github.com/flyinox/gosm@v0.0.0-20171117061539-16768cb62077/src/runtime/mem_linux.go (about) 1 // Copyright 2010 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package runtime 6 7 import ( 8 "runtime/internal/sys" 9 "unsafe" 10 ) 11 12 const ( 13 _EACCES = 13 14 _EINVAL = 22 15 ) 16 17 // NOTE: vec must be just 1 byte long here. 18 // Mincore returns ENOMEM if any of the pages are unmapped, 19 // but we want to know that all of the pages are unmapped. 20 // To make these the same, we can only ask about one page 21 // at a time. See golang.org/issue/7476. 22 var addrspace_vec [1]byte 23 24 func addrspace_free(v unsafe.Pointer, n uintptr) bool { 25 for off := uintptr(0); off < n; off += physPageSize { 26 // Use a length of 1 byte, which the kernel will round 27 // up to one physical page regardless of the true 28 // physical page size. 29 errval := mincore(unsafe.Pointer(uintptr(v)+off), 1, &addrspace_vec[0]) 30 if errval == -_EINVAL { 31 // Address is not a multiple of the physical 32 // page size. Shouldn't happen, but just ignore it. 33 continue 34 } 35 // ENOMEM means unmapped, which is what we want. 36 // Anything else we assume means the pages are mapped. 37 if errval != -_ENOMEM { 38 return false 39 } 40 } 41 return true 42 } 43 44 func mmap_fixed(v unsafe.Pointer, n uintptr, prot, flags, fd int32, offset uint32) unsafe.Pointer { 45 p := mmap(v, n, prot, flags, fd, offset) 46 // On some systems, mmap ignores v without 47 // MAP_FIXED, so retry if the address space is free. 48 if p != v && addrspace_free(v, n) { 49 if uintptr(p) > 4096 { 50 munmap(p, n) 51 } 52 p = mmap(v, n, prot, flags|_MAP_FIXED, fd, offset) 53 } 54 return p 55 } 56 57 // Don't split the stack as this method may be invoked without a valid G, which 58 // prevents us from allocating more stack. 59 //go:nosplit 60 func sysAlloc(n uintptr, sysStat *uint64) unsafe.Pointer { 61 p := mmap(nil, n, _PROT_READ|_PROT_WRITE, _MAP_ANON|_MAP_PRIVATE, -1, 0) 62 if uintptr(p) < 4096 { 63 if uintptr(p) == _EACCES { 64 print("runtime: mmap: access denied\n") 65 exit(2) 66 } 67 if uintptr(p) == _EAGAIN { 68 print("runtime: mmap: too much locked memory (check 'ulimit -l').\n") 69 exit(2) 70 } 71 return nil 72 } 73 mSysStatInc(sysStat, n) 74 return p 75 } 76 77 func sysUnused(v unsafe.Pointer, n uintptr) { 78 // By default, Linux's "transparent huge page" support will 79 // merge pages into a huge page if there's even a single 80 // present regular page, undoing the effects of the DONTNEED 81 // below. On amd64, that means khugepaged can turn a single 82 // 4KB page to 2MB, bloating the process's RSS by as much as 83 // 512X. (See issue #8832 and Linux kernel bug 84 // https://bugzilla.kernel.org/show_bug.cgi?id=93111) 85 // 86 // To work around this, we explicitly disable transparent huge 87 // pages when we release pages of the heap. However, we have 88 // to do this carefully because changing this flag tends to 89 // split the VMA (memory mapping) containing v in to three 90 // VMAs in order to track the different values of the 91 // MADV_NOHUGEPAGE flag in the different regions. There's a 92 // default limit of 65530 VMAs per address space (sysctl 93 // vm.max_map_count), so we must be careful not to create too 94 // many VMAs (see issue #12233). 95 // 96 // Since huge pages are huge, there's little use in adjusting 97 // the MADV_NOHUGEPAGE flag on a fine granularity, so we avoid 98 // exploding the number of VMAs by only adjusting the 99 // MADV_NOHUGEPAGE flag on a large granularity. This still 100 // gets most of the benefit of huge pages while keeping the 101 // number of VMAs under control. With hugePageSize = 2MB, even 102 // a pessimal heap can reach 128GB before running out of VMAs. 103 if sys.HugePageSize != 0 { 104 var s uintptr = sys.HugePageSize // division by constant 0 is a compile-time error :( 105 106 // If it's a large allocation, we want to leave huge 107 // pages enabled. Hence, we only adjust the huge page 108 // flag on the huge pages containing v and v+n-1, and 109 // only if those aren't aligned. 110 var head, tail uintptr 111 if uintptr(v)%s != 0 { 112 // Compute huge page containing v. 113 head = uintptr(v) &^ (s - 1) 114 } 115 if (uintptr(v)+n)%s != 0 { 116 // Compute huge page containing v+n-1. 117 tail = (uintptr(v) + n - 1) &^ (s - 1) 118 } 119 120 // Note that madvise will return EINVAL if the flag is 121 // already set, which is quite likely. We ignore 122 // errors. 123 if head != 0 && head+sys.HugePageSize == tail { 124 // head and tail are different but adjacent, 125 // so do this in one call. 126 madvise(unsafe.Pointer(head), 2*sys.HugePageSize, _MADV_NOHUGEPAGE) 127 } else { 128 // Advise the huge pages containing v and v+n-1. 129 if head != 0 { 130 madvise(unsafe.Pointer(head), sys.HugePageSize, _MADV_NOHUGEPAGE) 131 } 132 if tail != 0 && tail != head { 133 madvise(unsafe.Pointer(tail), sys.HugePageSize, _MADV_NOHUGEPAGE) 134 } 135 } 136 } 137 138 if uintptr(v)&(physPageSize-1) != 0 || n&(physPageSize-1) != 0 { 139 // madvise will round this to any physical page 140 // *covered* by this range, so an unaligned madvise 141 // will release more memory than intended. 142 throw("unaligned sysUnused") 143 } 144 145 madvise(v, n, _MADV_DONTNEED) 146 } 147 148 func sysUsed(v unsafe.Pointer, n uintptr) { 149 if sys.HugePageSize != 0 { 150 // Partially undo the NOHUGEPAGE marks from sysUnused 151 // for whole huge pages between v and v+n. This may 152 // leave huge pages off at the end points v and v+n 153 // even though allocations may cover these entire huge 154 // pages. We could detect this and undo NOHUGEPAGE on 155 // the end points as well, but it's probably not worth 156 // the cost because when neighboring allocations are 157 // freed sysUnused will just set NOHUGEPAGE again. 158 var s uintptr = sys.HugePageSize 159 160 // Round v up to a huge page boundary. 161 beg := (uintptr(v) + (s - 1)) &^ (s - 1) 162 // Round v+n down to a huge page boundary. 163 end := (uintptr(v) + n) &^ (s - 1) 164 165 if beg < end { 166 madvise(unsafe.Pointer(beg), end-beg, _MADV_HUGEPAGE) 167 } 168 } 169 } 170 171 // Don't split the stack as this function may be invoked without a valid G, 172 // which prevents us from allocating more stack. 173 //go:nosplit 174 func sysFree(v unsafe.Pointer, n uintptr, sysStat *uint64) { 175 mSysStatDec(sysStat, n) 176 munmap(v, n) 177 } 178 179 func sysFault(v unsafe.Pointer, n uintptr) { 180 mmap(v, n, _PROT_NONE, _MAP_ANON|_MAP_PRIVATE|_MAP_FIXED, -1, 0) 181 } 182 183 func sysReserve(v unsafe.Pointer, n uintptr, reserved *bool) unsafe.Pointer { 184 // On 64-bit, people with ulimit -v set complain if we reserve too 185 // much address space. Instead, assume that the reservation is okay 186 // if we can reserve at least 64K and check the assumption in SysMap. 187 // Only user-mode Linux (UML) rejects these requests. 188 if sys.PtrSize == 8 && uint64(n) > 1<<32 { 189 p := mmap_fixed(v, 64<<10, _PROT_NONE, _MAP_ANON|_MAP_PRIVATE, -1, 0) 190 if p != v { 191 if uintptr(p) >= 4096 { 192 munmap(p, 64<<10) 193 } 194 return nil 195 } 196 munmap(p, 64<<10) 197 *reserved = false 198 return v 199 } 200 201 p := mmap(v, n, _PROT_NONE, _MAP_ANON|_MAP_PRIVATE, -1, 0) 202 if uintptr(p) < 4096 { 203 return nil 204 } 205 *reserved = true 206 return p 207 } 208 209 func sysMap(v unsafe.Pointer, n uintptr, reserved bool, sysStat *uint64) { 210 mSysStatInc(sysStat, n) 211 212 // On 64-bit, we don't actually have v reserved, so tread carefully. 213 if !reserved { 214 p := mmap_fixed(v, n, _PROT_READ|_PROT_WRITE, _MAP_ANON|_MAP_PRIVATE, -1, 0) 215 if uintptr(p) == _ENOMEM { 216 throw("runtime: out of memory") 217 } 218 if p != v { 219 print("runtime: address space conflict: map(", v, ") = ", p, "\n") 220 throw("runtime: address space conflict") 221 } 222 return 223 } 224 225 p := mmap(v, n, _PROT_READ|_PROT_WRITE, _MAP_ANON|_MAP_FIXED|_MAP_PRIVATE, -1, 0) 226 if uintptr(p) == _ENOMEM { 227 throw("runtime: out of memory") 228 } 229 if p != v { 230 throw("runtime: cannot map pages in arena address space") 231 } 232 }