github.com/freddyisaac/sicortex-golang@v0.0.0-20231019035217-e03519e66f60/src/cmd/link/internal/ld/data.go (about)

     1  // Derived from Inferno utils/6l/obj.c and utils/6l/span.c
     2  // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/obj.c
     3  // https://bitbucket.org/inferno-os/inferno-os/src/default/utils/6l/span.c
     4  //
     5  //	Copyright © 1994-1999 Lucent Technologies Inc.  All rights reserved.
     6  //	Portions Copyright © 1995-1997 C H Forsyth (forsyth@terzarima.net)
     7  //	Portions Copyright © 1997-1999 Vita Nuova Limited
     8  //	Portions Copyright © 2000-2007 Vita Nuova Holdings Limited (www.vitanuova.com)
     9  //	Portions Copyright © 2004,2006 Bruce Ellis
    10  //	Portions Copyright © 2005-2007 C H Forsyth (forsyth@terzarima.net)
    11  //	Revisions Copyright © 2000-2007 Lucent Technologies Inc. and others
    12  //	Portions Copyright © 2009 The Go Authors. All rights reserved.
    13  //
    14  // Permission is hereby granted, free of charge, to any person obtaining a copy
    15  // of this software and associated documentation files (the "Software"), to deal
    16  // in the Software without restriction, including without limitation the rights
    17  // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
    18  // copies of the Software, and to permit persons to whom the Software is
    19  // furnished to do so, subject to the following conditions:
    20  //
    21  // The above copyright notice and this permission notice shall be included in
    22  // all copies or substantial portions of the Software.
    23  //
    24  // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
    25  // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
    26  // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
    27  // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
    28  // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
    29  // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
    30  // THE SOFTWARE.
    31  
    32  package ld
    33  
    34  import (
    35  	"cmd/internal/gcprog"
    36  	"cmd/internal/obj"
    37  	"cmd/internal/sys"
    38  	"fmt"
    39  	"log"
    40  	"os"
    41  	"sort"
    42  	"strconv"
    43  	"strings"
    44  	"sync"
    45  )
    46  
    47  func Symgrow(s *Symbol, siz int64) {
    48  	if int64(int(siz)) != siz {
    49  		log.Fatalf("symgrow size %d too long", siz)
    50  	}
    51  	if int64(len(s.P)) >= siz {
    52  		return
    53  	}
    54  	if cap(s.P) < int(siz) {
    55  		p := make([]byte, 2*(siz+1))
    56  		s.P = append(p[:0], s.P...)
    57  	}
    58  	s.P = s.P[:siz]
    59  }
    60  
    61  func Addrel(s *Symbol) *Reloc {
    62  	s.R = append(s.R, Reloc{})
    63  	return &s.R[len(s.R)-1]
    64  }
    65  
    66  func setuintxx(ctxt *Link, s *Symbol, off int64, v uint64, wid int64) int64 {
    67  	if s.Type == 0 {
    68  		s.Type = obj.SDATA
    69  	}
    70  	s.Attr |= AttrReachable
    71  	if s.Size < off+wid {
    72  		s.Size = off + wid
    73  		Symgrow(s, s.Size)
    74  	}
    75  
    76  	switch wid {
    77  	case 1:
    78  		s.P[off] = uint8(v)
    79  	case 2:
    80  		ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(v))
    81  	case 4:
    82  		ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(v))
    83  	case 8:
    84  		ctxt.Arch.ByteOrder.PutUint64(s.P[off:], v)
    85  	}
    86  
    87  	return off + wid
    88  }
    89  
    90  func Addbytes(s *Symbol, bytes []byte) int64 {
    91  	if s.Type == 0 {
    92  		s.Type = obj.SDATA
    93  	}
    94  	s.Attr |= AttrReachable
    95  	s.P = append(s.P, bytes...)
    96  	s.Size = int64(len(s.P))
    97  
    98  	return s.Size
    99  }
   100  
   101  func adduintxx(ctxt *Link, s *Symbol, v uint64, wid int) int64 {
   102  	off := s.Size
   103  	setuintxx(ctxt, s, off, v, int64(wid))
   104  	return off
   105  }
   106  
   107  func Adduint8(ctxt *Link, s *Symbol, v uint8) int64 {
   108  	off := s.Size
   109  	if s.Type == 0 {
   110  		s.Type = obj.SDATA
   111  	}
   112  	s.Attr |= AttrReachable
   113  	s.Size++
   114  	s.P = append(s.P, v)
   115  
   116  	return off
   117  }
   118  
   119  func Adduint16(ctxt *Link, s *Symbol, v uint16) int64 {
   120  	return adduintxx(ctxt, s, uint64(v), 2)
   121  }
   122  
   123  func Adduint32(ctxt *Link, s *Symbol, v uint32) int64 {
   124  	return adduintxx(ctxt, s, uint64(v), 4)
   125  }
   126  
   127  func Adduint64(ctxt *Link, s *Symbol, v uint64) int64 {
   128  	return adduintxx(ctxt, s, v, 8)
   129  }
   130  
   131  func adduint(ctxt *Link, s *Symbol, v uint64) int64 {
   132  	return adduintxx(ctxt, s, v, SysArch.IntSize)
   133  }
   134  
   135  func setuint8(ctxt *Link, s *Symbol, r int64, v uint8) int64 {
   136  	return setuintxx(ctxt, s, r, uint64(v), 1)
   137  }
   138  
   139  func setuint32(ctxt *Link, s *Symbol, r int64, v uint32) int64 {
   140  	return setuintxx(ctxt, s, r, uint64(v), 4)
   141  }
   142  
   143  func Addaddrplus(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 {
   144  	if s.Type == 0 {
   145  		s.Type = obj.SDATA
   146  	}
   147  	s.Attr |= AttrReachable
   148  	i := s.Size
   149  	s.Size += int64(ctxt.Arch.PtrSize)
   150  	Symgrow(s, s.Size)
   151  	r := Addrel(s)
   152  	r.Sym = t
   153  	r.Off = int32(i)
   154  	r.Siz = uint8(ctxt.Arch.PtrSize)
   155  	r.Type = obj.R_ADDR
   156  	r.Add = add
   157  	return i + int64(r.Siz)
   158  }
   159  
   160  func Addpcrelplus(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 {
   161  	if s.Type == 0 {
   162  		s.Type = obj.SDATA
   163  	}
   164  	s.Attr |= AttrReachable
   165  	i := s.Size
   166  	s.Size += 4
   167  	Symgrow(s, s.Size)
   168  	r := Addrel(s)
   169  	r.Sym = t
   170  	r.Off = int32(i)
   171  	r.Add = add
   172  	r.Type = obj.R_PCREL
   173  	r.Siz = 4
   174  	if SysArch.Family == sys.S390X {
   175  		r.Variant = RV_390_DBL
   176  	}
   177  	return i + int64(r.Siz)
   178  }
   179  
   180  func Addaddr(ctxt *Link, s *Symbol, t *Symbol) int64 {
   181  	return Addaddrplus(ctxt, s, t, 0)
   182  }
   183  
   184  func setaddrplus(ctxt *Link, s *Symbol, off int64, t *Symbol, add int64) int64 {
   185  	if s.Type == 0 {
   186  		s.Type = obj.SDATA
   187  	}
   188  	s.Attr |= AttrReachable
   189  	if off+int64(ctxt.Arch.PtrSize) > s.Size {
   190  		s.Size = off + int64(ctxt.Arch.PtrSize)
   191  		Symgrow(s, s.Size)
   192  	}
   193  
   194  	r := Addrel(s)
   195  	r.Sym = t
   196  	r.Off = int32(off)
   197  	r.Siz = uint8(ctxt.Arch.PtrSize)
   198  	r.Type = obj.R_ADDR
   199  	r.Add = add
   200  	return off + int64(r.Siz)
   201  }
   202  
   203  func setaddr(ctxt *Link, s *Symbol, off int64, t *Symbol) int64 {
   204  	return setaddrplus(ctxt, s, off, t, 0)
   205  }
   206  
   207  func addsize(ctxt *Link, s *Symbol, t *Symbol) int64 {
   208  	if s.Type == 0 {
   209  		s.Type = obj.SDATA
   210  	}
   211  	s.Attr |= AttrReachable
   212  	i := s.Size
   213  	s.Size += int64(ctxt.Arch.PtrSize)
   214  	Symgrow(s, s.Size)
   215  	r := Addrel(s)
   216  	r.Sym = t
   217  	r.Off = int32(i)
   218  	r.Siz = uint8(ctxt.Arch.PtrSize)
   219  	r.Type = obj.R_SIZE
   220  	return i + int64(r.Siz)
   221  }
   222  
   223  func addaddrplus4(ctxt *Link, s *Symbol, t *Symbol, add int64) int64 {
   224  	if s.Type == 0 {
   225  		s.Type = obj.SDATA
   226  	}
   227  	s.Attr |= AttrReachable
   228  	i := s.Size
   229  	s.Size += 4
   230  	Symgrow(s, s.Size)
   231  	r := Addrel(s)
   232  	r.Sym = t
   233  	r.Off = int32(i)
   234  	r.Siz = 4
   235  	r.Type = obj.R_ADDR
   236  	r.Add = add
   237  	return i + int64(r.Siz)
   238  }
   239  
   240  /*
   241   * divide-and-conquer list-link (by Sub) sort of Symbol* by Value.
   242   * Used for sub-symbols when loading host objects (see e.g. ldelf.go).
   243   */
   244  
   245  func listsort(l *Symbol) *Symbol {
   246  	if l == nil || l.Sub == nil {
   247  		return l
   248  	}
   249  
   250  	l1 := l
   251  	l2 := l
   252  	for {
   253  		l2 = l2.Sub
   254  		if l2 == nil {
   255  			break
   256  		}
   257  		l2 = l2.Sub
   258  		if l2 == nil {
   259  			break
   260  		}
   261  		l1 = l1.Sub
   262  	}
   263  
   264  	l2 = l1.Sub
   265  	l1.Sub = nil
   266  	l1 = listsort(l)
   267  	l2 = listsort(l2)
   268  
   269  	/* set up lead element */
   270  	if l1.Value < l2.Value {
   271  		l = l1
   272  		l1 = l1.Sub
   273  	} else {
   274  		l = l2
   275  		l2 = l2.Sub
   276  	}
   277  
   278  	le := l
   279  
   280  	for {
   281  		if l1 == nil {
   282  			for l2 != nil {
   283  				le.Sub = l2
   284  				le = l2
   285  				l2 = l2.Sub
   286  			}
   287  
   288  			le.Sub = nil
   289  			break
   290  		}
   291  
   292  		if l2 == nil {
   293  			for l1 != nil {
   294  				le.Sub = l1
   295  				le = l1
   296  				l1 = l1.Sub
   297  			}
   298  
   299  			break
   300  		}
   301  
   302  		if l1.Value < l2.Value {
   303  			le.Sub = l1
   304  			le = l1
   305  			l1 = l1.Sub
   306  		} else {
   307  			le.Sub = l2
   308  			le = l2
   309  			l2 = l2.Sub
   310  		}
   311  	}
   312  
   313  	le.Sub = nil
   314  	return l
   315  }
   316  
   317  // isRuntimeDepPkg returns whether pkg is the runtime package or its dependency
   318  func isRuntimeDepPkg(pkg string) bool {
   319  	switch pkg {
   320  	case "runtime",
   321  		"sync/atomic": // runtime may call to sync/atomic, due to go:linkname
   322  		return true
   323  	}
   324  	return strings.HasPrefix(pkg, "runtime/internal/") && !strings.HasSuffix(pkg, "_test")
   325  }
   326  
   327  // Estimate the max size needed to hold any new trampolines created for this function. This
   328  // is used to determine when the section can be split if it becomes too large, to ensure that
   329  // the trampolines are in the same section as the function that uses them.
   330  func maxSizeTrampolinesPPC64(s *Symbol, isTramp bool) uint64 {
   331  	// If Thearch.Trampoline is nil, then trampoline support is not available on this arch.
   332  	// A trampoline does not need any dependent trampolines.
   333  	if Thearch.Trampoline == nil || isTramp {
   334  		return 0
   335  	}
   336  
   337  	n := uint64(0)
   338  	for ri := range s.R {
   339  		r := &s.R[ri]
   340  		if r.Type.IsDirectJump() {
   341  			n++
   342  		}
   343  	}
   344  	// Trampolines in ppc64 are 4 instructions.
   345  	return n * 16
   346  }
   347  
   348  // detect too-far jumps in function s, and add trampolines if necessary
   349  // ARM, PPC64 & PPC64LE support trampoline insertion for internal and external linking
   350  // On PPC64 & PPC64LE the text sections might be split but will still insert trampolines
   351  // where necessary.
   352  func trampoline(ctxt *Link, s *Symbol) {
   353  	if Thearch.Trampoline == nil {
   354  		return // no need or no support of trampolines on this arch
   355  	}
   356  
   357  	for ri := range s.R {
   358  		r := &s.R[ri]
   359  		if !r.Type.IsDirectJump() {
   360  			continue
   361  		}
   362  		if Symaddr(r.Sym) == 0 && r.Sym.Type != obj.SDYNIMPORT {
   363  			if r.Sym.File != s.File {
   364  				if !isRuntimeDepPkg(s.File) || !isRuntimeDepPkg(r.Sym.File) {
   365  					Errorf(s, "unresolved inter-package jump to %s(%s)", r.Sym, r.Sym.File)
   366  				}
   367  				// runtime and its dependent packages may call to each other.
   368  				// they are fine, as they will be laid down together.
   369  			}
   370  			continue
   371  		}
   372  
   373  		Thearch.Trampoline(ctxt, r, s)
   374  	}
   375  
   376  }
   377  
   378  // resolve relocations in s.
   379  func relocsym(ctxt *Link, s *Symbol) {
   380  	var r *Reloc
   381  	var rs *Symbol
   382  	var i16 int16
   383  	var off int32
   384  	var siz int32
   385  	var fl int32
   386  	var o int64
   387  
   388  	for ri := int32(0); ri < int32(len(s.R)); ri++ {
   389  		r = &s.R[ri]
   390  
   391  		r.Done = 1
   392  		off = r.Off
   393  		siz = int32(r.Siz)
   394  		if off < 0 || off+siz > int32(len(s.P)) {
   395  			rname := ""
   396  			if r.Sym != nil {
   397  				rname = r.Sym.Name
   398  			}
   399  			Errorf(s, "invalid relocation %s: %d+%d not in [%d,%d)", rname, off, siz, 0, len(s.P))
   400  			continue
   401  		}
   402  
   403  		if r.Sym != nil && (r.Sym.Type&(obj.SMASK|obj.SHIDDEN) == 0 || r.Sym.Type&obj.SMASK == obj.SXREF) {
   404  			// When putting the runtime but not main into a shared library
   405  			// these symbols are undefined and that's OK.
   406  			if Buildmode == BuildmodeShared {
   407  				if r.Sym.Name == "main.main" || r.Sym.Name == "main.init" {
   408  					r.Sym.Type = obj.SDYNIMPORT
   409  				} else if strings.HasPrefix(r.Sym.Name, "go.info.") {
   410  					// Skip go.info symbols. They are only needed to communicate
   411  					// DWARF info between the compiler and linker.
   412  					continue
   413  				}
   414  			} else {
   415  				Errorf(s, "relocation target %s not defined", r.Sym.Name)
   416  				continue
   417  			}
   418  		}
   419  
   420  		if r.Type >= 256 {
   421  			continue
   422  		}
   423  		if r.Siz == 0 { // informational relocation - no work to do
   424  			continue
   425  		}
   426  
   427  		// We need to be able to reference dynimport symbols when linking against
   428  		// shared libraries, and Solaris needs it always
   429  		if Headtype != obj.Hsolaris && r.Sym != nil && r.Sym.Type == obj.SDYNIMPORT && !ctxt.DynlinkingGo() {
   430  			if !(SysArch.Family == sys.PPC64 && Linkmode == LinkExternal && r.Sym.Name == ".TOC.") {
   431  				Errorf(s, "unhandled relocation for %s (type %d rtype %d)", r.Sym.Name, r.Sym.Type, r.Type)
   432  			}
   433  		}
   434  		if r.Sym != nil && r.Sym.Type != obj.STLSBSS && r.Type != obj.R_WEAKADDROFF && !r.Sym.Attr.Reachable() {
   435  			Errorf(s, "unreachable sym in relocation: %s", r.Sym.Name)
   436  		}
   437  
   438  		// TODO(mundaym): remove this special case - see issue 14218.
   439  		if SysArch.Family == sys.S390X {
   440  			switch r.Type {
   441  			case obj.R_PCRELDBL:
   442  				r.Type = obj.R_PCREL
   443  				r.Variant = RV_390_DBL
   444  			case obj.R_CALL:
   445  				r.Variant = RV_390_DBL
   446  			}
   447  		}
   448  
   449  		switch r.Type {
   450  		default:
   451  			switch siz {
   452  			default:
   453  				Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name)
   454  			case 1:
   455  				o = int64(s.P[off])
   456  			case 2:
   457  				o = int64(ctxt.Arch.ByteOrder.Uint16(s.P[off:]))
   458  			case 4:
   459  				o = int64(ctxt.Arch.ByteOrder.Uint32(s.P[off:]))
   460  			case 8:
   461  				o = int64(ctxt.Arch.ByteOrder.Uint64(s.P[off:]))
   462  			}
   463  			if Thearch.Archreloc(ctxt, r, s, &o) < 0 {
   464  				Errorf(s, "unknown reloc to %v: %v", r.Sym.Name, r.Type)
   465  			}
   466  
   467  		case obj.R_TLS_LE:
   468  			isAndroidX86 := obj.GOOS == "android" && (SysArch.InFamily(sys.AMD64, sys.I386))
   469  
   470  			if Linkmode == LinkExternal && Iself && Headtype != obj.Hopenbsd && !isAndroidX86 {
   471  				r.Done = 0
   472  				if r.Sym == nil {
   473  					r.Sym = ctxt.Tlsg
   474  				}
   475  				r.Xsym = r.Sym
   476  				r.Xadd = r.Add
   477  				o = 0
   478  				if SysArch.Family != sys.AMD64 {
   479  					o = r.Add
   480  				}
   481  				break
   482  			}
   483  
   484  			if Iself && SysArch.Family == sys.ARM {
   485  				// On ELF ARM, the thread pointer is 8 bytes before
   486  				// the start of the thread-local data block, so add 8
   487  				// to the actual TLS offset (r->sym->value).
   488  				// This 8 seems to be a fundamental constant of
   489  				// ELF on ARM (or maybe Glibc on ARM); it is not
   490  				// related to the fact that our own TLS storage happens
   491  				// to take up 8 bytes.
   492  				o = 8 + r.Sym.Value
   493  			} else if Iself || Headtype == obj.Hplan9 || Headtype == obj.Hdarwin || isAndroidX86 {
   494  				o = int64(ctxt.Tlsoffset) + r.Add
   495  			} else if Headtype == obj.Hwindows || Headtype == obj.Hwindowsgui {
   496  				o = r.Add
   497  			} else {
   498  				log.Fatalf("unexpected R_TLS_LE relocation for %v", Headtype)
   499  			}
   500  
   501  		case obj.R_TLS_IE:
   502  			isAndroidX86 := obj.GOOS == "android" && (SysArch.InFamily(sys.AMD64, sys.I386))
   503  
   504  			if Linkmode == LinkExternal && Iself && Headtype != obj.Hopenbsd && !isAndroidX86 {
   505  				r.Done = 0
   506  				if r.Sym == nil {
   507  					r.Sym = ctxt.Tlsg
   508  				}
   509  				r.Xsym = r.Sym
   510  				r.Xadd = r.Add
   511  				o = 0
   512  				if SysArch.Family != sys.AMD64 {
   513  					o = r.Add
   514  				}
   515  				break
   516  			}
   517  			if Buildmode == BuildmodePIE && Iself {
   518  				// We are linking the final executable, so we
   519  				// can optimize any TLS IE relocation to LE.
   520  				if Thearch.TLSIEtoLE == nil {
   521  					log.Fatalf("internal linking of TLS IE not supported on %v", SysArch.Family)
   522  				}
   523  				Thearch.TLSIEtoLE(s, int(off), int(r.Siz))
   524  				o = int64(ctxt.Tlsoffset)
   525  				// TODO: o += r.Add when SysArch.Family != sys.AMD64?
   526  				// Why do we treat r.Add differently on AMD64?
   527  				// Is the external linker using Xadd at all?
   528  			} else {
   529  				log.Fatalf("cannot handle R_TLS_IE (sym %s) when linking internally", s.Name)
   530  			}
   531  
   532  		case obj.R_ADDR:
   533  			if Linkmode == LinkExternal && r.Sym.Type != obj.SCONST {
   534  				r.Done = 0
   535  
   536  				// set up addend for eventual relocation via outer symbol.
   537  				rs = r.Sym
   538  
   539  				r.Xadd = r.Add
   540  				for rs.Outer != nil {
   541  					r.Xadd += Symaddr(rs) - Symaddr(rs.Outer)
   542  					rs = rs.Outer
   543  				}
   544  
   545  				if rs.Type != obj.SHOSTOBJ && rs.Type != obj.SDYNIMPORT && rs.Sect == nil {
   546  					Errorf(s, "missing section for relocation target %s", rs.Name)
   547  				}
   548  				r.Xsym = rs
   549  
   550  				o = r.Xadd
   551  				if Iself {
   552  					if SysArch.Family == sys.AMD64 {
   553  						o = 0
   554  					}
   555  				} else if Headtype == obj.Hdarwin {
   556  					// ld64 for arm64 has a bug where if the address pointed to by o exists in the
   557  					// symbol table (dynid >= 0), or is inside a symbol that exists in the symbol
   558  					// table, then it will add o twice into the relocated value.
   559  					// The workaround is that on arm64 don't ever add symaddr to o and always use
   560  					// extern relocation by requiring rs->dynid >= 0.
   561  					if rs.Type != obj.SHOSTOBJ {
   562  						if SysArch.Family == sys.ARM64 && rs.Dynid < 0 {
   563  							Errorf(s, "R_ADDR reloc to %s+%d is not supported on darwin/arm64", rs.Name, o)
   564  						}
   565  						if SysArch.Family != sys.ARM64 {
   566  							o += Symaddr(rs)
   567  						}
   568  					}
   569  				} else if Headtype == obj.Hwindows || Headtype == obj.Hwindowsgui {
   570  					// nothing to do
   571  				} else {
   572  					Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, Headtype)
   573  				}
   574  
   575  				break
   576  			}
   577  
   578  			o = Symaddr(r.Sym) + r.Add
   579  
   580  			// On amd64, 4-byte offsets will be sign-extended, so it is impossible to
   581  			// access more than 2GB of static data; fail at link time is better than
   582  			// fail at runtime. See https://golang.org/issue/7980.
   583  			// Instead of special casing only amd64, we treat this as an error on all
   584  			// 64-bit architectures so as to be future-proof.
   585  			if int32(o) < 0 && SysArch.PtrSize > 4 && siz == 4 {
   586  				Errorf(s, "non-pc-relative relocation address for %s is too big: %#x (%#x + %#x)", r.Sym.Name, uint64(o), Symaddr(r.Sym), r.Add)
   587  				errorexit()
   588  			}
   589  
   590  		case obj.R_DWARFREF:
   591  			if r.Sym.Sect == nil {
   592  				Errorf(s, "missing DWARF section for relocation target %s", r.Sym.Name)
   593  			}
   594  			if Linkmode == LinkExternal {
   595  				r.Done = 0
   596  				r.Type = obj.R_ADDR
   597  
   598  				r.Xsym = ctxt.Syms.ROLookup(r.Sym.Sect.Name, 0)
   599  				r.Xadd = r.Add + Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr)
   600  				o = r.Xadd
   601  				rs = r.Xsym
   602  				if Iself && SysArch.Family == sys.AMD64 {
   603  					o = 0
   604  				}
   605  				break
   606  			}
   607  			o = Symaddr(r.Sym) + r.Add - int64(r.Sym.Sect.Vaddr)
   608  
   609  		case obj.R_WEAKADDROFF:
   610  			if !r.Sym.Attr.Reachable() {
   611  				continue
   612  			}
   613  			fallthrough
   614  		case obj.R_ADDROFF:
   615  			// The method offset tables using this relocation expect the offset to be relative
   616  			// to the start of the first text section, even if there are multiple.
   617  
   618  			if r.Sym.Sect.Name == ".text" {
   619  				o = Symaddr(r.Sym) - int64(Segtext.Sect.Vaddr) + r.Add
   620  			} else {
   621  				o = Symaddr(r.Sym) - int64(r.Sym.Sect.Vaddr) + r.Add
   622  			}
   623  
   624  			// r->sym can be null when CALL $(constant) is transformed from absolute PC to relative PC call.
   625  		case obj.R_GOTPCREL:
   626  			if ctxt.DynlinkingGo() && Headtype == obj.Hdarwin && r.Sym != nil && r.Sym.Type != obj.SCONST {
   627  				r.Done = 0
   628  				r.Xadd = r.Add
   629  				r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk
   630  				r.Xsym = r.Sym
   631  
   632  				o = r.Xadd
   633  				o += int64(r.Siz)
   634  				break
   635  			}
   636  			fallthrough
   637  		case obj.R_CALL, obj.R_PCREL:
   638  			if Linkmode == LinkExternal && r.Sym != nil && r.Sym.Type != obj.SCONST && (r.Sym.Sect != s.Sect || r.Type == obj.R_GOTPCREL) {
   639  				r.Done = 0
   640  
   641  				// set up addend for eventual relocation via outer symbol.
   642  				rs = r.Sym
   643  
   644  				r.Xadd = r.Add
   645  				for rs.Outer != nil {
   646  					r.Xadd += Symaddr(rs) - Symaddr(rs.Outer)
   647  					rs = rs.Outer
   648  				}
   649  
   650  				r.Xadd -= int64(r.Siz) // relative to address after the relocated chunk
   651  				if rs.Type != obj.SHOSTOBJ && rs.Type != obj.SDYNIMPORT && rs.Sect == nil {
   652  					Errorf(s, "missing section for relocation target %s", rs.Name)
   653  				}
   654  				r.Xsym = rs
   655  
   656  				o = r.Xadd
   657  				if Iself {
   658  					if SysArch.Family == sys.AMD64 {
   659  						o = 0
   660  					}
   661  				} else if Headtype == obj.Hdarwin {
   662  					if r.Type == obj.R_CALL {
   663  						if rs.Type != obj.SHOSTOBJ {
   664  							o += int64(uint64(Symaddr(rs)) - rs.Sect.Vaddr)
   665  						}
   666  						o -= int64(r.Off) // relative to section offset, not symbol
   667  					} else if SysArch.Family == sys.ARM {
   668  						// see ../arm/asm.go:/machoreloc1
   669  						o += Symaddr(rs) - int64(s.Value) - int64(r.Off)
   670  					} else {
   671  						o += int64(r.Siz)
   672  					}
   673  				} else if (Headtype == obj.Hwindows || Headtype == obj.Hwindowsgui) && SysArch.Family == sys.AMD64 { // only amd64 needs PCREL
   674  					// PE/COFF's PC32 relocation uses the address after the relocated
   675  					// bytes as the base. Compensate by skewing the addend.
   676  					o += int64(r.Siz)
   677  					// GNU ld always add VirtualAddress of the .text section to the
   678  					// relocated address, compensate that.
   679  					o -= int64(s.Sect.Vaddr - PEBASE)
   680  				} else {
   681  					Errorf(s, "unhandled pcrel relocation to %s on %v", rs.Name, Headtype)
   682  				}
   683  
   684  				break
   685  			}
   686  
   687  			o = 0
   688  			if r.Sym != nil {
   689  				o += Symaddr(r.Sym)
   690  			}
   691  
   692  			o += r.Add - (s.Value + int64(r.Off) + int64(r.Siz))
   693  
   694  		case obj.R_SIZE:
   695  			o = r.Sym.Size + r.Add
   696  		}
   697  
   698  		if r.Variant != RV_NONE {
   699  			o = Thearch.Archrelocvariant(ctxt, r, s, o)
   700  		}
   701  
   702  		if false {
   703  			nam := "<nil>"
   704  			if r.Sym != nil {
   705  				nam = r.Sym.Name
   706  			}
   707  			fmt.Printf("relocate %s %#x (%#x+%#x, size %d) => %s %#x +%#x [type %d/%d, %x]\n", s.Name, s.Value+int64(off), s.Value, r.Off, r.Siz, nam, Symaddr(r.Sym), r.Add, r.Type, r.Variant, o)
   708  		}
   709  		switch siz {
   710  		default:
   711  			Errorf(s, "bad reloc size %#x for %s", uint32(siz), r.Sym.Name)
   712  			fallthrough
   713  
   714  			// TODO(rsc): Remove.
   715  		case 1:
   716  			s.P[off] = byte(int8(o))
   717  
   718  		case 2:
   719  			if o != int64(int16(o)) {
   720  				Errorf(s, "relocation address for %s is too big: %#x", r.Sym.Name, o)
   721  			}
   722  			i16 = int16(o)
   723  			ctxt.Arch.ByteOrder.PutUint16(s.P[off:], uint16(i16))
   724  
   725  		case 4:
   726  			if r.Type == obj.R_PCREL || r.Type == obj.R_CALL {
   727  				if o != int64(int32(o)) {
   728  					Errorf(s, "pc-relative relocation address for %s is too big: %#x", r.Sym.Name, o)
   729  				}
   730  			} else {
   731  				if o != int64(int32(o)) && o != int64(uint32(o)) {
   732  					Errorf(s, "non-pc-relative relocation address for %s is too big: %#x", r.Sym.Name, uint64(o))
   733  				}
   734  			}
   735  
   736  			fl = int32(o)
   737  			ctxt.Arch.ByteOrder.PutUint32(s.P[off:], uint32(fl))
   738  
   739  		case 8:
   740  			ctxt.Arch.ByteOrder.PutUint64(s.P[off:], uint64(o))
   741  		}
   742  	}
   743  }
   744  
   745  func (ctxt *Link) reloc() {
   746  	if ctxt.Debugvlog != 0 {
   747  		ctxt.Logf("%5.2f reloc\n", obj.Cputime())
   748  	}
   749  
   750  	for _, s := range ctxt.Textp {
   751  		relocsym(ctxt, s)
   752  	}
   753  	for _, sym := range datap {
   754  		relocsym(ctxt, sym)
   755  	}
   756  	for _, s := range dwarfp {
   757  		relocsym(ctxt, s)
   758  	}
   759  }
   760  
   761  func dynrelocsym(ctxt *Link, s *Symbol) {
   762  	if (Headtype == obj.Hwindows || Headtype == obj.Hwindowsgui) && Linkmode != LinkExternal {
   763  		rel := ctxt.Syms.Lookup(".rel", 0)
   764  		if s == rel {
   765  			return
   766  		}
   767  		for ri := 0; ri < len(s.R); ri++ {
   768  			r := &s.R[ri]
   769  			targ := r.Sym
   770  			if targ == nil {
   771  				continue
   772  			}
   773  			if !targ.Attr.Reachable() {
   774  				if r.Type == obj.R_WEAKADDROFF {
   775  					continue
   776  				}
   777  				Errorf(s, "dynamic relocation to unreachable symbol %s", targ.Name)
   778  			}
   779  			if r.Sym.Plt == -2 && r.Sym.Got != -2 { // make dynimport JMP table for PE object files.
   780  				targ.Plt = int32(rel.Size)
   781  				r.Sym = rel
   782  				r.Add = int64(targ.Plt)
   783  
   784  				// jmp *addr
   785  				if SysArch.Family == sys.I386 {
   786  					Adduint8(ctxt, rel, 0xff)
   787  					Adduint8(ctxt, rel, 0x25)
   788  					Addaddr(ctxt, rel, targ)
   789  					Adduint8(ctxt, rel, 0x90)
   790  					Adduint8(ctxt, rel, 0x90)
   791  				} else {
   792  					Adduint8(ctxt, rel, 0xff)
   793  					Adduint8(ctxt, rel, 0x24)
   794  					Adduint8(ctxt, rel, 0x25)
   795  					addaddrplus4(ctxt, rel, targ, 0)
   796  					Adduint8(ctxt, rel, 0x90)
   797  				}
   798  			} else if r.Sym.Plt >= 0 {
   799  				r.Sym = rel
   800  				r.Add = int64(targ.Plt)
   801  			}
   802  		}
   803  
   804  		return
   805  	}
   806  
   807  	for ri := 0; ri < len(s.R); ri++ {
   808  		r := &s.R[ri]
   809  		if Buildmode == BuildmodePIE && Linkmode == LinkInternal {
   810  			// It's expected that some relocations will be done
   811  			// later by relocsym (R_TLS_LE, R_ADDROFF), so
   812  			// don't worry if Adddynrel returns false.
   813  			Thearch.Adddynrel(ctxt, s, r)
   814  			continue
   815  		}
   816  		if r.Sym != nil && r.Sym.Type == obj.SDYNIMPORT || r.Type >= 256 {
   817  			if r.Sym != nil && !r.Sym.Attr.Reachable() {
   818  				Errorf(s, "dynamic relocation to unreachable symbol %s", r.Sym.Name)
   819  			}
   820  			if !Thearch.Adddynrel(ctxt, s, r) {
   821  				Errorf(s, "unsupported dynamic relocation for symbol %s (type=%d stype=%d)", r.Sym.Name, r.Type, r.Sym.Type)
   822  			}
   823  		}
   824  	}
   825  }
   826  
   827  func dynreloc(ctxt *Link, data *[obj.SXREF][]*Symbol) {
   828  	// -d suppresses dynamic loader format, so we may as well not
   829  	// compute these sections or mark their symbols as reachable.
   830  	if *FlagD && Headtype != obj.Hwindows && Headtype != obj.Hwindowsgui {
   831  		return
   832  	}
   833  	if ctxt.Debugvlog != 0 {
   834  		ctxt.Logf("%5.2f reloc\n", obj.Cputime())
   835  	}
   836  
   837  	for _, s := range ctxt.Textp {
   838  		dynrelocsym(ctxt, s)
   839  	}
   840  	for _, syms := range data {
   841  		for _, sym := range syms {
   842  			dynrelocsym(ctxt, sym)
   843  		}
   844  	}
   845  	if Iself {
   846  		elfdynhash(ctxt)
   847  	}
   848  }
   849  
   850  func Codeblk(ctxt *Link, addr int64, size int64) {
   851  	CodeblkPad(ctxt, addr, size, zeros[:])
   852  }
   853  func CodeblkPad(ctxt *Link, addr int64, size int64, pad []byte) {
   854  	if *flagA {
   855  		ctxt.Logf("codeblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset())
   856  	}
   857  
   858  	blk(ctxt, ctxt.Textp, addr, size, pad)
   859  
   860  	/* again for printing */
   861  	if !*flagA {
   862  		return
   863  	}
   864  
   865  	syms := ctxt.Textp
   866  	for i, sym := range syms {
   867  		if !sym.Attr.Reachable() {
   868  			continue
   869  		}
   870  		if sym.Value >= addr {
   871  			syms = syms[i:]
   872  			break
   873  		}
   874  	}
   875  
   876  	eaddr := addr + size
   877  	var q []byte
   878  	for _, sym := range syms {
   879  		if !sym.Attr.Reachable() {
   880  			continue
   881  		}
   882  		if sym.Value >= eaddr {
   883  			break
   884  		}
   885  
   886  		if addr < sym.Value {
   887  			ctxt.Logf("%-20s %.8x|", "_", uint64(addr))
   888  			for ; addr < sym.Value; addr++ {
   889  				ctxt.Logf(" %.2x", 0)
   890  			}
   891  			ctxt.Logf("\n")
   892  		}
   893  
   894  		ctxt.Logf("%.6x\t%-20s\n", uint64(addr), sym.Name)
   895  		q = sym.P
   896  
   897  		for len(q) >= 16 {
   898  			ctxt.Logf("%.6x\t% x\n", uint64(addr), q[:16])
   899  			addr += 16
   900  			q = q[16:]
   901  		}
   902  
   903  		if len(q) > 0 {
   904  			ctxt.Logf("%.6x\t% x\n", uint64(addr), q)
   905  			addr += int64(len(q))
   906  		}
   907  	}
   908  
   909  	if addr < eaddr {
   910  		ctxt.Logf("%-20s %.8x|", "_", uint64(addr))
   911  		for ; addr < eaddr; addr++ {
   912  			ctxt.Logf(" %.2x", 0)
   913  		}
   914  	}
   915  }
   916  
   917  func blk(ctxt *Link, syms []*Symbol, addr, size int64, pad []byte) {
   918  	for i, s := range syms {
   919  		if s.Type&obj.SSUB == 0 && s.Value >= addr {
   920  			syms = syms[i:]
   921  			break
   922  		}
   923  	}
   924  
   925  	eaddr := addr + size
   926  	for _, s := range syms {
   927  		if s.Type&obj.SSUB != 0 {
   928  			continue
   929  		}
   930  		if s.Value >= eaddr {
   931  			break
   932  		}
   933  		if s.Value < addr {
   934  			Errorf(s, "phase error: addr=%#x but sym=%#x type=%d", addr, s.Value, s.Type)
   935  			errorexit()
   936  		}
   937  		if addr < s.Value {
   938  			strnputPad("", int(s.Value-addr), pad)
   939  			addr = s.Value
   940  		}
   941  		Cwrite(s.P)
   942  		addr += int64(len(s.P))
   943  		if addr < s.Value+s.Size {
   944  			strnputPad("", int(s.Value+s.Size-addr), pad)
   945  			addr = s.Value + s.Size
   946  		}
   947  		if addr != s.Value+s.Size {
   948  			Errorf(s, "phase error: addr=%#x value+size=%#x", addr, s.Value+s.Size)
   949  			errorexit()
   950  		}
   951  		if s.Value+s.Size >= eaddr {
   952  			break
   953  		}
   954  	}
   955  
   956  	if addr < eaddr {
   957  		strnputPad("", int(eaddr-addr), pad)
   958  	}
   959  	Cflush()
   960  }
   961  
   962  func Datblk(ctxt *Link, addr int64, size int64) {
   963  	if *flagA {
   964  		ctxt.Logf("datblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset())
   965  	}
   966  
   967  	blk(ctxt, datap, addr, size, zeros[:])
   968  
   969  	/* again for printing */
   970  	if !*flagA {
   971  		return
   972  	}
   973  
   974  	syms := datap
   975  	for i, sym := range syms {
   976  		if sym.Value >= addr {
   977  			syms = syms[i:]
   978  			break
   979  		}
   980  	}
   981  
   982  	eaddr := addr + size
   983  	for _, sym := range syms {
   984  		if sym.Value >= eaddr {
   985  			break
   986  		}
   987  		if addr < sym.Value {
   988  			ctxt.Logf("\t%.8x| 00 ...\n", uint64(addr))
   989  			addr = sym.Value
   990  		}
   991  
   992  		ctxt.Logf("%s\n\t%.8x|", sym.Name, uint64(addr))
   993  		for i, b := range sym.P {
   994  			if i > 0 && i%16 == 0 {
   995  				ctxt.Logf("\n\t%.8x|", uint64(addr)+uint64(i))
   996  			}
   997  			ctxt.Logf(" %.2x", b)
   998  		}
   999  
  1000  		addr += int64(len(sym.P))
  1001  		for ; addr < sym.Value+sym.Size; addr++ {
  1002  			ctxt.Logf(" %.2x", 0)
  1003  		}
  1004  		ctxt.Logf("\n")
  1005  
  1006  		if Linkmode != LinkExternal {
  1007  			continue
  1008  		}
  1009  		for _, r := range sym.R {
  1010  			rsname := ""
  1011  			if r.Sym != nil {
  1012  				rsname = r.Sym.Name
  1013  			}
  1014  			typ := "?"
  1015  			switch r.Type {
  1016  			case obj.R_ADDR:
  1017  				typ = "addr"
  1018  			case obj.R_PCREL:
  1019  				typ = "pcrel"
  1020  			case obj.R_CALL:
  1021  				typ = "call"
  1022  			}
  1023  			ctxt.Logf("\treloc %.8x/%d %s %s+%#x [%#x]\n", uint(sym.Value+int64(r.Off)), r.Siz, typ, rsname, r.Add, r.Sym.Value+r.Add)
  1024  		}
  1025  	}
  1026  
  1027  	if addr < eaddr {
  1028  		ctxt.Logf("\t%.8x| 00 ...\n", uint(addr))
  1029  	}
  1030  	ctxt.Logf("\t%.8x|\n", uint(eaddr))
  1031  }
  1032  
  1033  func Dwarfblk(ctxt *Link, addr int64, size int64) {
  1034  	if *flagA {
  1035  		ctxt.Logf("dwarfblk [%#x,%#x) at offset %#x\n", addr, addr+size, coutbuf.Offset())
  1036  	}
  1037  
  1038  	blk(ctxt, dwarfp, addr, size, zeros[:])
  1039  }
  1040  
  1041  var zeros [512]byte
  1042  
  1043  // strnput writes the first n bytes of s.
  1044  // If n is larger than len(s),
  1045  // it is padded with NUL bytes.
  1046  func strnput(s string, n int) {
  1047  	strnputPad(s, n, zeros[:])
  1048  }
  1049  
  1050  // strnput writes the first n bytes of s.
  1051  // If n is larger than len(s),
  1052  // it is padded with the bytes in pad (repeated as needed).
  1053  func strnputPad(s string, n int, pad []byte) {
  1054  	if len(s) >= n {
  1055  		Cwritestring(s[:n])
  1056  	} else {
  1057  		Cwritestring(s)
  1058  		n -= len(s)
  1059  		for n > len(pad) {
  1060  			Cwrite(pad)
  1061  			n -= len(pad)
  1062  
  1063  		}
  1064  		Cwrite(pad[:n])
  1065  	}
  1066  }
  1067  
  1068  var strdata []*Symbol
  1069  
  1070  func addstrdata1(ctxt *Link, arg string) {
  1071  	eq := strings.Index(arg, "=")
  1072  	dot := strings.LastIndex(arg[:eq+1], ".")
  1073  	if eq < 0 || dot < 0 {
  1074  		Exitf("-X flag requires argument of the form importpath.name=value")
  1075  	}
  1076  	addstrdata(ctxt, pathtoprefix(arg[:dot])+arg[dot:eq], arg[eq+1:])
  1077  }
  1078  
  1079  func addstrdata(ctxt *Link, name string, value string) {
  1080  	p := fmt.Sprintf("%s.str", name)
  1081  	sp := ctxt.Syms.Lookup(p, 0)
  1082  
  1083  	Addstring(sp, value)
  1084  	sp.Type = obj.SRODATA
  1085  
  1086  	s := ctxt.Syms.Lookup(name, 0)
  1087  	s.Size = 0
  1088  	s.Attr |= AttrDuplicateOK
  1089  	reachable := s.Attr.Reachable()
  1090  	Addaddr(ctxt, s, sp)
  1091  	adduintxx(ctxt, s, uint64(len(value)), SysArch.PtrSize)
  1092  
  1093  	// addstring, addaddr, etc., mark the symbols as reachable.
  1094  	// In this case that is not necessarily true, so stick to what
  1095  	// we know before entering this function.
  1096  	s.Attr.Set(AttrReachable, reachable)
  1097  
  1098  	strdata = append(strdata, s)
  1099  
  1100  	sp.Attr.Set(AttrReachable, reachable)
  1101  }
  1102  
  1103  func (ctxt *Link) checkstrdata() {
  1104  	for _, s := range strdata {
  1105  		if s.Type == obj.STEXT {
  1106  			Errorf(s, "cannot use -X with text symbol")
  1107  		} else if s.Gotype != nil && s.Gotype.Name != "type.string" {
  1108  			Errorf(s, "cannot use -X with non-string symbol")
  1109  		}
  1110  	}
  1111  }
  1112  
  1113  func Addstring(s *Symbol, str string) int64 {
  1114  	if s.Type == 0 {
  1115  		s.Type = obj.SNOPTRDATA
  1116  	}
  1117  	s.Attr |= AttrReachable
  1118  	r := s.Size
  1119  	if s.Name == ".shstrtab" {
  1120  		elfsetstring(s, str, int(r))
  1121  	}
  1122  	s.P = append(s.P, str...)
  1123  	s.P = append(s.P, 0)
  1124  	s.Size = int64(len(s.P))
  1125  	return r
  1126  }
  1127  
  1128  // addgostring adds str, as a Go string value, to s. symname is the name of the
  1129  // symbol used to define the string data and must be unique per linked object.
  1130  func addgostring(ctxt *Link, s *Symbol, symname, str string) {
  1131  	sym := ctxt.Syms.Lookup(symname, 0)
  1132  	if sym.Type != obj.Sxxx {
  1133  		Errorf(s, "duplicate symname in addgostring: %s", symname)
  1134  	}
  1135  	sym.Attr |= AttrReachable
  1136  	sym.Attr |= AttrLocal
  1137  	sym.Type = obj.SRODATA
  1138  	sym.Size = int64(len(str))
  1139  	sym.P = []byte(str)
  1140  	Addaddr(ctxt, s, sym)
  1141  	adduint(ctxt, s, uint64(len(str)))
  1142  }
  1143  
  1144  func addinitarrdata(ctxt *Link, s *Symbol) {
  1145  	p := s.Name + ".ptr"
  1146  	sp := ctxt.Syms.Lookup(p, 0)
  1147  	sp.Type = obj.SINITARR
  1148  	sp.Size = 0
  1149  	sp.Attr |= AttrDuplicateOK
  1150  	Addaddr(ctxt, sp, s)
  1151  }
  1152  
  1153  func dosymtype(ctxt *Link) {
  1154  	for _, s := range ctxt.Syms.Allsym {
  1155  		if len(s.P) > 0 {
  1156  			if s.Type == obj.SBSS {
  1157  				s.Type = obj.SDATA
  1158  			}
  1159  			if s.Type == obj.SNOPTRBSS {
  1160  				s.Type = obj.SNOPTRDATA
  1161  			}
  1162  		}
  1163  		// Create a new entry in the .init_array section that points to the
  1164  		// library initializer function.
  1165  		switch Buildmode {
  1166  		case BuildmodeCArchive, BuildmodeCShared:
  1167  			if s.Name == *flagEntrySymbol {
  1168  				addinitarrdata(ctxt, s)
  1169  			}
  1170  		}
  1171  	}
  1172  }
  1173  
  1174  // symalign returns the required alignment for the given symbol s.
  1175  func symalign(s *Symbol) int32 {
  1176  	min := int32(Thearch.Minalign)
  1177  	if s.Align >= min {
  1178  		return s.Align
  1179  	} else if s.Align != 0 {
  1180  		return min
  1181  	}
  1182  	if strings.HasPrefix(s.Name, "go.string.") || strings.HasPrefix(s.Name, "type..namedata.") {
  1183  		// String data is just bytes.
  1184  		// If we align it, we waste a lot of space to padding.
  1185  		return min
  1186  	}
  1187  	align := int32(Thearch.Maxalign)
  1188  	for int64(align) > s.Size && align > min {
  1189  		align >>= 1
  1190  	}
  1191  	return align
  1192  }
  1193  
  1194  func aligndatsize(datsize int64, s *Symbol) int64 {
  1195  	return Rnd(datsize, int64(symalign(s)))
  1196  }
  1197  
  1198  const debugGCProg = false
  1199  
  1200  type GCProg struct {
  1201  	ctxt *Link
  1202  	sym  *Symbol
  1203  	w    gcprog.Writer
  1204  }
  1205  
  1206  func (p *GCProg) Init(ctxt *Link, name string) {
  1207  	p.ctxt = ctxt
  1208  	p.sym = ctxt.Syms.Lookup(name, 0)
  1209  	p.w.Init(p.writeByte(ctxt))
  1210  	if debugGCProg {
  1211  		fmt.Fprintf(os.Stderr, "ld: start GCProg %s\n", name)
  1212  		p.w.Debug(os.Stderr)
  1213  	}
  1214  }
  1215  
  1216  func (p *GCProg) writeByte(ctxt *Link) func(x byte) {
  1217  	return func(x byte) {
  1218  		Adduint8(ctxt, p.sym, x)
  1219  	}
  1220  }
  1221  
  1222  func (p *GCProg) End(size int64) {
  1223  	p.w.ZeroUntil(size / int64(SysArch.PtrSize))
  1224  	p.w.End()
  1225  	if debugGCProg {
  1226  		fmt.Fprintf(os.Stderr, "ld: end GCProg\n")
  1227  	}
  1228  }
  1229  
  1230  func (p *GCProg) AddSym(s *Symbol) {
  1231  	typ := s.Gotype
  1232  	// Things without pointers should be in SNOPTRDATA or SNOPTRBSS;
  1233  	// everything we see should have pointers and should therefore have a type.
  1234  	if typ == nil {
  1235  		switch s.Name {
  1236  		case "runtime.data", "runtime.edata", "runtime.bss", "runtime.ebss":
  1237  			// Ignore special symbols that are sometimes laid out
  1238  			// as real symbols. See comment about dyld on darwin in
  1239  			// the address function.
  1240  			return
  1241  		}
  1242  		Errorf(s, "missing Go type information for global symbol: size %d", s.Size)
  1243  		return
  1244  	}
  1245  
  1246  	ptrsize := int64(SysArch.PtrSize)
  1247  	nptr := decodetypePtrdata(p.ctxt.Arch, typ) / ptrsize
  1248  
  1249  	if debugGCProg {
  1250  		fmt.Fprintf(os.Stderr, "gcprog sym: %s at %d (ptr=%d+%d)\n", s.Name, s.Value, s.Value/ptrsize, nptr)
  1251  	}
  1252  
  1253  	if decodetypeUsegcprog(typ) == 0 {
  1254  		// Copy pointers from mask into program.
  1255  		mask := decodetypeGcmask(p.ctxt, typ)
  1256  		for i := int64(0); i < nptr; i++ {
  1257  			if (mask[i/8]>>uint(i%8))&1 != 0 {
  1258  				p.w.Ptr(s.Value/ptrsize + i)
  1259  			}
  1260  		}
  1261  		return
  1262  	}
  1263  
  1264  	// Copy program.
  1265  	prog := decodetypeGcprog(p.ctxt, typ)
  1266  	p.w.ZeroUntil(s.Value / ptrsize)
  1267  	p.w.Append(prog[4:], nptr)
  1268  }
  1269  
  1270  // dataSortKey is used to sort a slice of data symbol *Symbol pointers.
  1271  // The sort keys are kept inline to improve cache behavior while sorting.
  1272  type dataSortKey struct {
  1273  	size int64
  1274  	name string
  1275  	sym  *Symbol
  1276  }
  1277  
  1278  type bySizeAndName []dataSortKey
  1279  
  1280  func (d bySizeAndName) Len() int      { return len(d) }
  1281  func (d bySizeAndName) Swap(i, j int) { d[i], d[j] = d[j], d[i] }
  1282  func (d bySizeAndName) Less(i, j int) bool {
  1283  	s1, s2 := d[i], d[j]
  1284  	if s1.size != s2.size {
  1285  		return s1.size < s2.size
  1286  	}
  1287  	return s1.name < s2.name
  1288  }
  1289  
  1290  const cutoff int64 = 2e9 // 2 GB (or so; looks better in errors than 2^31)
  1291  
  1292  func checkdatsize(ctxt *Link, datsize int64, symn obj.SymKind) {
  1293  	if datsize > cutoff {
  1294  		Errorf(nil, "too much data in section %v (over %d bytes)", symn, cutoff)
  1295  	}
  1296  }
  1297  
  1298  // datap is a collection of reachable data symbols in address order.
  1299  // Generated by dodata.
  1300  var datap []*Symbol
  1301  
  1302  func (ctxt *Link) dodata() {
  1303  	if ctxt.Debugvlog != 0 {
  1304  		ctxt.Logf("%5.2f dodata\n", obj.Cputime())
  1305  	}
  1306  
  1307  	if ctxt.DynlinkingGo() && Headtype == obj.Hdarwin {
  1308  		// The values in moduledata are filled out by relocations
  1309  		// pointing to the addresses of these special symbols.
  1310  		// Typically these symbols have no size and are not laid
  1311  		// out with their matching section.
  1312  		//
  1313  		// However on darwin, dyld will find the special symbol
  1314  		// in the first loaded module, even though it is local.
  1315  		//
  1316  		// (An hypothesis, formed without looking in the dyld sources:
  1317  		// these special symbols have no size, so their address
  1318  		// matches a real symbol. The dynamic linker assumes we
  1319  		// want the normal symbol with the same address and finds
  1320  		// it in the other module.)
  1321  		//
  1322  		// To work around this we lay out the symbls whose
  1323  		// addresses are vital for multi-module programs to work
  1324  		// as normal symbols, and give them a little size.
  1325  		bss := ctxt.Syms.Lookup("runtime.bss", 0)
  1326  		bss.Size = 8
  1327  		bss.Attr.Set(AttrSpecial, false)
  1328  
  1329  		ctxt.Syms.Lookup("runtime.ebss", 0).Attr.Set(AttrSpecial, false)
  1330  
  1331  		data := ctxt.Syms.Lookup("runtime.data", 0)
  1332  		data.Size = 8
  1333  		data.Attr.Set(AttrSpecial, false)
  1334  
  1335  		ctxt.Syms.Lookup("runtime.edata", 0).Attr.Set(AttrSpecial, false)
  1336  
  1337  		types := ctxt.Syms.Lookup("runtime.types", 0)
  1338  		types.Type = obj.STYPE
  1339  		types.Size = 8
  1340  		types.Attr.Set(AttrSpecial, false)
  1341  
  1342  		etypes := ctxt.Syms.Lookup("runtime.etypes", 0)
  1343  		etypes.Type = obj.SFUNCTAB
  1344  		etypes.Attr.Set(AttrSpecial, false)
  1345  	}
  1346  
  1347  	// Collect data symbols by type into data.
  1348  	var data [obj.SXREF][]*Symbol
  1349  	for _, s := range ctxt.Syms.Allsym {
  1350  		if !s.Attr.Reachable() || s.Attr.Special() {
  1351  			continue
  1352  		}
  1353  		if s.Type <= obj.STEXT || s.Type >= obj.SXREF {
  1354  			continue
  1355  		}
  1356  		data[s.Type] = append(data[s.Type], s)
  1357  	}
  1358  
  1359  	// Now that we have the data symbols, but before we start
  1360  	// to assign addresses, record all the necessary
  1361  	// dynamic relocations. These will grow the relocation
  1362  	// symbol, which is itself data.
  1363  	//
  1364  	// On darwin, we need the symbol table numbers for dynreloc.
  1365  	if Headtype == obj.Hdarwin {
  1366  		machosymorder(ctxt)
  1367  	}
  1368  	dynreloc(ctxt, &data)
  1369  
  1370  	if UseRelro() {
  1371  		// "read only" data with relocations needs to go in its own section
  1372  		// when building a shared library. We do this by boosting objects of
  1373  		// type SXXX with relocations to type SXXXRELRO.
  1374  		for _, symnro := range obj.ReadOnly {
  1375  			symnrelro := obj.RelROMap[symnro]
  1376  
  1377  			ro := []*Symbol{}
  1378  			relro := data[symnrelro]
  1379  
  1380  			for _, s := range data[symnro] {
  1381  				isRelro := len(s.R) > 0
  1382  				switch s.Type {
  1383  				case obj.STYPE, obj.STYPERELRO, obj.SGOFUNCRELRO:
  1384  					// Symbols are not sorted yet, so it is possible
  1385  					// that an Outer symbol has been changed to a
  1386  					// relro Type before it reaches here.
  1387  					isRelro = true
  1388  				}
  1389  				if isRelro {
  1390  					s.Type = symnrelro
  1391  					if s.Outer != nil {
  1392  						s.Outer.Type = s.Type
  1393  					}
  1394  					relro = append(relro, s)
  1395  				} else {
  1396  					ro = append(ro, s)
  1397  				}
  1398  			}
  1399  
  1400  			// Check that we haven't made two symbols with the same .Outer into
  1401  			// different types (because references two symbols with non-nil Outer
  1402  			// become references to the outer symbol + offset it's vital that the
  1403  			// symbol and the outer end up in the same section).
  1404  			for _, s := range relro {
  1405  				if s.Outer != nil && s.Outer.Type != s.Type {
  1406  					Errorf(s, "inconsistent types for symbol and its Outer %s (%v != %v)",
  1407  						s.Outer.Name, s.Type, s.Outer.Type)
  1408  				}
  1409  			}
  1410  
  1411  			data[symnro] = ro
  1412  			data[symnrelro] = relro
  1413  		}
  1414  	}
  1415  
  1416  	// Sort symbols.
  1417  	var dataMaxAlign [obj.SXREF]int32
  1418  	var wg sync.WaitGroup
  1419  	for symn := range data {
  1420  		symn := obj.SymKind(symn)
  1421  		wg.Add(1)
  1422  		go func() {
  1423  			data[symn], dataMaxAlign[symn] = dodataSect(ctxt, symn, data[symn])
  1424  			wg.Done()
  1425  		}()
  1426  	}
  1427  	wg.Wait()
  1428  
  1429  	// Allocate sections.
  1430  	// Data is processed before segtext, because we need
  1431  	// to see all symbols in the .data and .bss sections in order
  1432  	// to generate garbage collection information.
  1433  	datsize := int64(0)
  1434  
  1435  	// Writable data sections that do not need any specialized handling.
  1436  	writable := []obj.SymKind{
  1437  		obj.SELFSECT,
  1438  		obj.SMACHO,
  1439  		obj.SMACHOGOT,
  1440  		obj.SWINDOWS,
  1441  	}
  1442  	for _, symn := range writable {
  1443  		for _, s := range data[symn] {
  1444  			sect := addsection(&Segdata, s.Name, 06)
  1445  			sect.Align = symalign(s)
  1446  			datsize = Rnd(datsize, int64(sect.Align))
  1447  			sect.Vaddr = uint64(datsize)
  1448  			s.Sect = sect
  1449  			s.Type = obj.SDATA
  1450  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1451  			datsize += s.Size
  1452  			sect.Length = uint64(datsize) - sect.Vaddr
  1453  		}
  1454  		checkdatsize(ctxt, datsize, symn)
  1455  	}
  1456  
  1457  	// .got (and .toc on ppc64)
  1458  	if len(data[obj.SELFGOT]) > 0 {
  1459  		sect := addsection(&Segdata, ".got", 06)
  1460  		sect.Align = dataMaxAlign[obj.SELFGOT]
  1461  		datsize = Rnd(datsize, int64(sect.Align))
  1462  		sect.Vaddr = uint64(datsize)
  1463  		var toc *Symbol
  1464  		for _, s := range data[obj.SELFGOT] {
  1465  			datsize = aligndatsize(datsize, s)
  1466  			s.Sect = sect
  1467  			s.Type = obj.SDATA
  1468  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1469  
  1470  			// Resolve .TOC. symbol for this object file (ppc64)
  1471  			toc = ctxt.Syms.ROLookup(".TOC.", int(s.Version))
  1472  			if toc != nil {
  1473  				toc.Sect = sect
  1474  				toc.Outer = s
  1475  				toc.Sub = s.Sub
  1476  				s.Sub = toc
  1477  
  1478  				toc.Value = 0x8000
  1479  			}
  1480  
  1481  			datsize += s.Size
  1482  		}
  1483  		checkdatsize(ctxt, datsize, obj.SELFGOT)
  1484  		sect.Length = uint64(datsize) - sect.Vaddr
  1485  	}
  1486  
  1487  	/* pointer-free data */
  1488  	sect := addsection(&Segdata, ".noptrdata", 06)
  1489  	sect.Align = dataMaxAlign[obj.SNOPTRDATA]
  1490  	datsize = Rnd(datsize, int64(sect.Align))
  1491  	sect.Vaddr = uint64(datsize)
  1492  	ctxt.Syms.Lookup("runtime.noptrdata", 0).Sect = sect
  1493  	ctxt.Syms.Lookup("runtime.enoptrdata", 0).Sect = sect
  1494  	for _, s := range data[obj.SNOPTRDATA] {
  1495  		datsize = aligndatsize(datsize, s)
  1496  		s.Sect = sect
  1497  		s.Type = obj.SDATA
  1498  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1499  		datsize += s.Size
  1500  	}
  1501  	checkdatsize(ctxt, datsize, obj.SNOPTRDATA)
  1502  	sect.Length = uint64(datsize) - sect.Vaddr
  1503  
  1504  	hasinitarr := *FlagLinkshared
  1505  
  1506  	/* shared library initializer */
  1507  	switch Buildmode {
  1508  	case BuildmodeCArchive, BuildmodeCShared, BuildmodeShared, BuildmodePlugin:
  1509  		hasinitarr = true
  1510  	}
  1511  	if hasinitarr {
  1512  		sect := addsection(&Segdata, ".init_array", 06)
  1513  		sect.Align = dataMaxAlign[obj.SINITARR]
  1514  		datsize = Rnd(datsize, int64(sect.Align))
  1515  		sect.Vaddr = uint64(datsize)
  1516  		for _, s := range data[obj.SINITARR] {
  1517  			datsize = aligndatsize(datsize, s)
  1518  			s.Sect = sect
  1519  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1520  			datsize += s.Size
  1521  		}
  1522  		sect.Length = uint64(datsize) - sect.Vaddr
  1523  		checkdatsize(ctxt, datsize, obj.SINITARR)
  1524  	}
  1525  
  1526  	/* data */
  1527  	sect = addsection(&Segdata, ".data", 06)
  1528  	sect.Align = dataMaxAlign[obj.SDATA]
  1529  	datsize = Rnd(datsize, int64(sect.Align))
  1530  	sect.Vaddr = uint64(datsize)
  1531  	ctxt.Syms.Lookup("runtime.data", 0).Sect = sect
  1532  	ctxt.Syms.Lookup("runtime.edata", 0).Sect = sect
  1533  	var gc GCProg
  1534  	gc.Init(ctxt, "runtime.gcdata")
  1535  	for _, s := range data[obj.SDATA] {
  1536  		s.Sect = sect
  1537  		s.Type = obj.SDATA
  1538  		datsize = aligndatsize(datsize, s)
  1539  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1540  		gc.AddSym(s)
  1541  		datsize += s.Size
  1542  	}
  1543  	checkdatsize(ctxt, datsize, obj.SDATA)
  1544  	sect.Length = uint64(datsize) - sect.Vaddr
  1545  	gc.End(int64(sect.Length))
  1546  
  1547  	/* bss */
  1548  	sect = addsection(&Segdata, ".bss", 06)
  1549  	sect.Align = dataMaxAlign[obj.SBSS]
  1550  	datsize = Rnd(datsize, int64(sect.Align))
  1551  	sect.Vaddr = uint64(datsize)
  1552  	ctxt.Syms.Lookup("runtime.bss", 0).Sect = sect
  1553  	ctxt.Syms.Lookup("runtime.ebss", 0).Sect = sect
  1554  	gc = GCProg{}
  1555  	gc.Init(ctxt, "runtime.gcbss")
  1556  	for _, s := range data[obj.SBSS] {
  1557  		s.Sect = sect
  1558  		datsize = aligndatsize(datsize, s)
  1559  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1560  		gc.AddSym(s)
  1561  		datsize += s.Size
  1562  	}
  1563  	checkdatsize(ctxt, datsize, obj.SBSS)
  1564  	sect.Length = uint64(datsize) - sect.Vaddr
  1565  	gc.End(int64(sect.Length))
  1566  
  1567  	/* pointer-free bss */
  1568  	sect = addsection(&Segdata, ".noptrbss", 06)
  1569  	sect.Align = dataMaxAlign[obj.SNOPTRBSS]
  1570  	datsize = Rnd(datsize, int64(sect.Align))
  1571  	sect.Vaddr = uint64(datsize)
  1572  	ctxt.Syms.Lookup("runtime.noptrbss", 0).Sect = sect
  1573  	ctxt.Syms.Lookup("runtime.enoptrbss", 0).Sect = sect
  1574  	for _, s := range data[obj.SNOPTRBSS] {
  1575  		datsize = aligndatsize(datsize, s)
  1576  		s.Sect = sect
  1577  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1578  		datsize += s.Size
  1579  	}
  1580  
  1581  	sect.Length = uint64(datsize) - sect.Vaddr
  1582  	ctxt.Syms.Lookup("runtime.end", 0).Sect = sect
  1583  	checkdatsize(ctxt, datsize, obj.SNOPTRBSS)
  1584  
  1585  	if len(data[obj.STLSBSS]) > 0 {
  1586  		var sect *Section
  1587  		if Iself && (Linkmode == LinkExternal || !*FlagD) && Headtype != obj.Hopenbsd {
  1588  			sect = addsection(&Segdata, ".tbss", 06)
  1589  			sect.Align = int32(SysArch.PtrSize)
  1590  			sect.Vaddr = 0
  1591  		}
  1592  		datsize = 0
  1593  
  1594  		for _, s := range data[obj.STLSBSS] {
  1595  			datsize = aligndatsize(datsize, s)
  1596  			s.Sect = sect
  1597  			s.Value = datsize
  1598  			datsize += s.Size
  1599  		}
  1600  		checkdatsize(ctxt, datsize, obj.STLSBSS)
  1601  
  1602  		if sect != nil {
  1603  			sect.Length = uint64(datsize)
  1604  		}
  1605  	}
  1606  
  1607  	/*
  1608  	 * We finished data, begin read-only data.
  1609  	 * Not all systems support a separate read-only non-executable data section.
  1610  	 * ELF systems do.
  1611  	 * OS X and Plan 9 do not.
  1612  	 * Windows PE may, but if so we have not implemented it.
  1613  	 * And if we're using external linking mode, the point is moot,
  1614  	 * since it's not our decision; that code expects the sections in
  1615  	 * segtext.
  1616  	 */
  1617  	var segro *Segment
  1618  	if Iself && Linkmode == LinkInternal {
  1619  		segro = &Segrodata
  1620  	} else {
  1621  		segro = &Segtext
  1622  	}
  1623  
  1624  	datsize = 0
  1625  
  1626  	/* read-only executable ELF, Mach-O sections */
  1627  	if len(data[obj.STEXT]) != 0 {
  1628  		Errorf(nil, "dodata found an STEXT symbol: %s", data[obj.STEXT][0].Name)
  1629  	}
  1630  	for _, s := range data[obj.SELFRXSECT] {
  1631  		sect := addsection(&Segtext, s.Name, 04)
  1632  		sect.Align = symalign(s)
  1633  		datsize = Rnd(datsize, int64(sect.Align))
  1634  		sect.Vaddr = uint64(datsize)
  1635  		s.Sect = sect
  1636  		s.Type = obj.SRODATA
  1637  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1638  		datsize += s.Size
  1639  		sect.Length = uint64(datsize) - sect.Vaddr
  1640  		checkdatsize(ctxt, datsize, obj.SELFRXSECT)
  1641  	}
  1642  
  1643  	/* read-only data */
  1644  	sect = addsection(segro, ".rodata", 04)
  1645  
  1646  	sect.Vaddr = 0
  1647  	ctxt.Syms.Lookup("runtime.rodata", 0).Sect = sect
  1648  	ctxt.Syms.Lookup("runtime.erodata", 0).Sect = sect
  1649  	if !UseRelro() {
  1650  		ctxt.Syms.Lookup("runtime.types", 0).Sect = sect
  1651  		ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect
  1652  	}
  1653  	for _, symn := range obj.ReadOnly {
  1654  		align := dataMaxAlign[symn]
  1655  		if sect.Align < align {
  1656  			sect.Align = align
  1657  		}
  1658  	}
  1659  	datsize = Rnd(datsize, int64(sect.Align))
  1660  	for _, symn := range obj.ReadOnly {
  1661  		for _, s := range data[symn] {
  1662  			datsize = aligndatsize(datsize, s)
  1663  			s.Sect = sect
  1664  			s.Type = obj.SRODATA
  1665  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1666  			datsize += s.Size
  1667  		}
  1668  		checkdatsize(ctxt, datsize, symn)
  1669  	}
  1670  	sect.Length = uint64(datsize) - sect.Vaddr
  1671  
  1672  	/* read-only ELF, Mach-O sections */
  1673  	for _, s := range data[obj.SELFROSECT] {
  1674  		sect = addsection(segro, s.Name, 04)
  1675  		sect.Align = symalign(s)
  1676  		datsize = Rnd(datsize, int64(sect.Align))
  1677  		sect.Vaddr = uint64(datsize)
  1678  		s.Sect = sect
  1679  		s.Type = obj.SRODATA
  1680  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1681  		datsize += s.Size
  1682  		sect.Length = uint64(datsize) - sect.Vaddr
  1683  	}
  1684  	checkdatsize(ctxt, datsize, obj.SELFROSECT)
  1685  
  1686  	for _, s := range data[obj.SMACHOPLT] {
  1687  		sect = addsection(segro, s.Name, 04)
  1688  		sect.Align = symalign(s)
  1689  		datsize = Rnd(datsize, int64(sect.Align))
  1690  		sect.Vaddr = uint64(datsize)
  1691  		s.Sect = sect
  1692  		s.Type = obj.SRODATA
  1693  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1694  		datsize += s.Size
  1695  		sect.Length = uint64(datsize) - sect.Vaddr
  1696  	}
  1697  	checkdatsize(ctxt, datsize, obj.SMACHOPLT)
  1698  
  1699  	// There is some data that are conceptually read-only but are written to by
  1700  	// relocations. On GNU systems, we can arrange for the dynamic linker to
  1701  	// mprotect sections after relocations are applied by giving them write
  1702  	// permissions in the object file and calling them ".data.rel.ro.FOO". We
  1703  	// divide the .rodata section between actual .rodata and .data.rel.ro.rodata,
  1704  	// but for the other sections that this applies to, we just write a read-only
  1705  	// .FOO section or a read-write .data.rel.ro.FOO section depending on the
  1706  	// situation.
  1707  	// TODO(mwhudson): It would make sense to do this more widely, but it makes
  1708  	// the system linker segfault on darwin.
  1709  	addrelrosection := func(suffix string) *Section {
  1710  		return addsection(segro, suffix, 04)
  1711  	}
  1712  
  1713  	if UseRelro() {
  1714  		addrelrosection = func(suffix string) *Section {
  1715  			seg := &Segrelrodata
  1716  			if Linkmode == LinkExternal {
  1717  				// Using a separate segment with an external
  1718  				// linker results in some programs moving
  1719  				// their data sections unexpectedly, which
  1720  				// corrupts the moduledata. So we use the
  1721  				// rodata segment and let the external linker
  1722  				// sort out a rel.ro segment.
  1723  				seg = &Segrodata
  1724  			}
  1725  			return addsection(seg, ".data.rel.ro"+suffix, 06)
  1726  		}
  1727  		/* data only written by relocations */
  1728  		sect = addrelrosection("")
  1729  
  1730  		sect.Vaddr = 0
  1731  		ctxt.Syms.Lookup("runtime.types", 0).Sect = sect
  1732  		ctxt.Syms.Lookup("runtime.etypes", 0).Sect = sect
  1733  		for _, symnro := range obj.ReadOnly {
  1734  			symn := obj.RelROMap[symnro]
  1735  			align := dataMaxAlign[symn]
  1736  			if sect.Align < align {
  1737  				sect.Align = align
  1738  			}
  1739  		}
  1740  		datsize = Rnd(datsize, int64(sect.Align))
  1741  		for _, symnro := range obj.ReadOnly {
  1742  			symn := obj.RelROMap[symnro]
  1743  			for _, s := range data[symn] {
  1744  				datsize = aligndatsize(datsize, s)
  1745  				if s.Outer != nil && s.Outer.Sect != nil && s.Outer.Sect != sect {
  1746  					Errorf(s, "s.Outer (%s) in different section from s, %s != %s", s.Outer.Name, s.Outer.Sect.Name, sect.Name)
  1747  				}
  1748  				s.Sect = sect
  1749  				s.Type = obj.SRODATA
  1750  				s.Value = int64(uint64(datsize) - sect.Vaddr)
  1751  				datsize += s.Size
  1752  			}
  1753  			checkdatsize(ctxt, datsize, symn)
  1754  		}
  1755  
  1756  		sect.Length = uint64(datsize) - sect.Vaddr
  1757  	}
  1758  
  1759  	/* typelink */
  1760  	sect = addrelrosection(".typelink")
  1761  	sect.Align = dataMaxAlign[obj.STYPELINK]
  1762  	datsize = Rnd(datsize, int64(sect.Align))
  1763  	sect.Vaddr = uint64(datsize)
  1764  	typelink := ctxt.Syms.Lookup("runtime.typelink", 0)
  1765  	typelink.Sect = sect
  1766  	typelink.Type = obj.RODATA
  1767  	datsize += typelink.Size
  1768  	checkdatsize(ctxt, datsize, obj.STYPELINK)
  1769  	sect.Length = uint64(datsize) - sect.Vaddr
  1770  
  1771  	/* itablink */
  1772  	sect = addrelrosection(".itablink")
  1773  	sect.Align = dataMaxAlign[obj.SITABLINK]
  1774  	datsize = Rnd(datsize, int64(sect.Align))
  1775  	sect.Vaddr = uint64(datsize)
  1776  	ctxt.Syms.Lookup("runtime.itablink", 0).Sect = sect
  1777  	ctxt.Syms.Lookup("runtime.eitablink", 0).Sect = sect
  1778  	for _, s := range data[obj.SITABLINK] {
  1779  		datsize = aligndatsize(datsize, s)
  1780  		s.Sect = sect
  1781  		s.Type = obj.SRODATA
  1782  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1783  		datsize += s.Size
  1784  	}
  1785  	checkdatsize(ctxt, datsize, obj.SITABLINK)
  1786  	sect.Length = uint64(datsize) - sect.Vaddr
  1787  
  1788  	/* gosymtab */
  1789  	sect = addrelrosection(".gosymtab")
  1790  	sect.Align = dataMaxAlign[obj.SSYMTAB]
  1791  	datsize = Rnd(datsize, int64(sect.Align))
  1792  	sect.Vaddr = uint64(datsize)
  1793  	ctxt.Syms.Lookup("runtime.symtab", 0).Sect = sect
  1794  	ctxt.Syms.Lookup("runtime.esymtab", 0).Sect = sect
  1795  	for _, s := range data[obj.SSYMTAB] {
  1796  		datsize = aligndatsize(datsize, s)
  1797  		s.Sect = sect
  1798  		s.Type = obj.SRODATA
  1799  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1800  		datsize += s.Size
  1801  	}
  1802  	checkdatsize(ctxt, datsize, obj.SSYMTAB)
  1803  	sect.Length = uint64(datsize) - sect.Vaddr
  1804  
  1805  	/* gopclntab */
  1806  	sect = addrelrosection(".gopclntab")
  1807  	sect.Align = dataMaxAlign[obj.SPCLNTAB]
  1808  	datsize = Rnd(datsize, int64(sect.Align))
  1809  	sect.Vaddr = uint64(datsize)
  1810  	ctxt.Syms.Lookup("runtime.pclntab", 0).Sect = sect
  1811  	ctxt.Syms.Lookup("runtime.epclntab", 0).Sect = sect
  1812  	for _, s := range data[obj.SPCLNTAB] {
  1813  		datsize = aligndatsize(datsize, s)
  1814  		s.Sect = sect
  1815  		s.Type = obj.SRODATA
  1816  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1817  		datsize += s.Size
  1818  	}
  1819  	checkdatsize(ctxt, datsize, obj.SRODATA)
  1820  	sect.Length = uint64(datsize) - sect.Vaddr
  1821  
  1822  	// 6g uses 4-byte relocation offsets, so the entire segment must fit in 32 bits.
  1823  	if datsize != int64(uint32(datsize)) {
  1824  		Errorf(nil, "read-only data segment too large: %d", datsize)
  1825  	}
  1826  
  1827  	for symn := obj.SELFRXSECT; symn < obj.SXREF; symn++ {
  1828  		datap = append(datap, data[symn]...)
  1829  	}
  1830  
  1831  	dwarfgeneratedebugsyms(ctxt)
  1832  
  1833  	var s *Symbol
  1834  	var i int
  1835  	for i, s = range dwarfp {
  1836  		if s.Type != obj.SDWARFSECT {
  1837  			break
  1838  		}
  1839  		sect = addsection(&Segdwarf, s.Name, 04)
  1840  		sect.Align = 1
  1841  		datsize = Rnd(datsize, int64(sect.Align))
  1842  		sect.Vaddr = uint64(datsize)
  1843  		s.Sect = sect
  1844  		s.Type = obj.SRODATA
  1845  		s.Value = int64(uint64(datsize) - sect.Vaddr)
  1846  		datsize += s.Size
  1847  		sect.Length = uint64(datsize) - sect.Vaddr
  1848  	}
  1849  	checkdatsize(ctxt, datsize, obj.SDWARFSECT)
  1850  
  1851  	if i < len(dwarfp) {
  1852  		sect = addsection(&Segdwarf, ".debug_info", 04)
  1853  		sect.Align = 1
  1854  		datsize = Rnd(datsize, int64(sect.Align))
  1855  		sect.Vaddr = uint64(datsize)
  1856  		for _, s := range dwarfp[i:] {
  1857  			if s.Type != obj.SDWARFINFO {
  1858  				break
  1859  			}
  1860  			s.Sect = sect
  1861  			s.Type = obj.SRODATA
  1862  			s.Value = int64(uint64(datsize) - sect.Vaddr)
  1863  			s.Attr |= AttrLocal
  1864  			datsize += s.Size
  1865  		}
  1866  		sect.Length = uint64(datsize) - sect.Vaddr
  1867  		checkdatsize(ctxt, datsize, obj.SDWARFINFO)
  1868  	}
  1869  
  1870  	/* number the sections */
  1871  	n := int32(1)
  1872  
  1873  	for sect := Segtext.Sect; sect != nil; sect = sect.Next {
  1874  		sect.Extnum = int16(n)
  1875  		n++
  1876  	}
  1877  	for sect := Segrodata.Sect; sect != nil; sect = sect.Next {
  1878  		sect.Extnum = int16(n)
  1879  		n++
  1880  	}
  1881  	for sect := Segrelrodata.Sect; sect != nil; sect = sect.Next {
  1882  		sect.Extnum = int16(n)
  1883  		n++
  1884  	}
  1885  	for sect := Segdata.Sect; sect != nil; sect = sect.Next {
  1886  		sect.Extnum = int16(n)
  1887  		n++
  1888  	}
  1889  	for sect := Segdwarf.Sect; sect != nil; sect = sect.Next {
  1890  		sect.Extnum = int16(n)
  1891  		n++
  1892  	}
  1893  }
  1894  
  1895  func dodataSect(ctxt *Link, symn obj.SymKind, syms []*Symbol) (result []*Symbol, maxAlign int32) {
  1896  	if Headtype == obj.Hdarwin {
  1897  		// Some symbols may no longer belong in syms
  1898  		// due to movement in machosymorder.
  1899  		newSyms := make([]*Symbol, 0, len(syms))
  1900  		for _, s := range syms {
  1901  			if s.Type == symn {
  1902  				newSyms = append(newSyms, s)
  1903  			}
  1904  		}
  1905  		syms = newSyms
  1906  	}
  1907  
  1908  	var head, tail *Symbol
  1909  	symsSort := make([]dataSortKey, 0, len(syms))
  1910  	for _, s := range syms {
  1911  		if s.Attr.OnList() {
  1912  			log.Fatalf("symbol %s listed multiple times", s.Name)
  1913  		}
  1914  		s.Attr |= AttrOnList
  1915  		switch {
  1916  		case s.Size < int64(len(s.P)):
  1917  			Errorf(s, "initialize bounds (%d < %d)", s.Size, len(s.P))
  1918  		case s.Size < 0:
  1919  			Errorf(s, "negative size (%d bytes)", s.Size)
  1920  		case s.Size > cutoff:
  1921  			Errorf(s, "symbol too large (%d bytes)", s.Size)
  1922  		}
  1923  
  1924  		// If the usually-special section-marker symbols are being laid
  1925  		// out as regular symbols, put them either at the beginning or
  1926  		// end of their section.
  1927  		if ctxt.DynlinkingGo() && Headtype == obj.Hdarwin {
  1928  			switch s.Name {
  1929  			case "runtime.text", "runtime.bss", "runtime.data", "runtime.types":
  1930  				head = s
  1931  				continue
  1932  			case "runtime.etext", "runtime.ebss", "runtime.edata", "runtime.etypes":
  1933  				tail = s
  1934  				continue
  1935  			}
  1936  		}
  1937  
  1938  		key := dataSortKey{
  1939  			size: s.Size,
  1940  			name: s.Name,
  1941  			sym:  s,
  1942  		}
  1943  
  1944  		switch s.Type {
  1945  		case obj.SELFGOT:
  1946  			// For ppc64, we want to interleave the .got and .toc sections
  1947  			// from input files. Both are type SELFGOT, so in that case
  1948  			// we skip size comparison and fall through to the name
  1949  			// comparison (conveniently, .got sorts before .toc).
  1950  			key.size = 0
  1951  		}
  1952  
  1953  		symsSort = append(symsSort, key)
  1954  	}
  1955  
  1956  	sort.Sort(bySizeAndName(symsSort))
  1957  
  1958  	off := 0
  1959  	if head != nil {
  1960  		syms[0] = head
  1961  		off++
  1962  	}
  1963  	for i, symSort := range symsSort {
  1964  		syms[i+off] = symSort.sym
  1965  		align := symalign(symSort.sym)
  1966  		if maxAlign < align {
  1967  			maxAlign = align
  1968  		}
  1969  	}
  1970  	if tail != nil {
  1971  		syms[len(syms)-1] = tail
  1972  	}
  1973  
  1974  	if Iself && symn == obj.SELFROSECT {
  1975  		// Make .rela and .rela.plt contiguous, the ELF ABI requires this
  1976  		// and Solaris actually cares.
  1977  		reli, plti := -1, -1
  1978  		for i, s := range syms {
  1979  			switch s.Name {
  1980  			case ".rel.plt", ".rela.plt":
  1981  				plti = i
  1982  			case ".rel", ".rela":
  1983  				reli = i
  1984  			}
  1985  		}
  1986  		if reli >= 0 && plti >= 0 && plti != reli+1 {
  1987  			var first, second int
  1988  			if plti > reli {
  1989  				first, second = reli, plti
  1990  			} else {
  1991  				first, second = plti, reli
  1992  			}
  1993  			rel, plt := syms[reli], syms[plti]
  1994  			copy(syms[first+2:], syms[first+1:second])
  1995  			syms[first+0] = rel
  1996  			syms[first+1] = plt
  1997  
  1998  			// Make sure alignment doesn't introduce a gap.
  1999  			// Setting the alignment explicitly prevents
  2000  			// symalign from basing it on the size and
  2001  			// getting it wrong.
  2002  			rel.Align = int32(SysArch.RegSize)
  2003  			plt.Align = int32(SysArch.RegSize)
  2004  		}
  2005  	}
  2006  
  2007  	return syms, maxAlign
  2008  }
  2009  
  2010  // Add buildid to beginning of text segment, on non-ELF systems.
  2011  // Non-ELF binary formats are not always flexible enough to
  2012  // give us a place to put the Go build ID. On those systems, we put it
  2013  // at the very beginning of the text segment.
  2014  // This ``header'' is read by cmd/go.
  2015  func (ctxt *Link) textbuildid() {
  2016  	if Iself || Buildmode == BuildmodePlugin || *flagBuildid == "" {
  2017  		return
  2018  	}
  2019  
  2020  	sym := ctxt.Syms.Lookup("go.buildid", 0)
  2021  	sym.Attr |= AttrReachable
  2022  	// The \xff is invalid UTF-8, meant to make it less likely
  2023  	// to find one of these accidentally.
  2024  	data := "\xff Go build ID: " + strconv.Quote(*flagBuildid) + "\n \xff"
  2025  	sym.Type = obj.STEXT
  2026  	sym.P = []byte(data)
  2027  	sym.Size = int64(len(sym.P))
  2028  
  2029  	ctxt.Textp = append(ctxt.Textp, nil)
  2030  	copy(ctxt.Textp[1:], ctxt.Textp)
  2031  	ctxt.Textp[0] = sym
  2032  }
  2033  
  2034  // assign addresses to text
  2035  func (ctxt *Link) textaddress() {
  2036  	addsection(&Segtext, ".text", 05)
  2037  
  2038  	// Assign PCs in text segment.
  2039  	// Could parallelize, by assigning to text
  2040  	// and then letting threads copy down, but probably not worth it.
  2041  	sect := Segtext.Sect
  2042  
  2043  	sect.Align = int32(Funcalign)
  2044  
  2045  	text := ctxt.Syms.Lookup("runtime.text", 0)
  2046  	text.Sect = sect
  2047  
  2048  	if ctxt.DynlinkingGo() && Headtype == obj.Hdarwin {
  2049  		etext := ctxt.Syms.Lookup("runtime.etext", 0)
  2050  		etext.Sect = sect
  2051  
  2052  		ctxt.Textp = append(ctxt.Textp, etext, nil)
  2053  		copy(ctxt.Textp[1:], ctxt.Textp)
  2054  		ctxt.Textp[0] = text
  2055  	}
  2056  
  2057  	if Headtype == obj.Hwindows || Headtype == obj.Hwindowsgui {
  2058  		ctxt.Syms.Lookup(".text", 0).Sect = sect
  2059  	}
  2060  	va := uint64(*FlagTextAddr)
  2061  	n := 1
  2062  	sect.Vaddr = va
  2063  	ntramps := 0
  2064  	for _, sym := range ctxt.Textp {
  2065  		sect, n, va = assignAddress(ctxt, sect, n, sym, va, false)
  2066  
  2067  		trampoline(ctxt, sym) // resolve jumps, may add trampolines if jump too far
  2068  
  2069  		// lay down trampolines after each function
  2070  		for ; ntramps < len(ctxt.tramps); ntramps++ {
  2071  			tramp := ctxt.tramps[ntramps]
  2072  			sect, n, va = assignAddress(ctxt, sect, n, tramp, va, true)
  2073  		}
  2074  	}
  2075  
  2076  	sect.Length = va - sect.Vaddr
  2077  	ctxt.Syms.Lookup("runtime.etext", 0).Sect = sect
  2078  
  2079  	// merge tramps into Textp, keeping Textp in address order
  2080  	if ntramps != 0 {
  2081  		newtextp := make([]*Symbol, 0, len(ctxt.Textp)+ntramps)
  2082  		i := 0
  2083  		for _, sym := range ctxt.Textp {
  2084  			for ; i < ntramps && ctxt.tramps[i].Value < sym.Value; i++ {
  2085  				newtextp = append(newtextp, ctxt.tramps[i])
  2086  			}
  2087  			newtextp = append(newtextp, sym)
  2088  		}
  2089  		newtextp = append(newtextp, ctxt.tramps[i:ntramps]...)
  2090  
  2091  		ctxt.Textp = newtextp
  2092  	}
  2093  }
  2094  
  2095  // assigns address for a text symbol, returns (possibly new) section, its number, and the address
  2096  // Note: once we have trampoline insertion support for external linking, this function
  2097  // will not need to create new text sections, and so no need to return sect and n.
  2098  func assignAddress(ctxt *Link, sect *Section, n int, sym *Symbol, va uint64, isTramp bool) (*Section, int, uint64) {
  2099  	sym.Sect = sect
  2100  	if sym.Type&obj.SSUB != 0 {
  2101  		return sect, n, va
  2102  	}
  2103  	if sym.Align != 0 {
  2104  		va = uint64(Rnd(int64(va), int64(sym.Align)))
  2105  	} else {
  2106  		va = uint64(Rnd(int64(va), int64(Funcalign)))
  2107  	}
  2108  	sym.Value = 0
  2109  	for sub := sym; sub != nil; sub = sub.Sub {
  2110  		sub.Value += int64(va)
  2111  	}
  2112  
  2113  	funcsize := uint64(MINFUNC) // spacing required for findfunctab
  2114  	if sym.Size > MINFUNC {
  2115  		funcsize = uint64(sym.Size)
  2116  	}
  2117  
  2118  	// On ppc64x a text section should not be larger than 2^26 bytes due to the size of
  2119  	// call target offset field in the bl instruction.  Splitting into smaller text
  2120  	// sections smaller than this limit allows the GNU linker to modify the long calls
  2121  	// appropriately.  The limit allows for the space needed for tables inserted by the linker.
  2122  
  2123  	// If this function doesn't fit in the current text section, then create a new one.
  2124  
  2125  	// Only break at outermost syms.
  2126  
  2127  	if SysArch.InFamily(sys.PPC64) && sym.Outer == nil && Iself && Linkmode == LinkExternal && va-sect.Vaddr+funcsize+maxSizeTrampolinesPPC64(sym, isTramp) > 0x1c00000 {
  2128  
  2129  		// Set the length for the previous text section
  2130  		sect.Length = va - sect.Vaddr
  2131  
  2132  		// Create new section, set the starting Vaddr
  2133  		sect = addsection(&Segtext, ".text", 05)
  2134  		sect.Vaddr = va
  2135  		sym.Sect = sect
  2136  
  2137  		// Create a symbol for the start of the secondary text sections
  2138  		ctxt.Syms.Lookup(fmt.Sprintf("runtime.text.%d", n), 0).Sect = sect
  2139  		n++
  2140  	}
  2141  	va += funcsize
  2142  
  2143  	return sect, n, va
  2144  }
  2145  
  2146  // assign addresses
  2147  func (ctxt *Link) address() {
  2148  	va := uint64(*FlagTextAddr)
  2149  	Segtext.Rwx = 05
  2150  	Segtext.Vaddr = va
  2151  	Segtext.Fileoff = uint64(HEADR)
  2152  	for s := Segtext.Sect; s != nil; s = s.Next {
  2153  		va = uint64(Rnd(int64(va), int64(s.Align)))
  2154  		s.Vaddr = va
  2155  		va += s.Length
  2156  	}
  2157  
  2158  	Segtext.Length = va - uint64(*FlagTextAddr)
  2159  	Segtext.Filelen = Segtext.Length
  2160  	if Headtype == obj.Hnacl {
  2161  		va += 32 // room for the "halt sled"
  2162  	}
  2163  
  2164  	if Segrodata.Sect != nil {
  2165  		// align to page boundary so as not to mix
  2166  		// rodata and executable text.
  2167  		//
  2168  		// Note: gold or GNU ld will reduce the size of the executable
  2169  		// file by arranging for the relro segment to end at a page
  2170  		// boundary, and overlap the end of the text segment with the
  2171  		// start of the relro segment in the file.  The PT_LOAD segments
  2172  		// will be such that the last page of the text segment will be
  2173  		// mapped twice, once r-x and once starting out rw- and, after
  2174  		// relocation processing, changed to r--.
  2175  		//
  2176  		// Ideally the last page of the text segment would not be
  2177  		// writable even for this short period.
  2178  		va = uint64(Rnd(int64(va), int64(*FlagRound)))
  2179  
  2180  		Segrodata.Rwx = 04
  2181  		Segrodata.Vaddr = va
  2182  		Segrodata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff
  2183  		Segrodata.Filelen = 0
  2184  		for s := Segrodata.Sect; s != nil; s = s.Next {
  2185  			va = uint64(Rnd(int64(va), int64(s.Align)))
  2186  			s.Vaddr = va
  2187  			va += s.Length
  2188  		}
  2189  
  2190  		Segrodata.Length = va - Segrodata.Vaddr
  2191  		Segrodata.Filelen = Segrodata.Length
  2192  	}
  2193  	if Segrelrodata.Sect != nil {
  2194  		// align to page boundary so as not to mix
  2195  		// rodata, rel-ro data, and executable text.
  2196  		va = uint64(Rnd(int64(va), int64(*FlagRound)))
  2197  
  2198  		Segrelrodata.Rwx = 06
  2199  		Segrelrodata.Vaddr = va
  2200  		Segrelrodata.Fileoff = va - Segrodata.Vaddr + Segrodata.Fileoff
  2201  		Segrelrodata.Filelen = 0
  2202  		for s := Segrelrodata.Sect; s != nil; s = s.Next {
  2203  			va = uint64(Rnd(int64(va), int64(s.Align)))
  2204  			s.Vaddr = va
  2205  			va += s.Length
  2206  		}
  2207  
  2208  		Segrelrodata.Length = va - Segrelrodata.Vaddr
  2209  		Segrelrodata.Filelen = Segrelrodata.Length
  2210  	}
  2211  
  2212  	va = uint64(Rnd(int64(va), int64(*FlagRound)))
  2213  	Segdata.Rwx = 06
  2214  	Segdata.Vaddr = va
  2215  	Segdata.Fileoff = va - Segtext.Vaddr + Segtext.Fileoff
  2216  	Segdata.Filelen = 0
  2217  	if Headtype == obj.Hwindows || Headtype == obj.Hwindowsgui {
  2218  		Segdata.Fileoff = Segtext.Fileoff + uint64(Rnd(int64(Segtext.Length), PEFILEALIGN))
  2219  	}
  2220  	if Headtype == obj.Hplan9 {
  2221  		Segdata.Fileoff = Segtext.Fileoff + Segtext.Filelen
  2222  	}
  2223  	var data *Section
  2224  	var noptr *Section
  2225  	var bss *Section
  2226  	var noptrbss *Section
  2227  	var vlen int64
  2228  	for s := Segdata.Sect; s != nil; s = s.Next {
  2229  		if Iself && s.Name == ".tbss" {
  2230  			continue
  2231  		}
  2232  		vlen = int64(s.Length)
  2233  		if s.Next != nil && !(Iself && s.Next.Name == ".tbss") {
  2234  			vlen = int64(s.Next.Vaddr - s.Vaddr)
  2235  		}
  2236  		s.Vaddr = va
  2237  		va += uint64(vlen)
  2238  		Segdata.Length = va - Segdata.Vaddr
  2239  		if s.Name == ".data" {
  2240  			data = s
  2241  		}
  2242  		if s.Name == ".noptrdata" {
  2243  			noptr = s
  2244  		}
  2245  		if s.Name == ".bss" {
  2246  			bss = s
  2247  		}
  2248  		if s.Name == ".noptrbss" {
  2249  			noptrbss = s
  2250  		}
  2251  	}
  2252  
  2253  	Segdata.Filelen = bss.Vaddr - Segdata.Vaddr
  2254  
  2255  	va = uint64(Rnd(int64(va), int64(*FlagRound)))
  2256  	Segdwarf.Rwx = 06
  2257  	Segdwarf.Vaddr = va
  2258  	Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(*FlagRound)))
  2259  	Segdwarf.Filelen = 0
  2260  	if Headtype == obj.Hwindows || Headtype == obj.Hwindowsgui {
  2261  		Segdwarf.Fileoff = Segdata.Fileoff + uint64(Rnd(int64(Segdata.Filelen), int64(PEFILEALIGN)))
  2262  	}
  2263  	for s := Segdwarf.Sect; s != nil; s = s.Next {
  2264  		vlen = int64(s.Length)
  2265  		if s.Next != nil {
  2266  			vlen = int64(s.Next.Vaddr - s.Vaddr)
  2267  		}
  2268  		s.Vaddr = va
  2269  		va += uint64(vlen)
  2270  		if Headtype == obj.Hwindows || Headtype == obj.Hwindowsgui {
  2271  			va = uint64(Rnd(int64(va), PEFILEALIGN))
  2272  		}
  2273  		Segdwarf.Length = va - Segdwarf.Vaddr
  2274  	}
  2275  
  2276  	Segdwarf.Filelen = va - Segdwarf.Vaddr
  2277  
  2278  	var (
  2279  		text     = Segtext.Sect
  2280  		rodata   = ctxt.Syms.Lookup("runtime.rodata", 0).Sect
  2281  		itablink = ctxt.Syms.Lookup("runtime.itablink", 0).Sect
  2282  		symtab   = ctxt.Syms.Lookup("runtime.symtab", 0).Sect
  2283  		pclntab  = ctxt.Syms.Lookup("runtime.pclntab", 0).Sect
  2284  		types    = ctxt.Syms.Lookup("runtime.types", 0).Sect
  2285  	)
  2286  	lasttext := text
  2287  	// Could be multiple .text sections
  2288  	for sect := text.Next; sect != nil && sect.Name == ".text"; sect = sect.Next {
  2289  		lasttext = sect
  2290  	}
  2291  
  2292  	for _, s := range datap {
  2293  		if s.Sect != nil {
  2294  			s.Value += int64(s.Sect.Vaddr)
  2295  		}
  2296  		for sub := s.Sub; sub != nil; sub = sub.Sub {
  2297  			sub.Value += s.Value
  2298  		}
  2299  	}
  2300  
  2301  	for _, sym := range dwarfp {
  2302  		if sym.Sect != nil {
  2303  			sym.Value += int64(sym.Sect.Vaddr)
  2304  		}
  2305  		for sub := sym.Sub; sub != nil; sub = sub.Sub {
  2306  			sub.Value += sym.Value
  2307  		}
  2308  	}
  2309  
  2310  	if Buildmode == BuildmodeShared {
  2311  		s := ctxt.Syms.Lookup("go.link.abihashbytes", 0)
  2312  		sectSym := ctxt.Syms.Lookup(".note.go.abihash", 0)
  2313  		s.Sect = sectSym.Sect
  2314  		s.Value = int64(sectSym.Sect.Vaddr + 16)
  2315  	}
  2316  
  2317  	ctxt.xdefine("runtime.text", obj.STEXT, int64(text.Vaddr))
  2318  	ctxt.xdefine("runtime.etext", obj.STEXT, int64(lasttext.Vaddr+lasttext.Length))
  2319  	if Headtype == obj.Hwindows || Headtype == obj.Hwindowsgui {
  2320  		ctxt.xdefine(".text", obj.STEXT, int64(text.Vaddr))
  2321  	}
  2322  
  2323  	// If there are multiple text sections, create runtime.text.n for
  2324  	// their section Vaddr, using n for index
  2325  	n := 1
  2326  	for sect := Segtext.Sect.Next; sect != nil && sect.Name == ".text"; sect = sect.Next {
  2327  		symname := fmt.Sprintf("runtime.text.%d", n)
  2328  		ctxt.xdefine(symname, obj.STEXT, int64(sect.Vaddr))
  2329  		n++
  2330  	}
  2331  
  2332  	ctxt.xdefine("runtime.rodata", obj.SRODATA, int64(rodata.Vaddr))
  2333  	ctxt.xdefine("runtime.erodata", obj.SRODATA, int64(rodata.Vaddr+rodata.Length))
  2334  	ctxt.xdefine("runtime.types", obj.SRODATA, int64(types.Vaddr))
  2335  	ctxt.xdefine("runtime.etypes", obj.SRODATA, int64(types.Vaddr+types.Length))
  2336  	ctxt.xdefine("runtime.itablink", obj.SRODATA, int64(itablink.Vaddr))
  2337  	ctxt.xdefine("runtime.eitablink", obj.SRODATA, int64(itablink.Vaddr+itablink.Length))
  2338  
  2339  	sym := ctxt.Syms.Lookup("runtime.gcdata", 0)
  2340  	sym.Attr |= AttrLocal
  2341  	ctxt.xdefine("runtime.egcdata", obj.SRODATA, Symaddr(sym)+sym.Size)
  2342  	ctxt.Syms.Lookup("runtime.egcdata", 0).Sect = sym.Sect
  2343  
  2344  	sym = ctxt.Syms.Lookup("runtime.gcbss", 0)
  2345  	sym.Attr |= AttrLocal
  2346  	ctxt.xdefine("runtime.egcbss", obj.SRODATA, Symaddr(sym)+sym.Size)
  2347  	ctxt.Syms.Lookup("runtime.egcbss", 0).Sect = sym.Sect
  2348  
  2349  	ctxt.xdefine("runtime.symtab", obj.SRODATA, int64(symtab.Vaddr))
  2350  	ctxt.xdefine("runtime.esymtab", obj.SRODATA, int64(symtab.Vaddr+symtab.Length))
  2351  	ctxt.xdefine("runtime.pclntab", obj.SRODATA, int64(pclntab.Vaddr))
  2352  	ctxt.xdefine("runtime.epclntab", obj.SRODATA, int64(pclntab.Vaddr+pclntab.Length))
  2353  	ctxt.xdefine("runtime.noptrdata", obj.SNOPTRDATA, int64(noptr.Vaddr))
  2354  	ctxt.xdefine("runtime.enoptrdata", obj.SNOPTRDATA, int64(noptr.Vaddr+noptr.Length))
  2355  	ctxt.xdefine("runtime.bss", obj.SBSS, int64(bss.Vaddr))
  2356  	ctxt.xdefine("runtime.ebss", obj.SBSS, int64(bss.Vaddr+bss.Length))
  2357  	ctxt.xdefine("runtime.data", obj.SDATA, int64(data.Vaddr))
  2358  	ctxt.xdefine("runtime.edata", obj.SDATA, int64(data.Vaddr+data.Length))
  2359  	ctxt.xdefine("runtime.noptrbss", obj.SNOPTRBSS, int64(noptrbss.Vaddr))
  2360  	ctxt.xdefine("runtime.enoptrbss", obj.SNOPTRBSS, int64(noptrbss.Vaddr+noptrbss.Length))
  2361  	ctxt.xdefine("runtime.end", obj.SBSS, int64(Segdata.Vaddr+Segdata.Length))
  2362  }
  2363  
  2364  // add a trampoline with symbol s (to be laid down after the current function)
  2365  func (ctxt *Link) AddTramp(s *Symbol) {
  2366  	s.Type = obj.STEXT
  2367  	s.Attr |= AttrReachable
  2368  	s.Attr |= AttrOnList
  2369  	ctxt.tramps = append(ctxt.tramps, s)
  2370  	if *FlagDebugTramp > 0 && ctxt.Debugvlog > 0 {
  2371  		ctxt.Logf("trampoline %s inserted\n", s)
  2372  	}
  2373  }