github.com/flyinox/gosm@v0.0.0-20171117061539-16768cb62077/src/runtime/os_linux.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package runtime 6 7 import ( 8 "runtime/internal/sys" 9 "unsafe" 10 ) 11 12 type mOS struct{} 13 14 //go:noescape 15 func futex(addr unsafe.Pointer, op int32, val uint32, ts, addr2 unsafe.Pointer, val3 uint32) int32 16 17 // Linux futex. 18 // 19 // futexsleep(uint32 *addr, uint32 val) 20 // futexwakeup(uint32 *addr) 21 // 22 // Futexsleep atomically checks if *addr == val and if so, sleeps on addr. 23 // Futexwakeup wakes up threads sleeping on addr. 24 // Futexsleep is allowed to wake up spuriously. 25 26 const ( 27 _FUTEX_WAIT = 0 28 _FUTEX_WAKE = 1 29 ) 30 31 // Atomically, 32 // if(*addr == val) sleep 33 // Might be woken up spuriously; that's allowed. 34 // Don't sleep longer than ns; ns < 0 means forever. 35 //go:nosplit 36 func futexsleep(addr *uint32, val uint32, ns int64) { 37 var ts timespec 38 39 // Some Linux kernels have a bug where futex of 40 // FUTEX_WAIT returns an internal error code 41 // as an errno. Libpthread ignores the return value 42 // here, and so can we: as it says a few lines up, 43 // spurious wakeups are allowed. 44 if ns < 0 { 45 futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, nil, nil, 0) 46 return 47 } 48 49 // It's difficult to live within the no-split stack limits here. 50 // On ARM and 386, a 64-bit divide invokes a general software routine 51 // that needs more stack than we can afford. So we use timediv instead. 52 // But on real 64-bit systems, where words are larger but the stack limit 53 // is not, even timediv is too heavy, and we really need to use just an 54 // ordinary machine instruction. 55 if sys.PtrSize == 8 { 56 ts.set_sec(ns / 1000000000) 57 ts.set_nsec(int32(ns % 1000000000)) 58 } else { 59 ts.tv_nsec = 0 60 ts.set_sec(int64(timediv(ns, 1000000000, (*int32)(unsafe.Pointer(&ts.tv_nsec))))) 61 } 62 futex(unsafe.Pointer(addr), _FUTEX_WAIT, val, unsafe.Pointer(&ts), nil, 0) 63 } 64 65 // If any procs are sleeping on addr, wake up at most cnt. 66 //go:nosplit 67 func futexwakeup(addr *uint32, cnt uint32) { 68 ret := futex(unsafe.Pointer(addr), _FUTEX_WAKE, cnt, nil, nil, 0) 69 if ret >= 0 { 70 return 71 } 72 73 // I don't know that futex wakeup can return 74 // EAGAIN or EINTR, but if it does, it would be 75 // safe to loop and call futex again. 76 systemstack(func() { 77 print("futexwakeup addr=", addr, " returned ", ret, "\n") 78 }) 79 80 *(*int32)(unsafe.Pointer(uintptr(0x1006))) = 0x1006 81 } 82 83 func getproccount() int32 { 84 // This buffer is huge (8 kB) but we are on the system stack 85 // and there should be plenty of space (64 kB). 86 // Also this is a leaf, so we're not holding up the memory for long. 87 // See golang.org/issue/11823. 88 // The suggested behavior here is to keep trying with ever-larger 89 // buffers, but we don't have a dynamic memory allocator at the 90 // moment, so that's a bit tricky and seems like overkill. 91 const maxCPUs = 64 * 1024 92 var buf [maxCPUs / (sys.PtrSize * 8)]uintptr 93 r := sched_getaffinity(0, unsafe.Sizeof(buf), &buf[0]) 94 if r < 0 { 95 return 1 96 } 97 n := int32(0) 98 for _, v := range buf[:r/sys.PtrSize] { 99 for v != 0 { 100 n += int32(v & 1) 101 v >>= 1 102 } 103 } 104 if n == 0 { 105 n = 1 106 } 107 return n 108 } 109 110 // Clone, the Linux rfork. 111 const ( 112 _CLONE_VM = 0x100 113 _CLONE_FS = 0x200 114 _CLONE_FILES = 0x400 115 _CLONE_SIGHAND = 0x800 116 _CLONE_PTRACE = 0x2000 117 _CLONE_VFORK = 0x4000 118 _CLONE_PARENT = 0x8000 119 _CLONE_THREAD = 0x10000 120 _CLONE_NEWNS = 0x20000 121 _CLONE_SYSVSEM = 0x40000 122 _CLONE_SETTLS = 0x80000 123 _CLONE_PARENT_SETTID = 0x100000 124 _CLONE_CHILD_CLEARTID = 0x200000 125 _CLONE_UNTRACED = 0x800000 126 _CLONE_CHILD_SETTID = 0x1000000 127 _CLONE_STOPPED = 0x2000000 128 _CLONE_NEWUTS = 0x4000000 129 _CLONE_NEWIPC = 0x8000000 130 131 cloneFlags = _CLONE_VM | /* share memory */ 132 _CLONE_FS | /* share cwd, etc */ 133 _CLONE_FILES | /* share fd table */ 134 _CLONE_SIGHAND | /* share sig handler table */ 135 _CLONE_SYSVSEM | /* share SysV semaphore undo lists (see issue #20763) */ 136 _CLONE_THREAD /* revisit - okay for now */ 137 ) 138 139 //go:noescape 140 func clone(flags int32, stk, mp, gp, fn unsafe.Pointer) int32 141 142 // May run with m.p==nil, so write barriers are not allowed. 143 //go:nowritebarrier 144 func newosproc(mp *m, stk unsafe.Pointer) { 145 /* 146 * note: strace gets confused if we use CLONE_PTRACE here. 147 */ 148 if false { 149 print("newosproc stk=", stk, " m=", mp, " g=", mp.g0, " clone=", funcPC(clone), " id=", mp.id, " ostk=", &mp, "\n") 150 } 151 152 // Disable signals during clone, so that the new thread starts 153 // with signals disabled. It will enable them in minit. 154 var oset sigset 155 sigprocmask(_SIG_SETMASK, &sigset_all, &oset) 156 ret := clone(cloneFlags, stk, unsafe.Pointer(mp), unsafe.Pointer(mp.g0), unsafe.Pointer(funcPC(mstart))) 157 sigprocmask(_SIG_SETMASK, &oset, nil) 158 159 if ret < 0 { 160 print("runtime: failed to create new OS thread (have ", mcount(), " already; errno=", -ret, ")\n") 161 if ret == -_EAGAIN { 162 println("runtime: may need to increase max user processes (ulimit -u)") 163 } 164 throw("newosproc") 165 } 166 } 167 168 // Version of newosproc that doesn't require a valid G. 169 //go:nosplit 170 func newosproc0(stacksize uintptr, fn unsafe.Pointer) { 171 stack := sysAlloc(stacksize, &memstats.stacks_sys) 172 if stack == nil { 173 write(2, unsafe.Pointer(&failallocatestack[0]), int32(len(failallocatestack))) 174 exit(1) 175 } 176 ret := clone(cloneFlags, unsafe.Pointer(uintptr(stack)+stacksize), nil, nil, fn) 177 if ret < 0 { 178 write(2, unsafe.Pointer(&failthreadcreate[0]), int32(len(failthreadcreate))) 179 exit(1) 180 } 181 } 182 183 var failallocatestack = []byte("runtime: failed to allocate stack for the new OS thread\n") 184 var failthreadcreate = []byte("runtime: failed to create new OS thread\n") 185 186 const ( 187 _AT_NULL = 0 // End of vector 188 _AT_PAGESZ = 6 // System physical page size 189 _AT_HWCAP = 16 // hardware capability bit vector 190 _AT_RANDOM = 25 // introduced in 2.6.29 191 _AT_HWCAP2 = 26 // hardware capability bit vector 2 192 ) 193 194 var procAuxv = []byte("/proc/self/auxv\x00") 195 196 func sysargs(argc int32, argv **byte) { 197 n := argc + 1 198 199 // skip over argv, envp to get to auxv 200 for argv_index(argv, n) != nil { 201 n++ 202 } 203 204 // skip NULL separator 205 n++ 206 207 // now argv+n is auxv 208 auxv := (*[1 << 28]uintptr)(add(unsafe.Pointer(argv), uintptr(n)*sys.PtrSize)) 209 if sysauxv(auxv[:]) == 0 { 210 // In some situations we don't get a loader-provided 211 // auxv, such as when loaded as a library on Android. 212 // Fall back to /proc/self/auxv. 213 fd := open(&procAuxv[0], 0 /* O_RDONLY */, 0) 214 if fd < 0 { 215 // On Android, /proc/self/auxv might be unreadable (issue 9229), so we fallback to 216 // try using mincore to detect the physical page size. 217 // mincore should return EINVAL when address is not a multiple of system page size. 218 const size = 256 << 10 // size of memory region to allocate 219 p := mmap(nil, size, _PROT_READ|_PROT_WRITE, _MAP_ANON|_MAP_PRIVATE, -1, 0) 220 if uintptr(p) < 4096 { 221 return 222 } 223 var n uintptr 224 for n = 4 << 10; n < size; n <<= 1 { 225 err := mincore(unsafe.Pointer(uintptr(p)+n), 1, &addrspace_vec[0]) 226 if err == 0 { 227 physPageSize = n 228 break 229 } 230 } 231 if physPageSize == 0 { 232 physPageSize = size 233 } 234 munmap(p, size) 235 return 236 } 237 var buf [128]uintptr 238 n := read(fd, noescape(unsafe.Pointer(&buf[0])), int32(unsafe.Sizeof(buf))) 239 closefd(fd) 240 if n < 0 { 241 return 242 } 243 // Make sure buf is terminated, even if we didn't read 244 // the whole file. 245 buf[len(buf)-2] = _AT_NULL 246 sysauxv(buf[:]) 247 } 248 } 249 250 func sysauxv(auxv []uintptr) int { 251 var i int 252 for ; auxv[i] != _AT_NULL; i += 2 { 253 tag, val := auxv[i], auxv[i+1] 254 switch tag { 255 case _AT_RANDOM: 256 // The kernel provides a pointer to 16-bytes 257 // worth of random data. 258 startupRandomData = (*[16]byte)(unsafe.Pointer(val))[:] 259 260 case _AT_PAGESZ: 261 physPageSize = val 262 } 263 264 archauxv(tag, val) 265 } 266 return i / 2 267 } 268 269 func osinit() { 270 ncpu = getproccount() 271 } 272 273 var urandom_dev = []byte("/dev/urandom\x00") 274 275 func getRandomData(r []byte) { 276 if startupRandomData != nil { 277 n := copy(r, startupRandomData) 278 extendRandom(r, n) 279 return 280 } 281 fd := open(&urandom_dev[0], 0 /* O_RDONLY */, 0) 282 n := read(fd, unsafe.Pointer(&r[0]), int32(len(r))) 283 closefd(fd) 284 extendRandom(r, int(n)) 285 } 286 287 func goenvs() { 288 goenvs_unix() 289 } 290 291 // Called to do synchronous initialization of Go code built with 292 // -buildmode=c-archive or -buildmode=c-shared. 293 // None of the Go runtime is initialized. 294 //go:nosplit 295 //go:nowritebarrierrec 296 func libpreinit() { 297 initsig(true) 298 } 299 300 // Called to initialize a new m (including the bootstrap m). 301 // Called on the parent thread (main thread in case of bootstrap), can allocate memory. 302 func mpreinit(mp *m) { 303 mp.gsignal = malg(32 * 1024) // Linux wants >= 2K 304 mp.gsignal.m = mp 305 } 306 307 func gettid() uint32 308 309 // Called to initialize a new m (including the bootstrap m). 310 // Called on the new thread, cannot allocate memory. 311 func minit() { 312 minitSignals() 313 314 // for debuggers, in case cgo created the thread 315 getg().m.procid = uint64(gettid()) 316 } 317 318 // Called from dropm to undo the effect of an minit. 319 //go:nosplit 320 func unminit() { 321 unminitSignals() 322 } 323 324 func memlimit() uintptr { 325 /* 326 TODO: Convert to Go when something actually uses the result. 327 328 Rlimit rl; 329 extern byte runtime·text[], runtime·end[]; 330 uintptr used; 331 332 if(runtime·getrlimit(RLIMIT_AS, &rl) != 0) 333 return 0; 334 if(rl.rlim_cur >= 0x7fffffff) 335 return 0; 336 337 // Estimate our VM footprint excluding the heap. 338 // Not an exact science: use size of binary plus 339 // some room for thread stacks. 340 used = runtime·end - runtime·text + (64<<20); 341 if(used >= rl.rlim_cur) 342 return 0; 343 344 // If there's not at least 16 MB left, we're probably 345 // not going to be able to do much. Treat as no limit. 346 rl.rlim_cur -= used; 347 if(rl.rlim_cur < (16<<20)) 348 return 0; 349 350 return rl.rlim_cur - used; 351 */ 352 353 return 0 354 } 355 356 //#ifdef GOARCH_386 357 //#define sa_handler k_sa_handler 358 //#endif 359 360 func sigreturn() 361 func sigtramp(sig uint32, info *siginfo, ctx unsafe.Pointer) 362 func cgoSigtramp() 363 364 //go:noescape 365 func sigaltstack(new, old *stackt) 366 367 //go:noescape 368 func setitimer(mode int32, new, old *itimerval) 369 370 //go:noescape 371 func rtsigprocmask(how int32, new, old *sigset, size int32) 372 373 //go:nosplit 374 //go:nowritebarrierrec 375 func sigprocmask(how int32, new, old *sigset) { 376 rtsigprocmask(how, new, old, int32(unsafe.Sizeof(*new))) 377 } 378 379 //go:noescape 380 func getrlimit(kind int32, limit unsafe.Pointer) int32 381 func raise(sig uint32) 382 func raiseproc(sig uint32) 383 384 //go:noescape 385 func sched_getaffinity(pid, len uintptr, buf *uintptr) int32 386 func osyield() 387 388 //go:nosplit 389 //go:nowritebarrierrec 390 func setsig(i uint32, fn uintptr) { 391 var sa sigactiont 392 sa.sa_flags = _SA_SIGINFO | _SA_ONSTACK | _SA_RESTORER | _SA_RESTART 393 sigfillset(&sa.sa_mask) 394 // Although Linux manpage says "sa_restorer element is obsolete and 395 // should not be used". x86_64 kernel requires it. Only use it on 396 // x86. 397 if GOARCH == "386" || GOARCH == "amd64" { 398 sa.sa_restorer = funcPC(sigreturn) 399 } 400 if fn == funcPC(sighandler) { 401 if iscgo { 402 fn = funcPC(cgoSigtramp) 403 } else { 404 fn = funcPC(sigtramp) 405 } 406 } 407 sa.sa_handler = fn 408 rt_sigaction(uintptr(i), &sa, nil, unsafe.Sizeof(sa.sa_mask)) 409 } 410 411 //go:nosplit 412 //go:nowritebarrierrec 413 func setsigstack(i uint32) { 414 var sa sigactiont 415 rt_sigaction(uintptr(i), nil, &sa, unsafe.Sizeof(sa.sa_mask)) 416 if sa.sa_flags&_SA_ONSTACK != 0 { 417 return 418 } 419 sa.sa_flags |= _SA_ONSTACK 420 rt_sigaction(uintptr(i), &sa, nil, unsafe.Sizeof(sa.sa_mask)) 421 } 422 423 //go:nosplit 424 //go:nowritebarrierrec 425 func getsig(i uint32) uintptr { 426 var sa sigactiont 427 if rt_sigaction(uintptr(i), nil, &sa, unsafe.Sizeof(sa.sa_mask)) != 0 { 428 throw("rt_sigaction read failure") 429 } 430 return sa.sa_handler 431 } 432 433 // setSignaltstackSP sets the ss_sp field of a stackt. 434 //go:nosplit 435 func setSignalstackSP(s *stackt, sp uintptr) { 436 *(*uintptr)(unsafe.Pointer(&s.ss_sp)) = sp 437 } 438 439 func (c *sigctxt) fixsigcode(sig uint32) { 440 }