github.com/flyinox/gosm@v0.0.0-20171117061539-16768cb62077/src/math/big/int.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // This file implements signed multi-precision integers. 6 7 package big 8 9 import ( 10 "fmt" 11 "io" 12 "math/rand" 13 "strings" 14 ) 15 16 // An Int represents a signed multi-precision integer. 17 // The zero value for an Int represents the value 0. 18 type Int struct { 19 neg bool // sign 20 abs nat // absolute value of the integer 21 } 22 23 var intOne = &Int{false, natOne} 24 25 // Sign returns: 26 // 27 // -1 if x < 0 28 // 0 if x == 0 29 // +1 if x > 0 30 // 31 func (x *Int) Sign() int { 32 if len(x.abs) == 0 { 33 return 0 34 } 35 if x.neg { 36 return -1 37 } 38 return 1 39 } 40 41 // SetInt64 sets z to x and returns z. 42 func (z *Int) SetInt64(x int64) *Int { 43 neg := false 44 if x < 0 { 45 neg = true 46 x = -x 47 } 48 z.abs = z.abs.setUint64(uint64(x)) 49 z.neg = neg 50 return z 51 } 52 53 // SetUint64 sets z to x and returns z. 54 func (z *Int) SetUint64(x uint64) *Int { 55 z.abs = z.abs.setUint64(x) 56 z.neg = false 57 return z 58 } 59 60 // NewInt allocates and returns a new Int set to x. 61 func NewInt(x int64) *Int { 62 return new(Int).SetInt64(x) 63 } 64 65 // Set sets z to x and returns z. 66 func (z *Int) Set(x *Int) *Int { 67 if z != x { 68 z.abs = z.abs.set(x.abs) 69 z.neg = x.neg 70 } 71 return z 72 } 73 74 // Bits provides raw (unchecked but fast) access to x by returning its 75 // absolute value as a little-endian Word slice. The result and x share 76 // the same underlying array. 77 // Bits is intended to support implementation of missing low-level Int 78 // functionality outside this package; it should be avoided otherwise. 79 func (x *Int) Bits() []Word { 80 return x.abs 81 } 82 83 // SetBits provides raw (unchecked but fast) access to z by setting its 84 // value to abs, interpreted as a little-endian Word slice, and returning 85 // z. The result and abs share the same underlying array. 86 // SetBits is intended to support implementation of missing low-level Int 87 // functionality outside this package; it should be avoided otherwise. 88 func (z *Int) SetBits(abs []Word) *Int { 89 z.abs = nat(abs).norm() 90 z.neg = false 91 return z 92 } 93 94 // Abs sets z to |x| (the absolute value of x) and returns z. 95 func (z *Int) Abs(x *Int) *Int { 96 z.Set(x) 97 z.neg = false 98 return z 99 } 100 101 // Neg sets z to -x and returns z. 102 func (z *Int) Neg(x *Int) *Int { 103 z.Set(x) 104 z.neg = len(z.abs) > 0 && !z.neg // 0 has no sign 105 return z 106 } 107 108 // Add sets z to the sum x+y and returns z. 109 func (z *Int) Add(x, y *Int) *Int { 110 neg := x.neg 111 if x.neg == y.neg { 112 // x + y == x + y 113 // (-x) + (-y) == -(x + y) 114 z.abs = z.abs.add(x.abs, y.abs) 115 } else { 116 // x + (-y) == x - y == -(y - x) 117 // (-x) + y == y - x == -(x - y) 118 if x.abs.cmp(y.abs) >= 0 { 119 z.abs = z.abs.sub(x.abs, y.abs) 120 } else { 121 neg = !neg 122 z.abs = z.abs.sub(y.abs, x.abs) 123 } 124 } 125 z.neg = len(z.abs) > 0 && neg // 0 has no sign 126 return z 127 } 128 129 // Sub sets z to the difference x-y and returns z. 130 func (z *Int) Sub(x, y *Int) *Int { 131 neg := x.neg 132 if x.neg != y.neg { 133 // x - (-y) == x + y 134 // (-x) - y == -(x + y) 135 z.abs = z.abs.add(x.abs, y.abs) 136 } else { 137 // x - y == x - y == -(y - x) 138 // (-x) - (-y) == y - x == -(x - y) 139 if x.abs.cmp(y.abs) >= 0 { 140 z.abs = z.abs.sub(x.abs, y.abs) 141 } else { 142 neg = !neg 143 z.abs = z.abs.sub(y.abs, x.abs) 144 } 145 } 146 z.neg = len(z.abs) > 0 && neg // 0 has no sign 147 return z 148 } 149 150 // Mul sets z to the product x*y and returns z. 151 func (z *Int) Mul(x, y *Int) *Int { 152 // x * y == x * y 153 // x * (-y) == -(x * y) 154 // (-x) * y == -(x * y) 155 // (-x) * (-y) == x * y 156 z.abs = z.abs.mul(x.abs, y.abs) 157 z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign 158 return z 159 } 160 161 // MulRange sets z to the product of all integers 162 // in the range [a, b] inclusively and returns z. 163 // If a > b (empty range), the result is 1. 164 func (z *Int) MulRange(a, b int64) *Int { 165 switch { 166 case a > b: 167 return z.SetInt64(1) // empty range 168 case a <= 0 && b >= 0: 169 return z.SetInt64(0) // range includes 0 170 } 171 // a <= b && (b < 0 || a > 0) 172 173 neg := false 174 if a < 0 { 175 neg = (b-a)&1 == 0 176 a, b = -b, -a 177 } 178 179 z.abs = z.abs.mulRange(uint64(a), uint64(b)) 180 z.neg = neg 181 return z 182 } 183 184 // Binomial sets z to the binomial coefficient of (n, k) and returns z. 185 func (z *Int) Binomial(n, k int64) *Int { 186 // reduce the number of multiplications by reducing k 187 if n/2 < k && k <= n { 188 k = n - k // Binomial(n, k) == Binomial(n, n-k) 189 } 190 var a, b Int 191 a.MulRange(n-k+1, n) 192 b.MulRange(1, k) 193 return z.Quo(&a, &b) 194 } 195 196 // Quo sets z to the quotient x/y for y != 0 and returns z. 197 // If y == 0, a division-by-zero run-time panic occurs. 198 // Quo implements truncated division (like Go); see QuoRem for more details. 199 func (z *Int) Quo(x, y *Int) *Int { 200 z.abs, _ = z.abs.div(nil, x.abs, y.abs) 201 z.neg = len(z.abs) > 0 && x.neg != y.neg // 0 has no sign 202 return z 203 } 204 205 // Rem sets z to the remainder x%y for y != 0 and returns z. 206 // If y == 0, a division-by-zero run-time panic occurs. 207 // Rem implements truncated modulus (like Go); see QuoRem for more details. 208 func (z *Int) Rem(x, y *Int) *Int { 209 _, z.abs = nat(nil).div(z.abs, x.abs, y.abs) 210 z.neg = len(z.abs) > 0 && x.neg // 0 has no sign 211 return z 212 } 213 214 // QuoRem sets z to the quotient x/y and r to the remainder x%y 215 // and returns the pair (z, r) for y != 0. 216 // If y == 0, a division-by-zero run-time panic occurs. 217 // 218 // QuoRem implements T-division and modulus (like Go): 219 // 220 // q = x/y with the result truncated to zero 221 // r = x - y*q 222 // 223 // (See Daan Leijen, ``Division and Modulus for Computer Scientists''.) 224 // See DivMod for Euclidean division and modulus (unlike Go). 225 // 226 func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) { 227 z.abs, r.abs = z.abs.div(r.abs, x.abs, y.abs) 228 z.neg, r.neg = len(z.abs) > 0 && x.neg != y.neg, len(r.abs) > 0 && x.neg // 0 has no sign 229 return z, r 230 } 231 232 // Div sets z to the quotient x/y for y != 0 and returns z. 233 // If y == 0, a division-by-zero run-time panic occurs. 234 // Div implements Euclidean division (unlike Go); see DivMod for more details. 235 func (z *Int) Div(x, y *Int) *Int { 236 y_neg := y.neg // z may be an alias for y 237 var r Int 238 z.QuoRem(x, y, &r) 239 if r.neg { 240 if y_neg { 241 z.Add(z, intOne) 242 } else { 243 z.Sub(z, intOne) 244 } 245 } 246 return z 247 } 248 249 // Mod sets z to the modulus x%y for y != 0 and returns z. 250 // If y == 0, a division-by-zero run-time panic occurs. 251 // Mod implements Euclidean modulus (unlike Go); see DivMod for more details. 252 func (z *Int) Mod(x, y *Int) *Int { 253 y0 := y // save y 254 if z == y || alias(z.abs, y.abs) { 255 y0 = new(Int).Set(y) 256 } 257 var q Int 258 q.QuoRem(x, y, z) 259 if z.neg { 260 if y0.neg { 261 z.Sub(z, y0) 262 } else { 263 z.Add(z, y0) 264 } 265 } 266 return z 267 } 268 269 // DivMod sets z to the quotient x div y and m to the modulus x mod y 270 // and returns the pair (z, m) for y != 0. 271 // If y == 0, a division-by-zero run-time panic occurs. 272 // 273 // DivMod implements Euclidean division and modulus (unlike Go): 274 // 275 // q = x div y such that 276 // m = x - y*q with 0 <= m < |y| 277 // 278 // (See Raymond T. Boute, ``The Euclidean definition of the functions 279 // div and mod''. ACM Transactions on Programming Languages and 280 // Systems (TOPLAS), 14(2):127-144, New York, NY, USA, 4/1992. 281 // ACM press.) 282 // See QuoRem for T-division and modulus (like Go). 283 // 284 func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) { 285 y0 := y // save y 286 if z == y || alias(z.abs, y.abs) { 287 y0 = new(Int).Set(y) 288 } 289 z.QuoRem(x, y, m) 290 if m.neg { 291 if y0.neg { 292 z.Add(z, intOne) 293 m.Sub(m, y0) 294 } else { 295 z.Sub(z, intOne) 296 m.Add(m, y0) 297 } 298 } 299 return z, m 300 } 301 302 // Cmp compares x and y and returns: 303 // 304 // -1 if x < y 305 // 0 if x == y 306 // +1 if x > y 307 // 308 func (x *Int) Cmp(y *Int) (r int) { 309 // x cmp y == x cmp y 310 // x cmp (-y) == x 311 // (-x) cmp y == y 312 // (-x) cmp (-y) == -(x cmp y) 313 switch { 314 case x.neg == y.neg: 315 r = x.abs.cmp(y.abs) 316 if x.neg { 317 r = -r 318 } 319 case x.neg: 320 r = -1 321 default: 322 r = 1 323 } 324 return 325 } 326 327 // low32 returns the least significant 32 bits of x. 328 func low32(x nat) uint32 { 329 if len(x) == 0 { 330 return 0 331 } 332 return uint32(x[0]) 333 } 334 335 // low64 returns the least significant 64 bits of x. 336 func low64(x nat) uint64 { 337 if len(x) == 0 { 338 return 0 339 } 340 v := uint64(x[0]) 341 if _W == 32 && len(x) > 1 { 342 return uint64(x[1])<<32 | v 343 } 344 return v 345 } 346 347 // Int64 returns the int64 representation of x. 348 // If x cannot be represented in an int64, the result is undefined. 349 func (x *Int) Int64() int64 { 350 v := int64(low64(x.abs)) 351 if x.neg { 352 v = -v 353 } 354 return v 355 } 356 357 // Uint64 returns the uint64 representation of x. 358 // If x cannot be represented in a uint64, the result is undefined. 359 func (x *Int) Uint64() uint64 { 360 return low64(x.abs) 361 } 362 363 // IsInt64 reports whether x can be represented as an int64. 364 func (x *Int) IsInt64() bool { 365 if len(x.abs) <= 64/_W { 366 w := int64(low64(x.abs)) 367 return w >= 0 || x.neg && w == -w 368 } 369 return false 370 } 371 372 // IsUint64 reports whether x can be represented as a uint64. 373 func (x *Int) IsUint64() bool { 374 return !x.neg && len(x.abs) <= 64/_W 375 } 376 377 // SetString sets z to the value of s, interpreted in the given base, 378 // and returns z and a boolean indicating success. The entire string 379 // (not just a prefix) must be valid for success. If SetString fails, 380 // the value of z is undefined but the returned value is nil. 381 // 382 // The base argument must be 0 or a value between 2 and MaxBase. If the base 383 // is 0, the string prefix determines the actual conversion base. A prefix of 384 // ``0x'' or ``0X'' selects base 16; the ``0'' prefix selects base 8, and a 385 // ``0b'' or ``0B'' prefix selects base 2. Otherwise the selected base is 10. 386 // 387 func (z *Int) SetString(s string, base int) (*Int, bool) { 388 r := strings.NewReader(s) 389 if _, _, err := z.scan(r, base); err != nil { 390 return nil, false 391 } 392 // entire string must have been consumed 393 if _, err := r.ReadByte(); err != io.EOF { 394 return nil, false 395 } 396 return z, true // err == io.EOF => scan consumed all of s 397 } 398 399 // SetBytes interprets buf as the bytes of a big-endian unsigned 400 // integer, sets z to that value, and returns z. 401 func (z *Int) SetBytes(buf []byte) *Int { 402 z.abs = z.abs.setBytes(buf) 403 z.neg = false 404 return z 405 } 406 407 // Bytes returns the absolute value of x as a big-endian byte slice. 408 func (x *Int) Bytes() []byte { 409 buf := make([]byte, len(x.abs)*_S) 410 return buf[x.abs.bytes(buf):] 411 } 412 413 // BitLen returns the length of the absolute value of x in bits. 414 // The bit length of 0 is 0. 415 func (x *Int) BitLen() int { 416 return x.abs.bitLen() 417 } 418 419 // Exp sets z = x**y mod |m| (i.e. the sign of m is ignored), and returns z. 420 // If y <= 0, the result is 1 mod |m|; if m == nil or m == 0, z = x**y. 421 // 422 // Modular exponentation of inputs of a particular size is not a 423 // cryptographically constant-time operation. 424 func (z *Int) Exp(x, y, m *Int) *Int { 425 // See Knuth, volume 2, section 4.6.3. 426 var yWords nat 427 if !y.neg { 428 yWords = y.abs 429 } 430 // y >= 0 431 432 var mWords nat 433 if m != nil { 434 mWords = m.abs // m.abs may be nil for m == 0 435 } 436 437 z.abs = z.abs.expNN(x.abs, yWords, mWords) 438 z.neg = len(z.abs) > 0 && x.neg && len(yWords) > 0 && yWords[0]&1 == 1 // 0 has no sign 439 if z.neg && len(mWords) > 0 { 440 // make modulus result positive 441 z.abs = z.abs.sub(mWords, z.abs) // z == x**y mod |m| && 0 <= z < |m| 442 z.neg = false 443 } 444 445 return z 446 } 447 448 // GCD sets z to the greatest common divisor of a and b, which both must 449 // be > 0, and returns z. 450 // If x and y are not nil, GCD sets x and y such that z = a*x + b*y. 451 // If either a or b is <= 0, GCD sets z = x = y = 0. 452 func (z *Int) GCD(x, y, a, b *Int) *Int { 453 if a.Sign() <= 0 || b.Sign() <= 0 { 454 z.SetInt64(0) 455 if x != nil { 456 x.SetInt64(0) 457 } 458 if y != nil { 459 y.SetInt64(0) 460 } 461 return z 462 } 463 if x == nil && y == nil { 464 return z.binaryGCD(a, b) 465 } 466 467 A := new(Int).Set(a) 468 B := new(Int).Set(b) 469 470 X := new(Int) 471 Y := new(Int).SetInt64(1) 472 473 lastX := new(Int).SetInt64(1) 474 lastY := new(Int) 475 476 q := new(Int) 477 temp := new(Int) 478 479 r := new(Int) 480 for len(B.abs) > 0 { 481 q, r = q.QuoRem(A, B, r) 482 483 A, B, r = B, r, A 484 485 temp.Set(X) 486 X.Mul(X, q) 487 X.neg = !X.neg 488 X.Add(X, lastX) 489 lastX.Set(temp) 490 491 temp.Set(Y) 492 Y.Mul(Y, q) 493 Y.neg = !Y.neg 494 Y.Add(Y, lastY) 495 lastY.Set(temp) 496 } 497 498 if x != nil { 499 *x = *lastX 500 } 501 502 if y != nil { 503 *y = *lastY 504 } 505 506 *z = *A 507 return z 508 } 509 510 // binaryGCD sets z to the greatest common divisor of a and b, which both must 511 // be > 0, and returns z. 512 // See Knuth, The Art of Computer Programming, Vol. 2, Section 4.5.2, Algorithm B. 513 func (z *Int) binaryGCD(a, b *Int) *Int { 514 u := z 515 v := new(Int) 516 517 // use one Euclidean iteration to ensure that u and v are approx. the same size 518 switch { 519 case len(a.abs) > len(b.abs): 520 // must set v before u since u may be alias for a or b (was issue #11284) 521 v.Rem(a, b) 522 u.Set(b) 523 case len(a.abs) < len(b.abs): 524 v.Rem(b, a) 525 u.Set(a) 526 default: 527 v.Set(b) 528 u.Set(a) 529 } 530 // a, b must not be used anymore (may be aliases with u) 531 532 // v might be 0 now 533 if len(v.abs) == 0 { 534 return u 535 } 536 // u > 0 && v > 0 537 538 // determine largest k such that u = u' << k, v = v' << k 539 k := u.abs.trailingZeroBits() 540 if vk := v.abs.trailingZeroBits(); vk < k { 541 k = vk 542 } 543 u.Rsh(u, k) 544 v.Rsh(v, k) 545 546 // determine t (we know that u > 0) 547 t := new(Int) 548 if u.abs[0]&1 != 0 { 549 // u is odd 550 t.Neg(v) 551 } else { 552 t.Set(u) 553 } 554 555 for len(t.abs) > 0 { 556 // reduce t 557 t.Rsh(t, t.abs.trailingZeroBits()) 558 if t.neg { 559 v, t = t, v 560 v.neg = len(v.abs) > 0 && !v.neg // 0 has no sign 561 } else { 562 u, t = t, u 563 } 564 t.Sub(u, v) 565 } 566 567 return z.Lsh(u, k) 568 } 569 570 // Rand sets z to a pseudo-random number in [0, n) and returns z. 571 func (z *Int) Rand(rnd *rand.Rand, n *Int) *Int { 572 z.neg = false 573 if n.neg || len(n.abs) == 0 { 574 z.abs = nil 575 return z 576 } 577 z.abs = z.abs.random(rnd, n.abs, n.abs.bitLen()) 578 return z 579 } 580 581 // ModInverse sets z to the multiplicative inverse of g in the ring ℤ/nℤ 582 // and returns z. If g and n are not relatively prime, the result is undefined. 583 func (z *Int) ModInverse(g, n *Int) *Int { 584 if g.neg { 585 // GCD expects parameters a and b to be > 0. 586 var g2 Int 587 g = g2.Mod(g, n) 588 } 589 var d Int 590 d.GCD(z, nil, g, n) 591 // x and y are such that g*x + n*y = d. Since g and n are 592 // relatively prime, d = 1. Taking that modulo n results in 593 // g*x = 1, therefore x is the inverse element. 594 if z.neg { 595 z.Add(z, n) 596 } 597 return z 598 } 599 600 // Jacobi returns the Jacobi symbol (x/y), either +1, -1, or 0. 601 // The y argument must be an odd integer. 602 func Jacobi(x, y *Int) int { 603 if len(y.abs) == 0 || y.abs[0]&1 == 0 { 604 panic(fmt.Sprintf("big: invalid 2nd argument to Int.Jacobi: need odd integer but got %s", y)) 605 } 606 607 // We use the formulation described in chapter 2, section 2.4, 608 // "The Yacas Book of Algorithms": 609 // http://yacas.sourceforge.net/Algo.book.pdf 610 611 var a, b, c Int 612 a.Set(x) 613 b.Set(y) 614 j := 1 615 616 if b.neg { 617 if a.neg { 618 j = -1 619 } 620 b.neg = false 621 } 622 623 for { 624 if b.Cmp(intOne) == 0 { 625 return j 626 } 627 if len(a.abs) == 0 { 628 return 0 629 } 630 a.Mod(&a, &b) 631 if len(a.abs) == 0 { 632 return 0 633 } 634 // a > 0 635 636 // handle factors of 2 in 'a' 637 s := a.abs.trailingZeroBits() 638 if s&1 != 0 { 639 bmod8 := b.abs[0] & 7 640 if bmod8 == 3 || bmod8 == 5 { 641 j = -j 642 } 643 } 644 c.Rsh(&a, s) // a = 2^s*c 645 646 // swap numerator and denominator 647 if b.abs[0]&3 == 3 && c.abs[0]&3 == 3 { 648 j = -j 649 } 650 a.Set(&b) 651 b.Set(&c) 652 } 653 } 654 655 // modSqrt3Mod4 uses the identity 656 // (a^((p+1)/4))^2 mod p 657 // == u^(p+1) mod p 658 // == u^2 mod p 659 // to calculate the square root of any quadratic residue mod p quickly for 3 660 // mod 4 primes. 661 func (z *Int) modSqrt3Mod4Prime(x, p *Int) *Int { 662 z.Set(p) // z = p 663 z.Add(z, intOne) // z = p + 1 664 z.Rsh(z, 2) // z = (p + 1) / 4 665 z.Exp(x, z, p) // z = x^z mod p 666 return z 667 } 668 669 // modSqrtTonelliShanks uses the Tonelli-Shanks algorithm to find the square 670 // root of a quadratic residue modulo any prime. 671 func (z *Int) modSqrtTonelliShanks(x, p *Int) *Int { 672 // Break p-1 into s*2^e such that s is odd. 673 var s Int 674 s.Sub(p, intOne) 675 e := s.abs.trailingZeroBits() 676 s.Rsh(&s, e) 677 678 // find some non-square n 679 var n Int 680 n.SetInt64(2) 681 for Jacobi(&n, p) != -1 { 682 n.Add(&n, intOne) 683 } 684 685 // Core of the Tonelli-Shanks algorithm. Follows the description in 686 // section 6 of "Square roots from 1; 24, 51, 10 to Dan Shanks" by Ezra 687 // Brown: 688 // https://www.maa.org/sites/default/files/pdf/upload_library/22/Polya/07468342.di020786.02p0470a.pdf 689 var y, b, g, t Int 690 y.Add(&s, intOne) 691 y.Rsh(&y, 1) 692 y.Exp(x, &y, p) // y = x^((s+1)/2) 693 b.Exp(x, &s, p) // b = x^s 694 g.Exp(&n, &s, p) // g = n^s 695 r := e 696 for { 697 // find the least m such that ord_p(b) = 2^m 698 var m uint 699 t.Set(&b) 700 for t.Cmp(intOne) != 0 { 701 t.Mul(&t, &t).Mod(&t, p) 702 m++ 703 } 704 705 if m == 0 { 706 return z.Set(&y) 707 } 708 709 t.SetInt64(0).SetBit(&t, int(r-m-1), 1).Exp(&g, &t, p) 710 // t = g^(2^(r-m-1)) mod p 711 g.Mul(&t, &t).Mod(&g, p) // g = g^(2^(r-m)) mod p 712 y.Mul(&y, &t).Mod(&y, p) 713 b.Mul(&b, &g).Mod(&b, p) 714 r = m 715 } 716 } 717 718 // ModSqrt sets z to a square root of x mod p if such a square root exists, and 719 // returns z. The modulus p must be an odd prime. If x is not a square mod p, 720 // ModSqrt leaves z unchanged and returns nil. This function panics if p is 721 // not an odd integer. 722 func (z *Int) ModSqrt(x, p *Int) *Int { 723 switch Jacobi(x, p) { 724 case -1: 725 return nil // x is not a square mod p 726 case 0: 727 return z.SetInt64(0) // sqrt(0) mod p = 0 728 case 1: 729 break 730 } 731 if x.neg || x.Cmp(p) >= 0 { // ensure 0 <= x < p 732 x = new(Int).Mod(x, p) 733 } 734 735 // Check whether p is 3 mod 4, and if so, use the faster algorithm. 736 if len(p.abs) > 0 && p.abs[0]%4 == 3 { 737 return z.modSqrt3Mod4Prime(x, p) 738 } 739 // Otherwise, use Tonelli-Shanks. 740 return z.modSqrtTonelliShanks(x, p) 741 } 742 743 // Lsh sets z = x << n and returns z. 744 func (z *Int) Lsh(x *Int, n uint) *Int { 745 z.abs = z.abs.shl(x.abs, n) 746 z.neg = x.neg 747 return z 748 } 749 750 // Rsh sets z = x >> n and returns z. 751 func (z *Int) Rsh(x *Int, n uint) *Int { 752 if x.neg { 753 // (-x) >> s == ^(x-1) >> s == ^((x-1) >> s) == -(((x-1) >> s) + 1) 754 t := z.abs.sub(x.abs, natOne) // no underflow because |x| > 0 755 t = t.shr(t, n) 756 z.abs = t.add(t, natOne) 757 z.neg = true // z cannot be zero if x is negative 758 return z 759 } 760 761 z.abs = z.abs.shr(x.abs, n) 762 z.neg = false 763 return z 764 } 765 766 // Bit returns the value of the i'th bit of x. That is, it 767 // returns (x>>i)&1. The bit index i must be >= 0. 768 func (x *Int) Bit(i int) uint { 769 if i == 0 { 770 // optimization for common case: odd/even test of x 771 if len(x.abs) > 0 { 772 return uint(x.abs[0] & 1) // bit 0 is same for -x 773 } 774 return 0 775 } 776 if i < 0 { 777 panic("negative bit index") 778 } 779 if x.neg { 780 t := nat(nil).sub(x.abs, natOne) 781 return t.bit(uint(i)) ^ 1 782 } 783 784 return x.abs.bit(uint(i)) 785 } 786 787 // SetBit sets z to x, with x's i'th bit set to b (0 or 1). 788 // That is, if b is 1 SetBit sets z = x | (1 << i); 789 // if b is 0 SetBit sets z = x &^ (1 << i). If b is not 0 or 1, 790 // SetBit will panic. 791 func (z *Int) SetBit(x *Int, i int, b uint) *Int { 792 if i < 0 { 793 panic("negative bit index") 794 } 795 if x.neg { 796 t := z.abs.sub(x.abs, natOne) 797 t = t.setBit(t, uint(i), b^1) 798 z.abs = t.add(t, natOne) 799 z.neg = len(z.abs) > 0 800 return z 801 } 802 z.abs = z.abs.setBit(x.abs, uint(i), b) 803 z.neg = false 804 return z 805 } 806 807 // And sets z = x & y and returns z. 808 func (z *Int) And(x, y *Int) *Int { 809 if x.neg == y.neg { 810 if x.neg { 811 // (-x) & (-y) == ^(x-1) & ^(y-1) == ^((x-1) | (y-1)) == -(((x-1) | (y-1)) + 1) 812 x1 := nat(nil).sub(x.abs, natOne) 813 y1 := nat(nil).sub(y.abs, natOne) 814 z.abs = z.abs.add(z.abs.or(x1, y1), natOne) 815 z.neg = true // z cannot be zero if x and y are negative 816 return z 817 } 818 819 // x & y == x & y 820 z.abs = z.abs.and(x.abs, y.abs) 821 z.neg = false 822 return z 823 } 824 825 // x.neg != y.neg 826 if x.neg { 827 x, y = y, x // & is symmetric 828 } 829 830 // x & (-y) == x & ^(y-1) == x &^ (y-1) 831 y1 := nat(nil).sub(y.abs, natOne) 832 z.abs = z.abs.andNot(x.abs, y1) 833 z.neg = false 834 return z 835 } 836 837 // AndNot sets z = x &^ y and returns z. 838 func (z *Int) AndNot(x, y *Int) *Int { 839 if x.neg == y.neg { 840 if x.neg { 841 // (-x) &^ (-y) == ^(x-1) &^ ^(y-1) == ^(x-1) & (y-1) == (y-1) &^ (x-1) 842 x1 := nat(nil).sub(x.abs, natOne) 843 y1 := nat(nil).sub(y.abs, natOne) 844 z.abs = z.abs.andNot(y1, x1) 845 z.neg = false 846 return z 847 } 848 849 // x &^ y == x &^ y 850 z.abs = z.abs.andNot(x.abs, y.abs) 851 z.neg = false 852 return z 853 } 854 855 if x.neg { 856 // (-x) &^ y == ^(x-1) &^ y == ^(x-1) & ^y == ^((x-1) | y) == -(((x-1) | y) + 1) 857 x1 := nat(nil).sub(x.abs, natOne) 858 z.abs = z.abs.add(z.abs.or(x1, y.abs), natOne) 859 z.neg = true // z cannot be zero if x is negative and y is positive 860 return z 861 } 862 863 // x &^ (-y) == x &^ ^(y-1) == x & (y-1) 864 y1 := nat(nil).sub(y.abs, natOne) 865 z.abs = z.abs.and(x.abs, y1) 866 z.neg = false 867 return z 868 } 869 870 // Or sets z = x | y and returns z. 871 func (z *Int) Or(x, y *Int) *Int { 872 if x.neg == y.neg { 873 if x.neg { 874 // (-x) | (-y) == ^(x-1) | ^(y-1) == ^((x-1) & (y-1)) == -(((x-1) & (y-1)) + 1) 875 x1 := nat(nil).sub(x.abs, natOne) 876 y1 := nat(nil).sub(y.abs, natOne) 877 z.abs = z.abs.add(z.abs.and(x1, y1), natOne) 878 z.neg = true // z cannot be zero if x and y are negative 879 return z 880 } 881 882 // x | y == x | y 883 z.abs = z.abs.or(x.abs, y.abs) 884 z.neg = false 885 return z 886 } 887 888 // x.neg != y.neg 889 if x.neg { 890 x, y = y, x // | is symmetric 891 } 892 893 // x | (-y) == x | ^(y-1) == ^((y-1) &^ x) == -(^((y-1) &^ x) + 1) 894 y1 := nat(nil).sub(y.abs, natOne) 895 z.abs = z.abs.add(z.abs.andNot(y1, x.abs), natOne) 896 z.neg = true // z cannot be zero if one of x or y is negative 897 return z 898 } 899 900 // Xor sets z = x ^ y and returns z. 901 func (z *Int) Xor(x, y *Int) *Int { 902 if x.neg == y.neg { 903 if x.neg { 904 // (-x) ^ (-y) == ^(x-1) ^ ^(y-1) == (x-1) ^ (y-1) 905 x1 := nat(nil).sub(x.abs, natOne) 906 y1 := nat(nil).sub(y.abs, natOne) 907 z.abs = z.abs.xor(x1, y1) 908 z.neg = false 909 return z 910 } 911 912 // x ^ y == x ^ y 913 z.abs = z.abs.xor(x.abs, y.abs) 914 z.neg = false 915 return z 916 } 917 918 // x.neg != y.neg 919 if x.neg { 920 x, y = y, x // ^ is symmetric 921 } 922 923 // x ^ (-y) == x ^ ^(y-1) == ^(x ^ (y-1)) == -((x ^ (y-1)) + 1) 924 y1 := nat(nil).sub(y.abs, natOne) 925 z.abs = z.abs.add(z.abs.xor(x.abs, y1), natOne) 926 z.neg = true // z cannot be zero if only one of x or y is negative 927 return z 928 } 929 930 // Not sets z = ^x and returns z. 931 func (z *Int) Not(x *Int) *Int { 932 if x.neg { 933 // ^(-x) == ^(^(x-1)) == x-1 934 z.abs = z.abs.sub(x.abs, natOne) 935 z.neg = false 936 return z 937 } 938 939 // ^x == -x-1 == -(x+1) 940 z.abs = z.abs.add(x.abs, natOne) 941 z.neg = true // z cannot be zero if x is positive 942 return z 943 } 944 945 // Sqrt sets z to ⌊√x⌋, the largest integer such that z² ≤ x, and returns z. 946 // It panics if x is negative. 947 func (z *Int) Sqrt(x *Int) *Int { 948 if x.neg { 949 panic("square root of negative number") 950 } 951 z.neg = false 952 z.abs = z.abs.sqrt(x.abs) 953 return z 954 }