github.com/flyinox/gosm@v0.0.0-20171117061539-16768cb62077/src/math/big/nat.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // This file implements unsigned multi-precision integers (natural
     6  // numbers). They are the building blocks for the implementation
     7  // of signed integers, rationals, and floating-point numbers.
     8  
     9  package big
    10  
    11  import (
    12  	"math/bits"
    13  	"math/rand"
    14  	"sync"
    15  )
    16  
    17  // An unsigned integer x of the form
    18  //
    19  //   x = x[n-1]*_B^(n-1) + x[n-2]*_B^(n-2) + ... + x[1]*_B + x[0]
    20  //
    21  // with 0 <= x[i] < _B and 0 <= i < n is stored in a slice of length n,
    22  // with the digits x[i] as the slice elements.
    23  //
    24  // A number is normalized if the slice contains no leading 0 digits.
    25  // During arithmetic operations, denormalized values may occur but are
    26  // always normalized before returning the final result. The normalized
    27  // representation of 0 is the empty or nil slice (length = 0).
    28  //
    29  type nat []Word
    30  
    31  var (
    32  	natOne = nat{1}
    33  	natTwo = nat{2}
    34  	natTen = nat{10}
    35  )
    36  
    37  func (z nat) clear() {
    38  	for i := range z {
    39  		z[i] = 0
    40  	}
    41  }
    42  
    43  func (z nat) norm() nat {
    44  	i := len(z)
    45  	for i > 0 && z[i-1] == 0 {
    46  		i--
    47  	}
    48  	return z[0:i]
    49  }
    50  
    51  func (z nat) make(n int) nat {
    52  	if n <= cap(z) {
    53  		return z[:n] // reuse z
    54  	}
    55  	// Choosing a good value for e has significant performance impact
    56  	// because it increases the chance that a value can be reused.
    57  	const e = 4 // extra capacity
    58  	return make(nat, n, n+e)
    59  }
    60  
    61  func (z nat) setWord(x Word) nat {
    62  	if x == 0 {
    63  		return z[:0]
    64  	}
    65  	z = z.make(1)
    66  	z[0] = x
    67  	return z
    68  }
    69  
    70  func (z nat) setUint64(x uint64) nat {
    71  	// single-word value
    72  	if w := Word(x); uint64(w) == x {
    73  		return z.setWord(w)
    74  	}
    75  	// 2-word value
    76  	z = z.make(2)
    77  	z[1] = Word(x >> 32)
    78  	z[0] = Word(x)
    79  	return z
    80  }
    81  
    82  func (z nat) set(x nat) nat {
    83  	z = z.make(len(x))
    84  	copy(z, x)
    85  	return z
    86  }
    87  
    88  func (z nat) add(x, y nat) nat {
    89  	m := len(x)
    90  	n := len(y)
    91  
    92  	switch {
    93  	case m < n:
    94  		return z.add(y, x)
    95  	case m == 0:
    96  		// n == 0 because m >= n; result is 0
    97  		return z[:0]
    98  	case n == 0:
    99  		// result is x
   100  		return z.set(x)
   101  	}
   102  	// m > 0
   103  
   104  	z = z.make(m + 1)
   105  	c := addVV(z[0:n], x, y)
   106  	if m > n {
   107  		c = addVW(z[n:m], x[n:], c)
   108  	}
   109  	z[m] = c
   110  
   111  	return z.norm()
   112  }
   113  
   114  func (z nat) sub(x, y nat) nat {
   115  	m := len(x)
   116  	n := len(y)
   117  
   118  	switch {
   119  	case m < n:
   120  		panic("underflow")
   121  	case m == 0:
   122  		// n == 0 because m >= n; result is 0
   123  		return z[:0]
   124  	case n == 0:
   125  		// result is x
   126  		return z.set(x)
   127  	}
   128  	// m > 0
   129  
   130  	z = z.make(m)
   131  	c := subVV(z[0:n], x, y)
   132  	if m > n {
   133  		c = subVW(z[n:], x[n:], c)
   134  	}
   135  	if c != 0 {
   136  		panic("underflow")
   137  	}
   138  
   139  	return z.norm()
   140  }
   141  
   142  func (x nat) cmp(y nat) (r int) {
   143  	m := len(x)
   144  	n := len(y)
   145  	if m != n || m == 0 {
   146  		switch {
   147  		case m < n:
   148  			r = -1
   149  		case m > n:
   150  			r = 1
   151  		}
   152  		return
   153  	}
   154  
   155  	i := m - 1
   156  	for i > 0 && x[i] == y[i] {
   157  		i--
   158  	}
   159  
   160  	switch {
   161  	case x[i] < y[i]:
   162  		r = -1
   163  	case x[i] > y[i]:
   164  		r = 1
   165  	}
   166  	return
   167  }
   168  
   169  func (z nat) mulAddWW(x nat, y, r Word) nat {
   170  	m := len(x)
   171  	if m == 0 || y == 0 {
   172  		return z.setWord(r) // result is r
   173  	}
   174  	// m > 0
   175  
   176  	z = z.make(m + 1)
   177  	z[m] = mulAddVWW(z[0:m], x, y, r)
   178  
   179  	return z.norm()
   180  }
   181  
   182  // basicMul multiplies x and y and leaves the result in z.
   183  // The (non-normalized) result is placed in z[0 : len(x) + len(y)].
   184  func basicMul(z, x, y nat) {
   185  	z[0 : len(x)+len(y)].clear() // initialize z
   186  	for i, d := range y {
   187  		if d != 0 {
   188  			z[len(x)+i] = addMulVVW(z[i:i+len(x)], x, d)
   189  		}
   190  	}
   191  }
   192  
   193  // montgomery computes z mod m = x*y*2**(-n*_W) mod m,
   194  // assuming k = -1/m mod 2**_W.
   195  // z is used for storing the result which is returned;
   196  // z must not alias x, y or m.
   197  // See Gueron, "Efficient Software Implementations of Modular Exponentiation".
   198  // https://eprint.iacr.org/2011/239.pdf
   199  // In the terminology of that paper, this is an "Almost Montgomery Multiplication":
   200  // x and y are required to satisfy 0 <= z < 2**(n*_W) and then the result
   201  // z is guaranteed to satisfy 0 <= z < 2**(n*_W), but it may not be < m.
   202  func (z nat) montgomery(x, y, m nat, k Word, n int) nat {
   203  	// This code assumes x, y, m are all the same length, n.
   204  	// (required by addMulVVW and the for loop).
   205  	// It also assumes that x, y are already reduced mod m,
   206  	// or else the result will not be properly reduced.
   207  	if len(x) != n || len(y) != n || len(m) != n {
   208  		panic("math/big: mismatched montgomery number lengths")
   209  	}
   210  	z = z.make(n)
   211  	z.clear()
   212  	var c Word
   213  	for i := 0; i < n; i++ {
   214  		d := y[i]
   215  		c2 := addMulVVW(z, x, d)
   216  		t := z[0] * k
   217  		c3 := addMulVVW(z, m, t)
   218  		copy(z, z[1:])
   219  		cx := c + c2
   220  		cy := cx + c3
   221  		z[n-1] = cy
   222  		if cx < c2 || cy < c3 {
   223  			c = 1
   224  		} else {
   225  			c = 0
   226  		}
   227  	}
   228  	if c != 0 {
   229  		subVV(z, z, m)
   230  	}
   231  	return z
   232  }
   233  
   234  // Fast version of z[0:n+n>>1].add(z[0:n+n>>1], x[0:n]) w/o bounds checks.
   235  // Factored out for readability - do not use outside karatsuba.
   236  func karatsubaAdd(z, x nat, n int) {
   237  	if c := addVV(z[0:n], z, x); c != 0 {
   238  		addVW(z[n:n+n>>1], z[n:], c)
   239  	}
   240  }
   241  
   242  // Like karatsubaAdd, but does subtract.
   243  func karatsubaSub(z, x nat, n int) {
   244  	if c := subVV(z[0:n], z, x); c != 0 {
   245  		subVW(z[n:n+n>>1], z[n:], c)
   246  	}
   247  }
   248  
   249  // Operands that are shorter than karatsubaThreshold are multiplied using
   250  // "grade school" multiplication; for longer operands the Karatsuba algorithm
   251  // is used.
   252  var karatsubaThreshold int = 40 // computed by calibrate.go
   253  
   254  // karatsuba multiplies x and y and leaves the result in z.
   255  // Both x and y must have the same length n and n must be a
   256  // power of 2. The result vector z must have len(z) >= 6*n.
   257  // The (non-normalized) result is placed in z[0 : 2*n].
   258  func karatsuba(z, x, y nat) {
   259  	n := len(y)
   260  
   261  	// Switch to basic multiplication if numbers are odd or small.
   262  	// (n is always even if karatsubaThreshold is even, but be
   263  	// conservative)
   264  	if n&1 != 0 || n < karatsubaThreshold || n < 2 {
   265  		basicMul(z, x, y)
   266  		return
   267  	}
   268  	// n&1 == 0 && n >= karatsubaThreshold && n >= 2
   269  
   270  	// Karatsuba multiplication is based on the observation that
   271  	// for two numbers x and y with:
   272  	//
   273  	//   x = x1*b + x0
   274  	//   y = y1*b + y0
   275  	//
   276  	// the product x*y can be obtained with 3 products z2, z1, z0
   277  	// instead of 4:
   278  	//
   279  	//   x*y = x1*y1*b*b + (x1*y0 + x0*y1)*b + x0*y0
   280  	//       =    z2*b*b +              z1*b +    z0
   281  	//
   282  	// with:
   283  	//
   284  	//   xd = x1 - x0
   285  	//   yd = y0 - y1
   286  	//
   287  	//   z1 =      xd*yd                    + z2 + z0
   288  	//      = (x1-x0)*(y0 - y1)             + z2 + z0
   289  	//      = x1*y0 - x1*y1 - x0*y0 + x0*y1 + z2 + z0
   290  	//      = x1*y0 -    z2 -    z0 + x0*y1 + z2 + z0
   291  	//      = x1*y0                 + x0*y1
   292  
   293  	// split x, y into "digits"
   294  	n2 := n >> 1              // n2 >= 1
   295  	x1, x0 := x[n2:], x[0:n2] // x = x1*b + y0
   296  	y1, y0 := y[n2:], y[0:n2] // y = y1*b + y0
   297  
   298  	// z is used for the result and temporary storage:
   299  	//
   300  	//   6*n     5*n     4*n     3*n     2*n     1*n     0*n
   301  	// z = [z2 copy|z0 copy| xd*yd | yd:xd | x1*y1 | x0*y0 ]
   302  	//
   303  	// For each recursive call of karatsuba, an unused slice of
   304  	// z is passed in that has (at least) half the length of the
   305  	// caller's z.
   306  
   307  	// compute z0 and z2 with the result "in place" in z
   308  	karatsuba(z, x0, y0)     // z0 = x0*y0
   309  	karatsuba(z[n:], x1, y1) // z2 = x1*y1
   310  
   311  	// compute xd (or the negative value if underflow occurs)
   312  	s := 1 // sign of product xd*yd
   313  	xd := z[2*n : 2*n+n2]
   314  	if subVV(xd, x1, x0) != 0 { // x1-x0
   315  		s = -s
   316  		subVV(xd, x0, x1) // x0-x1
   317  	}
   318  
   319  	// compute yd (or the negative value if underflow occurs)
   320  	yd := z[2*n+n2 : 3*n]
   321  	if subVV(yd, y0, y1) != 0 { // y0-y1
   322  		s = -s
   323  		subVV(yd, y1, y0) // y1-y0
   324  	}
   325  
   326  	// p = (x1-x0)*(y0-y1) == x1*y0 - x1*y1 - x0*y0 + x0*y1 for s > 0
   327  	// p = (x0-x1)*(y0-y1) == x0*y0 - x0*y1 - x1*y0 + x1*y1 for s < 0
   328  	p := z[n*3:]
   329  	karatsuba(p, xd, yd)
   330  
   331  	// save original z2:z0
   332  	// (ok to use upper half of z since we're done recursing)
   333  	r := z[n*4:]
   334  	copy(r, z[:n*2])
   335  
   336  	// add up all partial products
   337  	//
   338  	//   2*n     n     0
   339  	// z = [ z2  | z0  ]
   340  	//   +    [ z0  ]
   341  	//   +    [ z2  ]
   342  	//   +    [  p  ]
   343  	//
   344  	karatsubaAdd(z[n2:], r, n)
   345  	karatsubaAdd(z[n2:], r[n:], n)
   346  	if s > 0 {
   347  		karatsubaAdd(z[n2:], p, n)
   348  	} else {
   349  		karatsubaSub(z[n2:], p, n)
   350  	}
   351  }
   352  
   353  // alias reports whether x and y share the same base array.
   354  func alias(x, y nat) bool {
   355  	return cap(x) > 0 && cap(y) > 0 && &x[0:cap(x)][cap(x)-1] == &y[0:cap(y)][cap(y)-1]
   356  }
   357  
   358  // addAt implements z += x<<(_W*i); z must be long enough.
   359  // (we don't use nat.add because we need z to stay the same
   360  // slice, and we don't need to normalize z after each addition)
   361  func addAt(z, x nat, i int) {
   362  	if n := len(x); n > 0 {
   363  		if c := addVV(z[i:i+n], z[i:], x); c != 0 {
   364  			j := i + n
   365  			if j < len(z) {
   366  				addVW(z[j:], z[j:], c)
   367  			}
   368  		}
   369  	}
   370  }
   371  
   372  func max(x, y int) int {
   373  	if x > y {
   374  		return x
   375  	}
   376  	return y
   377  }
   378  
   379  // karatsubaLen computes an approximation to the maximum k <= n such that
   380  // k = p<<i for a number p <= karatsubaThreshold and an i >= 0. Thus, the
   381  // result is the largest number that can be divided repeatedly by 2 before
   382  // becoming about the value of karatsubaThreshold.
   383  func karatsubaLen(n int) int {
   384  	i := uint(0)
   385  	for n > karatsubaThreshold {
   386  		n >>= 1
   387  		i++
   388  	}
   389  	return n << i
   390  }
   391  
   392  func (z nat) mul(x, y nat) nat {
   393  	m := len(x)
   394  	n := len(y)
   395  
   396  	switch {
   397  	case m < n:
   398  		return z.mul(y, x)
   399  	case m == 0 || n == 0:
   400  		return z[:0]
   401  	case n == 1:
   402  		return z.mulAddWW(x, y[0], 0)
   403  	}
   404  	// m >= n > 1
   405  
   406  	// determine if z can be reused
   407  	if alias(z, x) || alias(z, y) {
   408  		z = nil // z is an alias for x or y - cannot reuse
   409  	}
   410  
   411  	// use basic multiplication if the numbers are small
   412  	if n < karatsubaThreshold {
   413  		z = z.make(m + n)
   414  		basicMul(z, x, y)
   415  		return z.norm()
   416  	}
   417  	// m >= n && n >= karatsubaThreshold && n >= 2
   418  
   419  	// determine Karatsuba length k such that
   420  	//
   421  	//   x = xh*b + x0  (0 <= x0 < b)
   422  	//   y = yh*b + y0  (0 <= y0 < b)
   423  	//   b = 1<<(_W*k)  ("base" of digits xi, yi)
   424  	//
   425  	k := karatsubaLen(n)
   426  	// k <= n
   427  
   428  	// multiply x0 and y0 via Karatsuba
   429  	x0 := x[0:k]              // x0 is not normalized
   430  	y0 := y[0:k]              // y0 is not normalized
   431  	z = z.make(max(6*k, m+n)) // enough space for karatsuba of x0*y0 and full result of x*y
   432  	karatsuba(z, x0, y0)
   433  	z = z[0 : m+n]  // z has final length but may be incomplete
   434  	z[2*k:].clear() // upper portion of z is garbage (and 2*k <= m+n since k <= n <= m)
   435  
   436  	// If xh != 0 or yh != 0, add the missing terms to z. For
   437  	//
   438  	//   xh = xi*b^i + ... + x2*b^2 + x1*b (0 <= xi < b)
   439  	//   yh =                         y1*b (0 <= y1 < b)
   440  	//
   441  	// the missing terms are
   442  	//
   443  	//   x0*y1*b and xi*y0*b^i, xi*y1*b^(i+1) for i > 0
   444  	//
   445  	// since all the yi for i > 1 are 0 by choice of k: If any of them
   446  	// were > 0, then yh >= b^2 and thus y >= b^2. Then k' = k*2 would
   447  	// be a larger valid threshold contradicting the assumption about k.
   448  	//
   449  	if k < n || m != n {
   450  		var t nat
   451  
   452  		// add x0*y1*b
   453  		x0 := x0.norm()
   454  		y1 := y[k:]       // y1 is normalized because y is
   455  		t = t.mul(x0, y1) // update t so we don't lose t's underlying array
   456  		addAt(z, t, k)
   457  
   458  		// add xi*y0<<i, xi*y1*b<<(i+k)
   459  		y0 := y0.norm()
   460  		for i := k; i < len(x); i += k {
   461  			xi := x[i:]
   462  			if len(xi) > k {
   463  				xi = xi[:k]
   464  			}
   465  			xi = xi.norm()
   466  			t = t.mul(xi, y0)
   467  			addAt(z, t, i)
   468  			t = t.mul(xi, y1)
   469  			addAt(z, t, i+k)
   470  		}
   471  	}
   472  
   473  	return z.norm()
   474  }
   475  
   476  // mulRange computes the product of all the unsigned integers in the
   477  // range [a, b] inclusively. If a > b (empty range), the result is 1.
   478  func (z nat) mulRange(a, b uint64) nat {
   479  	switch {
   480  	case a == 0:
   481  		// cut long ranges short (optimization)
   482  		return z.setUint64(0)
   483  	case a > b:
   484  		return z.setUint64(1)
   485  	case a == b:
   486  		return z.setUint64(a)
   487  	case a+1 == b:
   488  		return z.mul(nat(nil).setUint64(a), nat(nil).setUint64(b))
   489  	}
   490  	m := (a + b) / 2
   491  	return z.mul(nat(nil).mulRange(a, m), nat(nil).mulRange(m+1, b))
   492  }
   493  
   494  // q = (x-r)/y, with 0 <= r < y
   495  func (z nat) divW(x nat, y Word) (q nat, r Word) {
   496  	m := len(x)
   497  	switch {
   498  	case y == 0:
   499  		panic("division by zero")
   500  	case y == 1:
   501  		q = z.set(x) // result is x
   502  		return
   503  	case m == 0:
   504  		q = z[:0] // result is 0
   505  		return
   506  	}
   507  	// m > 0
   508  	z = z.make(m)
   509  	r = divWVW(z, 0, x, y)
   510  	q = z.norm()
   511  	return
   512  }
   513  
   514  func (z nat) div(z2, u, v nat) (q, r nat) {
   515  	if len(v) == 0 {
   516  		panic("division by zero")
   517  	}
   518  
   519  	if u.cmp(v) < 0 {
   520  		q = z[:0]
   521  		r = z2.set(u)
   522  		return
   523  	}
   524  
   525  	if len(v) == 1 {
   526  		var r2 Word
   527  		q, r2 = z.divW(u, v[0])
   528  		r = z2.setWord(r2)
   529  		return
   530  	}
   531  
   532  	q, r = z.divLarge(z2, u, v)
   533  	return
   534  }
   535  
   536  // getNat returns a *nat of len n. The contents may not be zero.
   537  // The pool holds *nat to avoid allocation when converting to interface{}.
   538  func getNat(n int) *nat {
   539  	var z *nat
   540  	if v := natPool.Get(); v != nil {
   541  		z = v.(*nat)
   542  	}
   543  	if z == nil {
   544  		z = new(nat)
   545  	}
   546  	*z = z.make(n)
   547  	return z
   548  }
   549  
   550  func putNat(x *nat) {
   551  	natPool.Put(x)
   552  }
   553  
   554  var natPool sync.Pool
   555  
   556  // q = (uIn-r)/v, with 0 <= r < y
   557  // Uses z as storage for q, and u as storage for r if possible.
   558  // See Knuth, Volume 2, section 4.3.1, Algorithm D.
   559  // Preconditions:
   560  //    len(v) >= 2
   561  //    len(uIn) >= len(v)
   562  func (z nat) divLarge(u, uIn, v nat) (q, r nat) {
   563  	n := len(v)
   564  	m := len(uIn) - n
   565  
   566  	// determine if z can be reused
   567  	// TODO(gri) should find a better solution - this if statement
   568  	//           is very costly (see e.g. time pidigits -s -n 10000)
   569  	if alias(z, uIn) || alias(z, v) {
   570  		z = nil // z is an alias for uIn or v - cannot reuse
   571  	}
   572  	q = z.make(m + 1)
   573  
   574  	qhatvp := getNat(n + 1)
   575  	qhatv := *qhatvp
   576  	if alias(u, uIn) || alias(u, v) {
   577  		u = nil // u is an alias for uIn or v - cannot reuse
   578  	}
   579  	u = u.make(len(uIn) + 1)
   580  	u.clear() // TODO(gri) no need to clear if we allocated a new u
   581  
   582  	// D1.
   583  	var v1p *nat
   584  	shift := nlz(v[n-1])
   585  	if shift > 0 {
   586  		// do not modify v, it may be used by another goroutine simultaneously
   587  		v1p = getNat(n)
   588  		v1 := *v1p
   589  		shlVU(v1, v, shift)
   590  		v = v1
   591  	}
   592  	u[len(uIn)] = shlVU(u[0:len(uIn)], uIn, shift)
   593  
   594  	// D2.
   595  	vn1 := v[n-1]
   596  	for j := m; j >= 0; j-- {
   597  		// D3.
   598  		qhat := Word(_M)
   599  		if ujn := u[j+n]; ujn != vn1 {
   600  			var rhat Word
   601  			qhat, rhat = divWW(ujn, u[j+n-1], vn1)
   602  
   603  			// x1 | x2 = q̂v_{n-2}
   604  			vn2 := v[n-2]
   605  			x1, x2 := mulWW(qhat, vn2)
   606  			// test if q̂v_{n-2} > br̂ + u_{j+n-2}
   607  			ujn2 := u[j+n-2]
   608  			for greaterThan(x1, x2, rhat, ujn2) {
   609  				qhat--
   610  				prevRhat := rhat
   611  				rhat += vn1
   612  				// v[n-1] >= 0, so this tests for overflow.
   613  				if rhat < prevRhat {
   614  					break
   615  				}
   616  				x1, x2 = mulWW(qhat, vn2)
   617  			}
   618  		}
   619  
   620  		// D4.
   621  		qhatv[n] = mulAddVWW(qhatv[0:n], v, qhat, 0)
   622  
   623  		c := subVV(u[j:j+len(qhatv)], u[j:], qhatv)
   624  		if c != 0 {
   625  			c := addVV(u[j:j+n], u[j:], v)
   626  			u[j+n] += c
   627  			qhat--
   628  		}
   629  
   630  		q[j] = qhat
   631  	}
   632  	if v1p != nil {
   633  		putNat(v1p)
   634  	}
   635  	putNat(qhatvp)
   636  
   637  	q = q.norm()
   638  	shrVU(u, u, shift)
   639  	r = u.norm()
   640  
   641  	return q, r
   642  }
   643  
   644  // Length of x in bits. x must be normalized.
   645  func (x nat) bitLen() int {
   646  	if i := len(x) - 1; i >= 0 {
   647  		return i*_W + bits.Len(uint(x[i]))
   648  	}
   649  	return 0
   650  }
   651  
   652  // trailingZeroBits returns the number of consecutive least significant zero
   653  // bits of x.
   654  func (x nat) trailingZeroBits() uint {
   655  	if len(x) == 0 {
   656  		return 0
   657  	}
   658  	var i uint
   659  	for x[i] == 0 {
   660  		i++
   661  	}
   662  	// x[i] != 0
   663  	return i*_W + uint(bits.TrailingZeros(uint(x[i])))
   664  }
   665  
   666  // z = x << s
   667  func (z nat) shl(x nat, s uint) nat {
   668  	m := len(x)
   669  	if m == 0 {
   670  		return z[:0]
   671  	}
   672  	// m > 0
   673  
   674  	n := m + int(s/_W)
   675  	z = z.make(n + 1)
   676  	z[n] = shlVU(z[n-m:n], x, s%_W)
   677  	z[0 : n-m].clear()
   678  
   679  	return z.norm()
   680  }
   681  
   682  // z = x >> s
   683  func (z nat) shr(x nat, s uint) nat {
   684  	m := len(x)
   685  	n := m - int(s/_W)
   686  	if n <= 0 {
   687  		return z[:0]
   688  	}
   689  	// n > 0
   690  
   691  	z = z.make(n)
   692  	shrVU(z, x[m-n:], s%_W)
   693  
   694  	return z.norm()
   695  }
   696  
   697  func (z nat) setBit(x nat, i uint, b uint) nat {
   698  	j := int(i / _W)
   699  	m := Word(1) << (i % _W)
   700  	n := len(x)
   701  	switch b {
   702  	case 0:
   703  		z = z.make(n)
   704  		copy(z, x)
   705  		if j >= n {
   706  			// no need to grow
   707  			return z
   708  		}
   709  		z[j] &^= m
   710  		return z.norm()
   711  	case 1:
   712  		if j >= n {
   713  			z = z.make(j + 1)
   714  			z[n:].clear()
   715  		} else {
   716  			z = z.make(n)
   717  		}
   718  		copy(z, x)
   719  		z[j] |= m
   720  		// no need to normalize
   721  		return z
   722  	}
   723  	panic("set bit is not 0 or 1")
   724  }
   725  
   726  // bit returns the value of the i'th bit, with lsb == bit 0.
   727  func (x nat) bit(i uint) uint {
   728  	j := i / _W
   729  	if j >= uint(len(x)) {
   730  		return 0
   731  	}
   732  	// 0 <= j < len(x)
   733  	return uint(x[j] >> (i % _W) & 1)
   734  }
   735  
   736  // sticky returns 1 if there's a 1 bit within the
   737  // i least significant bits, otherwise it returns 0.
   738  func (x nat) sticky(i uint) uint {
   739  	j := i / _W
   740  	if j >= uint(len(x)) {
   741  		if len(x) == 0 {
   742  			return 0
   743  		}
   744  		return 1
   745  	}
   746  	// 0 <= j < len(x)
   747  	for _, x := range x[:j] {
   748  		if x != 0 {
   749  			return 1
   750  		}
   751  	}
   752  	if x[j]<<(_W-i%_W) != 0 {
   753  		return 1
   754  	}
   755  	return 0
   756  }
   757  
   758  func (z nat) and(x, y nat) nat {
   759  	m := len(x)
   760  	n := len(y)
   761  	if m > n {
   762  		m = n
   763  	}
   764  	// m <= n
   765  
   766  	z = z.make(m)
   767  	for i := 0; i < m; i++ {
   768  		z[i] = x[i] & y[i]
   769  	}
   770  
   771  	return z.norm()
   772  }
   773  
   774  func (z nat) andNot(x, y nat) nat {
   775  	m := len(x)
   776  	n := len(y)
   777  	if n > m {
   778  		n = m
   779  	}
   780  	// m >= n
   781  
   782  	z = z.make(m)
   783  	for i := 0; i < n; i++ {
   784  		z[i] = x[i] &^ y[i]
   785  	}
   786  	copy(z[n:m], x[n:m])
   787  
   788  	return z.norm()
   789  }
   790  
   791  func (z nat) or(x, y nat) nat {
   792  	m := len(x)
   793  	n := len(y)
   794  	s := x
   795  	if m < n {
   796  		n, m = m, n
   797  		s = y
   798  	}
   799  	// m >= n
   800  
   801  	z = z.make(m)
   802  	for i := 0; i < n; i++ {
   803  		z[i] = x[i] | y[i]
   804  	}
   805  	copy(z[n:m], s[n:m])
   806  
   807  	return z.norm()
   808  }
   809  
   810  func (z nat) xor(x, y nat) nat {
   811  	m := len(x)
   812  	n := len(y)
   813  	s := x
   814  	if m < n {
   815  		n, m = m, n
   816  		s = y
   817  	}
   818  	// m >= n
   819  
   820  	z = z.make(m)
   821  	for i := 0; i < n; i++ {
   822  		z[i] = x[i] ^ y[i]
   823  	}
   824  	copy(z[n:m], s[n:m])
   825  
   826  	return z.norm()
   827  }
   828  
   829  // greaterThan reports whether (x1<<_W + x2) > (y1<<_W + y2)
   830  func greaterThan(x1, x2, y1, y2 Word) bool {
   831  	return x1 > y1 || x1 == y1 && x2 > y2
   832  }
   833  
   834  // modW returns x % d.
   835  func (x nat) modW(d Word) (r Word) {
   836  	// TODO(agl): we don't actually need to store the q value.
   837  	var q nat
   838  	q = q.make(len(x))
   839  	return divWVW(q, 0, x, d)
   840  }
   841  
   842  // random creates a random integer in [0..limit), using the space in z if
   843  // possible. n is the bit length of limit.
   844  func (z nat) random(rand *rand.Rand, limit nat, n int) nat {
   845  	if alias(z, limit) {
   846  		z = nil // z is an alias for limit - cannot reuse
   847  	}
   848  	z = z.make(len(limit))
   849  
   850  	bitLengthOfMSW := uint(n % _W)
   851  	if bitLengthOfMSW == 0 {
   852  		bitLengthOfMSW = _W
   853  	}
   854  	mask := Word((1 << bitLengthOfMSW) - 1)
   855  
   856  	for {
   857  		switch _W {
   858  		case 32:
   859  			for i := range z {
   860  				z[i] = Word(rand.Uint32())
   861  			}
   862  		case 64:
   863  			for i := range z {
   864  				z[i] = Word(rand.Uint32()) | Word(rand.Uint32())<<32
   865  			}
   866  		default:
   867  			panic("unknown word size")
   868  		}
   869  		z[len(limit)-1] &= mask
   870  		if z.cmp(limit) < 0 {
   871  			break
   872  		}
   873  	}
   874  
   875  	return z.norm()
   876  }
   877  
   878  // If m != 0 (i.e., len(m) != 0), expNN sets z to x**y mod m;
   879  // otherwise it sets z to x**y. The result is the value of z.
   880  func (z nat) expNN(x, y, m nat) nat {
   881  	if alias(z, x) || alias(z, y) {
   882  		// We cannot allow in-place modification of x or y.
   883  		z = nil
   884  	}
   885  
   886  	// x**y mod 1 == 0
   887  	if len(m) == 1 && m[0] == 1 {
   888  		return z.setWord(0)
   889  	}
   890  	// m == 0 || m > 1
   891  
   892  	// x**0 == 1
   893  	if len(y) == 0 {
   894  		return z.setWord(1)
   895  	}
   896  	// y > 0
   897  
   898  	// x**1 mod m == x mod m
   899  	if len(y) == 1 && y[0] == 1 && len(m) != 0 {
   900  		_, z = z.div(z, x, m)
   901  		return z
   902  	}
   903  	// y > 1
   904  
   905  	if len(m) != 0 {
   906  		// We likely end up being as long as the modulus.
   907  		z = z.make(len(m))
   908  	}
   909  	z = z.set(x)
   910  
   911  	// If the base is non-trivial and the exponent is large, we use
   912  	// 4-bit, windowed exponentiation. This involves precomputing 14 values
   913  	// (x^2...x^15) but then reduces the number of multiply-reduces by a
   914  	// third. Even for a 32-bit exponent, this reduces the number of
   915  	// operations. Uses Montgomery method for odd moduli.
   916  	if x.cmp(natOne) > 0 && len(y) > 1 && len(m) > 0 {
   917  		if m[0]&1 == 1 {
   918  			return z.expNNMontgomery(x, y, m)
   919  		}
   920  		return z.expNNWindowed(x, y, m)
   921  	}
   922  
   923  	v := y[len(y)-1] // v > 0 because y is normalized and y > 0
   924  	shift := nlz(v) + 1
   925  	v <<= shift
   926  	var q nat
   927  
   928  	const mask = 1 << (_W - 1)
   929  
   930  	// We walk through the bits of the exponent one by one. Each time we
   931  	// see a bit, we square, thus doubling the power. If the bit is a one,
   932  	// we also multiply by x, thus adding one to the power.
   933  
   934  	w := _W - int(shift)
   935  	// zz and r are used to avoid allocating in mul and div as
   936  	// otherwise the arguments would alias.
   937  	var zz, r nat
   938  	for j := 0; j < w; j++ {
   939  		zz = zz.mul(z, z)
   940  		zz, z = z, zz
   941  
   942  		if v&mask != 0 {
   943  			zz = zz.mul(z, x)
   944  			zz, z = z, zz
   945  		}
   946  
   947  		if len(m) != 0 {
   948  			zz, r = zz.div(r, z, m)
   949  			zz, r, q, z = q, z, zz, r
   950  		}
   951  
   952  		v <<= 1
   953  	}
   954  
   955  	for i := len(y) - 2; i >= 0; i-- {
   956  		v = y[i]
   957  
   958  		for j := 0; j < _W; j++ {
   959  			zz = zz.mul(z, z)
   960  			zz, z = z, zz
   961  
   962  			if v&mask != 0 {
   963  				zz = zz.mul(z, x)
   964  				zz, z = z, zz
   965  			}
   966  
   967  			if len(m) != 0 {
   968  				zz, r = zz.div(r, z, m)
   969  				zz, r, q, z = q, z, zz, r
   970  			}
   971  
   972  			v <<= 1
   973  		}
   974  	}
   975  
   976  	return z.norm()
   977  }
   978  
   979  // expNNWindowed calculates x**y mod m using a fixed, 4-bit window.
   980  func (z nat) expNNWindowed(x, y, m nat) nat {
   981  	// zz and r are used to avoid allocating in mul and div as otherwise
   982  	// the arguments would alias.
   983  	var zz, r nat
   984  
   985  	const n = 4
   986  	// powers[i] contains x^i.
   987  	var powers [1 << n]nat
   988  	powers[0] = natOne
   989  	powers[1] = x
   990  	for i := 2; i < 1<<n; i += 2 {
   991  		p2, p, p1 := &powers[i/2], &powers[i], &powers[i+1]
   992  		*p = p.mul(*p2, *p2)
   993  		zz, r = zz.div(r, *p, m)
   994  		*p, r = r, *p
   995  		*p1 = p1.mul(*p, x)
   996  		zz, r = zz.div(r, *p1, m)
   997  		*p1, r = r, *p1
   998  	}
   999  
  1000  	z = z.setWord(1)
  1001  
  1002  	for i := len(y) - 1; i >= 0; i-- {
  1003  		yi := y[i]
  1004  		for j := 0; j < _W; j += n {
  1005  			if i != len(y)-1 || j != 0 {
  1006  				// Unrolled loop for significant performance
  1007  				// gain. Use go test -bench=".*" in crypto/rsa
  1008  				// to check performance before making changes.
  1009  				zz = zz.mul(z, z)
  1010  				zz, z = z, zz
  1011  				zz, r = zz.div(r, z, m)
  1012  				z, r = r, z
  1013  
  1014  				zz = zz.mul(z, z)
  1015  				zz, z = z, zz
  1016  				zz, r = zz.div(r, z, m)
  1017  				z, r = r, z
  1018  
  1019  				zz = zz.mul(z, z)
  1020  				zz, z = z, zz
  1021  				zz, r = zz.div(r, z, m)
  1022  				z, r = r, z
  1023  
  1024  				zz = zz.mul(z, z)
  1025  				zz, z = z, zz
  1026  				zz, r = zz.div(r, z, m)
  1027  				z, r = r, z
  1028  			}
  1029  
  1030  			zz = zz.mul(z, powers[yi>>(_W-n)])
  1031  			zz, z = z, zz
  1032  			zz, r = zz.div(r, z, m)
  1033  			z, r = r, z
  1034  
  1035  			yi <<= n
  1036  		}
  1037  	}
  1038  
  1039  	return z.norm()
  1040  }
  1041  
  1042  // expNNMontgomery calculates x**y mod m using a fixed, 4-bit window.
  1043  // Uses Montgomery representation.
  1044  func (z nat) expNNMontgomery(x, y, m nat) nat {
  1045  	numWords := len(m)
  1046  
  1047  	// We want the lengths of x and m to be equal.
  1048  	// It is OK if x >= m as long as len(x) == len(m).
  1049  	if len(x) > numWords {
  1050  		_, x = nat(nil).div(nil, x, m)
  1051  		// Note: now len(x) <= numWords, not guaranteed ==.
  1052  	}
  1053  	if len(x) < numWords {
  1054  		rr := make(nat, numWords)
  1055  		copy(rr, x)
  1056  		x = rr
  1057  	}
  1058  
  1059  	// Ideally the precomputations would be performed outside, and reused
  1060  	// k0 = -m**-1 mod 2**_W. Algorithm from: Dumas, J.G. "On Newton–Raphson
  1061  	// Iteration for Multiplicative Inverses Modulo Prime Powers".
  1062  	k0 := 2 - m[0]
  1063  	t := m[0] - 1
  1064  	for i := 1; i < _W; i <<= 1 {
  1065  		t *= t
  1066  		k0 *= (t + 1)
  1067  	}
  1068  	k0 = -k0
  1069  
  1070  	// RR = 2**(2*_W*len(m)) mod m
  1071  	RR := nat(nil).setWord(1)
  1072  	zz := nat(nil).shl(RR, uint(2*numWords*_W))
  1073  	_, RR = RR.div(RR, zz, m)
  1074  	if len(RR) < numWords {
  1075  		zz = zz.make(numWords)
  1076  		copy(zz, RR)
  1077  		RR = zz
  1078  	}
  1079  	// one = 1, with equal length to that of m
  1080  	one := make(nat, numWords)
  1081  	one[0] = 1
  1082  
  1083  	const n = 4
  1084  	// powers[i] contains x^i
  1085  	var powers [1 << n]nat
  1086  	powers[0] = powers[0].montgomery(one, RR, m, k0, numWords)
  1087  	powers[1] = powers[1].montgomery(x, RR, m, k0, numWords)
  1088  	for i := 2; i < 1<<n; i++ {
  1089  		powers[i] = powers[i].montgomery(powers[i-1], powers[1], m, k0, numWords)
  1090  	}
  1091  
  1092  	// initialize z = 1 (Montgomery 1)
  1093  	z = z.make(numWords)
  1094  	copy(z, powers[0])
  1095  
  1096  	zz = zz.make(numWords)
  1097  
  1098  	// same windowed exponent, but with Montgomery multiplications
  1099  	for i := len(y) - 1; i >= 0; i-- {
  1100  		yi := y[i]
  1101  		for j := 0; j < _W; j += n {
  1102  			if i != len(y)-1 || j != 0 {
  1103  				zz = zz.montgomery(z, z, m, k0, numWords)
  1104  				z = z.montgomery(zz, zz, m, k0, numWords)
  1105  				zz = zz.montgomery(z, z, m, k0, numWords)
  1106  				z = z.montgomery(zz, zz, m, k0, numWords)
  1107  			}
  1108  			zz = zz.montgomery(z, powers[yi>>(_W-n)], m, k0, numWords)
  1109  			z, zz = zz, z
  1110  			yi <<= n
  1111  		}
  1112  	}
  1113  	// convert to regular number
  1114  	zz = zz.montgomery(z, one, m, k0, numWords)
  1115  
  1116  	// One last reduction, just in case.
  1117  	// See golang.org/issue/13907.
  1118  	if zz.cmp(m) >= 0 {
  1119  		// Common case is m has high bit set; in that case,
  1120  		// since zz is the same length as m, there can be just
  1121  		// one multiple of m to remove. Just subtract.
  1122  		// We think that the subtract should be sufficient in general,
  1123  		// so do that unconditionally, but double-check,
  1124  		// in case our beliefs are wrong.
  1125  		// The div is not expected to be reached.
  1126  		zz = zz.sub(zz, m)
  1127  		if zz.cmp(m) >= 0 {
  1128  			_, zz = nat(nil).div(nil, zz, m)
  1129  		}
  1130  	}
  1131  
  1132  	return zz.norm()
  1133  }
  1134  
  1135  // bytes writes the value of z into buf using big-endian encoding.
  1136  // len(buf) must be >= len(z)*_S. The value of z is encoded in the
  1137  // slice buf[i:]. The number i of unused bytes at the beginning of
  1138  // buf is returned as result.
  1139  func (z nat) bytes(buf []byte) (i int) {
  1140  	i = len(buf)
  1141  	for _, d := range z {
  1142  		for j := 0; j < _S; j++ {
  1143  			i--
  1144  			buf[i] = byte(d)
  1145  			d >>= 8
  1146  		}
  1147  	}
  1148  
  1149  	for i < len(buf) && buf[i] == 0 {
  1150  		i++
  1151  	}
  1152  
  1153  	return
  1154  }
  1155  
  1156  // setBytes interprets buf as the bytes of a big-endian unsigned
  1157  // integer, sets z to that value, and returns z.
  1158  func (z nat) setBytes(buf []byte) nat {
  1159  	z = z.make((len(buf) + _S - 1) / _S)
  1160  
  1161  	k := 0
  1162  	s := uint(0)
  1163  	var d Word
  1164  	for i := len(buf); i > 0; i-- {
  1165  		d |= Word(buf[i-1]) << s
  1166  		if s += 8; s == _S*8 {
  1167  			z[k] = d
  1168  			k++
  1169  			s = 0
  1170  			d = 0
  1171  		}
  1172  	}
  1173  	if k < len(z) {
  1174  		z[k] = d
  1175  	}
  1176  
  1177  	return z.norm()
  1178  }
  1179  
  1180  // sqrt sets z = ⌊√x⌋
  1181  func (z nat) sqrt(x nat) nat {
  1182  	if x.cmp(natOne) <= 0 {
  1183  		return z.set(x)
  1184  	}
  1185  	if alias(z, x) {
  1186  		z = nil
  1187  	}
  1188  
  1189  	// Start with value known to be too large and repeat "z = ⌊(z + ⌊x/z⌋)/2⌋" until it stops getting smaller.
  1190  	// See Brent and Zimmermann, Modern Computer Arithmetic, Algorithm 1.13 (SqrtInt).
  1191  	// https://members.loria.fr/PZimmermann/mca/pub226.html
  1192  	// If x is one less than a perfect square, the sequence oscillates between the correct z and z+1;
  1193  	// otherwise it converges to the correct z and stays there.
  1194  	var z1, z2 nat
  1195  	z1 = z
  1196  	z1 = z1.setUint64(1)
  1197  	z1 = z1.shl(z1, uint(x.bitLen()/2+1)) // must be ≥ √x
  1198  	for n := 0; ; n++ {
  1199  		z2, _ = z2.div(nil, x, z1)
  1200  		z2 = z2.add(z2, z1)
  1201  		z2 = z2.shr(z2, 1)
  1202  		if z2.cmp(z1) >= 0 {
  1203  			// z1 is answer.
  1204  			// Figure out whether z1 or z2 is currently aliased to z by looking at loop count.
  1205  			if n&1 == 0 {
  1206  				return z1
  1207  			}
  1208  			return z.set(z1)
  1209  		}
  1210  		z1, z2 = z2, z1
  1211  	}
  1212  }