.SYS_ACCEPT, uintptr(fd), 0, 0)
   594  //
   595  // Once a file descriptor has been returned from Accept, it may be used to
   596  // perform SHA1 hashing. The descriptor is not safe for concurrent use, but
   597  // may be re-used repeatedly with subsequent Write and Read operations.
   598  //
   599  // When hashing a small byte slice or string, a single Write and Read may
   600  // be used:
   601  //
   602  //      // Assume hashfd is already configured using the setup process.
   603  //      hash := os.NewFile(hashfd, "sha1")
   604  //      // Hash an input string and read the results. Each Write discards
   605  //      // previous hash state. Read always reads the current state.
   606  //      b := make([]byte, 20)
   607  //      for i := 0; i < 2; i++ {
   608  //          io.WriteString(hash, "Hello, world.")
   609  //          hash.Read(b)
   610  //          fmt.Println(hex.EncodeToString(b))
   611  //      }
   612  //      // Output:
   613  //      // 2ae01472317d1935a84797ec1983ae243fc6aa28
   614  //      // 2ae01472317d1935a84797ec1983ae243fc6aa28
   615  //
   616  // For hashing larger byte slices, or byte streams such as those read from
   617  // a file or socket, use Sendto with MSG_MORE to instruct the kernel to update
   618  // the hash digest instead of creating a new one for a given chunk and finalizing it.
   619  //
   620  //      // Assume hashfd and addr are already configured using the setup process.
   621  //      hash := os.NewFile(hashfd, "sha1")
   622  //      // Hash the contents of a file.
   623  //      f, _ := os.Open("/tmp/linux-4.10-rc7.tar.xz")
   624  //      b := make([]byte, 4096)
   625  //      for {
   626  //          n, err := f.Read(b)
   627  //          if err == io.EOF {
   628  //              break
   629  //          }
   630  //          unix.Sendto(hashfd, b[:n], unix.MSG_MORE, addr)
   631  //      }
   632  //      hash.Read(b)
   633  //      fmt.Println(hex.EncodeToString(b))
   634  //      // Output: 85cdcad0c06eef66f805ecce353bec9accbeecc5
   635  //
   636  // For more information, see: http://www.chronox.de/crypto-API/crypto/userspace-if.html.
   637  type SockaddrALG struct {
   638  	Type    string
   639  	Name    string
   640  	Feature uint32
   641  	Mask    uint32
   642  	raw     RawSockaddrALG
   643  }
   644  
   645  func (sa *SockaddrALG) sockaddr() (unsafe.Pointer, _Socklen, error) {
   646  	// Leave room for NUL byte terminator.
   647  	if len(sa.Type) > 13 {
   648  		return nil, 0, EINVAL
   649  	}
   650  	if len(sa.Name) > 63 {
   651  		return nil, 0, EINVAL
   652  	}
   653  
   654  	sa.raw.Family = AF_ALG
   655  	sa.raw.Feat = sa.Feature
   656  	sa.raw.Mask = sa.Mask
   657  
   658  	typ, err := ByteSliceFromString(sa.Type)
   659  	if err != nil {
   660  		return nil, 0, err
   661  	}
   662  	name, err := ByteSliceFromString(sa.Name)
   663  	if err != nil {
   664  		return nil, 0, err
   665  	}
   666  
   667  	copy(sa.raw.Type[:], typ)
   668  	copy(sa.raw.Name[:], name)
   669  
   670  	return unsafe.Pointer(&sa.raw), SizeofSockaddrALG, nil
   671  }
   672  
   673  // SockaddrVM implements the Sockaddr interface for AF_VSOCK type sockets.
   674  // SockaddrVM provides access to Linux VM sockets: a mechanism that enables
   675  // bidirectional communication between a hypervisor and its guest virtual
   676  // machines.
   677  type SockaddrVM struct {
   678  	// CID and Port specify a context ID and port address for a VM socket.
   679  	// Guests have a unique CID, and hosts may have a well-known CID of:
   680  	//  - VMADDR_CID_HYPERVISOR: refers to the hypervisor process.
   681  	//  - VMADDR_CID_HOST: refers to other processes on the host.
   682  	CID  uint32
   683  	Port uint32
   684  	raw  RawSockaddrVM
   685  }
   686  
   687  func (sa *SockaddrVM) sockaddr() (unsafe.Pointer, _Socklen, error) {
   688  	sa.raw.Family = AF_VSOCK
   689  	sa.raw.Port = sa.Port
   690  	sa.raw.Cid = sa.CID
   691  
   692  	return unsafe.Pointer(&sa.raw), SizeofSockaddrVM, nil
   693  }
   694  
   695  type SockaddrXDP struct {
   696  	Flags        uint16
   697  	Ifindex      uint32
   698  	QueueID      uint32
   699  	SharedUmemFD uint32
   700  	raw          RawSockaddrXDP
   701  }
   702  
   703  func (sa *SockaddrXDP) sockaddr() (unsafe.Pointer, _Socklen, error) {
   704  	sa.raw.Family = AF_XDP
   705  	sa.raw.Flags = sa.Flags
   706  	sa.raw.Ifindex = sa.Ifindex
   707  	sa.raw.Queue_id = sa.QueueID
   708  	sa.raw.Shared_umem_fd = sa.SharedUmemFD
   709  
   710  	return unsafe.Pointer(&sa.raw), SizeofSockaddrXDP, nil
   711  }
   712  
   713  func anyToSockaddr(fd int, rsa *RawSockaddrAny) (Sockaddr, error) {
   714  	switch rsa.Addr.Family {
   715  	case AF_NETLINK:
   716  		pp := (*RawSockaddrNetlink)(unsafe.Pointer(rsa))
   717  		sa := new(SockaddrNetlink)
   718  		sa.Family = pp.Family
   719  		sa.Pad = pp.Pad
   720  		sa.Pid = pp.Pid
   721  		sa.Groups = pp.Groups
   722  		return sa, nil
   723  
   724  	case AF_PACKET:
   725  		pp := (*RawSockaddrLinklayer)(unsafe.Pointer(rsa))
   726  		sa := new(SockaddrLinklayer)
   727  		sa.Protocol = pp.Protocol
   728  		sa.Ifindex = int(pp.Ifindex)
   729  		sa.Hatype = pp.Hatype
   730  		sa.Pkttype = pp.Pkttype
   731  		sa.Halen = pp.Halen
   732  		for i := 0; i < len(sa.Addr); i++ {
   733  			sa.Addr[i] = pp.Addr[i]
   734  		}
   735  		return sa, nil
   736  
   737  	case AF_UNIX:
   738  		pp := (*RawSockaddrUnix)(unsafe.Pointer(rsa))
   739  		sa := new(SockaddrUnix)
   740  		if pp.Path[0] == 0 {
   741  			// "Abstract" Unix domain socket.
   742  			// Rewrite leading NUL as @ for textual display.
   743  			// (This is the standard convention.)
   744  			// Not friendly to overwrite in place,
   745  			// but the callers below don't care.
   746  			pp.Path[0] = '@'
   747  		}
   748  
   749  		// Assume path ends at NUL.
   750  		// This is not technically the Linux semantics for
   751  		// abstract Unix domain sockets--they are supposed
   752  		// to be uninterpreted fixed-size binary blobs--but
   753  		// everyone uses this convention.
   754  		n := 0
   755  		for n < len(pp.Path) && pp.Path[n] != 0 {
   756  			n++
   757  		}
   758  		bytes := (*[10000]byte)(unsafe.Pointer(&pp.Path[0]))[0:n]
   759  		sa.Name = string(bytes)
   760  		return sa, nil
   761  
   762  	case AF_INET:
   763  		pp := (*RawSockaddrInet4)(unsafe.Pointer(rsa))
   764  		sa := new(SockaddrInet4)
   765  		p := (*[2]byte)(unsafe.Pointer(&pp.Port))
   766  		sa.Port = int(p[0])<<8 + int(p[1])
   767  		for i := 0; i < len(sa.Addr); i++ {
   768  			sa.Addr[i] = pp.Addr[i]
   769  		}
   770  		return sa, nil
   771  
   772  	case AF_INET6:
   773  		pp := (*RawSockaddrInet6)(unsafe.Pointer(rsa))
   774  		sa := new(SockaddrInet6)
   775  		p := (*[2]byte)(unsafe.Pointer(&pp.Port))
   776  		sa.Port = int(p[0])<<8 + int(p[1])
   777  		sa.ZoneId = pp.Scope_id
   778  		for i := 0; i < len(sa.Addr); i++ {
   779  			sa.Addr[i] = pp.Addr[i]
   780  		}
   781  		return sa, nil
   782  
   783  	case AF_VSOCK:
   784  		pp := (*RawSockaddrVM)(unsafe.Pointer(rsa))
   785  		sa := &SockaddrVM{
   786  			CID:  pp.Cid,
   787  			Port: pp.Port,
   788  		}
   789  		return sa, nil
   790  	case AF_BLUETOOTH:
   791  		proto, err := GetsockoptInt(fd, SOL_SOCKET, SO_PROTOCOL)
   792  		if err != nil {
   793  			return nil, err
   794  		}
   795  		// only BTPROTO_L2CAP and BTPROTO_RFCOMM can accept connections
   796  		switch proto {
   797  		case BTPROTO_L2CAP:
   798  			pp := (*RawSockaddrL2)(unsafe.Pointer(rsa))
   799  			sa := &SockaddrL2{
   800  				PSM:      pp.Psm,
   801  				CID:      pp.Cid,
   802  				Addr:     pp.Bdaddr,
   803  				AddrType: pp.Bdaddr_type,
   804  			}
   805  			return sa, nil
   806  		case BTPROTO_RFCOMM:
   807  			pp := (*RawSockaddrRFCOMM)(unsafe.Pointer(rsa))
   808  			sa := &SockaddrRFCOMM{
   809  				Channel: pp.Channel,
   810  				Addr:    pp.Bdaddr,
   811  			}
   812  			return sa, nil
   813  		}
   814  	case AF_XDP:
   815  		pp := (*RawSockaddrXDP)(unsafe.Pointer(rsa))
   816  		sa := &SockaddrXDP{
   817  			Flags:        pp.Flags,
   818  			Ifindex:      pp.Ifindex,
   819  			QueueID:      pp.Queue_id,
   820  			SharedUmemFD: pp.Shared_umem_fd,
   821  		}
   822  		return sa, nil
   823  	}
   824  	return nil, EAFNOSUPPORT
   825  }
   826  
   827  func Accept(fd int) (nfd int, sa Sockaddr, err error) {
   828  	var rsa RawSockaddrAny
   829  	var len _Socklen = SizeofSockaddrAny
   830  	nfd, err = accept(fd, &rsa, &len)
   831  	if err != nil {
   832  		return
   833  	}
   834  	sa, err = anyToSockaddr(fd, &rsa)
   835  	if err != nil {
   836  		Close(nfd)
   837  		nfd = 0
   838  	}
   839  	return
   840  }
   841  
   842  func Accept4(fd int, flags int) (nfd int, sa Sockaddr, err error) {
   843  	var rsa RawSockaddrAny
   844  	var len _Socklen = SizeofSockaddrAny
   845  	nfd, err = accept4(fd, &rsa, &len, flags)
   846  	if err != nil {
   847  		return
   848  	}
   849  	if len > SizeofSockaddrAny {
   850  		panic("RawSockaddrAny too small")
   851  	}
   852  	sa, err = anyToSockaddr(fd, &rsa)
   853  	if err != nil {
   854  		Close(nfd)
   855  		nfd = 0
   856  	}
   857  	return
   858  }
   859  
   860  func Getsockname(fd int) (sa Sockaddr, err error) {
   861  	var rsa RawSockaddrAny
   862  	var len _Socklen = SizeofSockaddrAny
   863  	if err = getsockname(fd, &rsa, &len); err != nil {
   864  		return
   865  	}
   866  	return anyToSockaddr(fd, &rsa)
   867  }
   868  
   869  func GetsockoptIPMreqn(fd, level, opt int) (*IPMreqn, error) {
   870  	var value IPMreqn
   871  	vallen := _Socklen(SizeofIPMreqn)
   872  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
   873  	return &value, err
   874  }
   875  
   876  func GetsockoptUcred(fd, level, opt int) (*Ucred, error) {
   877  	var value Ucred
   878  	vallen := _Socklen(SizeofUcred)
   879  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
   880  	return &value, err
   881  }
   882  
   883  func GetsockoptTCPInfo(fd, level, opt int) (*TCPInfo, error) {
   884  	var value TCPInfo
   885  	vallen := _Socklen(SizeofTCPInfo)
   886  	err := getsockopt(fd, level, opt, unsafe.Pointer(&value), &vallen)
   887  	return &value, err
   888  }
   889  
   890  // GetsockoptString returns the string value of the socket option opt for the
   891  // socket associated with fd at the given socket level.
   892  func GetsockoptString(fd, level, opt int) (string, error) {
   893  	buf := make([]byte, 256)
   894  	vallen := _Socklen(len(buf))
   895  	err := getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
   896  	if err != nil {
   897  		if err == ERANGE {
   898  			buf = make([]byte, vallen)
   899  			err = getsockopt(fd, level, opt, unsafe.Pointer(&buf[0]), &vallen)
   900  		}
   901  		if err != nil {
   902  			return "", err
   903  		}
   904  	}
   905  	return string(buf[:vallen-1]), nil
   906  }
   907  
   908  func SetsockoptIPMreqn(fd, level, opt int, mreq *IPMreqn) (err error) {
   909  	return setsockopt(fd, level, opt, unsafe.Pointer(mreq), unsafe.Sizeof(*mreq))
   910  }
   911  
   912  // Keyctl Commands (http://man7.org/linux/man-pages/man2/keyctl.2.html)
   913  
   914  // KeyctlInt calls keyctl commands in which each argument is an int.
   915  // These commands are KEYCTL_REVOKE, KEYCTL_CHOWN, KEYCTL_CLEAR, KEYCTL_LINK,
   916  // KEYCTL_UNLINK, KEYCTL_NEGATE, KEYCTL_SET_REQKEY_KEYRING, KEYCTL_SET_TIMEOUT,
   917  // KEYCTL_ASSUME_AUTHORITY, KEYCTL_SESSION_TO_PARENT, KEYCTL_REJECT,
   918  // KEYCTL_INVALIDATE, and KEYCTL_GET_PERSISTENT.
   919  //sys	KeyctlInt(cmd int, arg2 int, arg3 int, arg4 int, arg5 int) (ret int, err error) = SYS_KEYCTL
   920  
   921  // KeyctlBuffer calls keyctl commands in which the third and fourth
   922  // arguments are a buffer and its length, respectively.
   923  // These commands are KEYCTL_UPDATE, KEYCTL_READ, and KEYCTL_INSTANTIATE.
   924  //sys	KeyctlBuffer(cmd int, arg2 int, buf []byte, arg5 int) (ret int, err error) = SYS_KEYCTL
   925  
   926  // KeyctlString calls keyctl commands which return a string.
   927  // These commands are KEYCTL_DESCRIBE and KEYCTL_GET_SECURITY.
   928  func KeyctlString(cmd int, id int) (string, error) {
   929  	// We must loop as the string data may change in between the syscalls.
   930  	// We could allocate a large buffer here to reduce the chance that the
   931  	// syscall needs to be called twice; however, this is unnecessary as
   932  	// the performance loss is negligible.
   933  	var buffer []byte
   934  	for {
   935  		// Try to fill the buffer with data
   936  		length, err := KeyctlBuffer(cmd, id, buffer, 0)
   937  		if err != nil {
   938  			return "", err
   939  		}
   940  
   941  		// Check if the data was written
   942  		if length <= len(buffer) {
   943  			// Exclude the null terminator
   944  			return string(buffer[:length-1]), nil
   945  		}
   946  
   947  		// Make a bigger buffer if needed
   948  		buffer = make([]byte, length)
   949  	}
   950  }
   951  
   952  // Keyctl commands with special signatures.
   953  
   954  // KeyctlGetKeyringID implements the KEYCTL_GET_KEYRING_ID command.
   955  // See the full documentation at:
   956  // http://man7.org/linux/man-pages/man3/keyctl_get_keyring_ID.3.html
   957  func KeyctlGetKeyringID(id int, create bool) (ringid int, err error) {
   958  	createInt := 0
   959  	if create {
   960  		createInt = 1
   961  	}
   962  	return KeyctlInt(KEYCTL_GET_KEYRING_ID, id, createInt, 0, 0)
   963  }
   964  
   965  // KeyctlSetperm implements the KEYCTL_SETPERM command. The perm value is the
   966  // key handle permission mask as described in the "keyctl setperm" section of
   967  // http://man7.org/linux/man-pages/man1/keyctl.1.html.
   968  // See the full documentation at:
   969  // http://man7.org/linux/man-pages/man3/keyctl_setperm.3.html
   970  func KeyctlSetperm(id int, perm uint32) error {
   971  	_, err := KeyctlInt(KEYCTL_SETPERM, id, int(perm), 0, 0)
   972  	return err
   973  }
   974  
   975  //sys	keyctlJoin(cmd int, arg2 string) (ret int, err error) = SYS_KEYCTL
   976  
   977  // KeyctlJoinSessionKeyring implements the KEYCTL_JOIN_SESSION_KEYRING command.
   978  // See the full documentation at:
   979  // http://man7.org/linux/man-pages/man3/keyctl_join_session_keyring.3.html
   980  func KeyctlJoinSessionKeyring(name string) (ringid int, err error) {
   981  	return keyctlJoin(KEYCTL_JOIN_SESSION_KEYRING, name)
   982  }
   983  
   984  //sys	keyctlSearch(cmd int, arg2 int, arg3 string, arg4 string, arg5 int) (ret int, err error) = SYS_KEYCTL
   985  
   986  // KeyctlSearch implements the KEYCTL_SEARCH command.
   987  // See the full documentation at:
   988  // http://man7.org/linux/man-pages/man3/keyctl_search.3.html
   989  func KeyctlSearch(ringid int, keyType, description string, destRingid int) (id int, err error) {
   990  	return keyctlSearch(KEYCTL_SEARCH, ringid, keyType, description, destRingid)
   991  }
   992  
   993  //sys	keyctlIOV(cmd int, arg2 int, payload []Iovec, arg5 int) (err error) = SYS_KEYCTL
   994  
   995  // KeyctlInstantiateIOV implements the KEYCTL_INSTANTIATE_IOV command. This
   996  // command is similar to KEYCTL_INSTANTIATE, except that the payload is a slice
   997  // of Iovec (each of which represents a buffer) instead of a single buffer.
   998  // See the full documentation at:
   999  // http://man7.org/linux/man-pages/man3/keyctl_instantiate_iov.3.html
  1000  func KeyctlInstantiateIOV(id int, payload []Iovec, ringid int) error {
  1001  	return keyctlIOV(KEYCTL_INSTANTIATE_IOV, id, payload, ringid)
  1002  }
  1003  
  1004  //sys	keyctlDH(cmd int, arg2 *KeyctlDHParams, buf []byte) (ret int, err error) = SYS_KEYCTL
  1005  
  1006  // KeyctlDHCompute implements the KEYCTL_DH_COMPUTE command. This command
  1007  // computes a Diffie-Hellman shared secret based on the provide params. The
  1008  // secret is written to the provided buffer and the returned size is the number
  1009  // of bytes written (returning an error if there is insufficient space in the
  1010  // buffer). If a nil buffer is passed in, this function returns the minimum
  1011  // buffer length needed to store the appropriate data. Note that this differs
  1012  // from KEYCTL_READ's behavior which always returns the requested payload size.
  1013  // See the full documentation at:
  1014  // http://man7.org/linux/man-pages/man3/keyctl_dh_compute.3.html
  1015  func KeyctlDHCompute(params *KeyctlDHParams, buffer []byte) (size int, err error) {
  1016  	return keyctlDH(KEYCTL_DH_COMPUTE, params, buffer)
  1017  }
  1018  
  1019  func Recvmsg(fd int, p, oob []byte, flags int) (n, oobn int, recvflags int, from Sockaddr, err error) {
  1020  	var msg Msghdr
  1021  	var rsa RawSockaddrAny
  1022  	msg.Name = (*byte)(unsafe.Pointer(&rsa))
  1023  	msg.Namelen = uint32(SizeofSockaddrAny)
  1024  	var iov Iovec
  1025  	if len(p) > 0 {
  1026  		iov.Base = &p[0]
  1027  		iov.SetLen(len(p))
  1028  	}
  1029  	var dummy byte
  1030  	if len(oob) > 0 {
  1031  		if len(p) == 0 {
  1032  			var sockType int
  1033  			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
  1034  			if err != nil {
  1035  				return
  1036  			}
  1037  			// receive at least one normal byte
  1038  			if sockType != SOCK_DGRAM {
  1039  				iov.Base = &dummy
  1040  				iov.SetLen(1)
  1041  			}
  1042  		}
  1043  		msg.Control = &oob[0]
  1044  		msg.SetControllen(len(oob))
  1045  	}
  1046  	msg.Iov = &iov
  1047  	msg.Iovlen = 1
  1048  	if n, err = recvmsg(fd, &msg, flags); err != nil {
  1049  		return
  1050  	}
  1051  	oobn = int(msg.Controllen)
  1052  	recvflags = int(msg.Flags)
  1053  	// source address is only specified if the socket is unconnected
  1054  	if rsa.Addr.Family != AF_UNSPEC {
  1055  		from, err = anyToSockaddr(fd, &rsa)
  1056  	}
  1057  	return
  1058  }
  1059  
  1060  func Sendmsg(fd int, p, oob []byte, to Sockaddr, flags int) (err error) {
  1061  	_, err = SendmsgN(fd, p, oob, to, flags)
  1062  	return
  1063  }
  1064  
  1065  func SendmsgN(fd int, p, oob []byte, to Sockaddr, flags int) (n int, err error) {
  1066  	var ptr unsafe.Pointer
  1067  	var salen _Socklen
  1068  	if to != nil {
  1069  		var err error
  1070  		ptr, salen, err = to.sockaddr()
  1071  		if err != nil {
  1072  			return 0, err
  1073  		}
  1074  	}
  1075  	var msg Msghdr
  1076  	msg.Name = (*byte)(ptr)
  1077  	msg.Namelen = uint32(salen)
  1078  	var iov Iovec
  1079  	if len(p) > 0 {
  1080  		iov.Base = &p[0]
  1081  		iov.SetLen(len(p))
  1082  	}
  1083  	var dummy byte
  1084  	if len(oob) > 0 {
  1085  		if len(p) == 0 {
  1086  			var sockType int
  1087  			sockType, err = GetsockoptInt(fd, SOL_SOCKET, SO_TYPE)
  1088  			if err != nil {
  1089  				return 0, err
  1090  			}
  1091  			// send at least one normal byte
  1092  			if sockType != SOCK_DGRAM {
  1093  				iov.Base = &dummy
  1094  				iov.SetLen(1)
  1095  			}
  1096  		}
  1097  		msg.Control = &oob[0]
  1098  		msg.SetControllen(len(oob))
  1099  	}
  1100  	msg.Iov = &iov
  1101  	msg.Iovlen = 1
  1102  	if n, err = sendmsg(fd, &msg, flags); err != nil {
  1103  		return 0, err
  1104  	}
  1105  	if len(oob) > 0 && len(p) == 0 {
  1106  		n = 0
  1107  	}
  1108  	return n, nil
  1109  }
  1110  
  1111  // BindToDevice binds the socket associated with fd to device.
  1112  func BindToDevice(fd int, device string) (err error) {
  1113  	return SetsockoptString(fd, SOL_SOCKET, SO_BINDTODEVICE, device)
  1114  }
  1115  
  1116  //sys	ptrace(request int, pid int, addr uintptr, data uintptr) (err error)
  1117  
  1118  func ptracePeek(req int, pid int, addr uintptr, out []byte) (count int, err error) {
  1119  	// The peek requests are machine-size oriented, so we wrap it
  1120  	// to retrieve arbitrary-length data.
  1121  
  1122  	// The ptrace syscall differs from glibc's ptrace.
  1123  	// Peeks returns the word in *data, not as the return value.
  1124  
  1125  	var buf [SizeofPtr]byte
  1126  
  1127  	// Leading edge. PEEKTEXT/PEEKDATA don't require aligned
  1128  	// access (PEEKUSER warns that it might), but if we don't
  1129  	// align our reads, we might straddle an unmapped page
  1130  	// boundary and not get the bytes leading up to the page
  1131  	// boundary.
  1132  	n := 0
  1133  	if addr%SizeofPtr != 0 {
  1134  		err = ptrace(req, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
  1135  		if err != nil {
  1136  			return 0, err
  1137  		}
  1138  		n += copy(out, buf[addr%SizeofPtr:])
  1139  		out = out[n:]
  1140  	}
  1141  
  1142  	// Remainder.
  1143  	for len(out) > 0 {
  1144  		// We use an internal buffer to guarantee alignment.
  1145  		// It's not documented if this is necessary, but we're paranoid.
  1146  		err = ptrace(req, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
  1147  		if err != nil {
  1148  			return n, err
  1149  		}
  1150  		copied := copy(out, buf[0:])
  1151  		n += copied
  1152  		out = out[copied:]
  1153  	}
  1154  
  1155  	return n, nil
  1156  }
  1157  
  1158  func PtracePeekText(pid int, addr uintptr, out []byte) (count int, err error) {
  1159  	return ptracePeek(PTRACE_PEEKTEXT, pid, addr, out)
  1160  }
  1161  
  1162  func PtracePeekData(pid int, addr uintptr, out []byte) (count int, err error) {
  1163  	return ptracePeek(PTRACE_PEEKDATA, pid, addr, out)
  1164  }
  1165  
  1166  func PtracePeekUser(pid int, addr uintptr, out []byte) (count int, err error) {
  1167  	return ptracePeek(PTRACE_PEEKUSR, pid, addr, out)
  1168  }
  1169  
  1170  func ptracePoke(pokeReq int, peekReq int, pid int, addr uintptr, data []byte) (count int, err error) {
  1171  	// As for ptracePeek, we need to align our accesses to deal
  1172  	// with the possibility of straddling an invalid page.
  1173  
  1174  	// Leading edge.
  1175  	n := 0
  1176  	if addr%SizeofPtr != 0 {
  1177  		var buf [SizeofPtr]byte
  1178  		err = ptrace(peekReq, pid, addr-addr%SizeofPtr, uintptr(unsafe.Pointer(&buf[0])))
  1179  		if err != nil {
  1180  			return 0, err
  1181  		}
  1182  		n += copy(buf[addr%SizeofPtr:], data)
  1183  		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
  1184  		err = ptrace(pokeReq, pid, addr-addr%SizeofPtr, word)
  1185  		if err != nil {
  1186  			return 0, err
  1187  		}
  1188  		data = data[n:]
  1189  	}
  1190  
  1191  	// Interior.
  1192  	for len(data) > SizeofPtr {
  1193  		word := *((*uintptr)(unsafe.Pointer(&data[0])))
  1194  		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
  1195  		if err != nil {
  1196  			return n, err
  1197  		}
  1198  		n += SizeofPtr
  1199  		data = data[SizeofPtr:]
  1200  	}
  1201  
  1202  	// Trailing edge.
  1203  	if len(data) > 0 {
  1204  		var buf [SizeofPtr]byte
  1205  		err = ptrace(peekReq, pid, addr+uintptr(n), uintptr(unsafe.Pointer(&buf[0])))
  1206  		if err != nil {
  1207  			return n, err
  1208  		}
  1209  		copy(buf[0:], data)
  1210  		word := *((*uintptr)(unsafe.Pointer(&buf[0])))
  1211  		err = ptrace(pokeReq, pid, addr+uintptr(n), word)
  1212  		if err != nil {
  1213  			return n, err
  1214  		}
  1215  		n += len(data)
  1216  	}
  1217  
  1218  	return n, nil
  1219  }
  1220  
  1221  func PtracePokeText(pid int, addr uintptr, data []byte) (count int, err error) {
  1222  	return ptracePoke(PTRACE_POKETEXT, PTRACE_PEEKTEXT, pid, addr, data)
  1223  }
  1224  
  1225  func PtracePokeData(pid int, addr uintptr, data []byte) (count int, err error) {
  1226  	return ptracePoke(PTRACE_POKEDATA, PTRACE_PEEKDATA, pid, addr, data)
  1227  }
  1228  
  1229  func PtracePokeUser(pid int, addr uintptr, data []byte) (count int, err error) {
  1230  	return ptracePoke(PTRACE_POKEUSR, PTRACE_PEEKUSR, pid, addr, data)
  1231  }
  1232  
  1233  func PtraceGetRegs(pid int, regsout *PtraceRegs) (err error) {
  1234  	return ptrace(PTRACE_GETREGS, pid, 0, uintptr(unsafe.Pointer(regsout)))
  1235  }
  1236  
  1237  func PtraceSetRegs(pid int, regs *PtraceRegs) (err error) {
  1238  	return ptrace(PTRACE_SETREGS, pid, 0, uintptr(unsafe.Pointer(regs)))
  1239  }
  1240  
  1241  func PtraceSetOptions(pid int, options int) (err error) {
  1242  	return ptrace(PTRACE_SETOPTIONS, pid, 0, uintptr(options))
  1243  }
  1244  
  1245  func PtraceGetEventMsg(pid int) (msg uint, err error) {
  1246  	var data _C_long
  1247  	err = ptrace(PTRACE_GETEVENTMSG, pid, 0, uintptr(unsafe.Pointer(&data)))
  1248  	msg = uint(data)
  1249  	return
  1250  }
  1251  
  1252  func PtraceCont(pid int, signal int) (err error) {
  1253  	return ptrace(PTRACE_CONT, pid, 0, uintptr(signal))
  1254  }
  1255  
  1256  func PtraceSyscall(pid int, signal int) (err error) {
  1257  	return ptrace(PTRACE_SYSCALL, pid, 0, uintptr(signal))
  1258  }
  1259  
  1260  func PtraceSingleStep(pid int) (err error) { return ptrace(PTRACE_SINGLESTEP, pid, 0, 0) }
  1261  
  1262  func PtraceAttach(pid int) (err error) { return ptrace(PTRACE_ATTACH, pid, 0, 0) }
  1263  
  1264  func PtraceDetach(pid int) (err error) { return ptrace(PTRACE_DETACH, pid, 0, 0) }
  1265  
  1266  //sys	reboot(magic1 uint, magic2 uint, cmd int, arg string) (err error)
  1267  
  1268  func Reboot(cmd int) (err error) {
  1269  	return reboot(LINUX_REBOOT_MAGIC1, LINUX_REBOOT_MAGIC2, cmd, "")
  1270  }
  1271  
  1272  func ReadDirent(fd int, buf []byte) (n int, err error) {
  1273  	return Getdents(fd, buf)
  1274  }
  1275  
  1276  //sys	mount(source string, target string, fstype string, flags uintptr, data *byte) (err error)
  1277  
  1278  func Mount(source string, target string, fstype string, flags uintptr, data string) (err error) {
  1279  	// Certain file systems get rather angry and EINVAL if you give
  1280  	// them an empty string of data, rather than NULL.
  1281  	if data == "" {
  1282  		return mount(source, target, fstype, flags, nil)
  1283  	}
  1284  	datap, err := BytePtrFromString(data)
  1285  	if err != nil {
  1286  		return err
  1287  	}
  1288  	return mount(source, target, fstype, flags, datap)
  1289  }
  1290  
  1291  // Sendto
  1292  // Recvfrom
  1293  // Socketpair
  1294  
  1295  /*
  1296   * Direct access
  1297   */
  1298  //sys	Acct(path string) (err error)
  1299  //sys	AddKey(keyType string, description string, payload []byte, ringid int) (id int, err error)
  1300  //sys	Adjtimex(buf *Timex) (state int, err error)
  1301  //sys	Chdir(path string) (err error)
  1302  //sys	Chroot(path string) (err error)
  1303  //sys	ClockGetres(clockid int32, res *Timespec) (err error)
  1304  //sys	ClockGettime(clockid int32, time *Timespec) (err error)
  1305  //sys	Close(fd int) (err error)
  1306  //sys	CopyFileRange(rfd int, roff *int64, wfd int, woff *int64, len int, flags int) (n int, err error)
  1307  //sys	DeleteModule(name string, flags int) (err error)
  1308  //sys	Dup(oldfd int) (fd int, err error)
  1309  //sys	Dup3(oldfd int, newfd int, flags int) (err error)
  1310  //sysnb	EpollCreate1(flag int) (fd int, err error)
  1311  //sysnb	EpollCtl(epfd int, op int, fd int, event *EpollEvent) (err error)
  1312  //sys	Eventfd(initval uint, flags int) (fd int, err error) = SYS_EVENTFD2
  1313  //sys	Exit(code int) = SYS_EXIT_GROUP
  1314  //sys	Fallocate(fd int, mode uint32, off int64, len int64) (err error)
  1315  //sys	Fchdir(fd int) (err error)
  1316  //sys	Fchmod(fd int, mode uint32) (err error)
  1317  //sys	Fchownat(dirfd int, path string, uid int, gid int, flags int) (err error)
  1318  //sys	fcntl(fd int, cmd int, arg int) (val int, err error)
  1319  //sys	Fdatasync(fd int) (err error)
  1320  //sys	Fgetxattr(fd int, attr string, dest []byte) (sz int, err error)
  1321  //sys	FinitModule(fd int, params string, flags int) (err error)
  1322  //sys	Flistxattr(fd int, dest []byte) (sz int, err error)
  1323  //sys	Flock(fd int, how int) (err error)
  1324  //sys	Fremovexattr(fd int, attr string) (err error)
  1325  //sys	Fsetxattr(fd int, attr string, dest []byte, flags int) (err error)
  1326  //sys	Fsync(fd int) (err error)
  1327  //sys	Getdents(fd int, buf []byte) (n int, err error) = SYS_GETDENTS64
  1328  //sysnb	Getpgid(pid int) (pgid int, err error)
  1329  
  1330  func Getpgrp() (pid int) {
  1331  	pid, _ = Getpgid(0)
  1332  	return
  1333  }
  1334  
  1335  //sysnb	Getpid() (pid int)
  1336  //sysnb	Getppid() (ppid int)
  1337  //sys	Getpriority(which int, who int) (prio int, err error)
  1338  //sys	Getrandom(buf []byte, flags int) (n int, err error)
  1339  //sysnb	Getrusage(who int, rusage *Rusage) (err error)
  1340  //sysnb	Getsid(pid int) (sid int, err error)
  1341  //sysnb	Gettid() (tid int)
  1342  //sys	Getxattr(path string, attr string, dest []byte) (sz int, err error)
  1343  //sys	InitModule(moduleImage []byte, params string) (err error)
  1344  //sys	InotifyAddWatch(fd int, pathname string, mask uint32) (watchdesc int, err error)
  1345  //sysnb	InotifyInit1(flags int) (fd int, err error)
  1346  //sysnb	InotifyRmWatch(fd int, watchdesc uint32) (success int, err error)
  1347  //sysnb	Kill(pid int, sig syscall.Signal) (err error)
  1348  //sys	Klogctl(typ int, buf []byte) (n int, err error) = SYS_SYSLOG
  1349  //sys	Lgetxattr(path string, attr string, dest []byte) (sz int, err error)
  1350  //sys	Listxattr(path string, dest []byte) (sz int, err error)
  1351  //sys	Llistxattr(path string, dest []byte) (sz int, err error)
  1352  //sys	Lremovexattr(path string, attr string) (err error)
  1353  //sys	Lsetxattr(path string, attr string, data []byte, flags int) (err error)
  1354  //sys	MemfdCreate(name string, flags int) (fd int, err error)
  1355  //sys	Mkdirat(dirfd int, path string, mode uint32) (err error)
  1356  //sys	Mknodat(dirfd int, path string, mode uint32, dev int) (err error)
  1357  //sys	Nanosleep(time *Timespec, leftover *Timespec) (err error)
  1358  //sys	PerfEventOpen(attr *PerfEventAttr, pid int, cpu int, groupFd int, flags int) (fd int, err error)
  1359  //sys	PivotRoot(newroot string, putold string) (err error) = SYS_PIVOT_ROOT
  1360  //sysnb prlimit(pid int, resource int, newlimit *Rlimit, old *Rlimit) (err error) = SYS_PRLIMIT64
  1361  //sys   Prctl(option int, arg2 uintptr, arg3 uintptr, arg4 uintptr, arg5 uintptr) (err error)
  1362  //sys	Pselect(nfd int, r *FdSet, w *FdSet, e *FdSet, timeout *Timespec, sigmask *Sigset_t) (n int, err error) = SYS_PSELECT6
  1363  //sys	read(fd int, p []byte) (n int, err error)
  1364  //sys	Removexattr(path string, attr string) (err error)
  1365  //sys	Renameat(olddirfd int, oldpath string, newdirfd int, newpath string) (err error)
  1366  //sys	Renameat2(olddirfd int, oldpath string, newdirfd int, newpath string, flags uint) (err error)
  1367  //sys	RequestKey(keyType string, description string, callback string, destRingid int) (id int, err error)
  1368  //sys	Setdomainname(p []byte) (err error)
  1369  //sys	Sethostname(p []byte) (err error)
  1370  //sysnb	Setpgid(pid int, pgid int) (err error)
  1371  //sysnb	Setsid() (pid int, err error)
  1372  //sysnb	Settimeofday(tv *Timeval) (err error)
  1373  //sys	Setns(fd int, nstype int) (err error)
  1374  
  1375  // issue 1435.
  1376  // On linux Setuid and Setgid only affects the current thread, not the process.
  1377  // This does not match what most callers expect so we must return an error
  1378  // here rather than letting the caller think that the call succeeded.
  1379  
  1380  func Setuid(uid int) (err error) {
  1381  	return EOPNOTSUPP
  1382  }
  1383  
  1384  func Setgid(uid int) (err error) {
  1385  	return EOPNOTSUPP
  1386  }
  1387  
  1388  //sys	Setpriority(which int, who int, prio int) (err error)
  1389  //sys	Setxattr(path string, attr string, data []byte, flags int) (err error)
  1390  //sys	Statx(dirfd int, path string, flags int, mask int, stat *Statx_t) (err error)
  1391  //sys	Sync()
  1392  //sys	Syncfs(fd int) (err error)
  1393  //sysnb	Sysinfo(info *Sysinfo_t) (err error)
  1394  //sys	Tee(rfd int, wfd int, len int, flags int) (n int64, err error)
  1395  //sysnb	Tgkill(tgid int, tid int, sig syscall.Signal) (err error)
  1396  //sysnb	Times(tms *Tms) (ticks uintptr, err error)
  1397  //sysnb	Umask(mask int) (oldmask int)
  1398  //sysnb	Uname(buf *Utsname) (err error)
  1399  //sys	Unmount(target string, flags int) (err error) = SYS_UMOUNT2
  1400  //sys	Unshare(flags int) (err error)
  1401  //sys	write(fd int, p []byte) (n int, err error)
  1402  //sys	exitThread(code int) (err error) = SYS_EXIT
  1403  //sys	readlen(fd int, p *byte, np int) (n int, err error) = SYS_READ
  1404  //sys	writelen(fd int, p *byte, np int) (n int, err error) = SYS_WRITE
  1405  
  1406  // mmap varies by architecture; see syscall_linux_*.go.
  1407  //sys	munmap(addr uintptr, length uintptr) (err error)
  1408  
  1409  var mapper = &mmapper{
  1410  	active: make(map[*byte][]byte),
  1411  	mmap:   mmap,
  1412  	munmap: munmap,
  1413  }
  1414  
  1415  func Mmap(fd int, offset int64, length int, prot int, flags int) (data []byte, err error) {
  1416  	return mapper.Mmap(fd, offset, length, prot, flags)
  1417  }
  1418  
  1419  func Munmap(b []byte) (err error) {
  1420  	return mapper.Munmap(b)
  1421  }
  1422  
  1423  //sys	Madvise(b []byte, advice int) (err error)
  1424  //sys	Mprotect(b []byte, prot int) (err error)
  1425  //sys	Mlock(b []byte) (err error)
  1426  //sys	Mlockall(flags int) (err error)
  1427  //sys	Msync(b []byte, flags int) (err error)
  1428  //sys	Munlock(b []byte) (err error)
  1429  //sys	Munlockall() (err error)
  1430  
  1431  // Vmsplice splices user pages from a slice of Iovecs into a pipe specified by fd,
  1432  // using the specified flags.
  1433  func Vmsplice(fd int, iovs []Iovec, flags int) (int, error) {
  1434  	n, _, errno := Syscall6(
  1435  		SYS_VMSPLICE,
  1436  		uintptr(fd),
  1437  		uintptr(unsafe.Pointer(&iovs[0])),
  1438  		uintptr(len(iovs)),
  1439  		uintptr(flags),
  1440  		0,
  1441  		0,
  1442  	)
  1443  	if errno != 0 {
  1444  		return 0, syscall.Errno(errno)
  1445  	}
  1446  
  1447  	return int(n), nil
  1448  }
  1449  
  1450  //sys	faccessat(dirfd int, path string, mode uint32) (err error)
  1451  
  1452  func Faccessat(dirfd int, path string, mode uint32, flags int) (err error) {
  1453  	if flags & ^(AT_SYMLINK_NOFOLLOW|AT_EACCESS) != 0 {
  1454  		return EINVAL
  1455  	}
  1456  
  1457  	// The Linux kernel faccessat system call does not take any flags.
  1458  	// The glibc faccessat implements the flags itself; see
  1459  	// https://sourceware.org/git/?p=glibc.git;a=blob;f=sysdeps/unix/sysv/linux/faccessat.c;hb=HEAD
  1460  	// Because people naturally expect syscall.Faccessat to act
  1461  	// like C faccessat, we do the same.
  1462  
  1463  	if flags == 0 {
  1464  		return faccessat(dirfd, path, mode)
  1465  	}
  1466  
  1467  	var st Stat_t
  1468  	if err := Fstatat(dirfd, path, &st, flags&AT_SYMLINK_NOFOLLOW); err != nil {
  1469  		return err
  1470  	}
  1471  
  1472  	mode &= 7
  1473  	if mode == 0 {
  1474  		return nil
  1475  	}
  1476  
  1477  	var uid int
  1478  	if flags&AT_EACCESS != 0 {
  1479  		uid = Geteuid()
  1480  	} else {
  1481  		uid = Getuid()
  1482  	}
  1483  
  1484  	if uid == 0 {
  1485  		if mode&1 == 0 {
  1486  			// Root can read and write any file.
  1487  			return nil
  1488  		}
  1489  		if st.Mode&0111 != 0 {
  1490  			// Root can execute any file that anybody can execute.
  1491  			return nil
  1492  		}
  1493  		return EACCES
  1494  	}
  1495  
  1496  	var fmode uint32
  1497  	if uint32(uid) == st.Uid {
  1498  		fmode = (st.Mode >> 6) & 7
  1499  	} else {
  1500  		var gid int
  1501  		if flags&AT_EACCESS != 0 {
  1502  			gid = Getegid()
  1503  		} else {
  1504  			gid = Getgid()
  1505  		}
  1506  
  1507  		if uint32(gid) == st.Gid {
  1508  			fmode = (st.Mode >> 3) & 7
  1509  		} else {
  1510  			fmode = st.Mode & 7
  1511  		}
  1512  	}
  1513  
  1514  	if fmode&mode == mode {
  1515  		return nil
  1516  	}
  1517  
  1518  	return EACCES
  1519  }
  1520  
  1521  /*
  1522   * Unimplemented
  1523   */
  1524  // AfsSyscall
  1525  // Alarm
  1526  // ArchPrctl
  1527  // Brk
  1528  // Capget
  1529  // Capset
  1530  // ClockNanosleep
  1531  // ClockSettime
  1532  // Clone
  1533  // EpollCtlOld
  1534  // EpollPwait
  1535  // EpollWaitOld
  1536  // Execve
  1537  // Fork
  1538  // Futex
  1539  // GetKernelSyms
  1540  // GetMempolicy
  1541  // GetRobustList
  1542  // GetThreadArea
  1543  // Getitimer
  1544  // Getpmsg
  1545  // IoCancel
  1546  // IoDestroy
  1547  // IoGetevents
  1548  // IoSetup
  1549  // IoSubmit
  1550  // IoprioGet
  1551  // IoprioSet
  1552  // KexecLoad
  1553  // LookupDcookie
  1554  // Mbind
  1555  // MigratePages
  1556  // Mincore
  1557  // ModifyLdt
  1558  // Mount
  1559  // MovePages
  1560  // MqGetsetattr
  1561  // MqNotify
  1562  // MqOpen
  1563  // MqTimedreceive
  1564  // MqTimedsend
  1565  // MqUnlink
  1566  // Mremap
  1567  // Msgctl
  1568  // Msgget
  1569  // Msgrcv
  1570  // Msgsnd
  1571  // Nfsservctl
  1572  // Personality
  1573  // Pselect6
  1574  // Ptrace
  1575  // Putpmsg
  1576  // Quotactl
  1577  // Readahead
  1578  // Readv
  1579  // RemapFilePages
  1580  // RestartSyscall
  1581  // RtSigaction
  1582  // RtSigpending
  1583  // RtSigprocmask
  1584  // RtSigqueueinfo
  1585  // RtSigreturn
  1586  // RtSigsuspend
  1587  // RtSigtimedwait
  1588  // SchedGetPriorityMax
  1589  // SchedGetPriorityMin
  1590  // SchedGetparam
  1591  // SchedGetscheduler
  1592  // SchedRrGetInterval
  1593  // SchedSetparam
  1594  // SchedYield
  1595  // Security
  1596  // Semctl
  1597  // Semget
  1598  // Semop
  1599  // Semtimedop
  1600  // SetMempolicy
  1601  // SetRobustList
  1602  // SetThreadArea
  1603  // SetTidAddress
  1604  // Shmat
  1605  // Shmctl
  1606  // Shmdt
  1607  // Shmget
  1608  // Sigaltstack
  1609  // Signalfd
  1610  // Swapoff
  1611  // Swapon
  1612  // Sysfs
  1613  // TimerCreate
  1614  // TimerDelete
  1615  // TimerGetoverrun
  1616  // TimerGettime
  1617  // TimerSettime
  1618  // Timerfd
  1619  // Tkill (obsolete)
  1620  // Tuxcall
  1621  // Umount2
  1622  // Uselib
  1623  // Utimensat
  1624  // Vfork
  1625  // Vhangup
  1626  // Vserver
  1627  // Waitid
  1628  // _Sysctl