github.com/flyinox/gosm@v0.0.0-20171117061539-16768cb62077/src/time/time.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Package time provides functionality for measuring and displaying time. 6 // 7 // The calendrical calculations always assume a Gregorian calendar, with 8 // no leap seconds. 9 // 10 // Monotonic Clocks 11 // 12 // Operating systems provide both a “wall clock,” which is subject to 13 // changes for clock synchronization, and a “monotonic clock,” which is 14 // not. The general rule is that the wall clock is for telling time and 15 // the monotonic clock is for measuring time. Rather than split the API, 16 // in this package the Time returned by time.Now contains both a wall 17 // clock reading and a monotonic clock reading; later time-telling 18 // operations use the wall clock reading, but later time-measuring 19 // operations, specifically comparisons and subtractions, use the 20 // monotonic clock reading. 21 // 22 // For example, this code always computes a positive elapsed time of 23 // approximately 20 milliseconds, even if the wall clock is changed during 24 // the operation being timed: 25 // 26 // start := time.Now() 27 // ... operation that takes 20 milliseconds ... 28 // t := time.Now() 29 // elapsed := t.Sub(start) 30 // 31 // Other idioms, such as time.Since(start), time.Until(deadline), and 32 // time.Now().Before(deadline), are similarly robust against wall clock 33 // resets. 34 // 35 // The rest of this section gives the precise details of how operations 36 // use monotonic clocks, but understanding those details is not required 37 // to use this package. 38 // 39 // The Time returned by time.Now contains a monotonic clock reading. 40 // If Time t has a monotonic clock reading, t.Add adds the same duration to 41 // both the wall clock and monotonic clock readings to compute the result. 42 // Because t.AddDate(y, m, d), t.Round(d), and t.Truncate(d) are wall time 43 // computations, they always strip any monotonic clock reading from their results. 44 // Because t.In, t.Local, and t.UTC are used for their effect on the interpretation 45 // of the wall time, they also strip any monotonic clock reading from their results. 46 // The canonical way to strip a monotonic clock reading is to use t = t.Round(0). 47 // 48 // If Times t and u both contain monotonic clock readings, the operations 49 // t.After(u), t.Before(u), t.Equal(u), and t.Sub(u) are carried out 50 // using the monotonic clock readings alone, ignoring the wall clock 51 // readings. If either t or u contains no monotonic clock reading, these 52 // operations fall back to using the wall clock readings. 53 // 54 // Because the monotonic clock reading has no meaning outside 55 // the current process, the serialized forms generated by t.GobEncode, 56 // t.MarshalBinary, t.MarshalJSON, and t.MarshalText omit the monotonic 57 // clock reading, and t.Format provides no format for it. Similarly, the 58 // constructors time.Date, time.Parse, time.ParseInLocation, and time.Unix, 59 // as well as the unmarshalers t.GobDecode, t.UnmarshalBinary. 60 // t.UnmarshalJSON, and t.UnmarshalText always create times with 61 // no monotonic clock reading. 62 // 63 // Note that the Go == operator compares not just the time instant but 64 // also the Location and the monotonic clock reading. See the 65 // documentation for the Time type for a discussion of equality 66 // testing for Time values. 67 // 68 // For debugging, the result of t.String does include the monotonic 69 // clock reading if present. If t != u because of different monotonic clock readings, 70 // that difference will be visible when printing t.String() and u.String(). 71 // 72 package time 73 74 import "errors" 75 76 // A Time represents an instant in time with nanosecond precision. 77 // 78 // Programs using times should typically store and pass them as values, 79 // not pointers. That is, time variables and struct fields should be of 80 // type time.Time, not *time.Time. 81 // 82 // A Time value can be used by multiple goroutines simultaneously except 83 // that the methods GobDecode, UnmarshalBinary, UnmarshalJSON and 84 // UnmarshalText are not concurrency-safe. 85 // 86 // Time instants can be compared using the Before, After, and Equal methods. 87 // The Sub method subtracts two instants, producing a Duration. 88 // The Add method adds a Time and a Duration, producing a Time. 89 // 90 // The zero value of type Time is January 1, year 1, 00:00:00.000000000 UTC. 91 // As this time is unlikely to come up in practice, the IsZero method gives 92 // a simple way of detecting a time that has not been initialized explicitly. 93 // 94 // Each Time has associated with it a Location, consulted when computing the 95 // presentation form of the time, such as in the Format, Hour, and Year methods. 96 // The methods Local, UTC, and In return a Time with a specific location. 97 // Changing the location in this way changes only the presentation; it does not 98 // change the instant in time being denoted and therefore does not affect the 99 // computations described in earlier paragraphs. 100 // 101 // Note that the Go == operator compares not just the time instant but also the 102 // Location and the monotonic clock reading. Therefore, Time values should not 103 // be used as map or database keys without first guaranteeing that the 104 // identical Location has been set for all values, which can be achieved 105 // through use of the UTC or Local method, and that the monotonic clock reading 106 // has been stripped by setting t = t.Round(0). In general, prefer t.Equal(u) 107 // to t == u, since t.Equal uses the most accurate comparison available and 108 // correctly handles the case when only one of its arguments has a monotonic 109 // clock reading. 110 // 111 // In addition to the required “wall clock” reading, a Time may contain an optional 112 // reading of the current process's monotonic clock, to provide additional precision 113 // for comparison or subtraction. 114 // See the “Monotonic Clocks” section in the package documentation for details. 115 // 116 type Time struct { 117 // wall and ext encode the wall time seconds, wall time nanoseconds, 118 // and optional monotonic clock reading in nanoseconds. 119 // 120 // From high to low bit position, wall encodes a 1-bit flag (hasMonotonic), 121 // a 33-bit seconds field, and a 30-bit wall time nanoseconds field. 122 // The nanoseconds field is in the range [0, 999999999]. 123 // If the hasMonotonic bit is 0, then the 33-bit field must be zero 124 // and the full signed 64-bit wall seconds since Jan 1 year 1 is stored in ext. 125 // If the hasMonotonic bit is 1, then the 33-bit field holds a 33-bit 126 // unsigned wall seconds since Jan 1 year 1885, and ext holds a 127 // signed 64-bit monotonic clock reading, nanoseconds since process start. 128 wall uint64 129 ext int64 130 131 // loc specifies the Location that should be used to 132 // determine the minute, hour, month, day, and year 133 // that correspond to this Time. 134 // The nil location means UTC. 135 // All UTC times are represented with loc==nil, never loc==&utcLoc. 136 loc *Location 137 } 138 139 const ( 140 hasMonotonic = 1 << 63 141 maxWall = wallToInternal + (1<<33 - 1) // year 2157 142 minWall = wallToInternal // year 1885 143 nsecMask = 1<<30 - 1 144 nsecShift = 30 145 ) 146 147 // These helpers for manipulating the wall and monotonic clock readings 148 // take pointer receivers, even when they don't modify the time, 149 // to make them cheaper to call. 150 151 // nsec returns the time's nanoseconds. 152 func (t *Time) nsec() int32 { 153 return int32(t.wall & nsecMask) 154 } 155 156 // sec returns the time's seconds since Jan 1 year 1. 157 func (t *Time) sec() int64 { 158 if t.wall&hasMonotonic != 0 { 159 return wallToInternal + int64(t.wall<<1>>(nsecShift+1)) 160 } 161 return int64(t.ext) 162 } 163 164 // unixSec returns the time's seconds since Jan 1 1970 (Unix time). 165 func (t *Time) unixSec() int64 { return t.sec() + internalToUnix } 166 167 // addSec adds d seconds to the time. 168 func (t *Time) addSec(d int64) { 169 if t.wall&hasMonotonic != 0 { 170 sec := int64(t.wall << 1 >> (nsecShift + 1)) 171 dsec := sec + d 172 if 0 <= dsec && dsec <= 1<<33-1 { 173 t.wall = t.wall&nsecMask | uint64(dsec)<<nsecShift | hasMonotonic 174 return 175 } 176 // Wall second now out of range for packed field. 177 // Move to ext. 178 t.stripMono() 179 } 180 181 // TODO: Check for overflow. 182 t.ext += d 183 } 184 185 // setLoc sets the location associated with the time. 186 func (t *Time) setLoc(loc *Location) { 187 if loc == &utcLoc { 188 loc = nil 189 } 190 t.stripMono() 191 t.loc = loc 192 } 193 194 // stripMono strips the monotonic clock reading in t. 195 func (t *Time) stripMono() { 196 if t.wall&hasMonotonic != 0 { 197 t.ext = t.sec() 198 t.wall &= nsecMask 199 } 200 } 201 202 // setMono sets the monotonic clock reading in t. 203 // If t cannot hold a monotonic clock reading, 204 // because its wall time is too large, 205 // setMono is a no-op. 206 func (t *Time) setMono(m int64) { 207 if t.wall&hasMonotonic == 0 { 208 sec := int64(t.ext) 209 if sec < minWall || maxWall < sec { 210 return 211 } 212 t.wall |= hasMonotonic | uint64(sec-minWall)<<nsecShift 213 } 214 t.ext = m 215 } 216 217 // mono returns t's monotonic clock reading. 218 // It returns 0 for a missing reading. 219 // This function is used only for testing, 220 // so it's OK that technically 0 is a valid 221 // monotonic clock reading as well. 222 func (t *Time) mono() int64 { 223 if t.wall&hasMonotonic == 0 { 224 return 0 225 } 226 return t.ext 227 } 228 229 // After reports whether the time instant t is after u. 230 func (t Time) After(u Time) bool { 231 if t.wall&u.wall&hasMonotonic != 0 { 232 return t.ext > u.ext 233 } 234 ts := t.sec() 235 us := u.sec() 236 return ts > us || ts == us && t.nsec() > u.nsec() 237 } 238 239 // Before reports whether the time instant t is before u. 240 func (t Time) Before(u Time) bool { 241 if t.wall&u.wall&hasMonotonic != 0 { 242 return t.ext < u.ext 243 } 244 return t.sec() < u.sec() || t.sec() == u.sec() && t.nsec() < u.nsec() 245 } 246 247 // Equal reports whether t and u represent the same time instant. 248 // Two times can be equal even if they are in different locations. 249 // For example, 6:00 +0200 CEST and 4:00 UTC are Equal. 250 // See the documentation on the Time type for the pitfalls of using == with 251 // Time values; most code should use Equal instead. 252 func (t Time) Equal(u Time) bool { 253 if t.wall&u.wall&hasMonotonic != 0 { 254 return t.ext == u.ext 255 } 256 return t.sec() == u.sec() && t.nsec() == u.nsec() 257 } 258 259 // A Month specifies a month of the year (January = 1, ...). 260 type Month int 261 262 const ( 263 January Month = 1 + iota 264 February 265 March 266 April 267 May 268 June 269 July 270 August 271 September 272 October 273 November 274 December 275 ) 276 277 var months = [...]string{ 278 "January", 279 "February", 280 "March", 281 "April", 282 "May", 283 "June", 284 "July", 285 "August", 286 "September", 287 "October", 288 "November", 289 "December", 290 } 291 292 // String returns the English name of the month ("January", "February", ...). 293 func (m Month) String() string { 294 if January <= m && m <= December { 295 return months[m-1] 296 } 297 buf := make([]byte, 20) 298 n := fmtInt(buf, uint64(m)) 299 return "%!Month(" + string(buf[n:]) + ")" 300 } 301 302 // A Weekday specifies a day of the week (Sunday = 0, ...). 303 type Weekday int 304 305 const ( 306 Sunday Weekday = iota 307 Monday 308 Tuesday 309 Wednesday 310 Thursday 311 Friday 312 Saturday 313 ) 314 315 var days = [...]string{ 316 "Sunday", 317 "Monday", 318 "Tuesday", 319 "Wednesday", 320 "Thursday", 321 "Friday", 322 "Saturday", 323 } 324 325 // String returns the English name of the day ("Sunday", "Monday", ...). 326 func (d Weekday) String() string { return days[d] } 327 328 // Computations on time. 329 // 330 // The zero value for a Time is defined to be 331 // January 1, year 1, 00:00:00.000000000 UTC 332 // which (1) looks like a zero, or as close as you can get in a date 333 // (1-1-1 00:00:00 UTC), (2) is unlikely enough to arise in practice to 334 // be a suitable "not set" sentinel, unlike Jan 1 1970, and (3) has a 335 // non-negative year even in time zones west of UTC, unlike 1-1-0 336 // 00:00:00 UTC, which would be 12-31-(-1) 19:00:00 in New York. 337 // 338 // The zero Time value does not force a specific epoch for the time 339 // representation. For example, to use the Unix epoch internally, we 340 // could define that to distinguish a zero value from Jan 1 1970, that 341 // time would be represented by sec=-1, nsec=1e9. However, it does 342 // suggest a representation, namely using 1-1-1 00:00:00 UTC as the 343 // epoch, and that's what we do. 344 // 345 // The Add and Sub computations are oblivious to the choice of epoch. 346 // 347 // The presentation computations - year, month, minute, and so on - all 348 // rely heavily on division and modulus by positive constants. For 349 // calendrical calculations we want these divisions to round down, even 350 // for negative values, so that the remainder is always positive, but 351 // Go's division (like most hardware division instructions) rounds to 352 // zero. We can still do those computations and then adjust the result 353 // for a negative numerator, but it's annoying to write the adjustment 354 // over and over. Instead, we can change to a different epoch so long 355 // ago that all the times we care about will be positive, and then round 356 // to zero and round down coincide. These presentation routines already 357 // have to add the zone offset, so adding the translation to the 358 // alternate epoch is cheap. For example, having a non-negative time t 359 // means that we can write 360 // 361 // sec = t % 60 362 // 363 // instead of 364 // 365 // sec = t % 60 366 // if sec < 0 { 367 // sec += 60 368 // } 369 // 370 // everywhere. 371 // 372 // The calendar runs on an exact 400 year cycle: a 400-year calendar 373 // printed for 1970-2369 will apply as well to 2370-2769. Even the days 374 // of the week match up. It simplifies the computations to choose the 375 // cycle boundaries so that the exceptional years are always delayed as 376 // long as possible. That means choosing a year equal to 1 mod 400, so 377 // that the first leap year is the 4th year, the first missed leap year 378 // is the 100th year, and the missed missed leap year is the 400th year. 379 // So we'd prefer instead to print a calendar for 2001-2400 and reuse it 380 // for 2401-2800. 381 // 382 // Finally, it's convenient if the delta between the Unix epoch and 383 // long-ago epoch is representable by an int64 constant. 384 // 385 // These three considerations—choose an epoch as early as possible, that 386 // uses a year equal to 1 mod 400, and that is no more than 2⁶³ seconds 387 // earlier than 1970—bring us to the year -292277022399. We refer to 388 // this year as the absolute zero year, and to times measured as a uint64 389 // seconds since this year as absolute times. 390 // 391 // Times measured as an int64 seconds since the year 1—the representation 392 // used for Time's sec field—are called internal times. 393 // 394 // Times measured as an int64 seconds since the year 1970 are called Unix 395 // times. 396 // 397 // It is tempting to just use the year 1 as the absolute epoch, defining 398 // that the routines are only valid for years >= 1. However, the 399 // routines would then be invalid when displaying the epoch in time zones 400 // west of UTC, since it is year 0. It doesn't seem tenable to say that 401 // printing the zero time correctly isn't supported in half the time 402 // zones. By comparison, it's reasonable to mishandle some times in 403 // the year -292277022399. 404 // 405 // All this is opaque to clients of the API and can be changed if a 406 // better implementation presents itself. 407 408 const ( 409 // The unsigned zero year for internal calculations. 410 // Must be 1 mod 400, and times before it will not compute correctly, 411 // but otherwise can be changed at will. 412 absoluteZeroYear = -292277022399 413 414 // The year of the zero Time. 415 // Assumed by the unixToInternal computation below. 416 internalYear = 1 417 418 // Offsets to convert between internal and absolute or Unix times. 419 absoluteToInternal int64 = (absoluteZeroYear - internalYear) * 365.2425 * secondsPerDay 420 internalToAbsolute = -absoluteToInternal 421 422 unixToInternal int64 = (1969*365 + 1969/4 - 1969/100 + 1969/400) * secondsPerDay 423 internalToUnix int64 = -unixToInternal 424 425 wallToInternal int64 = (1884*365 + 1884/4 - 1884/100 + 1884/400) * secondsPerDay 426 internalToWall int64 = -wallToInternal 427 ) 428 429 // IsZero reports whether t represents the zero time instant, 430 // January 1, year 1, 00:00:00 UTC. 431 func (t Time) IsZero() bool { 432 return t.sec() == 0 && t.nsec() == 0 433 } 434 435 // abs returns the time t as an absolute time, adjusted by the zone offset. 436 // It is called when computing a presentation property like Month or Hour. 437 func (t Time) abs() uint64 { 438 l := t.loc 439 // Avoid function calls when possible. 440 if l == nil || l == &localLoc { 441 l = l.get() 442 } 443 sec := t.unixSec() 444 if l != &utcLoc { 445 if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd { 446 sec += int64(l.cacheZone.offset) 447 } else { 448 _, offset, _, _, _ := l.lookup(sec) 449 sec += int64(offset) 450 } 451 } 452 return uint64(sec + (unixToInternal + internalToAbsolute)) 453 } 454 455 // locabs is a combination of the Zone and abs methods, 456 // extracting both return values from a single zone lookup. 457 func (t Time) locabs() (name string, offset int, abs uint64) { 458 l := t.loc 459 if l == nil || l == &localLoc { 460 l = l.get() 461 } 462 // Avoid function call if we hit the local time cache. 463 sec := t.unixSec() 464 if l != &utcLoc { 465 if l.cacheZone != nil && l.cacheStart <= sec && sec < l.cacheEnd { 466 name = l.cacheZone.name 467 offset = l.cacheZone.offset 468 } else { 469 name, offset, _, _, _ = l.lookup(sec) 470 } 471 sec += int64(offset) 472 } else { 473 name = "UTC" 474 } 475 abs = uint64(sec + (unixToInternal + internalToAbsolute)) 476 return 477 } 478 479 // Date returns the year, month, and day in which t occurs. 480 func (t Time) Date() (year int, month Month, day int) { 481 year, month, day, _ = t.date(true) 482 return 483 } 484 485 // Year returns the year in which t occurs. 486 func (t Time) Year() int { 487 year, _, _, _ := t.date(false) 488 return year 489 } 490 491 // Month returns the month of the year specified by t. 492 func (t Time) Month() Month { 493 _, month, _, _ := t.date(true) 494 return month 495 } 496 497 // Day returns the day of the month specified by t. 498 func (t Time) Day() int { 499 _, _, day, _ := t.date(true) 500 return day 501 } 502 503 // Weekday returns the day of the week specified by t. 504 func (t Time) Weekday() Weekday { 505 return absWeekday(t.abs()) 506 } 507 508 // absWeekday is like Weekday but operates on an absolute time. 509 func absWeekday(abs uint64) Weekday { 510 // January 1 of the absolute year, like January 1 of 2001, was a Monday. 511 sec := (abs + uint64(Monday)*secondsPerDay) % secondsPerWeek 512 return Weekday(int(sec) / secondsPerDay) 513 } 514 515 // ISOWeek returns the ISO 8601 year and week number in which t occurs. 516 // Week ranges from 1 to 53. Jan 01 to Jan 03 of year n might belong to 517 // week 52 or 53 of year n-1, and Dec 29 to Dec 31 might belong to week 1 518 // of year n+1. 519 func (t Time) ISOWeek() (year, week int) { 520 year, month, day, yday := t.date(true) 521 wday := int(t.Weekday()+6) % 7 // weekday but Monday = 0. 522 const ( 523 Mon int = iota 524 Tue 525 Wed 526 Thu 527 Fri 528 Sat 529 Sun 530 ) 531 532 // Calculate week as number of Mondays in year up to 533 // and including today, plus 1 because the first week is week 0. 534 // Putting the + 1 inside the numerator as a + 7 keeps the 535 // numerator from being negative, which would cause it to 536 // round incorrectly. 537 week = (yday - wday + 7) / 7 538 539 // The week number is now correct under the assumption 540 // that the first Monday of the year is in week 1. 541 // If Jan 1 is a Tuesday, Wednesday, or Thursday, the first Monday 542 // is actually in week 2. 543 jan1wday := (wday - yday + 7*53) % 7 544 if Tue <= jan1wday && jan1wday <= Thu { 545 week++ 546 } 547 548 // If the week number is still 0, we're in early January but in 549 // the last week of last year. 550 if week == 0 { 551 year-- 552 week = 52 553 // A year has 53 weeks when Jan 1 or Dec 31 is a Thursday, 554 // meaning Jan 1 of the next year is a Friday 555 // or it was a leap year and Jan 1 of the next year is a Saturday. 556 if jan1wday == Fri || (jan1wday == Sat && isLeap(year)) { 557 week++ 558 } 559 } 560 561 // December 29 to 31 are in week 1 of next year if 562 // they are after the last Thursday of the year and 563 // December 31 is a Monday, Tuesday, or Wednesday. 564 if month == December && day >= 29 && wday < Thu { 565 if dec31wday := (wday + 31 - day) % 7; Mon <= dec31wday && dec31wday <= Wed { 566 year++ 567 week = 1 568 } 569 } 570 571 return 572 } 573 574 // Clock returns the hour, minute, and second within the day specified by t. 575 func (t Time) Clock() (hour, min, sec int) { 576 return absClock(t.abs()) 577 } 578 579 // absClock is like clock but operates on an absolute time. 580 func absClock(abs uint64) (hour, min, sec int) { 581 sec = int(abs % secondsPerDay) 582 hour = sec / secondsPerHour 583 sec -= hour * secondsPerHour 584 min = sec / secondsPerMinute 585 sec -= min * secondsPerMinute 586 return 587 } 588 589 // Hour returns the hour within the day specified by t, in the range [0, 23]. 590 func (t Time) Hour() int { 591 return int(t.abs()%secondsPerDay) / secondsPerHour 592 } 593 594 // Minute returns the minute offset within the hour specified by t, in the range [0, 59]. 595 func (t Time) Minute() int { 596 return int(t.abs()%secondsPerHour) / secondsPerMinute 597 } 598 599 // Second returns the second offset within the minute specified by t, in the range [0, 59]. 600 func (t Time) Second() int { 601 return int(t.abs() % secondsPerMinute) 602 } 603 604 // Nanosecond returns the nanosecond offset within the second specified by t, 605 // in the range [0, 999999999]. 606 func (t Time) Nanosecond() int { 607 return int(t.nsec()) 608 } 609 610 // YearDay returns the day of the year specified by t, in the range [1,365] for non-leap years, 611 // and [1,366] in leap years. 612 func (t Time) YearDay() int { 613 _, _, _, yday := t.date(false) 614 return yday + 1 615 } 616 617 // A Duration represents the elapsed time between two instants 618 // as an int64 nanosecond count. The representation limits the 619 // largest representable duration to approximately 290 years. 620 type Duration int64 621 622 const ( 623 minDuration Duration = -1 << 63 624 maxDuration Duration = 1<<63 - 1 625 ) 626 627 // Common durations. There is no definition for units of Day or larger 628 // to avoid confusion across daylight savings time zone transitions. 629 // 630 // To count the number of units in a Duration, divide: 631 // second := time.Second 632 // fmt.Print(int64(second/time.Millisecond)) // prints 1000 633 // 634 // To convert an integer number of units to a Duration, multiply: 635 // seconds := 10 636 // fmt.Print(time.Duration(seconds)*time.Second) // prints 10s 637 // 638 const ( 639 Nanosecond Duration = 1 640 Microsecond = 1000 * Nanosecond 641 Millisecond = 1000 * Microsecond 642 Second = 1000 * Millisecond 643 Minute = 60 * Second 644 Hour = 60 * Minute 645 ) 646 647 // String returns a string representing the duration in the form "72h3m0.5s". 648 // Leading zero units are omitted. As a special case, durations less than one 649 // second format use a smaller unit (milli-, micro-, or nanoseconds) to ensure 650 // that the leading digit is non-zero. The zero duration formats as 0s. 651 func (d Duration) String() string { 652 // Largest time is 2540400h10m10.000000000s 653 var buf [32]byte 654 w := len(buf) 655 656 u := uint64(d) 657 neg := d < 0 658 if neg { 659 u = -u 660 } 661 662 if u < uint64(Second) { 663 // Special case: if duration is smaller than a second, 664 // use smaller units, like 1.2ms 665 var prec int 666 w-- 667 buf[w] = 's' 668 w-- 669 switch { 670 case u == 0: 671 return "0s" 672 case u < uint64(Microsecond): 673 // print nanoseconds 674 prec = 0 675 buf[w] = 'n' 676 case u < uint64(Millisecond): 677 // print microseconds 678 prec = 3 679 // U+00B5 'µ' micro sign == 0xC2 0xB5 680 w-- // Need room for two bytes. 681 copy(buf[w:], "µ") 682 default: 683 // print milliseconds 684 prec = 6 685 buf[w] = 'm' 686 } 687 w, u = fmtFrac(buf[:w], u, prec) 688 w = fmtInt(buf[:w], u) 689 } else { 690 w-- 691 buf[w] = 's' 692 693 w, u = fmtFrac(buf[:w], u, 9) 694 695 // u is now integer seconds 696 w = fmtInt(buf[:w], u%60) 697 u /= 60 698 699 // u is now integer minutes 700 if u > 0 { 701 w-- 702 buf[w] = 'm' 703 w = fmtInt(buf[:w], u%60) 704 u /= 60 705 706 // u is now integer hours 707 // Stop at hours because days can be different lengths. 708 if u > 0 { 709 w-- 710 buf[w] = 'h' 711 w = fmtInt(buf[:w], u) 712 } 713 } 714 } 715 716 if neg { 717 w-- 718 buf[w] = '-' 719 } 720 721 return string(buf[w:]) 722 } 723 724 // fmtFrac formats the fraction of v/10**prec (e.g., ".12345") into the 725 // tail of buf, omitting trailing zeros. it omits the decimal 726 // point too when the fraction is 0. It returns the index where the 727 // output bytes begin and the value v/10**prec. 728 func fmtFrac(buf []byte, v uint64, prec int) (nw int, nv uint64) { 729 // Omit trailing zeros up to and including decimal point. 730 w := len(buf) 731 print := false 732 for i := 0; i < prec; i++ { 733 digit := v % 10 734 print = print || digit != 0 735 if print { 736 w-- 737 buf[w] = byte(digit) + '0' 738 } 739 v /= 10 740 } 741 if print { 742 w-- 743 buf[w] = '.' 744 } 745 return w, v 746 } 747 748 // fmtInt formats v into the tail of buf. 749 // It returns the index where the output begins. 750 func fmtInt(buf []byte, v uint64) int { 751 w := len(buf) 752 if v == 0 { 753 w-- 754 buf[w] = '0' 755 } else { 756 for v > 0 { 757 w-- 758 buf[w] = byte(v%10) + '0' 759 v /= 10 760 } 761 } 762 return w 763 } 764 765 // Nanoseconds returns the duration as an integer nanosecond count. 766 func (d Duration) Nanoseconds() int64 { return int64(d) } 767 768 // These methods return float64 because the dominant 769 // use case is for printing a floating point number like 1.5s, and 770 // a truncation to integer would make them not useful in those cases. 771 // Splitting the integer and fraction ourselves guarantees that 772 // converting the returned float64 to an integer rounds the same 773 // way that a pure integer conversion would have, even in cases 774 // where, say, float64(d.Nanoseconds())/1e9 would have rounded 775 // differently. 776 777 // Seconds returns the duration as a floating point number of seconds. 778 func (d Duration) Seconds() float64 { 779 sec := d / Second 780 nsec := d % Second 781 return float64(sec) + float64(nsec)/1e9 782 } 783 784 // Minutes returns the duration as a floating point number of minutes. 785 func (d Duration) Minutes() float64 { 786 min := d / Minute 787 nsec := d % Minute 788 return float64(min) + float64(nsec)/(60*1e9) 789 } 790 791 // Hours returns the duration as a floating point number of hours. 792 func (d Duration) Hours() float64 { 793 hour := d / Hour 794 nsec := d % Hour 795 return float64(hour) + float64(nsec)/(60*60*1e9) 796 } 797 798 // Truncate returns the result of rounding d toward zero to a multiple of m. 799 // If m <= 0, Truncate returns d unchanged. 800 func (d Duration) Truncate(m Duration) Duration { 801 if m <= 0 { 802 return d 803 } 804 return d - d%m 805 } 806 807 // lessThanHalf reports whether x+x < y but avoids overflow, 808 // assuming x and y are both positive (Duration is signed). 809 func lessThanHalf(x, y Duration) bool { 810 return uint64(x)+uint64(x) < uint64(y) 811 } 812 813 // Round returns the result of rounding d to the nearest multiple of m. 814 // The rounding behavior for halfway values is to round away from zero. 815 // If the result exceeds the maximum (or minimum) 816 // value that can be stored in a Duration, 817 // Round returns the maximum (or minimum) duration. 818 // If m <= 0, Round returns d unchanged. 819 func (d Duration) Round(m Duration) Duration { 820 if m <= 0 { 821 return d 822 } 823 r := d % m 824 if d < 0 { 825 r = -r 826 if lessThanHalf(r, m) { 827 return d + r 828 } 829 if d1 := d - m + r; d1 < d { 830 return d1 831 } 832 return minDuration // overflow 833 } 834 if lessThanHalf(r, m) { 835 return d - r 836 } 837 if d1 := d + m - r; d1 > d { 838 return d1 839 } 840 return maxDuration // overflow 841 } 842 843 // Add returns the time t+d. 844 func (t Time) Add(d Duration) Time { 845 dsec := int64(d / 1e9) 846 nsec := t.nsec() + int32(d%1e9) 847 if nsec >= 1e9 { 848 dsec++ 849 nsec -= 1e9 850 } else if nsec < 0 { 851 dsec-- 852 nsec += 1e9 853 } 854 t.wall = t.wall&^nsecMask | uint64(nsec) // update nsec 855 t.addSec(dsec) 856 if t.wall&hasMonotonic != 0 { 857 te := t.ext + int64(d) 858 if d < 0 && te > int64(t.ext) || d > 0 && te < int64(t.ext) { 859 // Monotonic clock reading now out of range; degrade to wall-only. 860 t.stripMono() 861 } else { 862 t.ext = te 863 } 864 } 865 return t 866 } 867 868 // Sub returns the duration t-u. If the result exceeds the maximum (or minimum) 869 // value that can be stored in a Duration, the maximum (or minimum) duration 870 // will be returned. 871 // To compute t-d for a duration d, use t.Add(-d). 872 func (t Time) Sub(u Time) Duration { 873 if t.wall&u.wall&hasMonotonic != 0 { 874 te := int64(t.ext) 875 ue := int64(u.ext) 876 d := Duration(te - ue) 877 if d < 0 && te > ue { 878 return maxDuration // t - u is positive out of range 879 } 880 if d > 0 && te < ue { 881 return minDuration // t - u is negative out of range 882 } 883 return d 884 } 885 d := Duration(t.sec()-u.sec())*Second + Duration(t.nsec()-u.nsec()) 886 // Check for overflow or underflow. 887 switch { 888 case u.Add(d).Equal(t): 889 return d // d is correct 890 case t.Before(u): 891 return minDuration // t - u is negative out of range 892 default: 893 return maxDuration // t - u is positive out of range 894 } 895 } 896 897 // Since returns the time elapsed since t. 898 // It is shorthand for time.Now().Sub(t). 899 func Since(t Time) Duration { 900 return Now().Sub(t) 901 } 902 903 // Until returns the duration until t. 904 // It is shorthand for t.Sub(time.Now()). 905 func Until(t Time) Duration { 906 return t.Sub(Now()) 907 } 908 909 // AddDate returns the time corresponding to adding the 910 // given number of years, months, and days to t. 911 // For example, AddDate(-1, 2, 3) applied to January 1, 2011 912 // returns March 4, 2010. 913 // 914 // AddDate normalizes its result in the same way that Date does, 915 // so, for example, adding one month to October 31 yields 916 // December 1, the normalized form for November 31. 917 func (t Time) AddDate(years int, months int, days int) Time { 918 year, month, day := t.Date() 919 hour, min, sec := t.Clock() 920 return Date(year+years, month+Month(months), day+days, hour, min, sec, int(t.nsec()), t.Location()) 921 } 922 923 const ( 924 secondsPerMinute = 60 925 secondsPerHour = 60 * 60 926 secondsPerDay = 24 * secondsPerHour 927 secondsPerWeek = 7 * secondsPerDay 928 daysPer400Years = 365*400 + 97 929 daysPer100Years = 365*100 + 24 930 daysPer4Years = 365*4 + 1 931 ) 932 933 // date computes the year, day of year, and when full=true, 934 // the month and day in which t occurs. 935 func (t Time) date(full bool) (year int, month Month, day int, yday int) { 936 return absDate(t.abs(), full) 937 } 938 939 // absDate is like date but operates on an absolute time. 940 func absDate(abs uint64, full bool) (year int, month Month, day int, yday int) { 941 // Split into time and day. 942 d := abs / secondsPerDay 943 944 // Account for 400 year cycles. 945 n := d / daysPer400Years 946 y := 400 * n 947 d -= daysPer400Years * n 948 949 // Cut off 100-year cycles. 950 // The last cycle has one extra leap year, so on the last day 951 // of that year, day / daysPer100Years will be 4 instead of 3. 952 // Cut it back down to 3 by subtracting n>>2. 953 n = d / daysPer100Years 954 n -= n >> 2 955 y += 100 * n 956 d -= daysPer100Years * n 957 958 // Cut off 4-year cycles. 959 // The last cycle has a missing leap year, which does not 960 // affect the computation. 961 n = d / daysPer4Years 962 y += 4 * n 963 d -= daysPer4Years * n 964 965 // Cut off years within a 4-year cycle. 966 // The last year is a leap year, so on the last day of that year, 967 // day / 365 will be 4 instead of 3. Cut it back down to 3 968 // by subtracting n>>2. 969 n = d / 365 970 n -= n >> 2 971 y += n 972 d -= 365 * n 973 974 year = int(int64(y) + absoluteZeroYear) 975 yday = int(d) 976 977 if !full { 978 return 979 } 980 981 day = yday 982 if isLeap(year) { 983 // Leap year 984 switch { 985 case day > 31+29-1: 986 // After leap day; pretend it wasn't there. 987 day-- 988 case day == 31+29-1: 989 // Leap day. 990 month = February 991 day = 29 992 return 993 } 994 } 995 996 // Estimate month on assumption that every month has 31 days. 997 // The estimate may be too low by at most one month, so adjust. 998 month = Month(day / 31) 999 end := int(daysBefore[month+1]) 1000 var begin int 1001 if day >= end { 1002 month++ 1003 begin = end 1004 } else { 1005 begin = int(daysBefore[month]) 1006 } 1007 1008 month++ // because January is 1 1009 day = day - begin + 1 1010 return 1011 } 1012 1013 // daysBefore[m] counts the number of days in a non-leap year 1014 // before month m begins. There is an entry for m=12, counting 1015 // the number of days before January of next year (365). 1016 var daysBefore = [...]int32{ 1017 0, 1018 31, 1019 31 + 28, 1020 31 + 28 + 31, 1021 31 + 28 + 31 + 30, 1022 31 + 28 + 31 + 30 + 31, 1023 31 + 28 + 31 + 30 + 31 + 30, 1024 31 + 28 + 31 + 30 + 31 + 30 + 31, 1025 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31, 1026 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30, 1027 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31, 1028 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30, 1029 31 + 28 + 31 + 30 + 31 + 30 + 31 + 31 + 30 + 31 + 30 + 31, 1030 } 1031 1032 func daysIn(m Month, year int) int { 1033 if m == February && isLeap(year) { 1034 return 29 1035 } 1036 return int(daysBefore[m] - daysBefore[m-1]) 1037 } 1038 1039 // Provided by package runtime. 1040 func now() (sec int64, nsec int32, mono int64) 1041 1042 // Now returns the current local time. 1043 func Now() Time { 1044 sec, nsec, mono := now() 1045 sec += unixToInternal - minWall 1046 if uint64(sec)>>33 != 0 { 1047 return Time{uint64(nsec), sec + minWall, Local} 1048 } 1049 return Time{hasMonotonic | uint64(sec)<<nsecShift | uint64(nsec), mono, Local} 1050 } 1051 1052 func unixTime(sec int64, nsec int32) Time { 1053 return Time{uint64(nsec), sec + unixToInternal, Local} 1054 } 1055 1056 // UTC returns t with the location set to UTC. 1057 func (t Time) UTC() Time { 1058 t.setLoc(&utcLoc) 1059 return t 1060 } 1061 1062 // Local returns t with the location set to local time. 1063 func (t Time) Local() Time { 1064 t.setLoc(Local) 1065 return t 1066 } 1067 1068 // In returns t with the location information set to loc. 1069 // 1070 // In panics if loc is nil. 1071 func (t Time) In(loc *Location) Time { 1072 if loc == nil { 1073 panic("time: missing Location in call to Time.In") 1074 } 1075 t.setLoc(loc) 1076 return t 1077 } 1078 1079 // Location returns the time zone information associated with t. 1080 func (t Time) Location() *Location { 1081 l := t.loc 1082 if l == nil { 1083 l = UTC 1084 } 1085 return l 1086 } 1087 1088 // Zone computes the time zone in effect at time t, returning the abbreviated 1089 // name of the zone (such as "CET") and its offset in seconds east of UTC. 1090 func (t Time) Zone() (name string, offset int) { 1091 name, offset, _, _, _ = t.loc.lookup(t.unixSec()) 1092 return 1093 } 1094 1095 // Unix returns t as a Unix time, the number of seconds elapsed 1096 // since January 1, 1970 UTC. 1097 func (t Time) Unix() int64 { 1098 return t.unixSec() 1099 } 1100 1101 // UnixNano returns t as a Unix time, the number of nanoseconds elapsed 1102 // since January 1, 1970 UTC. The result is undefined if the Unix time 1103 // in nanoseconds cannot be represented by an int64 (a date before the year 1104 // 1678 or after 2262). Note that this means the result of calling UnixNano 1105 // on the zero Time is undefined. 1106 func (t Time) UnixNano() int64 { 1107 return (t.unixSec())*1e9 + int64(t.nsec()) 1108 } 1109 1110 const timeBinaryVersion byte = 1 1111 1112 // MarshalBinary implements the encoding.BinaryMarshaler interface. 1113 func (t Time) MarshalBinary() ([]byte, error) { 1114 var offsetMin int16 // minutes east of UTC. -1 is UTC. 1115 1116 if t.Location() == UTC { 1117 offsetMin = -1 1118 } else { 1119 _, offset := t.Zone() 1120 if offset%60 != 0 { 1121 return nil, errors.New("Time.MarshalBinary: zone offset has fractional minute") 1122 } 1123 offset /= 60 1124 if offset < -32768 || offset == -1 || offset > 32767 { 1125 return nil, errors.New("Time.MarshalBinary: unexpected zone offset") 1126 } 1127 offsetMin = int16(offset) 1128 } 1129 1130 sec := t.sec() 1131 nsec := t.nsec() 1132 enc := []byte{ 1133 timeBinaryVersion, // byte 0 : version 1134 byte(sec >> 56), // bytes 1-8: seconds 1135 byte(sec >> 48), 1136 byte(sec >> 40), 1137 byte(sec >> 32), 1138 byte(sec >> 24), 1139 byte(sec >> 16), 1140 byte(sec >> 8), 1141 byte(sec), 1142 byte(nsec >> 24), // bytes 9-12: nanoseconds 1143 byte(nsec >> 16), 1144 byte(nsec >> 8), 1145 byte(nsec), 1146 byte(offsetMin >> 8), // bytes 13-14: zone offset in minutes 1147 byte(offsetMin), 1148 } 1149 1150 return enc, nil 1151 } 1152 1153 // UnmarshalBinary implements the encoding.BinaryUnmarshaler interface. 1154 func (t *Time) UnmarshalBinary(data []byte) error { 1155 buf := data 1156 if len(buf) == 0 { 1157 return errors.New("Time.UnmarshalBinary: no data") 1158 } 1159 1160 if buf[0] != timeBinaryVersion { 1161 return errors.New("Time.UnmarshalBinary: unsupported version") 1162 } 1163 1164 if len(buf) != /*version*/ 1+ /*sec*/ 8+ /*nsec*/ 4+ /*zone offset*/ 2 { 1165 return errors.New("Time.UnmarshalBinary: invalid length") 1166 } 1167 1168 buf = buf[1:] 1169 sec := int64(buf[7]) | int64(buf[6])<<8 | int64(buf[5])<<16 | int64(buf[4])<<24 | 1170 int64(buf[3])<<32 | int64(buf[2])<<40 | int64(buf[1])<<48 | int64(buf[0])<<56 1171 1172 buf = buf[8:] 1173 nsec := int32(buf[3]) | int32(buf[2])<<8 | int32(buf[1])<<16 | int32(buf[0])<<24 1174 1175 buf = buf[4:] 1176 offset := int(int16(buf[1])|int16(buf[0])<<8) * 60 1177 1178 *t = Time{} 1179 t.wall = uint64(nsec) 1180 t.ext = sec 1181 1182 if offset == -1*60 { 1183 t.setLoc(&utcLoc) 1184 } else if _, localoff, _, _, _ := Local.lookup(t.unixSec()); offset == localoff { 1185 t.setLoc(Local) 1186 } else { 1187 t.setLoc(FixedZone("", offset)) 1188 } 1189 1190 return nil 1191 } 1192 1193 // TODO(rsc): Remove GobEncoder, GobDecoder, MarshalJSON, UnmarshalJSON in Go 2. 1194 // The same semantics will be provided by the generic MarshalBinary, MarshalText, 1195 // UnmarshalBinary, UnmarshalText. 1196 1197 // GobEncode implements the gob.GobEncoder interface. 1198 func (t Time) GobEncode() ([]byte, error) { 1199 return t.MarshalBinary() 1200 } 1201 1202 // GobDecode implements the gob.GobDecoder interface. 1203 func (t *Time) GobDecode(data []byte) error { 1204 return t.UnmarshalBinary(data) 1205 } 1206 1207 // MarshalJSON implements the json.Marshaler interface. 1208 // The time is a quoted string in RFC 3339 format, with sub-second precision added if present. 1209 func (t Time) MarshalJSON() ([]byte, error) { 1210 if y := t.Year(); y < 0 || y >= 10000 { 1211 // RFC 3339 is clear that years are 4 digits exactly. 1212 // See golang.org/issue/4556#c15 for more discussion. 1213 return nil, errors.New("Time.MarshalJSON: year outside of range [0,9999]") 1214 } 1215 1216 b := make([]byte, 0, len(RFC3339Nano)+2) 1217 b = append(b, '"') 1218 b = t.AppendFormat(b, RFC3339Nano) 1219 b = append(b, '"') 1220 return b, nil 1221 } 1222 1223 // UnmarshalJSON implements the json.Unmarshaler interface. 1224 // The time is expected to be a quoted string in RFC 3339 format. 1225 func (t *Time) UnmarshalJSON(data []byte) error { 1226 // Ignore null, like in the main JSON package. 1227 if string(data) == "null" { 1228 return nil 1229 } 1230 // Fractional seconds are handled implicitly by Parse. 1231 var err error 1232 *t, err = Parse(`"`+RFC3339+`"`, string(data)) 1233 return err 1234 } 1235 1236 // MarshalText implements the encoding.TextMarshaler interface. 1237 // The time is formatted in RFC 3339 format, with sub-second precision added if present. 1238 func (t Time) MarshalText() ([]byte, error) { 1239 if y := t.Year(); y < 0 || y >= 10000 { 1240 return nil, errors.New("Time.MarshalText: year outside of range [0,9999]") 1241 } 1242 1243 b := make([]byte, 0, len(RFC3339Nano)) 1244 return t.AppendFormat(b, RFC3339Nano), nil 1245 } 1246 1247 // UnmarshalText implements the encoding.TextUnmarshaler interface. 1248 // The time is expected to be in RFC 3339 format. 1249 func (t *Time) UnmarshalText(data []byte) error { 1250 // Fractional seconds are handled implicitly by Parse. 1251 var err error 1252 *t, err = Parse(RFC3339, string(data)) 1253 return err 1254 } 1255 1256 // Unix returns the local Time corresponding to the given Unix time, 1257 // sec seconds and nsec nanoseconds since January 1, 1970 UTC. 1258 // It is valid to pass nsec outside the range [0, 999999999]. 1259 // Not all sec values have a corresponding time value. One such 1260 // value is 1<<63-1 (the largest int64 value). 1261 func Unix(sec int64, nsec int64) Time { 1262 if nsec < 0 || nsec >= 1e9 { 1263 n := nsec / 1e9 1264 sec += n 1265 nsec -= n * 1e9 1266 if nsec < 0 { 1267 nsec += 1e9 1268 sec-- 1269 } 1270 } 1271 return unixTime(sec, int32(nsec)) 1272 } 1273 1274 func isLeap(year int) bool { 1275 return year%4 == 0 && (year%100 != 0 || year%400 == 0) 1276 } 1277 1278 // norm returns nhi, nlo such that 1279 // hi * base + lo == nhi * base + nlo 1280 // 0 <= nlo < base 1281 func norm(hi, lo, base int) (nhi, nlo int) { 1282 if lo < 0 { 1283 n := (-lo-1)/base + 1 1284 hi -= n 1285 lo += n * base 1286 } 1287 if lo >= base { 1288 n := lo / base 1289 hi += n 1290 lo -= n * base 1291 } 1292 return hi, lo 1293 } 1294 1295 // Date returns the Time corresponding to 1296 // yyyy-mm-dd hh:mm:ss + nsec nanoseconds 1297 // in the appropriate zone for that time in the given location. 1298 // 1299 // The month, day, hour, min, sec, and nsec values may be outside 1300 // their usual ranges and will be normalized during the conversion. 1301 // For example, October 32 converts to November 1. 1302 // 1303 // A daylight savings time transition skips or repeats times. 1304 // For example, in the United States, March 13, 2011 2:15am never occurred, 1305 // while November 6, 2011 1:15am occurred twice. In such cases, the 1306 // choice of time zone, and therefore the time, is not well-defined. 1307 // Date returns a time that is correct in one of the two zones involved 1308 // in the transition, but it does not guarantee which. 1309 // 1310 // Date panics if loc is nil. 1311 func Date(year int, month Month, day, hour, min, sec, nsec int, loc *Location) Time { 1312 if loc == nil { 1313 panic("time: missing Location in call to Date") 1314 } 1315 1316 // Normalize month, overflowing into year. 1317 m := int(month) - 1 1318 year, m = norm(year, m, 12) 1319 month = Month(m) + 1 1320 1321 // Normalize nsec, sec, min, hour, overflowing into day. 1322 sec, nsec = norm(sec, nsec, 1e9) 1323 min, sec = norm(min, sec, 60) 1324 hour, min = norm(hour, min, 60) 1325 day, hour = norm(day, hour, 24) 1326 1327 y := uint64(int64(year) - absoluteZeroYear) 1328 1329 // Compute days since the absolute epoch. 1330 1331 // Add in days from 400-year cycles. 1332 n := y / 400 1333 y -= 400 * n 1334 d := daysPer400Years * n 1335 1336 // Add in 100-year cycles. 1337 n = y / 100 1338 y -= 100 * n 1339 d += daysPer100Years * n 1340 1341 // Add in 4-year cycles. 1342 n = y / 4 1343 y -= 4 * n 1344 d += daysPer4Years * n 1345 1346 // Add in non-leap years. 1347 n = y 1348 d += 365 * n 1349 1350 // Add in days before this month. 1351 d += uint64(daysBefore[month-1]) 1352 if isLeap(year) && month >= March { 1353 d++ // February 29 1354 } 1355 1356 // Add in days before today. 1357 d += uint64(day - 1) 1358 1359 // Add in time elapsed today. 1360 abs := d * secondsPerDay 1361 abs += uint64(hour*secondsPerHour + min*secondsPerMinute + sec) 1362 1363 unix := int64(abs) + (absoluteToInternal + internalToUnix) 1364 1365 // Look for zone offset for t, so we can adjust to UTC. 1366 // The lookup function expects UTC, so we pass t in the 1367 // hope that it will not be too close to a zone transition, 1368 // and then adjust if it is. 1369 _, offset, _, start, end := loc.lookup(unix) 1370 if offset != 0 { 1371 switch utc := unix - int64(offset); { 1372 case utc < start: 1373 _, offset, _, _, _ = loc.lookup(start - 1) 1374 case utc >= end: 1375 _, offset, _, _, _ = loc.lookup(end) 1376 } 1377 unix -= int64(offset) 1378 } 1379 1380 t := unixTime(unix, int32(nsec)) 1381 t.setLoc(loc) 1382 return t 1383 } 1384 1385 // Truncate returns the result of rounding t down to a multiple of d (since the zero time). 1386 // If d <= 0, Truncate returns t stripped of any monotonic clock reading but otherwise unchanged. 1387 // 1388 // Truncate operates on the time as an absolute duration since the 1389 // zero time; it does not operate on the presentation form of the 1390 // time. Thus, Truncate(Hour) may return a time with a non-zero 1391 // minute, depending on the time's Location. 1392 func (t Time) Truncate(d Duration) Time { 1393 t.stripMono() 1394 if d <= 0 { 1395 return t 1396 } 1397 _, r := div(t, d) 1398 return t.Add(-r) 1399 } 1400 1401 // Round returns the result of rounding t to the nearest multiple of d (since the zero time). 1402 // The rounding behavior for halfway values is to round up. 1403 // If d <= 0, Round returns t stripped of any monotonic clock reading but otherwise unchanged. 1404 // 1405 // Round operates on the time as an absolute duration since the 1406 // zero time; it does not operate on the presentation form of the 1407 // time. Thus, Round(Hour) may return a time with a non-zero 1408 // minute, depending on the time's Location. 1409 func (t Time) Round(d Duration) Time { 1410 t.stripMono() 1411 if d <= 0 { 1412 return t 1413 } 1414 _, r := div(t, d) 1415 if lessThanHalf(r, d) { 1416 return t.Add(-r) 1417 } 1418 return t.Add(d - r) 1419 } 1420 1421 // div divides t by d and returns the quotient parity and remainder. 1422 // We don't use the quotient parity anymore (round half up instead of round to even) 1423 // but it's still here in case we change our minds. 1424 func div(t Time, d Duration) (qmod2 int, r Duration) { 1425 neg := false 1426 nsec := t.nsec() 1427 sec := t.sec() 1428 if sec < 0 { 1429 // Operate on absolute value. 1430 neg = true 1431 sec = -sec 1432 nsec = -nsec 1433 if nsec < 0 { 1434 nsec += 1e9 1435 sec-- // sec >= 1 before the -- so safe 1436 } 1437 } 1438 1439 switch { 1440 // Special case: 2d divides 1 second. 1441 case d < Second && Second%(d+d) == 0: 1442 qmod2 = int(nsec/int32(d)) & 1 1443 r = Duration(nsec % int32(d)) 1444 1445 // Special case: d is a multiple of 1 second. 1446 case d%Second == 0: 1447 d1 := int64(d / Second) 1448 qmod2 = int(sec/d1) & 1 1449 r = Duration(sec%d1)*Second + Duration(nsec) 1450 1451 // General case. 1452 // This could be faster if more cleverness were applied, 1453 // but it's really only here to avoid special case restrictions in the API. 1454 // No one will care about these cases. 1455 default: 1456 // Compute nanoseconds as 128-bit number. 1457 sec := uint64(sec) 1458 tmp := (sec >> 32) * 1e9 1459 u1 := tmp >> 32 1460 u0 := tmp << 32 1461 tmp = (sec & 0xFFFFFFFF) * 1e9 1462 u0x, u0 := u0, u0+tmp 1463 if u0 < u0x { 1464 u1++ 1465 } 1466 u0x, u0 = u0, u0+uint64(nsec) 1467 if u0 < u0x { 1468 u1++ 1469 } 1470 1471 // Compute remainder by subtracting r<<k for decreasing k. 1472 // Quotient parity is whether we subtract on last round. 1473 d1 := uint64(d) 1474 for d1>>63 != 1 { 1475 d1 <<= 1 1476 } 1477 d0 := uint64(0) 1478 for { 1479 qmod2 = 0 1480 if u1 > d1 || u1 == d1 && u0 >= d0 { 1481 // subtract 1482 qmod2 = 1 1483 u0x, u0 = u0, u0-d0 1484 if u0 > u0x { 1485 u1-- 1486 } 1487 u1 -= d1 1488 } 1489 if d1 == 0 && d0 == uint64(d) { 1490 break 1491 } 1492 d0 >>= 1 1493 d0 |= (d1 & 1) << 63 1494 d1 >>= 1 1495 } 1496 r = Duration(u0) 1497 } 1498 1499 if neg && r != 0 { 1500 // If input was negative and not an exact multiple of d, we computed q, r such that 1501 // q*d + r = -t 1502 // But the right answers are given by -(q-1), d-r: 1503 // q*d + r = -t 1504 // -q*d - r = t 1505 // -(q-1)*d + (d - r) = t 1506 qmod2 ^= 1 1507 r = d - r 1508 } 1509 return 1510 }