github.com/flyinox/gosm@v0.0.0-20171117061539-16768cb62077/src/math/big/floatconv.go (about)

     1  // Copyright 2015 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements string-to-Float conversion functions.
     6  
     7  package big
     8  
     9  import (
    10  	"fmt"
    11  	"io"
    12  	"strings"
    13  )
    14  
    15  var floatZero Float
    16  
    17  // SetString sets z to the value of s and returns z and a boolean indicating
    18  // success. s must be a floating-point number of the same format as accepted
    19  // by Parse, with base argument 0. The entire string (not just a prefix) must
    20  // be valid for success. If the operation failed, the value of z is undefined
    21  // but the returned value is nil.
    22  func (z *Float) SetString(s string) (*Float, bool) {
    23  	if f, _, err := z.Parse(s, 0); err == nil {
    24  		return f, true
    25  	}
    26  	return nil, false
    27  }
    28  
    29  // scan is like Parse but reads the longest possible prefix representing a valid
    30  // floating point number from an io.ByteScanner rather than a string. It serves
    31  // as the implementation of Parse. It does not recognize ±Inf and does not expect
    32  // EOF at the end.
    33  func (z *Float) scan(r io.ByteScanner, base int) (f *Float, b int, err error) {
    34  	prec := z.prec
    35  	if prec == 0 {
    36  		prec = 64
    37  	}
    38  
    39  	// A reasonable value in case of an error.
    40  	z.form = zero
    41  
    42  	// sign
    43  	z.neg, err = scanSign(r)
    44  	if err != nil {
    45  		return
    46  	}
    47  
    48  	// mantissa
    49  	var fcount int // fractional digit count; valid if <= 0
    50  	z.mant, b, fcount, err = z.mant.scan(r, base, true)
    51  	if err != nil {
    52  		return
    53  	}
    54  
    55  	// exponent
    56  	var exp int64
    57  	var ebase int
    58  	exp, ebase, err = scanExponent(r, true)
    59  	if err != nil {
    60  		return
    61  	}
    62  
    63  	// special-case 0
    64  	if len(z.mant) == 0 {
    65  		z.prec = prec
    66  		z.acc = Exact
    67  		z.form = zero
    68  		f = z
    69  		return
    70  	}
    71  	// len(z.mant) > 0
    72  
    73  	// The mantissa may have a decimal point (fcount <= 0) and there
    74  	// may be a nonzero exponent exp. The decimal point amounts to a
    75  	// division by b**(-fcount). An exponent means multiplication by
    76  	// ebase**exp. Finally, mantissa normalization (shift left) requires
    77  	// a correcting multiplication by 2**(-shiftcount). Multiplications
    78  	// are commutative, so we can apply them in any order as long as there
    79  	// is no loss of precision. We only have powers of 2 and 10, and
    80  	// we split powers of 10 into the product of the same powers of
    81  	// 2 and 5. This reduces the size of the multiplication factor
    82  	// needed for base-10 exponents.
    83  
    84  	// normalize mantissa and determine initial exponent contributions
    85  	exp2 := int64(len(z.mant))*_W - fnorm(z.mant)
    86  	exp5 := int64(0)
    87  
    88  	// determine binary or decimal exponent contribution of decimal point
    89  	if fcount < 0 {
    90  		// The mantissa has a "decimal" point ddd.dddd; and
    91  		// -fcount is the number of digits to the right of '.'.
    92  		// Adjust relevant exponent accordingly.
    93  		d := int64(fcount)
    94  		switch b {
    95  		case 10:
    96  			exp5 = d
    97  			fallthrough // 10**e == 5**e * 2**e
    98  		case 2:
    99  			exp2 += d
   100  		case 16:
   101  			exp2 += d * 4 // hexadecimal digits are 4 bits each
   102  		default:
   103  			panic("unexpected mantissa base")
   104  		}
   105  		// fcount consumed - not needed anymore
   106  	}
   107  
   108  	// take actual exponent into account
   109  	switch ebase {
   110  	case 10:
   111  		exp5 += exp
   112  		fallthrough
   113  	case 2:
   114  		exp2 += exp
   115  	default:
   116  		panic("unexpected exponent base")
   117  	}
   118  	// exp consumed - not needed anymore
   119  
   120  	// apply 2**exp2
   121  	if MinExp <= exp2 && exp2 <= MaxExp {
   122  		z.prec = prec
   123  		z.form = finite
   124  		z.exp = int32(exp2)
   125  		f = z
   126  	} else {
   127  		err = fmt.Errorf("exponent overflow")
   128  		return
   129  	}
   130  
   131  	if exp5 == 0 {
   132  		// no decimal exponent contribution
   133  		z.round(0)
   134  		return
   135  	}
   136  	// exp5 != 0
   137  
   138  	// apply 5**exp5
   139  	p := new(Float).SetPrec(z.Prec() + 64) // use more bits for p -- TODO(gri) what is the right number?
   140  	if exp5 < 0 {
   141  		z.Quo(z, p.pow5(uint64(-exp5)))
   142  	} else {
   143  		z.Mul(z, p.pow5(uint64(exp5)))
   144  	}
   145  
   146  	return
   147  }
   148  
   149  // These powers of 5 fit into a uint64.
   150  //
   151  //	for p, q := uint64(0), uint64(1); p < q; p, q = q, q*5 {
   152  //		fmt.Println(q)
   153  //	}
   154  //
   155  var pow5tab = [...]uint64{
   156  	1,
   157  	5,
   158  	25,
   159  	125,
   160  	625,
   161  	3125,
   162  	15625,
   163  	78125,
   164  	390625,
   165  	1953125,
   166  	9765625,
   167  	48828125,
   168  	244140625,
   169  	1220703125,
   170  	6103515625,
   171  	30517578125,
   172  	152587890625,
   173  	762939453125,
   174  	3814697265625,
   175  	19073486328125,
   176  	95367431640625,
   177  	476837158203125,
   178  	2384185791015625,
   179  	11920928955078125,
   180  	59604644775390625,
   181  	298023223876953125,
   182  	1490116119384765625,
   183  	7450580596923828125,
   184  }
   185  
   186  // pow5 sets z to 5**n and returns z.
   187  // n must not be negative.
   188  func (z *Float) pow5(n uint64) *Float {
   189  	const m = uint64(len(pow5tab) - 1)
   190  	if n <= m {
   191  		return z.SetUint64(pow5tab[n])
   192  	}
   193  	// n > m
   194  
   195  	z.SetUint64(pow5tab[m])
   196  	n -= m
   197  
   198  	// use more bits for f than for z
   199  	// TODO(gri) what is the right number?
   200  	f := new(Float).SetPrec(z.Prec() + 64).SetUint64(5)
   201  
   202  	for n > 0 {
   203  		if n&1 != 0 {
   204  			z.Mul(z, f)
   205  		}
   206  		f.Mul(f, f)
   207  		n >>= 1
   208  	}
   209  
   210  	return z
   211  }
   212  
   213  // Parse parses s which must contain a text representation of a floating-
   214  // point number with a mantissa in the given conversion base (the exponent
   215  // is always a decimal number), or a string representing an infinite value.
   216  //
   217  // It sets z to the (possibly rounded) value of the corresponding floating-
   218  // point value, and returns z, the actual base b, and an error err, if any.
   219  // The entire string (not just a prefix) must be consumed for success.
   220  // If z's precision is 0, it is changed to 64 before rounding takes effect.
   221  // The number must be of the form:
   222  //
   223  //	number   = [ sign ] [ prefix ] mantissa [ exponent ] | infinity .
   224  //	sign     = "+" | "-" .
   225  //	prefix   = "0" ( "x" | "X" | "b" | "B" ) .
   226  //	mantissa = digits | digits "." [ digits ] | "." digits .
   227  //	exponent = ( "E" | "e" | "p" ) [ sign ] digits .
   228  //	digits   = digit { digit } .
   229  //	digit    = "0" ... "9" | "a" ... "z" | "A" ... "Z" .
   230  //	infinity = [ sign ] ( "inf" | "Inf" ) .
   231  //
   232  // The base argument must be 0, 2, 10, or 16. Providing an invalid base
   233  // argument will lead to a run-time panic.
   234  //
   235  // For base 0, the number prefix determines the actual base: A prefix of
   236  // "0x" or "0X" selects base 16, and a "0b" or "0B" prefix selects
   237  // base 2; otherwise, the actual base is 10 and no prefix is accepted.
   238  // The octal prefix "0" is not supported (a leading "0" is simply
   239  // considered a "0").
   240  //
   241  // A "p" exponent indicates a binary (rather then decimal) exponent;
   242  // for instance "0x1.fffffffffffffp1023" (using base 0) represents the
   243  // maximum float64 value. For hexadecimal mantissae, the exponent must
   244  // be binary, if present (an "e" or "E" exponent indicator cannot be
   245  // distinguished from a mantissa digit).
   246  //
   247  // The returned *Float f is nil and the value of z is valid but not
   248  // defined if an error is reported.
   249  //
   250  func (z *Float) Parse(s string, base int) (f *Float, b int, err error) {
   251  	// scan doesn't handle ±Inf
   252  	if len(s) == 3 && (s == "Inf" || s == "inf") {
   253  		f = z.SetInf(false)
   254  		return
   255  	}
   256  	if len(s) == 4 && (s[0] == '+' || s[0] == '-') && (s[1:] == "Inf" || s[1:] == "inf") {
   257  		f = z.SetInf(s[0] == '-')
   258  		return
   259  	}
   260  
   261  	r := strings.NewReader(s)
   262  	if f, b, err = z.scan(r, base); err != nil {
   263  		return
   264  	}
   265  
   266  	// entire string must have been consumed
   267  	if ch, err2 := r.ReadByte(); err2 == nil {
   268  		err = fmt.Errorf("expected end of string, found %q", ch)
   269  	} else if err2 != io.EOF {
   270  		err = err2
   271  	}
   272  
   273  	return
   274  }
   275  
   276  // ParseFloat is like f.Parse(s, base) with f set to the given precision
   277  // and rounding mode.
   278  func ParseFloat(s string, base int, prec uint, mode RoundingMode) (f *Float, b int, err error) {
   279  	return new(Float).SetPrec(prec).SetMode(mode).Parse(s, base)
   280  }
   281  
   282  var _ fmt.Scanner = &floatZero // *Float must implement fmt.Scanner
   283  
   284  // Scan is a support routine for fmt.Scanner; it sets z to the value of
   285  // the scanned number. It accepts formats whose verbs are supported by
   286  // fmt.Scan for floating point values, which are:
   287  // 'b' (binary), 'e', 'E', 'f', 'F', 'g' and 'G'.
   288  // Scan doesn't handle ±Inf.
   289  func (z *Float) Scan(s fmt.ScanState, ch rune) error {
   290  	s.SkipSpace()
   291  	_, _, err := z.scan(byteReader{s}, 0)
   292  	return err
   293  }