github.com/flyinox/gosm@v0.0.0-20171117061539-16768cb62077/src/encoding/asn1/asn1.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package asn1 implements parsing of DER-encoded ASN.1 data structures, 6 // as defined in ITU-T Rec X.690. 7 // 8 // See also ``A Layman's Guide to a Subset of ASN.1, BER, and DER,'' 9 // http://luca.ntop.org/Teaching/Appunti/asn1.html. 10 package asn1 11 12 // ASN.1 is a syntax for specifying abstract objects and BER, DER, PER, XER etc 13 // are different encoding formats for those objects. Here, we'll be dealing 14 // with DER, the Distinguished Encoding Rules. DER is used in X.509 because 15 // it's fast to parse and, unlike BER, has a unique encoding for every object. 16 // When calculating hashes over objects, it's important that the resulting 17 // bytes be the same at both ends and DER removes this margin of error. 18 // 19 // ASN.1 is very complex and this package doesn't attempt to implement 20 // everything by any means. 21 22 import ( 23 "errors" 24 "fmt" 25 "math" 26 "math/big" 27 "reflect" 28 "strconv" 29 "time" 30 "unicode/utf8" 31 ) 32 33 // A StructuralError suggests that the ASN.1 data is valid, but the Go type 34 // which is receiving it doesn't match. 35 type StructuralError struct { 36 Msg string 37 } 38 39 func (e StructuralError) Error() string { return "asn1: structure error: " + e.Msg } 40 41 // A SyntaxError suggests that the ASN.1 data is invalid. 42 type SyntaxError struct { 43 Msg string 44 } 45 46 func (e SyntaxError) Error() string { return "asn1: syntax error: " + e.Msg } 47 48 // We start by dealing with each of the primitive types in turn. 49 50 // BOOLEAN 51 52 func parseBool(bytes []byte) (ret bool, err error) { 53 if len(bytes) != 1 { 54 err = SyntaxError{"invalid boolean"} 55 return 56 } 57 58 // DER demands that "If the encoding represents the boolean value TRUE, 59 // its single contents octet shall have all eight bits set to one." 60 // Thus only 0 and 255 are valid encoded values. 61 switch bytes[0] { 62 case 0: 63 ret = false 64 case 0xff: 65 ret = true 66 default: 67 err = SyntaxError{"invalid boolean"} 68 } 69 70 return 71 } 72 73 // INTEGER 74 75 // checkInteger returns nil if the given bytes are a valid DER-encoded 76 // INTEGER and an error otherwise. 77 func checkInteger(bytes []byte) error { 78 if len(bytes) == 0 { 79 return StructuralError{"empty integer"} 80 } 81 if len(bytes) == 1 { 82 return nil 83 } 84 if (bytes[0] == 0 && bytes[1]&0x80 == 0) || (bytes[0] == 0xff && bytes[1]&0x80 == 0x80) { 85 return StructuralError{"integer not minimally-encoded"} 86 } 87 return nil 88 } 89 90 // parseInt64 treats the given bytes as a big-endian, signed integer and 91 // returns the result. 92 func parseInt64(bytes []byte) (ret int64, err error) { 93 err = checkInteger(bytes) 94 if err != nil { 95 return 96 } 97 if len(bytes) > 8 { 98 // We'll overflow an int64 in this case. 99 err = StructuralError{"integer too large"} 100 return 101 } 102 for bytesRead := 0; bytesRead < len(bytes); bytesRead++ { 103 ret <<= 8 104 ret |= int64(bytes[bytesRead]) 105 } 106 107 // Shift up and down in order to sign extend the result. 108 ret <<= 64 - uint8(len(bytes))*8 109 ret >>= 64 - uint8(len(bytes))*8 110 return 111 } 112 113 // parseInt treats the given bytes as a big-endian, signed integer and returns 114 // the result. 115 func parseInt32(bytes []byte) (int32, error) { 116 if err := checkInteger(bytes); err != nil { 117 return 0, err 118 } 119 ret64, err := parseInt64(bytes) 120 if err != nil { 121 return 0, err 122 } 123 if ret64 != int64(int32(ret64)) { 124 return 0, StructuralError{"integer too large"} 125 } 126 return int32(ret64), nil 127 } 128 129 var bigOne = big.NewInt(1) 130 131 // parseBigInt treats the given bytes as a big-endian, signed integer and returns 132 // the result. 133 func parseBigInt(bytes []byte) (*big.Int, error) { 134 if err := checkInteger(bytes); err != nil { 135 return nil, err 136 } 137 ret := new(big.Int) 138 if len(bytes) > 0 && bytes[0]&0x80 == 0x80 { 139 // This is a negative number. 140 notBytes := make([]byte, len(bytes)) 141 for i := range notBytes { 142 notBytes[i] = ^bytes[i] 143 } 144 ret.SetBytes(notBytes) 145 ret.Add(ret, bigOne) 146 ret.Neg(ret) 147 return ret, nil 148 } 149 ret.SetBytes(bytes) 150 return ret, nil 151 } 152 153 // BIT STRING 154 155 // BitString is the structure to use when you want an ASN.1 BIT STRING type. A 156 // bit string is padded up to the nearest byte in memory and the number of 157 // valid bits is recorded. Padding bits will be zero. 158 type BitString struct { 159 Bytes []byte // bits packed into bytes. 160 BitLength int // length in bits. 161 } 162 163 // At returns the bit at the given index. If the index is out of range it 164 // returns false. 165 func (b BitString) At(i int) int { 166 if i < 0 || i >= b.BitLength { 167 return 0 168 } 169 x := i / 8 170 y := 7 - uint(i%8) 171 return int(b.Bytes[x]>>y) & 1 172 } 173 174 // RightAlign returns a slice where the padding bits are at the beginning. The 175 // slice may share memory with the BitString. 176 func (b BitString) RightAlign() []byte { 177 shift := uint(8 - (b.BitLength % 8)) 178 if shift == 8 || len(b.Bytes) == 0 { 179 return b.Bytes 180 } 181 182 a := make([]byte, len(b.Bytes)) 183 a[0] = b.Bytes[0] >> shift 184 for i := 1; i < len(b.Bytes); i++ { 185 a[i] = b.Bytes[i-1] << (8 - shift) 186 a[i] |= b.Bytes[i] >> shift 187 } 188 189 return a 190 } 191 192 // parseBitString parses an ASN.1 bit string from the given byte slice and returns it. 193 func parseBitString(bytes []byte) (ret BitString, err error) { 194 if len(bytes) == 0 { 195 err = SyntaxError{"zero length BIT STRING"} 196 return 197 } 198 paddingBits := int(bytes[0]) 199 if paddingBits > 7 || 200 len(bytes) == 1 && paddingBits > 0 || 201 bytes[len(bytes)-1]&((1<<bytes[0])-1) != 0 { 202 err = SyntaxError{"invalid padding bits in BIT STRING"} 203 return 204 } 205 ret.BitLength = (len(bytes)-1)*8 - paddingBits 206 ret.Bytes = bytes[1:] 207 return 208 } 209 210 // NULL 211 212 // NullRawValue is a RawValue with its Tag set to the ASN.1 NULL type tag (5). 213 var NullRawValue = RawValue{Tag: TagNull} 214 215 // NullBytes contains bytes representing the DER-encoded ASN.1 NULL type. 216 var NullBytes = []byte{TagNull, 0} 217 218 // OBJECT IDENTIFIER 219 220 // An ObjectIdentifier represents an ASN.1 OBJECT IDENTIFIER. 221 type ObjectIdentifier []int 222 223 // Equal reports whether oi and other represent the same identifier. 224 func (oi ObjectIdentifier) Equal(other ObjectIdentifier) bool { 225 if len(oi) != len(other) { 226 return false 227 } 228 for i := 0; i < len(oi); i++ { 229 if oi[i] != other[i] { 230 return false 231 } 232 } 233 234 return true 235 } 236 237 func (oi ObjectIdentifier) String() string { 238 var s string 239 240 for i, v := range oi { 241 if i > 0 { 242 s += "." 243 } 244 s += strconv.Itoa(v) 245 } 246 247 return s 248 } 249 250 // parseObjectIdentifier parses an OBJECT IDENTIFIER from the given bytes and 251 // returns it. An object identifier is a sequence of variable length integers 252 // that are assigned in a hierarchy. 253 func parseObjectIdentifier(bytes []byte) (s []int, err error) { 254 if len(bytes) == 0 { 255 err = SyntaxError{"zero length OBJECT IDENTIFIER"} 256 return 257 } 258 259 // In the worst case, we get two elements from the first byte (which is 260 // encoded differently) and then every varint is a single byte long. 261 s = make([]int, len(bytes)+1) 262 263 // The first varint is 40*value1 + value2: 264 // According to this packing, value1 can take the values 0, 1 and 2 only. 265 // When value1 = 0 or value1 = 1, then value2 is <= 39. When value1 = 2, 266 // then there are no restrictions on value2. 267 v, offset, err := parseBase128Int(bytes, 0) 268 if err != nil { 269 return 270 } 271 if v < 80 { 272 s[0] = v / 40 273 s[1] = v % 40 274 } else { 275 s[0] = 2 276 s[1] = v - 80 277 } 278 279 i := 2 280 for ; offset < len(bytes); i++ { 281 v, offset, err = parseBase128Int(bytes, offset) 282 if err != nil { 283 return 284 } 285 s[i] = v 286 } 287 s = s[0:i] 288 return 289 } 290 291 // ENUMERATED 292 293 // An Enumerated is represented as a plain int. 294 type Enumerated int 295 296 // FLAG 297 298 // A Flag accepts any data and is set to true if present. 299 type Flag bool 300 301 // parseBase128Int parses a base-128 encoded int from the given offset in the 302 // given byte slice. It returns the value and the new offset. 303 func parseBase128Int(bytes []byte, initOffset int) (ret, offset int, err error) { 304 offset = initOffset 305 var ret64 int64 306 for shifted := 0; offset < len(bytes); shifted++ { 307 // 5 * 7 bits per byte == 35 bits of data 308 // Thus the representation is either non-minimal or too large for an int32 309 if shifted == 5 { 310 err = StructuralError{"base 128 integer too large"} 311 return 312 } 313 ret64 <<= 7 314 b := bytes[offset] 315 ret64 |= int64(b & 0x7f) 316 offset++ 317 if b&0x80 == 0 { 318 ret = int(ret64) 319 // Ensure that the returned value fits in an int on all platforms 320 if ret64 > math.MaxInt32 { 321 err = StructuralError{"base 128 integer too large"} 322 } 323 return 324 } 325 } 326 err = SyntaxError{"truncated base 128 integer"} 327 return 328 } 329 330 // UTCTime 331 332 func parseUTCTime(bytes []byte) (ret time.Time, err error) { 333 s := string(bytes) 334 335 formatStr := "0601021504Z0700" 336 ret, err = time.Parse(formatStr, s) 337 if err != nil { 338 formatStr = "060102150405Z0700" 339 ret, err = time.Parse(formatStr, s) 340 } 341 if err != nil { 342 return 343 } 344 345 if serialized := ret.Format(formatStr); serialized != s { 346 err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized) 347 return 348 } 349 350 if ret.Year() >= 2050 { 351 // UTCTime only encodes times prior to 2050. See https://tools.ietf.org/html/rfc5280#section-4.1.2.5.1 352 ret = ret.AddDate(-100, 0, 0) 353 } 354 355 return 356 } 357 358 // parseGeneralizedTime parses the GeneralizedTime from the given byte slice 359 // and returns the resulting time. 360 func parseGeneralizedTime(bytes []byte) (ret time.Time, err error) { 361 const formatStr = "20060102150405Z0700" 362 s := string(bytes) 363 364 if ret, err = time.Parse(formatStr, s); err != nil { 365 return 366 } 367 368 if serialized := ret.Format(formatStr); serialized != s { 369 err = fmt.Errorf("asn1: time did not serialize back to the original value and may be invalid: given %q, but serialized as %q", s, serialized) 370 } 371 372 return 373 } 374 375 // PrintableString 376 377 // parsePrintableString parses a ASN.1 PrintableString from the given byte 378 // array and returns it. 379 func parsePrintableString(bytes []byte) (ret string, err error) { 380 for _, b := range bytes { 381 if !isPrintable(b) { 382 err = SyntaxError{"PrintableString contains invalid character"} 383 return 384 } 385 } 386 ret = string(bytes) 387 return 388 } 389 390 // isPrintable reports whether the given b is in the ASN.1 PrintableString set. 391 func isPrintable(b byte) bool { 392 return 'a' <= b && b <= 'z' || 393 'A' <= b && b <= 'Z' || 394 '0' <= b && b <= '9' || 395 '\'' <= b && b <= ')' || 396 '+' <= b && b <= '/' || 397 b == ' ' || 398 b == ':' || 399 b == '=' || 400 b == '?' || 401 // This is technically not allowed in a PrintableString. 402 // However, x509 certificates with wildcard strings don't 403 // always use the correct string type so we permit it. 404 b == '*' 405 } 406 407 // IA5String 408 409 // parseIA5String parses a ASN.1 IA5String (ASCII string) from the given 410 // byte slice and returns it. 411 func parseIA5String(bytes []byte) (ret string, err error) { 412 for _, b := range bytes { 413 if b >= utf8.RuneSelf { 414 err = SyntaxError{"IA5String contains invalid character"} 415 return 416 } 417 } 418 ret = string(bytes) 419 return 420 } 421 422 // T61String 423 424 // parseT61String parses a ASN.1 T61String (8-bit clean string) from the given 425 // byte slice and returns it. 426 func parseT61String(bytes []byte) (ret string, err error) { 427 return string(bytes), nil 428 } 429 430 // UTF8String 431 432 // parseUTF8String parses a ASN.1 UTF8String (raw UTF-8) from the given byte 433 // array and returns it. 434 func parseUTF8String(bytes []byte) (ret string, err error) { 435 if !utf8.Valid(bytes) { 436 return "", errors.New("asn1: invalid UTF-8 string") 437 } 438 return string(bytes), nil 439 } 440 441 // A RawValue represents an undecoded ASN.1 object. 442 type RawValue struct { 443 Class, Tag int 444 IsCompound bool 445 Bytes []byte 446 FullBytes []byte // includes the tag and length 447 } 448 449 // RawContent is used to signal that the undecoded, DER data needs to be 450 // preserved for a struct. To use it, the first field of the struct must have 451 // this type. It's an error for any of the other fields to have this type. 452 type RawContent []byte 453 454 // Tagging 455 456 // parseTagAndLength parses an ASN.1 tag and length pair from the given offset 457 // into a byte slice. It returns the parsed data and the new offset. SET and 458 // SET OF (tag 17) are mapped to SEQUENCE and SEQUENCE OF (tag 16) since we 459 // don't distinguish between ordered and unordered objects in this code. 460 func parseTagAndLength(bytes []byte, initOffset int) (ret tagAndLength, offset int, err error) { 461 offset = initOffset 462 // parseTagAndLength should not be called without at least a single 463 // byte to read. Thus this check is for robustness: 464 if offset >= len(bytes) { 465 err = errors.New("asn1: internal error in parseTagAndLength") 466 return 467 } 468 b := bytes[offset] 469 offset++ 470 ret.class = int(b >> 6) 471 ret.isCompound = b&0x20 == 0x20 472 ret.tag = int(b & 0x1f) 473 474 // If the bottom five bits are set, then the tag number is actually base 128 475 // encoded afterwards 476 if ret.tag == 0x1f { 477 ret.tag, offset, err = parseBase128Int(bytes, offset) 478 if err != nil { 479 return 480 } 481 // Tags should be encoded in minimal form. 482 if ret.tag < 0x1f { 483 err = SyntaxError{"non-minimal tag"} 484 return 485 } 486 } 487 if offset >= len(bytes) { 488 err = SyntaxError{"truncated tag or length"} 489 return 490 } 491 b = bytes[offset] 492 offset++ 493 if b&0x80 == 0 { 494 // The length is encoded in the bottom 7 bits. 495 ret.length = int(b & 0x7f) 496 } else { 497 // Bottom 7 bits give the number of length bytes to follow. 498 numBytes := int(b & 0x7f) 499 if numBytes == 0 { 500 err = SyntaxError{"indefinite length found (not DER)"} 501 return 502 } 503 ret.length = 0 504 for i := 0; i < numBytes; i++ { 505 if offset >= len(bytes) { 506 err = SyntaxError{"truncated tag or length"} 507 return 508 } 509 b = bytes[offset] 510 offset++ 511 if ret.length >= 1<<23 { 512 // We can't shift ret.length up without 513 // overflowing. 514 err = StructuralError{"length too large"} 515 return 516 } 517 ret.length <<= 8 518 ret.length |= int(b) 519 if ret.length == 0 { 520 // DER requires that lengths be minimal. 521 err = StructuralError{"superfluous leading zeros in length"} 522 return 523 } 524 } 525 // Short lengths must be encoded in short form. 526 if ret.length < 0x80 { 527 err = StructuralError{"non-minimal length"} 528 return 529 } 530 } 531 532 return 533 } 534 535 // parseSequenceOf is used for SEQUENCE OF and SET OF values. It tries to parse 536 // a number of ASN.1 values from the given byte slice and returns them as a 537 // slice of Go values of the given type. 538 func parseSequenceOf(bytes []byte, sliceType reflect.Type, elemType reflect.Type) (ret reflect.Value, err error) { 539 expectedTag, compoundType, ok := getUniversalType(elemType) 540 if !ok { 541 err = StructuralError{"unknown Go type for slice"} 542 return 543 } 544 545 // First we iterate over the input and count the number of elements, 546 // checking that the types are correct in each case. 547 numElements := 0 548 for offset := 0; offset < len(bytes); { 549 var t tagAndLength 550 t, offset, err = parseTagAndLength(bytes, offset) 551 if err != nil { 552 return 553 } 554 switch t.tag { 555 case TagIA5String, TagGeneralString, TagT61String, TagUTF8String: 556 // We pretend that various other string types are 557 // PRINTABLE STRINGs so that a sequence of them can be 558 // parsed into a []string. 559 t.tag = TagPrintableString 560 case TagGeneralizedTime, TagUTCTime: 561 // Likewise, both time types are treated the same. 562 t.tag = TagUTCTime 563 } 564 565 if t.class != ClassUniversal || t.isCompound != compoundType || t.tag != expectedTag { 566 err = StructuralError{"sequence tag mismatch"} 567 return 568 } 569 if invalidLength(offset, t.length, len(bytes)) { 570 err = SyntaxError{"truncated sequence"} 571 return 572 } 573 offset += t.length 574 numElements++ 575 } 576 ret = reflect.MakeSlice(sliceType, numElements, numElements) 577 params := fieldParameters{} 578 offset := 0 579 for i := 0; i < numElements; i++ { 580 offset, err = parseField(ret.Index(i), bytes, offset, params) 581 if err != nil { 582 return 583 } 584 } 585 return 586 } 587 588 var ( 589 bitStringType = reflect.TypeOf(BitString{}) 590 objectIdentifierType = reflect.TypeOf(ObjectIdentifier{}) 591 enumeratedType = reflect.TypeOf(Enumerated(0)) 592 flagType = reflect.TypeOf(Flag(false)) 593 timeType = reflect.TypeOf(time.Time{}) 594 rawValueType = reflect.TypeOf(RawValue{}) 595 rawContentsType = reflect.TypeOf(RawContent(nil)) 596 bigIntType = reflect.TypeOf(new(big.Int)) 597 ) 598 599 // invalidLength returns true iff offset + length > sliceLength, or if the 600 // addition would overflow. 601 func invalidLength(offset, length, sliceLength int) bool { 602 return offset+length < offset || offset+length > sliceLength 603 } 604 605 // parseField is the main parsing function. Given a byte slice and an offset 606 // into the array, it will try to parse a suitable ASN.1 value out and store it 607 // in the given Value. 608 func parseField(v reflect.Value, bytes []byte, initOffset int, params fieldParameters) (offset int, err error) { 609 offset = initOffset 610 fieldType := v.Type() 611 612 // If we have run out of data, it may be that there are optional elements at the end. 613 if offset == len(bytes) { 614 if !setDefaultValue(v, params) { 615 err = SyntaxError{"sequence truncated"} 616 } 617 return 618 } 619 620 // Deal with raw values. 621 if fieldType == rawValueType { 622 var t tagAndLength 623 t, offset, err = parseTagAndLength(bytes, offset) 624 if err != nil { 625 return 626 } 627 if invalidLength(offset, t.length, len(bytes)) { 628 err = SyntaxError{"data truncated"} 629 return 630 } 631 result := RawValue{t.class, t.tag, t.isCompound, bytes[offset : offset+t.length], bytes[initOffset : offset+t.length]} 632 offset += t.length 633 v.Set(reflect.ValueOf(result)) 634 return 635 } 636 637 // Deal with the ANY type. 638 if ifaceType := fieldType; ifaceType.Kind() == reflect.Interface && ifaceType.NumMethod() == 0 { 639 var t tagAndLength 640 t, offset, err = parseTagAndLength(bytes, offset) 641 if err != nil { 642 return 643 } 644 if invalidLength(offset, t.length, len(bytes)) { 645 err = SyntaxError{"data truncated"} 646 return 647 } 648 var result interface{} 649 if !t.isCompound && t.class == ClassUniversal { 650 innerBytes := bytes[offset : offset+t.length] 651 switch t.tag { 652 case TagPrintableString: 653 result, err = parsePrintableString(innerBytes) 654 case TagIA5String: 655 result, err = parseIA5String(innerBytes) 656 case TagT61String: 657 result, err = parseT61String(innerBytes) 658 case TagUTF8String: 659 result, err = parseUTF8String(innerBytes) 660 case TagInteger: 661 result, err = parseInt64(innerBytes) 662 case TagBitString: 663 result, err = parseBitString(innerBytes) 664 case TagOID: 665 result, err = parseObjectIdentifier(innerBytes) 666 case TagUTCTime: 667 result, err = parseUTCTime(innerBytes) 668 case TagGeneralizedTime: 669 result, err = parseGeneralizedTime(innerBytes) 670 case TagOctetString: 671 result = innerBytes 672 default: 673 // If we don't know how to handle the type, we just leave Value as nil. 674 } 675 } 676 offset += t.length 677 if err != nil { 678 return 679 } 680 if result != nil { 681 v.Set(reflect.ValueOf(result)) 682 } 683 return 684 } 685 universalTag, compoundType, ok1 := getUniversalType(fieldType) 686 if !ok1 { 687 err = StructuralError{fmt.Sprintf("unknown Go type: %v", fieldType)} 688 return 689 } 690 691 t, offset, err := parseTagAndLength(bytes, offset) 692 if err != nil { 693 return 694 } 695 if params.explicit { 696 expectedClass := ClassContextSpecific 697 if params.application { 698 expectedClass = ClassApplication 699 } 700 if offset == len(bytes) { 701 err = StructuralError{"explicit tag has no child"} 702 return 703 } 704 if t.class == expectedClass && t.tag == *params.tag && (t.length == 0 || t.isCompound) { 705 if t.length > 0 { 706 t, offset, err = parseTagAndLength(bytes, offset) 707 if err != nil { 708 return 709 } 710 } else { 711 if fieldType != flagType { 712 err = StructuralError{"zero length explicit tag was not an asn1.Flag"} 713 return 714 } 715 v.SetBool(true) 716 return 717 } 718 } else { 719 // The tags didn't match, it might be an optional element. 720 ok := setDefaultValue(v, params) 721 if ok { 722 offset = initOffset 723 } else { 724 err = StructuralError{"explicitly tagged member didn't match"} 725 } 726 return 727 } 728 } 729 730 // Special case for strings: all the ASN.1 string types map to the Go 731 // type string. getUniversalType returns the tag for PrintableString 732 // when it sees a string, so if we see a different string type on the 733 // wire, we change the universal type to match. 734 if universalTag == TagPrintableString { 735 if t.class == ClassUniversal { 736 switch t.tag { 737 case TagIA5String, TagGeneralString, TagT61String, TagUTF8String: 738 universalTag = t.tag 739 } 740 } else if params.stringType != 0 { 741 universalTag = params.stringType 742 } 743 } 744 745 // Special case for time: UTCTime and GeneralizedTime both map to the 746 // Go type time.Time. 747 if universalTag == TagUTCTime && t.tag == TagGeneralizedTime && t.class == ClassUniversal { 748 universalTag = TagGeneralizedTime 749 } 750 751 if params.set { 752 universalTag = TagSet 753 } 754 755 expectedClass := ClassUniversal 756 expectedTag := universalTag 757 758 if !params.explicit && params.tag != nil { 759 expectedClass = ClassContextSpecific 760 expectedTag = *params.tag 761 } 762 763 if !params.explicit && params.application && params.tag != nil { 764 expectedClass = ClassApplication 765 expectedTag = *params.tag 766 } 767 768 // We have unwrapped any explicit tagging at this point. 769 if t.class != expectedClass || t.tag != expectedTag || t.isCompound != compoundType { 770 // Tags don't match. Again, it could be an optional element. 771 ok := setDefaultValue(v, params) 772 if ok { 773 offset = initOffset 774 } else { 775 err = StructuralError{fmt.Sprintf("tags don't match (%d vs %+v) %+v %s @%d", expectedTag, t, params, fieldType.Name(), offset)} 776 } 777 return 778 } 779 if invalidLength(offset, t.length, len(bytes)) { 780 err = SyntaxError{"data truncated"} 781 return 782 } 783 innerBytes := bytes[offset : offset+t.length] 784 offset += t.length 785 786 // We deal with the structures defined in this package first. 787 switch fieldType { 788 case objectIdentifierType: 789 newSlice, err1 := parseObjectIdentifier(innerBytes) 790 v.Set(reflect.MakeSlice(v.Type(), len(newSlice), len(newSlice))) 791 if err1 == nil { 792 reflect.Copy(v, reflect.ValueOf(newSlice)) 793 } 794 err = err1 795 return 796 case bitStringType: 797 bs, err1 := parseBitString(innerBytes) 798 if err1 == nil { 799 v.Set(reflect.ValueOf(bs)) 800 } 801 err = err1 802 return 803 case timeType: 804 var time time.Time 805 var err1 error 806 if universalTag == TagUTCTime { 807 time, err1 = parseUTCTime(innerBytes) 808 } else { 809 time, err1 = parseGeneralizedTime(innerBytes) 810 } 811 if err1 == nil { 812 v.Set(reflect.ValueOf(time)) 813 } 814 err = err1 815 return 816 case enumeratedType: 817 parsedInt, err1 := parseInt32(innerBytes) 818 if err1 == nil { 819 v.SetInt(int64(parsedInt)) 820 } 821 err = err1 822 return 823 case flagType: 824 v.SetBool(true) 825 return 826 case bigIntType: 827 parsedInt, err1 := parseBigInt(innerBytes) 828 if err1 == nil { 829 v.Set(reflect.ValueOf(parsedInt)) 830 } 831 err = err1 832 return 833 } 834 switch val := v; val.Kind() { 835 case reflect.Bool: 836 parsedBool, err1 := parseBool(innerBytes) 837 if err1 == nil { 838 val.SetBool(parsedBool) 839 } 840 err = err1 841 return 842 case reflect.Int, reflect.Int32, reflect.Int64: 843 if val.Type().Size() == 4 { 844 parsedInt, err1 := parseInt32(innerBytes) 845 if err1 == nil { 846 val.SetInt(int64(parsedInt)) 847 } 848 err = err1 849 } else { 850 parsedInt, err1 := parseInt64(innerBytes) 851 if err1 == nil { 852 val.SetInt(parsedInt) 853 } 854 err = err1 855 } 856 return 857 // TODO(dfc) Add support for the remaining integer types 858 case reflect.Struct: 859 structType := fieldType 860 861 for i := 0; i < structType.NumField(); i++ { 862 if structType.Field(i).PkgPath != "" { 863 err = StructuralError{"struct contains unexported fields"} 864 return 865 } 866 } 867 868 if structType.NumField() > 0 && 869 structType.Field(0).Type == rawContentsType { 870 bytes := bytes[initOffset:offset] 871 val.Field(0).Set(reflect.ValueOf(RawContent(bytes))) 872 } 873 874 innerOffset := 0 875 for i := 0; i < structType.NumField(); i++ { 876 field := structType.Field(i) 877 if i == 0 && field.Type == rawContentsType { 878 continue 879 } 880 innerOffset, err = parseField(val.Field(i), innerBytes, innerOffset, parseFieldParameters(field.Tag.Get("asn1"))) 881 if err != nil { 882 return 883 } 884 } 885 // We allow extra bytes at the end of the SEQUENCE because 886 // adding elements to the end has been used in X.509 as the 887 // version numbers have increased. 888 return 889 case reflect.Slice: 890 sliceType := fieldType 891 if sliceType.Elem().Kind() == reflect.Uint8 { 892 val.Set(reflect.MakeSlice(sliceType, len(innerBytes), len(innerBytes))) 893 reflect.Copy(val, reflect.ValueOf(innerBytes)) 894 return 895 } 896 newSlice, err1 := parseSequenceOf(innerBytes, sliceType, sliceType.Elem()) 897 if err1 == nil { 898 val.Set(newSlice) 899 } 900 err = err1 901 return 902 case reflect.String: 903 var v string 904 switch universalTag { 905 case TagPrintableString: 906 v, err = parsePrintableString(innerBytes) 907 case TagIA5String: 908 v, err = parseIA5String(innerBytes) 909 case TagT61String: 910 v, err = parseT61String(innerBytes) 911 case TagUTF8String: 912 v, err = parseUTF8String(innerBytes) 913 case TagGeneralString: 914 // GeneralString is specified in ISO-2022/ECMA-35, 915 // A brief review suggests that it includes structures 916 // that allow the encoding to change midstring and 917 // such. We give up and pass it as an 8-bit string. 918 v, err = parseT61String(innerBytes) 919 default: 920 err = SyntaxError{fmt.Sprintf("internal error: unknown string type %d", universalTag)} 921 } 922 if err == nil { 923 val.SetString(v) 924 } 925 return 926 } 927 err = StructuralError{"unsupported: " + v.Type().String()} 928 return 929 } 930 931 // canHaveDefaultValue reports whether k is a Kind that we will set a default 932 // value for. (A signed integer, essentially.) 933 func canHaveDefaultValue(k reflect.Kind) bool { 934 switch k { 935 case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64: 936 return true 937 } 938 939 return false 940 } 941 942 // setDefaultValue is used to install a default value, from a tag string, into 943 // a Value. It is successful if the field was optional, even if a default value 944 // wasn't provided or it failed to install it into the Value. 945 func setDefaultValue(v reflect.Value, params fieldParameters) (ok bool) { 946 if !params.optional { 947 return 948 } 949 ok = true 950 if params.defaultValue == nil { 951 return 952 } 953 if canHaveDefaultValue(v.Kind()) { 954 v.SetInt(*params.defaultValue) 955 } 956 return 957 } 958 959 // Unmarshal parses the DER-encoded ASN.1 data structure b 960 // and uses the reflect package to fill in an arbitrary value pointed at by val. 961 // Because Unmarshal uses the reflect package, the structs 962 // being written to must use upper case field names. 963 // 964 // An ASN.1 INTEGER can be written to an int, int32, int64, 965 // or *big.Int (from the math/big package). 966 // If the encoded value does not fit in the Go type, 967 // Unmarshal returns a parse error. 968 // 969 // An ASN.1 BIT STRING can be written to a BitString. 970 // 971 // An ASN.1 OCTET STRING can be written to a []byte. 972 // 973 // An ASN.1 OBJECT IDENTIFIER can be written to an 974 // ObjectIdentifier. 975 // 976 // An ASN.1 ENUMERATED can be written to an Enumerated. 977 // 978 // An ASN.1 UTCTIME or GENERALIZEDTIME can be written to a time.Time. 979 // 980 // An ASN.1 PrintableString or IA5String can be written to a string. 981 // 982 // Any of the above ASN.1 values can be written to an interface{}. 983 // The value stored in the interface has the corresponding Go type. 984 // For integers, that type is int64. 985 // 986 // An ASN.1 SEQUENCE OF x or SET OF x can be written 987 // to a slice if an x can be written to the slice's element type. 988 // 989 // An ASN.1 SEQUENCE or SET can be written to a struct 990 // if each of the elements in the sequence can be 991 // written to the corresponding element in the struct. 992 // 993 // The following tags on struct fields have special meaning to Unmarshal: 994 // 995 // application specifies that a APPLICATION tag is used 996 // default:x sets the default value for optional integer fields (only used if optional is also present) 997 // explicit specifies that an additional, explicit tag wraps the implicit one 998 // optional marks the field as ASN.1 OPTIONAL 999 // set causes a SET, rather than a SEQUENCE type to be expected 1000 // tag:x specifies the ASN.1 tag number; implies ASN.1 CONTEXT SPECIFIC 1001 // 1002 // If the type of the first field of a structure is RawContent then the raw 1003 // ASN1 contents of the struct will be stored in it. 1004 // 1005 // If the type name of a slice element ends with "SET" then it's treated as if 1006 // the "set" tag was set on it. This can be used with nested slices where a 1007 // struct tag cannot be given. 1008 // 1009 // Other ASN.1 types are not supported; if it encounters them, 1010 // Unmarshal returns a parse error. 1011 func Unmarshal(b []byte, val interface{}) (rest []byte, err error) { 1012 return UnmarshalWithParams(b, val, "") 1013 } 1014 1015 // UnmarshalWithParams allows field parameters to be specified for the 1016 // top-level element. The form of the params is the same as the field tags. 1017 func UnmarshalWithParams(b []byte, val interface{}, params string) (rest []byte, err error) { 1018 v := reflect.ValueOf(val).Elem() 1019 offset, err := parseField(v, b, 0, parseFieldParameters(params)) 1020 if err != nil { 1021 return nil, err 1022 } 1023 return b[offset:], nil 1024 }