github.com/flyinox/gosm@v0.0.0-20171117061539-16768cb62077/src/debug/dwarf/type.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // DWARF type information structures. 6 // The format is heavily biased toward C, but for simplicity 7 // the String methods use a pseudo-Go syntax. 8 9 package dwarf 10 11 import "strconv" 12 13 // A Type conventionally represents a pointer to any of the 14 // specific Type structures (CharType, StructType, etc.). 15 type Type interface { 16 Common() *CommonType 17 String() string 18 Size() int64 19 } 20 21 // A CommonType holds fields common to multiple types. 22 // If a field is not known or not applicable for a given type, 23 // the zero value is used. 24 type CommonType struct { 25 ByteSize int64 // size of value of this type, in bytes 26 Name string // name that can be used to refer to type 27 } 28 29 func (c *CommonType) Common() *CommonType { return c } 30 31 func (c *CommonType) Size() int64 { return c.ByteSize } 32 33 // Basic types 34 35 // A BasicType holds fields common to all basic types. 36 type BasicType struct { 37 CommonType 38 BitSize int64 39 BitOffset int64 40 } 41 42 func (b *BasicType) Basic() *BasicType { return b } 43 44 func (t *BasicType) String() string { 45 if t.Name != "" { 46 return t.Name 47 } 48 return "?" 49 } 50 51 // A CharType represents a signed character type. 52 type CharType struct { 53 BasicType 54 } 55 56 // A UcharType represents an unsigned character type. 57 type UcharType struct { 58 BasicType 59 } 60 61 // An IntType represents a signed integer type. 62 type IntType struct { 63 BasicType 64 } 65 66 // A UintType represents an unsigned integer type. 67 type UintType struct { 68 BasicType 69 } 70 71 // A FloatType represents a floating point type. 72 type FloatType struct { 73 BasicType 74 } 75 76 // A ComplexType represents a complex floating point type. 77 type ComplexType struct { 78 BasicType 79 } 80 81 // A BoolType represents a boolean type. 82 type BoolType struct { 83 BasicType 84 } 85 86 // An AddrType represents a machine address type. 87 type AddrType struct { 88 BasicType 89 } 90 91 // An UnspecifiedType represents an implicit, unknown, ambiguous or nonexistent type. 92 type UnspecifiedType struct { 93 BasicType 94 } 95 96 // qualifiers 97 98 // A QualType represents a type that has the C/C++ "const", "restrict", or "volatile" qualifier. 99 type QualType struct { 100 CommonType 101 Qual string 102 Type Type 103 } 104 105 func (t *QualType) String() string { return t.Qual + " " + t.Type.String() } 106 107 func (t *QualType) Size() int64 { return t.Type.Size() } 108 109 // An ArrayType represents a fixed size array type. 110 type ArrayType struct { 111 CommonType 112 Type Type 113 StrideBitSize int64 // if > 0, number of bits to hold each element 114 Count int64 // if == -1, an incomplete array, like char x[]. 115 } 116 117 func (t *ArrayType) String() string { 118 return "[" + strconv.FormatInt(t.Count, 10) + "]" + t.Type.String() 119 } 120 121 func (t *ArrayType) Size() int64 { 122 if t.Count == -1 { 123 return 0 124 } 125 return t.Count * t.Type.Size() 126 } 127 128 // A VoidType represents the C void type. 129 type VoidType struct { 130 CommonType 131 } 132 133 func (t *VoidType) String() string { return "void" } 134 135 // A PtrType represents a pointer type. 136 type PtrType struct { 137 CommonType 138 Type Type 139 } 140 141 func (t *PtrType) String() string { return "*" + t.Type.String() } 142 143 // A StructType represents a struct, union, or C++ class type. 144 type StructType struct { 145 CommonType 146 StructName string 147 Kind string // "struct", "union", or "class". 148 Field []*StructField 149 Incomplete bool // if true, struct, union, class is declared but not defined 150 } 151 152 // A StructField represents a field in a struct, union, or C++ class type. 153 type StructField struct { 154 Name string 155 Type Type 156 ByteOffset int64 157 ByteSize int64 158 BitOffset int64 // within the ByteSize bytes at ByteOffset 159 BitSize int64 // zero if not a bit field 160 } 161 162 func (t *StructType) String() string { 163 if t.StructName != "" { 164 return t.Kind + " " + t.StructName 165 } 166 return t.Defn() 167 } 168 169 func (t *StructType) Defn() string { 170 s := t.Kind 171 if t.StructName != "" { 172 s += " " + t.StructName 173 } 174 if t.Incomplete { 175 s += " /*incomplete*/" 176 return s 177 } 178 s += " {" 179 for i, f := range t.Field { 180 if i > 0 { 181 s += "; " 182 } 183 s += f.Name + " " + f.Type.String() 184 s += "@" + strconv.FormatInt(f.ByteOffset, 10) 185 if f.BitSize > 0 { 186 s += " : " + strconv.FormatInt(f.BitSize, 10) 187 s += "@" + strconv.FormatInt(f.BitOffset, 10) 188 } 189 } 190 s += "}" 191 return s 192 } 193 194 // An EnumType represents an enumerated type. 195 // The only indication of its native integer type is its ByteSize 196 // (inside CommonType). 197 type EnumType struct { 198 CommonType 199 EnumName string 200 Val []*EnumValue 201 } 202 203 // An EnumValue represents a single enumeration value. 204 type EnumValue struct { 205 Name string 206 Val int64 207 } 208 209 func (t *EnumType) String() string { 210 s := "enum" 211 if t.EnumName != "" { 212 s += " " + t.EnumName 213 } 214 s += " {" 215 for i, v := range t.Val { 216 if i > 0 { 217 s += "; " 218 } 219 s += v.Name + "=" + strconv.FormatInt(v.Val, 10) 220 } 221 s += "}" 222 return s 223 } 224 225 // A FuncType represents a function type. 226 type FuncType struct { 227 CommonType 228 ReturnType Type 229 ParamType []Type 230 } 231 232 func (t *FuncType) String() string { 233 s := "func(" 234 for i, t := range t.ParamType { 235 if i > 0 { 236 s += ", " 237 } 238 s += t.String() 239 } 240 s += ")" 241 if t.ReturnType != nil { 242 s += " " + t.ReturnType.String() 243 } 244 return s 245 } 246 247 // A DotDotDotType represents the variadic ... function parameter. 248 type DotDotDotType struct { 249 CommonType 250 } 251 252 func (t *DotDotDotType) String() string { return "..." } 253 254 // A TypedefType represents a named type. 255 type TypedefType struct { 256 CommonType 257 Type Type 258 } 259 260 func (t *TypedefType) String() string { return t.Name } 261 262 func (t *TypedefType) Size() int64 { return t.Type.Size() } 263 264 // typeReader is used to read from either the info section or the 265 // types section. 266 type typeReader interface { 267 Seek(Offset) 268 Next() (*Entry, error) 269 clone() typeReader 270 offset() Offset 271 // AddressSize returns the size in bytes of addresses in the current 272 // compilation unit. 273 AddressSize() int 274 } 275 276 // Type reads the type at off in the DWARF ``info'' section. 277 func (d *Data) Type(off Offset) (Type, error) { 278 return d.readType("info", d.Reader(), off, d.typeCache, nil) 279 } 280 281 // readType reads a type from r at off of name. It adds types to the 282 // type cache, appends new typedef types to typedefs, and computes the 283 // sizes of types. Callers should pass nil for typedefs; this is used 284 // for internal recursion. 285 func (d *Data) readType(name string, r typeReader, off Offset, typeCache map[Offset]Type, typedefs *[]*TypedefType) (Type, error) { 286 if t, ok := typeCache[off]; ok { 287 return t, nil 288 } 289 r.Seek(off) 290 e, err := r.Next() 291 if err != nil { 292 return nil, err 293 } 294 addressSize := r.AddressSize() 295 if e == nil || e.Offset != off { 296 return nil, DecodeError{name, off, "no type at offset"} 297 } 298 299 // If this is the root of the recursion, prepare to resolve 300 // typedef sizes once the recursion is done. This must be done 301 // after the type graph is constructed because it may need to 302 // resolve cycles in a different order than readType 303 // encounters them. 304 if typedefs == nil { 305 var typedefList []*TypedefType 306 defer func() { 307 for _, t := range typedefList { 308 t.Common().ByteSize = t.Type.Size() 309 } 310 }() 311 typedefs = &typedefList 312 } 313 314 // Parse type from Entry. 315 // Must always set typeCache[off] before calling 316 // d.readType recursively, to handle circular types correctly. 317 var typ Type 318 319 nextDepth := 0 320 321 // Get next child; set err if error happens. 322 next := func() *Entry { 323 if !e.Children { 324 return nil 325 } 326 // Only return direct children. 327 // Skip over composite entries that happen to be nested 328 // inside this one. Most DWARF generators wouldn't generate 329 // such a thing, but clang does. 330 // See golang.org/issue/6472. 331 for { 332 kid, err1 := r.Next() 333 if err1 != nil { 334 err = err1 335 return nil 336 } 337 if kid == nil { 338 err = DecodeError{name, r.offset(), "unexpected end of DWARF entries"} 339 return nil 340 } 341 if kid.Tag == 0 { 342 if nextDepth > 0 { 343 nextDepth-- 344 continue 345 } 346 return nil 347 } 348 if kid.Children { 349 nextDepth++ 350 } 351 if nextDepth > 0 { 352 continue 353 } 354 return kid 355 } 356 } 357 358 // Get Type referred to by Entry's AttrType field. 359 // Set err if error happens. Not having a type is an error. 360 typeOf := func(e *Entry) Type { 361 tval := e.Val(AttrType) 362 var t Type 363 switch toff := tval.(type) { 364 case Offset: 365 if t, err = d.readType(name, r.clone(), toff, typeCache, typedefs); err != nil { 366 return nil 367 } 368 case uint64: 369 if t, err = d.sigToType(toff); err != nil { 370 return nil 371 } 372 default: 373 // It appears that no Type means "void". 374 return new(VoidType) 375 } 376 return t 377 } 378 379 switch e.Tag { 380 case TagArrayType: 381 // Multi-dimensional array. (DWARF v2 §5.4) 382 // Attributes: 383 // AttrType:subtype [required] 384 // AttrStrideSize: size in bits of each element of the array 385 // AttrByteSize: size of entire array 386 // Children: 387 // TagSubrangeType or TagEnumerationType giving one dimension. 388 // dimensions are in left to right order. 389 t := new(ArrayType) 390 typ = t 391 typeCache[off] = t 392 if t.Type = typeOf(e); err != nil { 393 goto Error 394 } 395 t.StrideBitSize, _ = e.Val(AttrStrideSize).(int64) 396 397 // Accumulate dimensions, 398 var dims []int64 399 for kid := next(); kid != nil; kid = next() { 400 // TODO(rsc): Can also be TagEnumerationType 401 // but haven't seen that in the wild yet. 402 switch kid.Tag { 403 case TagSubrangeType: 404 count, ok := kid.Val(AttrCount).(int64) 405 if !ok { 406 // Old binaries may have an upper bound instead. 407 count, ok = kid.Val(AttrUpperBound).(int64) 408 if ok { 409 count++ // Length is one more than upper bound. 410 } else if len(dims) == 0 { 411 count = -1 // As in x[]. 412 } 413 } 414 dims = append(dims, count) 415 case TagEnumerationType: 416 err = DecodeError{name, kid.Offset, "cannot handle enumeration type as array bound"} 417 goto Error 418 } 419 } 420 if len(dims) == 0 { 421 // LLVM generates this for x[]. 422 dims = []int64{-1} 423 } 424 425 t.Count = dims[0] 426 for i := len(dims) - 1; i >= 1; i-- { 427 t.Type = &ArrayType{Type: t.Type, Count: dims[i]} 428 } 429 430 case TagBaseType: 431 // Basic type. (DWARF v2 §5.1) 432 // Attributes: 433 // AttrName: name of base type in programming language of the compilation unit [required] 434 // AttrEncoding: encoding value for type (encFloat etc) [required] 435 // AttrByteSize: size of type in bytes [required] 436 // AttrBitOffset: for sub-byte types, size in bits 437 // AttrBitSize: for sub-byte types, bit offset of high order bit in the AttrByteSize bytes 438 name, _ := e.Val(AttrName).(string) 439 enc, ok := e.Val(AttrEncoding).(int64) 440 if !ok { 441 err = DecodeError{name, e.Offset, "missing encoding attribute for " + name} 442 goto Error 443 } 444 switch enc { 445 default: 446 err = DecodeError{name, e.Offset, "unrecognized encoding attribute value"} 447 goto Error 448 449 case encAddress: 450 typ = new(AddrType) 451 case encBoolean: 452 typ = new(BoolType) 453 case encComplexFloat: 454 typ = new(ComplexType) 455 if name == "complex" { 456 // clang writes out 'complex' instead of 'complex float' or 'complex double'. 457 // clang also writes out a byte size that we can use to distinguish. 458 // See issue 8694. 459 switch byteSize, _ := e.Val(AttrByteSize).(int64); byteSize { 460 case 8: 461 name = "complex float" 462 case 16: 463 name = "complex double" 464 } 465 } 466 case encFloat: 467 typ = new(FloatType) 468 case encSigned: 469 typ = new(IntType) 470 case encUnsigned: 471 typ = new(UintType) 472 case encSignedChar: 473 typ = new(CharType) 474 case encUnsignedChar: 475 typ = new(UcharType) 476 } 477 typeCache[off] = typ 478 t := typ.(interface { 479 Basic() *BasicType 480 }).Basic() 481 t.Name = name 482 t.BitSize, _ = e.Val(AttrBitSize).(int64) 483 t.BitOffset, _ = e.Val(AttrBitOffset).(int64) 484 485 case TagClassType, TagStructType, TagUnionType: 486 // Structure, union, or class type. (DWARF v2 §5.5) 487 // Attributes: 488 // AttrName: name of struct, union, or class 489 // AttrByteSize: byte size [required] 490 // AttrDeclaration: if true, struct/union/class is incomplete 491 // Children: 492 // TagMember to describe one member. 493 // AttrName: name of member [required] 494 // AttrType: type of member [required] 495 // AttrByteSize: size in bytes 496 // AttrBitOffset: bit offset within bytes for bit fields 497 // AttrBitSize: bit size for bit fields 498 // AttrDataMemberLoc: location within struct [required for struct, class] 499 // There is much more to handle C++, all ignored for now. 500 t := new(StructType) 501 typ = t 502 typeCache[off] = t 503 switch e.Tag { 504 case TagClassType: 505 t.Kind = "class" 506 case TagStructType: 507 t.Kind = "struct" 508 case TagUnionType: 509 t.Kind = "union" 510 } 511 t.StructName, _ = e.Val(AttrName).(string) 512 t.Incomplete = e.Val(AttrDeclaration) != nil 513 t.Field = make([]*StructField, 0, 8) 514 var lastFieldType *Type 515 var lastFieldBitOffset int64 516 for kid := next(); kid != nil; kid = next() { 517 if kid.Tag == TagMember { 518 f := new(StructField) 519 if f.Type = typeOf(kid); err != nil { 520 goto Error 521 } 522 switch loc := kid.Val(AttrDataMemberLoc).(type) { 523 case []byte: 524 // TODO: Should have original compilation 525 // unit here, not unknownFormat. 526 b := makeBuf(d, unknownFormat{}, "location", 0, loc) 527 if b.uint8() != opPlusUconst { 528 err = DecodeError{name, kid.Offset, "unexpected opcode"} 529 goto Error 530 } 531 f.ByteOffset = int64(b.uint()) 532 if b.err != nil { 533 err = b.err 534 goto Error 535 } 536 case int64: 537 f.ByteOffset = loc 538 } 539 540 haveBitOffset := false 541 f.Name, _ = kid.Val(AttrName).(string) 542 f.ByteSize, _ = kid.Val(AttrByteSize).(int64) 543 f.BitOffset, haveBitOffset = kid.Val(AttrBitOffset).(int64) 544 f.BitSize, _ = kid.Val(AttrBitSize).(int64) 545 t.Field = append(t.Field, f) 546 547 bito := f.BitOffset 548 if !haveBitOffset { 549 bito = f.ByteOffset * 8 550 } 551 if bito == lastFieldBitOffset && t.Kind != "union" { 552 // Last field was zero width. Fix array length. 553 // (DWARF writes out 0-length arrays as if they were 1-length arrays.) 554 zeroArray(lastFieldType) 555 } 556 lastFieldType = &f.Type 557 lastFieldBitOffset = bito 558 } 559 } 560 if t.Kind != "union" { 561 b, ok := e.Val(AttrByteSize).(int64) 562 if ok && b*8 == lastFieldBitOffset { 563 // Final field must be zero width. Fix array length. 564 zeroArray(lastFieldType) 565 } 566 } 567 568 case TagConstType, TagVolatileType, TagRestrictType: 569 // Type modifier (DWARF v2 §5.2) 570 // Attributes: 571 // AttrType: subtype 572 t := new(QualType) 573 typ = t 574 typeCache[off] = t 575 if t.Type = typeOf(e); err != nil { 576 goto Error 577 } 578 switch e.Tag { 579 case TagConstType: 580 t.Qual = "const" 581 case TagRestrictType: 582 t.Qual = "restrict" 583 case TagVolatileType: 584 t.Qual = "volatile" 585 } 586 587 case TagEnumerationType: 588 // Enumeration type (DWARF v2 §5.6) 589 // Attributes: 590 // AttrName: enum name if any 591 // AttrByteSize: bytes required to represent largest value 592 // Children: 593 // TagEnumerator: 594 // AttrName: name of constant 595 // AttrConstValue: value of constant 596 t := new(EnumType) 597 typ = t 598 typeCache[off] = t 599 t.EnumName, _ = e.Val(AttrName).(string) 600 t.Val = make([]*EnumValue, 0, 8) 601 for kid := next(); kid != nil; kid = next() { 602 if kid.Tag == TagEnumerator { 603 f := new(EnumValue) 604 f.Name, _ = kid.Val(AttrName).(string) 605 f.Val, _ = kid.Val(AttrConstValue).(int64) 606 n := len(t.Val) 607 if n >= cap(t.Val) { 608 val := make([]*EnumValue, n, n*2) 609 copy(val, t.Val) 610 t.Val = val 611 } 612 t.Val = t.Val[0 : n+1] 613 t.Val[n] = f 614 } 615 } 616 617 case TagPointerType: 618 // Type modifier (DWARF v2 §5.2) 619 // Attributes: 620 // AttrType: subtype [not required! void* has no AttrType] 621 // AttrAddrClass: address class [ignored] 622 t := new(PtrType) 623 typ = t 624 typeCache[off] = t 625 if e.Val(AttrType) == nil { 626 t.Type = &VoidType{} 627 break 628 } 629 t.Type = typeOf(e) 630 631 case TagSubroutineType: 632 // Subroutine type. (DWARF v2 §5.7) 633 // Attributes: 634 // AttrType: type of return value if any 635 // AttrName: possible name of type [ignored] 636 // AttrPrototyped: whether used ANSI C prototype [ignored] 637 // Children: 638 // TagFormalParameter: typed parameter 639 // AttrType: type of parameter 640 // TagUnspecifiedParameter: final ... 641 t := new(FuncType) 642 typ = t 643 typeCache[off] = t 644 if t.ReturnType = typeOf(e); err != nil { 645 goto Error 646 } 647 t.ParamType = make([]Type, 0, 8) 648 for kid := next(); kid != nil; kid = next() { 649 var tkid Type 650 switch kid.Tag { 651 default: 652 continue 653 case TagFormalParameter: 654 if tkid = typeOf(kid); err != nil { 655 goto Error 656 } 657 case TagUnspecifiedParameters: 658 tkid = &DotDotDotType{} 659 } 660 t.ParamType = append(t.ParamType, tkid) 661 } 662 663 case TagTypedef: 664 // Typedef (DWARF v2 §5.3) 665 // Attributes: 666 // AttrName: name [required] 667 // AttrType: type definition [required] 668 t := new(TypedefType) 669 typ = t 670 typeCache[off] = t 671 t.Name, _ = e.Val(AttrName).(string) 672 t.Type = typeOf(e) 673 674 case TagUnspecifiedType: 675 // Unspecified type (DWARF v3 §5.2) 676 // Attributes: 677 // AttrName: name 678 t := new(UnspecifiedType) 679 typ = t 680 typeCache[off] = t 681 t.Name, _ = e.Val(AttrName).(string) 682 } 683 684 if err != nil { 685 goto Error 686 } 687 688 { 689 b, ok := e.Val(AttrByteSize).(int64) 690 if !ok { 691 b = -1 692 switch t := typ.(type) { 693 case *TypedefType: 694 // Record that we need to resolve this 695 // type's size once the type graph is 696 // constructed. 697 *typedefs = append(*typedefs, t) 698 case *PtrType: 699 b = int64(addressSize) 700 } 701 } 702 typ.Common().ByteSize = b 703 } 704 return typ, nil 705 706 Error: 707 // If the parse fails, take the type out of the cache 708 // so that the next call with this offset doesn't hit 709 // the cache and return success. 710 delete(typeCache, off) 711 return nil, err 712 } 713 714 func zeroArray(t *Type) { 715 if t == nil { 716 return 717 } 718 at, ok := (*t).(*ArrayType) 719 if !ok || at.Type.Size() == 0 { 720 return 721 } 722 // Make a copy to avoid invalidating typeCache. 723 tt := *at 724 tt.Count = 0 725 *t = &tt 726 }