github.com/flyinox/gosm@v0.0.0-20171117061539-16768cb62077/src/compress/flate/deflate.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package flate 6 7 import ( 8 "fmt" 9 "io" 10 "math" 11 ) 12 13 const ( 14 NoCompression = 0 15 BestSpeed = 1 16 BestCompression = 9 17 DefaultCompression = -1 18 19 // HuffmanOnly disables Lempel-Ziv match searching and only performs Huffman 20 // entropy encoding. This mode is useful in compressing data that has 21 // already been compressed with an LZ style algorithm (e.g. Snappy or LZ4) 22 // that lacks an entropy encoder. Compression gains are achieved when 23 // certain bytes in the input stream occur more frequently than others. 24 // 25 // Note that HuffmanOnly produces a compressed output that is 26 // RFC 1951 compliant. That is, any valid DEFLATE decompressor will 27 // continue to be able to decompress this output. 28 HuffmanOnly = -2 29 ) 30 31 const ( 32 logWindowSize = 15 33 windowSize = 1 << logWindowSize 34 windowMask = windowSize - 1 35 36 // The LZ77 step produces a sequence of literal tokens and <length, offset> 37 // pair tokens. The offset is also known as distance. The underlying wire 38 // format limits the range of lengths and offsets. For example, there are 39 // 256 legitimate lengths: those in the range [3, 258]. This package's 40 // compressor uses a higher minimum match length, enabling optimizations 41 // such as finding matches via 32-bit loads and compares. 42 baseMatchLength = 3 // The smallest match length per the RFC section 3.2.5 43 minMatchLength = 4 // The smallest match length that the compressor actually emits 44 maxMatchLength = 258 // The largest match length 45 baseMatchOffset = 1 // The smallest match offset 46 maxMatchOffset = 1 << 15 // The largest match offset 47 48 // The maximum number of tokens we put into a single flate block, just to 49 // stop things from getting too large. 50 maxFlateBlockTokens = 1 << 14 51 maxStoreBlockSize = 65535 52 hashBits = 17 // After 17 performance degrades 53 hashSize = 1 << hashBits 54 hashMask = (1 << hashBits) - 1 55 maxHashOffset = 1 << 24 56 57 skipNever = math.MaxInt32 58 ) 59 60 type compressionLevel struct { 61 level, good, lazy, nice, chain, fastSkipHashing int 62 } 63 64 var levels = []compressionLevel{ 65 {0, 0, 0, 0, 0, 0}, // NoCompression. 66 {1, 0, 0, 0, 0, 0}, // BestSpeed uses a custom algorithm; see deflatefast.go. 67 // For levels 2-3 we don't bother trying with lazy matches. 68 {2, 4, 0, 16, 8, 5}, 69 {3, 4, 0, 32, 32, 6}, 70 // Levels 4-9 use increasingly more lazy matching 71 // and increasingly stringent conditions for "good enough". 72 {4, 4, 4, 16, 16, skipNever}, 73 {5, 8, 16, 32, 32, skipNever}, 74 {6, 8, 16, 128, 128, skipNever}, 75 {7, 8, 32, 128, 256, skipNever}, 76 {8, 32, 128, 258, 1024, skipNever}, 77 {9, 32, 258, 258, 4096, skipNever}, 78 } 79 80 type compressor struct { 81 compressionLevel 82 83 w *huffmanBitWriter 84 bulkHasher func([]byte, []uint32) 85 86 // compression algorithm 87 fill func(*compressor, []byte) int // copy data to window 88 step func(*compressor) // process window 89 sync bool // requesting flush 90 bestSpeed *deflateFast // Encoder for BestSpeed 91 92 // Input hash chains 93 // hashHead[hashValue] contains the largest inputIndex with the specified hash value 94 // If hashHead[hashValue] is within the current window, then 95 // hashPrev[hashHead[hashValue] & windowMask] contains the previous index 96 // with the same hash value. 97 chainHead int 98 hashHead [hashSize]uint32 99 hashPrev [windowSize]uint32 100 hashOffset int 101 102 // input window: unprocessed data is window[index:windowEnd] 103 index int 104 window []byte 105 windowEnd int 106 blockStart int // window index where current tokens start 107 byteAvailable bool // if true, still need to process window[index-1]. 108 109 // queued output tokens 110 tokens []token 111 112 // deflate state 113 length int 114 offset int 115 hash uint32 116 maxInsertIndex int 117 err error 118 119 // hashMatch must be able to contain hashes for the maximum match length. 120 hashMatch [maxMatchLength - 1]uint32 121 } 122 123 func (d *compressor) fillDeflate(b []byte) int { 124 if d.index >= 2*windowSize-(minMatchLength+maxMatchLength) { 125 // shift the window by windowSize 126 copy(d.window, d.window[windowSize:2*windowSize]) 127 d.index -= windowSize 128 d.windowEnd -= windowSize 129 if d.blockStart >= windowSize { 130 d.blockStart -= windowSize 131 } else { 132 d.blockStart = math.MaxInt32 133 } 134 d.hashOffset += windowSize 135 if d.hashOffset > maxHashOffset { 136 delta := d.hashOffset - 1 137 d.hashOffset -= delta 138 d.chainHead -= delta 139 140 // Iterate over slices instead of arrays to avoid copying 141 // the entire table onto the stack (Issue #18625). 142 for i, v := range d.hashPrev[:] { 143 if int(v) > delta { 144 d.hashPrev[i] = uint32(int(v) - delta) 145 } else { 146 d.hashPrev[i] = 0 147 } 148 } 149 for i, v := range d.hashHead[:] { 150 if int(v) > delta { 151 d.hashHead[i] = uint32(int(v) - delta) 152 } else { 153 d.hashHead[i] = 0 154 } 155 } 156 } 157 } 158 n := copy(d.window[d.windowEnd:], b) 159 d.windowEnd += n 160 return n 161 } 162 163 func (d *compressor) writeBlock(tokens []token, index int) error { 164 if index > 0 { 165 var window []byte 166 if d.blockStart <= index { 167 window = d.window[d.blockStart:index] 168 } 169 d.blockStart = index 170 d.w.writeBlock(tokens, false, window) 171 return d.w.err 172 } 173 return nil 174 } 175 176 // fillWindow will fill the current window with the supplied 177 // dictionary and calculate all hashes. 178 // This is much faster than doing a full encode. 179 // Should only be used after a reset. 180 func (d *compressor) fillWindow(b []byte) { 181 // Do not fill window if we are in store-only mode. 182 if d.compressionLevel.level < 2 { 183 return 184 } 185 if d.index != 0 || d.windowEnd != 0 { 186 panic("internal error: fillWindow called with stale data") 187 } 188 189 // If we are given too much, cut it. 190 if len(b) > windowSize { 191 b = b[len(b)-windowSize:] 192 } 193 // Add all to window. 194 n := copy(d.window, b) 195 196 // Calculate 256 hashes at the time (more L1 cache hits) 197 loops := (n + 256 - minMatchLength) / 256 198 for j := 0; j < loops; j++ { 199 index := j * 256 200 end := index + 256 + minMatchLength - 1 201 if end > n { 202 end = n 203 } 204 toCheck := d.window[index:end] 205 dstSize := len(toCheck) - minMatchLength + 1 206 207 if dstSize <= 0 { 208 continue 209 } 210 211 dst := d.hashMatch[:dstSize] 212 d.bulkHasher(toCheck, dst) 213 var newH uint32 214 for i, val := range dst { 215 di := i + index 216 newH = val 217 hh := &d.hashHead[newH&hashMask] 218 // Get previous value with the same hash. 219 // Our chain should point to the previous value. 220 d.hashPrev[di&windowMask] = *hh 221 // Set the head of the hash chain to us. 222 *hh = uint32(di + d.hashOffset) 223 } 224 d.hash = newH 225 } 226 // Update window information. 227 d.windowEnd = n 228 d.index = n 229 } 230 231 // Try to find a match starting at index whose length is greater than prevSize. 232 // We only look at chainCount possibilities before giving up. 233 func (d *compressor) findMatch(pos int, prevHead int, prevLength int, lookahead int) (length, offset int, ok bool) { 234 minMatchLook := maxMatchLength 235 if lookahead < minMatchLook { 236 minMatchLook = lookahead 237 } 238 239 win := d.window[0 : pos+minMatchLook] 240 241 // We quit when we get a match that's at least nice long 242 nice := len(win) - pos 243 if d.nice < nice { 244 nice = d.nice 245 } 246 247 // If we've got a match that's good enough, only look in 1/4 the chain. 248 tries := d.chain 249 length = prevLength 250 if length >= d.good { 251 tries >>= 2 252 } 253 254 wEnd := win[pos+length] 255 wPos := win[pos:] 256 minIndex := pos - windowSize 257 258 for i := prevHead; tries > 0; tries-- { 259 if wEnd == win[i+length] { 260 n := matchLen(win[i:], wPos, minMatchLook) 261 262 if n > length && (n > minMatchLength || pos-i <= 4096) { 263 length = n 264 offset = pos - i 265 ok = true 266 if n >= nice { 267 // The match is good enough that we don't try to find a better one. 268 break 269 } 270 wEnd = win[pos+n] 271 } 272 } 273 if i == minIndex { 274 // hashPrev[i & windowMask] has already been overwritten, so stop now. 275 break 276 } 277 i = int(d.hashPrev[i&windowMask]) - d.hashOffset 278 if i < minIndex || i < 0 { 279 break 280 } 281 } 282 return 283 } 284 285 func (d *compressor) writeStoredBlock(buf []byte) error { 286 if d.w.writeStoredHeader(len(buf), false); d.w.err != nil { 287 return d.w.err 288 } 289 d.w.writeBytes(buf) 290 return d.w.err 291 } 292 293 const hashmul = 0x1e35a7bd 294 295 // hash4 returns a hash representation of the first 4 bytes 296 // of the supplied slice. 297 // The caller must ensure that len(b) >= 4. 298 func hash4(b []byte) uint32 { 299 return ((uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24) * hashmul) >> (32 - hashBits) 300 } 301 302 // bulkHash4 will compute hashes using the same 303 // algorithm as hash4 304 func bulkHash4(b []byte, dst []uint32) { 305 if len(b) < minMatchLength { 306 return 307 } 308 hb := uint32(b[3]) | uint32(b[2])<<8 | uint32(b[1])<<16 | uint32(b[0])<<24 309 dst[0] = (hb * hashmul) >> (32 - hashBits) 310 end := len(b) - minMatchLength + 1 311 for i := 1; i < end; i++ { 312 hb = (hb << 8) | uint32(b[i+3]) 313 dst[i] = (hb * hashmul) >> (32 - hashBits) 314 } 315 } 316 317 // matchLen returns the number of matching bytes in a and b 318 // up to length 'max'. Both slices must be at least 'max' 319 // bytes in size. 320 func matchLen(a, b []byte, max int) int { 321 a = a[:max] 322 b = b[:len(a)] 323 for i, av := range a { 324 if b[i] != av { 325 return i 326 } 327 } 328 return max 329 } 330 331 // encSpeed will compress and store the currently added data, 332 // if enough has been accumulated or we at the end of the stream. 333 // Any error that occurred will be in d.err 334 func (d *compressor) encSpeed() { 335 // We only compress if we have maxStoreBlockSize. 336 if d.windowEnd < maxStoreBlockSize { 337 if !d.sync { 338 return 339 } 340 341 // Handle small sizes. 342 if d.windowEnd < 128 { 343 switch { 344 case d.windowEnd == 0: 345 return 346 case d.windowEnd <= 16: 347 d.err = d.writeStoredBlock(d.window[:d.windowEnd]) 348 default: 349 d.w.writeBlockHuff(false, d.window[:d.windowEnd]) 350 d.err = d.w.err 351 } 352 d.windowEnd = 0 353 d.bestSpeed.reset() 354 return 355 } 356 357 } 358 // Encode the block. 359 d.tokens = d.bestSpeed.encode(d.tokens[:0], d.window[:d.windowEnd]) 360 361 // If we removed less than 1/16th, Huffman compress the block. 362 if len(d.tokens) > d.windowEnd-(d.windowEnd>>4) { 363 d.w.writeBlockHuff(false, d.window[:d.windowEnd]) 364 } else { 365 d.w.writeBlockDynamic(d.tokens, false, d.window[:d.windowEnd]) 366 } 367 d.err = d.w.err 368 d.windowEnd = 0 369 } 370 371 func (d *compressor) initDeflate() { 372 d.window = make([]byte, 2*windowSize) 373 d.hashOffset = 1 374 d.tokens = make([]token, 0, maxFlateBlockTokens+1) 375 d.length = minMatchLength - 1 376 d.offset = 0 377 d.byteAvailable = false 378 d.index = 0 379 d.hash = 0 380 d.chainHead = -1 381 d.bulkHasher = bulkHash4 382 } 383 384 func (d *compressor) deflate() { 385 if d.windowEnd-d.index < minMatchLength+maxMatchLength && !d.sync { 386 return 387 } 388 389 d.maxInsertIndex = d.windowEnd - (minMatchLength - 1) 390 if d.index < d.maxInsertIndex { 391 d.hash = hash4(d.window[d.index : d.index+minMatchLength]) 392 } 393 394 Loop: 395 for { 396 if d.index > d.windowEnd { 397 panic("index > windowEnd") 398 } 399 lookahead := d.windowEnd - d.index 400 if lookahead < minMatchLength+maxMatchLength { 401 if !d.sync { 402 break Loop 403 } 404 if d.index > d.windowEnd { 405 panic("index > windowEnd") 406 } 407 if lookahead == 0 { 408 // Flush current output block if any. 409 if d.byteAvailable { 410 // There is still one pending token that needs to be flushed 411 d.tokens = append(d.tokens, literalToken(uint32(d.window[d.index-1]))) 412 d.byteAvailable = false 413 } 414 if len(d.tokens) > 0 { 415 if d.err = d.writeBlock(d.tokens, d.index); d.err != nil { 416 return 417 } 418 d.tokens = d.tokens[:0] 419 } 420 break Loop 421 } 422 } 423 if d.index < d.maxInsertIndex { 424 // Update the hash 425 d.hash = hash4(d.window[d.index : d.index+minMatchLength]) 426 hh := &d.hashHead[d.hash&hashMask] 427 d.chainHead = int(*hh) 428 d.hashPrev[d.index&windowMask] = uint32(d.chainHead) 429 *hh = uint32(d.index + d.hashOffset) 430 } 431 prevLength := d.length 432 prevOffset := d.offset 433 d.length = minMatchLength - 1 434 d.offset = 0 435 minIndex := d.index - windowSize 436 if minIndex < 0 { 437 minIndex = 0 438 } 439 440 if d.chainHead-d.hashOffset >= minIndex && 441 (d.fastSkipHashing != skipNever && lookahead > minMatchLength-1 || 442 d.fastSkipHashing == skipNever && lookahead > prevLength && prevLength < d.lazy) { 443 if newLength, newOffset, ok := d.findMatch(d.index, d.chainHead-d.hashOffset, minMatchLength-1, lookahead); ok { 444 d.length = newLength 445 d.offset = newOffset 446 } 447 } 448 if d.fastSkipHashing != skipNever && d.length >= minMatchLength || 449 d.fastSkipHashing == skipNever && prevLength >= minMatchLength && d.length <= prevLength { 450 // There was a match at the previous step, and the current match is 451 // not better. Output the previous match. 452 if d.fastSkipHashing != skipNever { 453 d.tokens = append(d.tokens, matchToken(uint32(d.length-baseMatchLength), uint32(d.offset-baseMatchOffset))) 454 } else { 455 d.tokens = append(d.tokens, matchToken(uint32(prevLength-baseMatchLength), uint32(prevOffset-baseMatchOffset))) 456 } 457 // Insert in the hash table all strings up to the end of the match. 458 // index and index-1 are already inserted. If there is not enough 459 // lookahead, the last two strings are not inserted into the hash 460 // table. 461 if d.length <= d.fastSkipHashing { 462 var newIndex int 463 if d.fastSkipHashing != skipNever { 464 newIndex = d.index + d.length 465 } else { 466 newIndex = d.index + prevLength - 1 467 } 468 for d.index++; d.index < newIndex; d.index++ { 469 if d.index < d.maxInsertIndex { 470 d.hash = hash4(d.window[d.index : d.index+minMatchLength]) 471 // Get previous value with the same hash. 472 // Our chain should point to the previous value. 473 hh := &d.hashHead[d.hash&hashMask] 474 d.hashPrev[d.index&windowMask] = *hh 475 // Set the head of the hash chain to us. 476 *hh = uint32(d.index + d.hashOffset) 477 } 478 } 479 if d.fastSkipHashing == skipNever { 480 d.byteAvailable = false 481 d.length = minMatchLength - 1 482 } 483 } else { 484 // For matches this long, we don't bother inserting each individual 485 // item into the table. 486 d.index += d.length 487 if d.index < d.maxInsertIndex { 488 d.hash = hash4(d.window[d.index : d.index+minMatchLength]) 489 } 490 } 491 if len(d.tokens) == maxFlateBlockTokens { 492 // The block includes the current character 493 if d.err = d.writeBlock(d.tokens, d.index); d.err != nil { 494 return 495 } 496 d.tokens = d.tokens[:0] 497 } 498 } else { 499 if d.fastSkipHashing != skipNever || d.byteAvailable { 500 i := d.index - 1 501 if d.fastSkipHashing != skipNever { 502 i = d.index 503 } 504 d.tokens = append(d.tokens, literalToken(uint32(d.window[i]))) 505 if len(d.tokens) == maxFlateBlockTokens { 506 if d.err = d.writeBlock(d.tokens, i+1); d.err != nil { 507 return 508 } 509 d.tokens = d.tokens[:0] 510 } 511 } 512 d.index++ 513 if d.fastSkipHashing == skipNever { 514 d.byteAvailable = true 515 } 516 } 517 } 518 } 519 520 func (d *compressor) fillStore(b []byte) int { 521 n := copy(d.window[d.windowEnd:], b) 522 d.windowEnd += n 523 return n 524 } 525 526 func (d *compressor) store() { 527 if d.windowEnd > 0 && (d.windowEnd == maxStoreBlockSize || d.sync) { 528 d.err = d.writeStoredBlock(d.window[:d.windowEnd]) 529 d.windowEnd = 0 530 } 531 } 532 533 // storeHuff compresses and stores the currently added data 534 // when the d.window is full or we are at the end of the stream. 535 // Any error that occurred will be in d.err 536 func (d *compressor) storeHuff() { 537 if d.windowEnd < len(d.window) && !d.sync || d.windowEnd == 0 { 538 return 539 } 540 d.w.writeBlockHuff(false, d.window[:d.windowEnd]) 541 d.err = d.w.err 542 d.windowEnd = 0 543 } 544 545 func (d *compressor) write(b []byte) (n int, err error) { 546 if d.err != nil { 547 return 0, d.err 548 } 549 n = len(b) 550 for len(b) > 0 { 551 d.step(d) 552 b = b[d.fill(d, b):] 553 if d.err != nil { 554 return 0, d.err 555 } 556 } 557 return n, nil 558 } 559 560 func (d *compressor) syncFlush() error { 561 if d.err != nil { 562 return d.err 563 } 564 d.sync = true 565 d.step(d) 566 if d.err == nil { 567 d.w.writeStoredHeader(0, false) 568 d.w.flush() 569 d.err = d.w.err 570 } 571 d.sync = false 572 return d.err 573 } 574 575 func (d *compressor) init(w io.Writer, level int) (err error) { 576 d.w = newHuffmanBitWriter(w) 577 578 switch { 579 case level == NoCompression: 580 d.window = make([]byte, maxStoreBlockSize) 581 d.fill = (*compressor).fillStore 582 d.step = (*compressor).store 583 case level == HuffmanOnly: 584 d.window = make([]byte, maxStoreBlockSize) 585 d.fill = (*compressor).fillStore 586 d.step = (*compressor).storeHuff 587 case level == BestSpeed: 588 d.compressionLevel = levels[level] 589 d.window = make([]byte, maxStoreBlockSize) 590 d.fill = (*compressor).fillStore 591 d.step = (*compressor).encSpeed 592 d.bestSpeed = newDeflateFast() 593 d.tokens = make([]token, maxStoreBlockSize) 594 case level == DefaultCompression: 595 level = 6 596 fallthrough 597 case 2 <= level && level <= 9: 598 d.compressionLevel = levels[level] 599 d.initDeflate() 600 d.fill = (*compressor).fillDeflate 601 d.step = (*compressor).deflate 602 default: 603 return fmt.Errorf("flate: invalid compression level %d: want value in range [-2, 9]", level) 604 } 605 return nil 606 } 607 608 func (d *compressor) reset(w io.Writer) { 609 d.w.reset(w) 610 d.sync = false 611 d.err = nil 612 switch d.compressionLevel.level { 613 case NoCompression: 614 d.windowEnd = 0 615 case BestSpeed: 616 d.windowEnd = 0 617 d.tokens = d.tokens[:0] 618 d.bestSpeed.reset() 619 default: 620 d.chainHead = -1 621 for i := range d.hashHead { 622 d.hashHead[i] = 0 623 } 624 for i := range d.hashPrev { 625 d.hashPrev[i] = 0 626 } 627 d.hashOffset = 1 628 d.index, d.windowEnd = 0, 0 629 d.blockStart, d.byteAvailable = 0, false 630 d.tokens = d.tokens[:0] 631 d.length = minMatchLength - 1 632 d.offset = 0 633 d.hash = 0 634 d.maxInsertIndex = 0 635 } 636 } 637 638 func (d *compressor) close() error { 639 if d.err != nil { 640 return d.err 641 } 642 d.sync = true 643 d.step(d) 644 if d.err != nil { 645 return d.err 646 } 647 if d.w.writeStoredHeader(0, true); d.w.err != nil { 648 return d.w.err 649 } 650 d.w.flush() 651 return d.w.err 652 } 653 654 // NewWriter returns a new Writer compressing data at the given level. 655 // Following zlib, levels range from 1 (BestSpeed) to 9 (BestCompression); 656 // higher levels typically run slower but compress more. Level 0 657 // (NoCompression) does not attempt any compression; it only adds the 658 // necessary DEFLATE framing. 659 // Level -1 (DefaultCompression) uses the default compression level. 660 // Level -2 (HuffmanOnly) will use Huffman compression only, giving 661 // a very fast compression for all types of input, but sacrificing considerable 662 // compression efficiency. 663 // 664 // If level is in the range [-2, 9] then the error returned will be nil. 665 // Otherwise the error returned will be non-nil. 666 func NewWriter(w io.Writer, level int) (*Writer, error) { 667 var dw Writer 668 if err := dw.d.init(w, level); err != nil { 669 return nil, err 670 } 671 return &dw, nil 672 } 673 674 // NewWriterDict is like NewWriter but initializes the new 675 // Writer with a preset dictionary. The returned Writer behaves 676 // as if the dictionary had been written to it without producing 677 // any compressed output. The compressed data written to w 678 // can only be decompressed by a Reader initialized with the 679 // same dictionary. 680 func NewWriterDict(w io.Writer, level int, dict []byte) (*Writer, error) { 681 dw := &dictWriter{w} 682 zw, err := NewWriter(dw, level) 683 if err != nil { 684 return nil, err 685 } 686 zw.d.fillWindow(dict) 687 zw.dict = append(zw.dict, dict...) // duplicate dictionary for Reset method. 688 return zw, err 689 } 690 691 type dictWriter struct { 692 w io.Writer 693 } 694 695 func (w *dictWriter) Write(b []byte) (n int, err error) { 696 return w.w.Write(b) 697 } 698 699 // A Writer takes data written to it and writes the compressed 700 // form of that data to an underlying writer (see NewWriter). 701 type Writer struct { 702 d compressor 703 dict []byte 704 } 705 706 // Write writes data to w, which will eventually write the 707 // compressed form of data to its underlying writer. 708 func (w *Writer) Write(data []byte) (n int, err error) { 709 return w.d.write(data) 710 } 711 712 // Flush flushes any pending data to the underlying writer. 713 // It is useful mainly in compressed network protocols, to ensure that 714 // a remote reader has enough data to reconstruct a packet. 715 // Flush does not return until the data has been written. 716 // Calling Flush when there is no pending data still causes the Writer 717 // to emit a sync marker of at least 4 bytes. 718 // If the underlying writer returns an error, Flush returns that error. 719 // 720 // In the terminology of the zlib library, Flush is equivalent to Z_SYNC_FLUSH. 721 func (w *Writer) Flush() error { 722 // For more about flushing: 723 // http://www.bolet.org/~pornin/deflate-flush.html 724 return w.d.syncFlush() 725 } 726 727 // Close flushes and closes the writer. 728 func (w *Writer) Close() error { 729 return w.d.close() 730 } 731 732 // Reset discards the writer's state and makes it equivalent to 733 // the result of NewWriter or NewWriterDict called with dst 734 // and w's level and dictionary. 735 func (w *Writer) Reset(dst io.Writer) { 736 if dw, ok := w.d.w.writer.(*dictWriter); ok { 737 // w was created with NewWriterDict 738 dw.w = dst 739 w.d.reset(dw) 740 w.d.fillWindow(w.dict) 741 } else { 742 // w was created with NewWriter 743 w.d.reset(dst) 744 } 745 }