github.com/flyinox/gosm@v0.0.0-20171117061539-16768cb62077/src/image/jpeg/reader.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package jpeg implements a JPEG image decoder and encoder. 6 // 7 // JPEG is defined in ITU-T T.81: http://www.w3.org/Graphics/JPEG/itu-t81.pdf. 8 package jpeg 9 10 import ( 11 "image" 12 "image/color" 13 "image/internal/imageutil" 14 "io" 15 ) 16 17 // TODO(nigeltao): fix up the doc comment style so that sentences start with 18 // the name of the type or function that they annotate. 19 20 // A FormatError reports that the input is not a valid JPEG. 21 type FormatError string 22 23 func (e FormatError) Error() string { return "invalid JPEG format: " + string(e) } 24 25 // An UnsupportedError reports that the input uses a valid but unimplemented JPEG feature. 26 type UnsupportedError string 27 28 func (e UnsupportedError) Error() string { return "unsupported JPEG feature: " + string(e) } 29 30 var errUnsupportedSubsamplingRatio = UnsupportedError("luma/chroma subsampling ratio") 31 32 // Component specification, specified in section B.2.2. 33 type component struct { 34 h int // Horizontal sampling factor. 35 v int // Vertical sampling factor. 36 c uint8 // Component identifier. 37 tq uint8 // Quantization table destination selector. 38 } 39 40 const ( 41 dcTable = 0 42 acTable = 1 43 maxTc = 1 44 maxTh = 3 45 maxTq = 3 46 47 maxComponents = 4 48 ) 49 50 const ( 51 sof0Marker = 0xc0 // Start Of Frame (Baseline Sequential). 52 sof1Marker = 0xc1 // Start Of Frame (Extended Sequential). 53 sof2Marker = 0xc2 // Start Of Frame (Progressive). 54 dhtMarker = 0xc4 // Define Huffman Table. 55 rst0Marker = 0xd0 // ReSTart (0). 56 rst7Marker = 0xd7 // ReSTart (7). 57 soiMarker = 0xd8 // Start Of Image. 58 eoiMarker = 0xd9 // End Of Image. 59 sosMarker = 0xda // Start Of Scan. 60 dqtMarker = 0xdb // Define Quantization Table. 61 driMarker = 0xdd // Define Restart Interval. 62 comMarker = 0xfe // COMment. 63 // "APPlication specific" markers aren't part of the JPEG spec per se, 64 // but in practice, their use is described at 65 // http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html 66 app0Marker = 0xe0 67 app14Marker = 0xee 68 app15Marker = 0xef 69 ) 70 71 // See http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe 72 const ( 73 adobeTransformUnknown = 0 74 adobeTransformYCbCr = 1 75 adobeTransformYCbCrK = 2 76 ) 77 78 // unzig maps from the zig-zag ordering to the natural ordering. For example, 79 // unzig[3] is the column and row of the fourth element in zig-zag order. The 80 // value is 16, which means first column (16%8 == 0) and third row (16/8 == 2). 81 var unzig = [blockSize]int{ 82 0, 1, 8, 16, 9, 2, 3, 10, 83 17, 24, 32, 25, 18, 11, 4, 5, 84 12, 19, 26, 33, 40, 48, 41, 34, 85 27, 20, 13, 6, 7, 14, 21, 28, 86 35, 42, 49, 56, 57, 50, 43, 36, 87 29, 22, 15, 23, 30, 37, 44, 51, 88 58, 59, 52, 45, 38, 31, 39, 46, 89 53, 60, 61, 54, 47, 55, 62, 63, 90 } 91 92 // Deprecated: Reader is deprecated. 93 type Reader interface { 94 io.ByteReader 95 io.Reader 96 } 97 98 // bits holds the unprocessed bits that have been taken from the byte-stream. 99 // The n least significant bits of a form the unread bits, to be read in MSB to 100 // LSB order. 101 type bits struct { 102 a uint32 // accumulator. 103 m uint32 // mask. m==1<<(n-1) when n>0, with m==0 when n==0. 104 n int32 // the number of unread bits in a. 105 } 106 107 type decoder struct { 108 r io.Reader 109 bits bits 110 // bytes is a byte buffer, similar to a bufio.Reader, except that it 111 // has to be able to unread more than 1 byte, due to byte stuffing. 112 // Byte stuffing is specified in section F.1.2.3. 113 bytes struct { 114 // buf[i:j] are the buffered bytes read from the underlying 115 // io.Reader that haven't yet been passed further on. 116 buf [4096]byte 117 i, j int 118 // nUnreadable is the number of bytes to back up i after 119 // overshooting. It can be 0, 1 or 2. 120 nUnreadable int 121 } 122 width, height int 123 124 img1 *image.Gray 125 img3 *image.YCbCr 126 blackPix []byte 127 blackStride int 128 129 ri int // Restart Interval. 130 nComp int 131 132 // As per section 4.5, there are four modes of operation (selected by the 133 // SOF? markers): sequential DCT, progressive DCT, lossless and 134 // hierarchical, although this implementation does not support the latter 135 // two non-DCT modes. Sequential DCT is further split into baseline and 136 // extended, as per section 4.11. 137 baseline bool 138 progressive bool 139 140 jfif bool 141 adobeTransformValid bool 142 adobeTransform uint8 143 eobRun uint16 // End-of-Band run, specified in section G.1.2.2. 144 145 comp [maxComponents]component 146 progCoeffs [maxComponents][]block // Saved state between progressive-mode scans. 147 huff [maxTc + 1][maxTh + 1]huffman 148 quant [maxTq + 1]block // Quantization tables, in zig-zag order. 149 tmp [2 * blockSize]byte 150 } 151 152 // fill fills up the d.bytes.buf buffer from the underlying io.Reader. It 153 // should only be called when there are no unread bytes in d.bytes. 154 func (d *decoder) fill() error { 155 if d.bytes.i != d.bytes.j { 156 panic("jpeg: fill called when unread bytes exist") 157 } 158 // Move the last 2 bytes to the start of the buffer, in case we need 159 // to call unreadByteStuffedByte. 160 if d.bytes.j > 2 { 161 d.bytes.buf[0] = d.bytes.buf[d.bytes.j-2] 162 d.bytes.buf[1] = d.bytes.buf[d.bytes.j-1] 163 d.bytes.i, d.bytes.j = 2, 2 164 } 165 // Fill in the rest of the buffer. 166 n, err := d.r.Read(d.bytes.buf[d.bytes.j:]) 167 d.bytes.j += n 168 if n > 0 { 169 err = nil 170 } 171 return err 172 } 173 174 // unreadByteStuffedByte undoes the most recent readByteStuffedByte call, 175 // giving a byte of data back from d.bits to d.bytes. The Huffman look-up table 176 // requires at least 8 bits for look-up, which means that Huffman decoding can 177 // sometimes overshoot and read one or two too many bytes. Two-byte overshoot 178 // can happen when expecting to read a 0xff 0x00 byte-stuffed byte. 179 func (d *decoder) unreadByteStuffedByte() { 180 d.bytes.i -= d.bytes.nUnreadable 181 d.bytes.nUnreadable = 0 182 if d.bits.n >= 8 { 183 d.bits.a >>= 8 184 d.bits.n -= 8 185 d.bits.m >>= 8 186 } 187 } 188 189 // readByte returns the next byte, whether buffered or not buffered. It does 190 // not care about byte stuffing. 191 func (d *decoder) readByte() (x byte, err error) { 192 for d.bytes.i == d.bytes.j { 193 if err = d.fill(); err != nil { 194 return 0, err 195 } 196 } 197 x = d.bytes.buf[d.bytes.i] 198 d.bytes.i++ 199 d.bytes.nUnreadable = 0 200 return x, nil 201 } 202 203 // errMissingFF00 means that readByteStuffedByte encountered an 0xff byte (a 204 // marker byte) that wasn't the expected byte-stuffed sequence 0xff, 0x00. 205 var errMissingFF00 = FormatError("missing 0xff00 sequence") 206 207 // readByteStuffedByte is like readByte but is for byte-stuffed Huffman data. 208 func (d *decoder) readByteStuffedByte() (x byte, err error) { 209 // Take the fast path if d.bytes.buf contains at least two bytes. 210 if d.bytes.i+2 <= d.bytes.j { 211 x = d.bytes.buf[d.bytes.i] 212 d.bytes.i++ 213 d.bytes.nUnreadable = 1 214 if x != 0xff { 215 return x, err 216 } 217 if d.bytes.buf[d.bytes.i] != 0x00 { 218 return 0, errMissingFF00 219 } 220 d.bytes.i++ 221 d.bytes.nUnreadable = 2 222 return 0xff, nil 223 } 224 225 d.bytes.nUnreadable = 0 226 227 x, err = d.readByte() 228 if err != nil { 229 return 0, err 230 } 231 d.bytes.nUnreadable = 1 232 if x != 0xff { 233 return x, nil 234 } 235 236 x, err = d.readByte() 237 if err != nil { 238 return 0, err 239 } 240 d.bytes.nUnreadable = 2 241 if x != 0x00 { 242 return 0, errMissingFF00 243 } 244 return 0xff, nil 245 } 246 247 // readFull reads exactly len(p) bytes into p. It does not care about byte 248 // stuffing. 249 func (d *decoder) readFull(p []byte) error { 250 // Unread the overshot bytes, if any. 251 if d.bytes.nUnreadable != 0 { 252 if d.bits.n >= 8 { 253 d.unreadByteStuffedByte() 254 } 255 d.bytes.nUnreadable = 0 256 } 257 258 for { 259 n := copy(p, d.bytes.buf[d.bytes.i:d.bytes.j]) 260 p = p[n:] 261 d.bytes.i += n 262 if len(p) == 0 { 263 break 264 } 265 if err := d.fill(); err != nil { 266 if err == io.EOF { 267 err = io.ErrUnexpectedEOF 268 } 269 return err 270 } 271 } 272 return nil 273 } 274 275 // ignore ignores the next n bytes. 276 func (d *decoder) ignore(n int) error { 277 // Unread the overshot bytes, if any. 278 if d.bytes.nUnreadable != 0 { 279 if d.bits.n >= 8 { 280 d.unreadByteStuffedByte() 281 } 282 d.bytes.nUnreadable = 0 283 } 284 285 for { 286 m := d.bytes.j - d.bytes.i 287 if m > n { 288 m = n 289 } 290 d.bytes.i += m 291 n -= m 292 if n == 0 { 293 break 294 } 295 if err := d.fill(); err != nil { 296 if err == io.EOF { 297 err = io.ErrUnexpectedEOF 298 } 299 return err 300 } 301 } 302 return nil 303 } 304 305 // Specified in section B.2.2. 306 func (d *decoder) processSOF(n int) error { 307 if d.nComp != 0 { 308 return FormatError("multiple SOF markers") 309 } 310 switch n { 311 case 6 + 3*1: // Grayscale image. 312 d.nComp = 1 313 case 6 + 3*3: // YCbCr or RGB image. 314 d.nComp = 3 315 case 6 + 3*4: // YCbCrK or CMYK image. 316 d.nComp = 4 317 default: 318 return UnsupportedError("number of components") 319 } 320 if err := d.readFull(d.tmp[:n]); err != nil { 321 return err 322 } 323 // We only support 8-bit precision. 324 if d.tmp[0] != 8 { 325 return UnsupportedError("precision") 326 } 327 d.height = int(d.tmp[1])<<8 + int(d.tmp[2]) 328 d.width = int(d.tmp[3])<<8 + int(d.tmp[4]) 329 if int(d.tmp[5]) != d.nComp { 330 return FormatError("SOF has wrong length") 331 } 332 333 for i := 0; i < d.nComp; i++ { 334 d.comp[i].c = d.tmp[6+3*i] 335 // Section B.2.2 states that "the value of C_i shall be different from 336 // the values of C_1 through C_(i-1)". 337 for j := 0; j < i; j++ { 338 if d.comp[i].c == d.comp[j].c { 339 return FormatError("repeated component identifier") 340 } 341 } 342 343 d.comp[i].tq = d.tmp[8+3*i] 344 if d.comp[i].tq > maxTq { 345 return FormatError("bad Tq value") 346 } 347 348 hv := d.tmp[7+3*i] 349 h, v := int(hv>>4), int(hv&0x0f) 350 if h < 1 || 4 < h || v < 1 || 4 < v { 351 return FormatError("luma/chroma subsampling ratio") 352 } 353 if h == 3 || v == 3 { 354 return errUnsupportedSubsamplingRatio 355 } 356 switch d.nComp { 357 case 1: 358 // If a JPEG image has only one component, section A.2 says "this data 359 // is non-interleaved by definition" and section A.2.2 says "[in this 360 // case...] the order of data units within a scan shall be left-to-right 361 // and top-to-bottom... regardless of the values of H_1 and V_1". Section 362 // 4.8.2 also says "[for non-interleaved data], the MCU is defined to be 363 // one data unit". Similarly, section A.1.1 explains that it is the ratio 364 // of H_i to max_j(H_j) that matters, and similarly for V. For grayscale 365 // images, H_1 is the maximum H_j for all components j, so that ratio is 366 // always 1. The component's (h, v) is effectively always (1, 1): even if 367 // the nominal (h, v) is (2, 1), a 20x5 image is encoded in three 8x8 368 // MCUs, not two 16x8 MCUs. 369 h, v = 1, 1 370 371 case 3: 372 // For YCbCr images, we only support 4:4:4, 4:4:0, 4:2:2, 4:2:0, 373 // 4:1:1 or 4:1:0 chroma subsampling ratios. This implies that the 374 // (h, v) values for the Y component are either (1, 1), (1, 2), 375 // (2, 1), (2, 2), (4, 1) or (4, 2), and the Y component's values 376 // must be a multiple of the Cb and Cr component's values. We also 377 // assume that the two chroma components have the same subsampling 378 // ratio. 379 switch i { 380 case 0: // Y. 381 // We have already verified, above, that h and v are both 382 // either 1, 2 or 4, so invalid (h, v) combinations are those 383 // with v == 4. 384 if v == 4 { 385 return errUnsupportedSubsamplingRatio 386 } 387 case 1: // Cb. 388 if d.comp[0].h%h != 0 || d.comp[0].v%v != 0 { 389 return errUnsupportedSubsamplingRatio 390 } 391 case 2: // Cr. 392 if d.comp[1].h != h || d.comp[1].v != v { 393 return errUnsupportedSubsamplingRatio 394 } 395 } 396 397 case 4: 398 // For 4-component images (either CMYK or YCbCrK), we only support two 399 // hv vectors: [0x11 0x11 0x11 0x11] and [0x22 0x11 0x11 0x22]. 400 // Theoretically, 4-component JPEG images could mix and match hv values 401 // but in practice, those two combinations are the only ones in use, 402 // and it simplifies the applyBlack code below if we can assume that: 403 // - for CMYK, the C and K channels have full samples, and if the M 404 // and Y channels subsample, they subsample both horizontally and 405 // vertically. 406 // - for YCbCrK, the Y and K channels have full samples. 407 switch i { 408 case 0: 409 if hv != 0x11 && hv != 0x22 { 410 return errUnsupportedSubsamplingRatio 411 } 412 case 1, 2: 413 if hv != 0x11 { 414 return errUnsupportedSubsamplingRatio 415 } 416 case 3: 417 if d.comp[0].h != h || d.comp[0].v != v { 418 return errUnsupportedSubsamplingRatio 419 } 420 } 421 } 422 423 d.comp[i].h = h 424 d.comp[i].v = v 425 } 426 return nil 427 } 428 429 // Specified in section B.2.4.1. 430 func (d *decoder) processDQT(n int) error { 431 loop: 432 for n > 0 { 433 n-- 434 x, err := d.readByte() 435 if err != nil { 436 return err 437 } 438 tq := x & 0x0f 439 if tq > maxTq { 440 return FormatError("bad Tq value") 441 } 442 switch x >> 4 { 443 default: 444 return FormatError("bad Pq value") 445 case 0: 446 if n < blockSize { 447 break loop 448 } 449 n -= blockSize 450 if err := d.readFull(d.tmp[:blockSize]); err != nil { 451 return err 452 } 453 for i := range d.quant[tq] { 454 d.quant[tq][i] = int32(d.tmp[i]) 455 } 456 case 1: 457 if n < 2*blockSize { 458 break loop 459 } 460 n -= 2 * blockSize 461 if err := d.readFull(d.tmp[:2*blockSize]); err != nil { 462 return err 463 } 464 for i := range d.quant[tq] { 465 d.quant[tq][i] = int32(d.tmp[2*i])<<8 | int32(d.tmp[2*i+1]) 466 } 467 } 468 } 469 if n != 0 { 470 return FormatError("DQT has wrong length") 471 } 472 return nil 473 } 474 475 // Specified in section B.2.4.4. 476 func (d *decoder) processDRI(n int) error { 477 if n != 2 { 478 return FormatError("DRI has wrong length") 479 } 480 if err := d.readFull(d.tmp[:2]); err != nil { 481 return err 482 } 483 d.ri = int(d.tmp[0])<<8 + int(d.tmp[1]) 484 return nil 485 } 486 487 func (d *decoder) processApp0Marker(n int) error { 488 if n < 5 { 489 return d.ignore(n) 490 } 491 if err := d.readFull(d.tmp[:5]); err != nil { 492 return err 493 } 494 n -= 5 495 496 d.jfif = d.tmp[0] == 'J' && d.tmp[1] == 'F' && d.tmp[2] == 'I' && d.tmp[3] == 'F' && d.tmp[4] == '\x00' 497 498 if n > 0 { 499 return d.ignore(n) 500 } 501 return nil 502 } 503 504 func (d *decoder) processApp14Marker(n int) error { 505 if n < 12 { 506 return d.ignore(n) 507 } 508 if err := d.readFull(d.tmp[:12]); err != nil { 509 return err 510 } 511 n -= 12 512 513 if d.tmp[0] == 'A' && d.tmp[1] == 'd' && d.tmp[2] == 'o' && d.tmp[3] == 'b' && d.tmp[4] == 'e' { 514 d.adobeTransformValid = true 515 d.adobeTransform = d.tmp[11] 516 } 517 518 if n > 0 { 519 return d.ignore(n) 520 } 521 return nil 522 } 523 524 // decode reads a JPEG image from r and returns it as an image.Image. 525 func (d *decoder) decode(r io.Reader, configOnly bool) (image.Image, error) { 526 d.r = r 527 528 // Check for the Start Of Image marker. 529 if err := d.readFull(d.tmp[:2]); err != nil { 530 return nil, err 531 } 532 if d.tmp[0] != 0xff || d.tmp[1] != soiMarker { 533 return nil, FormatError("missing SOI marker") 534 } 535 536 // Process the remaining segments until the End Of Image marker. 537 for { 538 err := d.readFull(d.tmp[:2]) 539 if err != nil { 540 return nil, err 541 } 542 for d.tmp[0] != 0xff { 543 // Strictly speaking, this is a format error. However, libjpeg is 544 // liberal in what it accepts. As of version 9, next_marker in 545 // jdmarker.c treats this as a warning (JWRN_EXTRANEOUS_DATA) and 546 // continues to decode the stream. Even before next_marker sees 547 // extraneous data, jpeg_fill_bit_buffer in jdhuff.c reads as many 548 // bytes as it can, possibly past the end of a scan's data. It 549 // effectively puts back any markers that it overscanned (e.g. an 550 // "\xff\xd9" EOI marker), but it does not put back non-marker data, 551 // and thus it can silently ignore a small number of extraneous 552 // non-marker bytes before next_marker has a chance to see them (and 553 // print a warning). 554 // 555 // We are therefore also liberal in what we accept. Extraneous data 556 // is silently ignored. 557 // 558 // This is similar to, but not exactly the same as, the restart 559 // mechanism within a scan (the RST[0-7] markers). 560 // 561 // Note that extraneous 0xff bytes in e.g. SOS data are escaped as 562 // "\xff\x00", and so are detected a little further down below. 563 d.tmp[0] = d.tmp[1] 564 d.tmp[1], err = d.readByte() 565 if err != nil { 566 return nil, err 567 } 568 } 569 marker := d.tmp[1] 570 if marker == 0 { 571 // Treat "\xff\x00" as extraneous data. 572 continue 573 } 574 for marker == 0xff { 575 // Section B.1.1.2 says, "Any marker may optionally be preceded by any 576 // number of fill bytes, which are bytes assigned code X'FF'". 577 marker, err = d.readByte() 578 if err != nil { 579 return nil, err 580 } 581 } 582 if marker == eoiMarker { // End Of Image. 583 break 584 } 585 if rst0Marker <= marker && marker <= rst7Marker { 586 // Figures B.2 and B.16 of the specification suggest that restart markers should 587 // only occur between Entropy Coded Segments and not after the final ECS. 588 // However, some encoders may generate incorrect JPEGs with a final restart 589 // marker. That restart marker will be seen here instead of inside the processSOS 590 // method, and is ignored as a harmless error. Restart markers have no extra data, 591 // so we check for this before we read the 16-bit length of the segment. 592 continue 593 } 594 595 // Read the 16-bit length of the segment. The value includes the 2 bytes for the 596 // length itself, so we subtract 2 to get the number of remaining bytes. 597 if err = d.readFull(d.tmp[:2]); err != nil { 598 return nil, err 599 } 600 n := int(d.tmp[0])<<8 + int(d.tmp[1]) - 2 601 if n < 0 { 602 return nil, FormatError("short segment length") 603 } 604 605 switch marker { 606 case sof0Marker, sof1Marker, sof2Marker: 607 d.baseline = marker == sof0Marker 608 d.progressive = marker == sof2Marker 609 err = d.processSOF(n) 610 if configOnly && d.jfif { 611 return nil, err 612 } 613 case dhtMarker: 614 if configOnly { 615 err = d.ignore(n) 616 } else { 617 err = d.processDHT(n) 618 } 619 case dqtMarker: 620 if configOnly { 621 err = d.ignore(n) 622 } else { 623 err = d.processDQT(n) 624 } 625 case sosMarker: 626 if configOnly { 627 return nil, nil 628 } 629 err = d.processSOS(n) 630 case driMarker: 631 if configOnly { 632 err = d.ignore(n) 633 } else { 634 err = d.processDRI(n) 635 } 636 case app0Marker: 637 err = d.processApp0Marker(n) 638 case app14Marker: 639 err = d.processApp14Marker(n) 640 default: 641 if app0Marker <= marker && marker <= app15Marker || marker == comMarker { 642 err = d.ignore(n) 643 } else if marker < 0xc0 { // See Table B.1 "Marker code assignments". 644 err = FormatError("unknown marker") 645 } else { 646 err = UnsupportedError("unknown marker") 647 } 648 } 649 if err != nil { 650 return nil, err 651 } 652 } 653 654 if d.progressive { 655 if err := d.reconstructProgressiveImage(); err != nil { 656 return nil, err 657 } 658 } 659 if d.img1 != nil { 660 return d.img1, nil 661 } 662 if d.img3 != nil { 663 if d.blackPix != nil { 664 return d.applyBlack() 665 } else if d.isRGB() { 666 return d.convertToRGB() 667 } 668 return d.img3, nil 669 } 670 return nil, FormatError("missing SOS marker") 671 } 672 673 // applyBlack combines d.img3 and d.blackPix into a CMYK image. The formula 674 // used depends on whether the JPEG image is stored as CMYK or YCbCrK, 675 // indicated by the APP14 (Adobe) metadata. 676 // 677 // Adobe CMYK JPEG images are inverted, where 255 means no ink instead of full 678 // ink, so we apply "v = 255 - v" at various points. Note that a double 679 // inversion is a no-op, so inversions might be implicit in the code below. 680 func (d *decoder) applyBlack() (image.Image, error) { 681 if !d.adobeTransformValid { 682 return nil, UnsupportedError("unknown color model: 4-component JPEG doesn't have Adobe APP14 metadata") 683 } 684 685 // If the 4-component JPEG image isn't explicitly marked as "Unknown (RGB 686 // or CMYK)" as per 687 // http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe 688 // we assume that it is YCbCrK. This matches libjpeg's jdapimin.c. 689 if d.adobeTransform != adobeTransformUnknown { 690 // Convert the YCbCr part of the YCbCrK to RGB, invert the RGB to get 691 // CMY, and patch in the original K. The RGB to CMY inversion cancels 692 // out the 'Adobe inversion' described in the applyBlack doc comment 693 // above, so in practice, only the fourth channel (black) is inverted. 694 bounds := d.img3.Bounds() 695 img := image.NewRGBA(bounds) 696 imageutil.DrawYCbCr(img, bounds, d.img3, bounds.Min) 697 for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 { 698 for i, x := iBase+3, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 { 699 img.Pix[i] = 255 - d.blackPix[(y-bounds.Min.Y)*d.blackStride+(x-bounds.Min.X)] 700 } 701 } 702 return &image.CMYK{ 703 Pix: img.Pix, 704 Stride: img.Stride, 705 Rect: img.Rect, 706 }, nil 707 } 708 709 // The first three channels (cyan, magenta, yellow) of the CMYK 710 // were decoded into d.img3, but each channel was decoded into a separate 711 // []byte slice, and some channels may be subsampled. We interleave the 712 // separate channels into an image.CMYK's single []byte slice containing 4 713 // contiguous bytes per pixel. 714 bounds := d.img3.Bounds() 715 img := image.NewCMYK(bounds) 716 717 translations := [4]struct { 718 src []byte 719 stride int 720 }{ 721 {d.img3.Y, d.img3.YStride}, 722 {d.img3.Cb, d.img3.CStride}, 723 {d.img3.Cr, d.img3.CStride}, 724 {d.blackPix, d.blackStride}, 725 } 726 for t, translation := range translations { 727 subsample := d.comp[t].h != d.comp[0].h || d.comp[t].v != d.comp[0].v 728 for iBase, y := 0, bounds.Min.Y; y < bounds.Max.Y; iBase, y = iBase+img.Stride, y+1 { 729 sy := y - bounds.Min.Y 730 if subsample { 731 sy /= 2 732 } 733 for i, x := iBase+t, bounds.Min.X; x < bounds.Max.X; i, x = i+4, x+1 { 734 sx := x - bounds.Min.X 735 if subsample { 736 sx /= 2 737 } 738 img.Pix[i] = 255 - translation.src[sy*translation.stride+sx] 739 } 740 } 741 } 742 return img, nil 743 } 744 745 func (d *decoder) isRGB() bool { 746 if d.jfif { 747 return false 748 } 749 if d.adobeTransformValid && d.adobeTransform == adobeTransformUnknown { 750 // http://www.sno.phy.queensu.ca/~phil/exiftool/TagNames/JPEG.html#Adobe 751 // says that 0 means Unknown (and in practice RGB) and 1 means YCbCr. 752 return true 753 } 754 return d.comp[0].c == 'R' && d.comp[1].c == 'G' && d.comp[2].c == 'B' 755 } 756 757 func (d *decoder) convertToRGB() (image.Image, error) { 758 cScale := d.comp[0].h / d.comp[1].h 759 bounds := d.img3.Bounds() 760 img := image.NewRGBA(bounds) 761 for y := bounds.Min.Y; y < bounds.Max.Y; y++ { 762 po := img.PixOffset(bounds.Min.X, y) 763 yo := d.img3.YOffset(bounds.Min.X, y) 764 co := d.img3.COffset(bounds.Min.X, y) 765 for i, iMax := 0, bounds.Max.X-bounds.Min.X; i < iMax; i++ { 766 img.Pix[po+4*i+0] = d.img3.Y[yo+i] 767 img.Pix[po+4*i+1] = d.img3.Cb[co+i/cScale] 768 img.Pix[po+4*i+2] = d.img3.Cr[co+i/cScale] 769 img.Pix[po+4*i+3] = 255 770 } 771 } 772 return img, nil 773 } 774 775 // Decode reads a JPEG image from r and returns it as an image.Image. 776 func Decode(r io.Reader) (image.Image, error) { 777 var d decoder 778 return d.decode(r, false) 779 } 780 781 // DecodeConfig returns the color model and dimensions of a JPEG image without 782 // decoding the entire image. 783 func DecodeConfig(r io.Reader) (image.Config, error) { 784 var d decoder 785 if _, err := d.decode(r, true); err != nil { 786 return image.Config{}, err 787 } 788 switch d.nComp { 789 case 1: 790 return image.Config{ 791 ColorModel: color.GrayModel, 792 Width: d.width, 793 Height: d.height, 794 }, nil 795 case 3: 796 cm := color.YCbCrModel 797 if d.isRGB() { 798 cm = color.RGBAModel 799 } 800 return image.Config{ 801 ColorModel: cm, 802 Width: d.width, 803 Height: d.height, 804 }, nil 805 case 4: 806 return image.Config{ 807 ColorModel: color.CMYKModel, 808 Width: d.width, 809 Height: d.height, 810 }, nil 811 } 812 return image.Config{}, FormatError("missing SOF marker") 813 } 814 815 func init() { 816 image.RegisterFormat("jpeg", "\xff\xd8", Decode, DecodeConfig) 817 }