github.com/freddyisaac/sicortex-golang@v0.0.0-20231019035217-e03519e66f60/src/runtime/type.go (about)

     1  // Copyright 2009 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Runtime type representation.
     6  
     7  package runtime
     8  
     9  import "unsafe"
    10  
    11  // tflag is documented in reflect/type.go.
    12  //
    13  // tflag values must be kept in sync with copies in:
    14  //	cmd/compile/internal/gc/reflect.go
    15  //	cmd/link/internal/ld/decodesym.go
    16  //	reflect/type.go
    17  type tflag uint8
    18  
    19  const (
    20  	tflagUncommon  tflag = 1 << 0
    21  	tflagExtraStar tflag = 1 << 1
    22  	tflagNamed     tflag = 1 << 2
    23  )
    24  
    25  // Needs to be in sync with ../cmd/compile/internal/ld/decodesym.go:/^func.commonsize,
    26  // ../cmd/compile/internal/gc/reflect.go:/^func.dcommontype and
    27  // ../reflect/type.go:/^type.rtype.
    28  type _type struct {
    29  	size       uintptr
    30  	ptrdata    uintptr // size of memory prefix holding all pointers
    31  	hash       uint32
    32  	tflag      tflag
    33  	align      uint8
    34  	fieldalign uint8
    35  	kind       uint8
    36  	alg        *typeAlg
    37  	// gcdata stores the GC type data for the garbage collector.
    38  	// If the KindGCProg bit is set in kind, gcdata is a GC program.
    39  	// Otherwise it is a ptrmask bitmap. See mbitmap.go for details.
    40  	gcdata    *byte
    41  	str       nameOff
    42  	ptrToThis typeOff
    43  }
    44  
    45  func (t *_type) string() string {
    46  	s := t.nameOff(t.str).name()
    47  	if t.tflag&tflagExtraStar != 0 {
    48  		return s[1:]
    49  	}
    50  	return s
    51  }
    52  
    53  func (t *_type) uncommon() *uncommontype {
    54  	if t.tflag&tflagUncommon == 0 {
    55  		return nil
    56  	}
    57  	switch t.kind & kindMask {
    58  	case kindStruct:
    59  		type u struct {
    60  			structtype
    61  			u uncommontype
    62  		}
    63  		return &(*u)(unsafe.Pointer(t)).u
    64  	case kindPtr:
    65  		type u struct {
    66  			ptrtype
    67  			u uncommontype
    68  		}
    69  		return &(*u)(unsafe.Pointer(t)).u
    70  	case kindFunc:
    71  		type u struct {
    72  			functype
    73  			u uncommontype
    74  		}
    75  		return &(*u)(unsafe.Pointer(t)).u
    76  	case kindSlice:
    77  		type u struct {
    78  			slicetype
    79  			u uncommontype
    80  		}
    81  		return &(*u)(unsafe.Pointer(t)).u
    82  	case kindArray:
    83  		type u struct {
    84  			arraytype
    85  			u uncommontype
    86  		}
    87  		return &(*u)(unsafe.Pointer(t)).u
    88  	case kindChan:
    89  		type u struct {
    90  			chantype
    91  			u uncommontype
    92  		}
    93  		return &(*u)(unsafe.Pointer(t)).u
    94  	case kindMap:
    95  		type u struct {
    96  			maptype
    97  			u uncommontype
    98  		}
    99  		return &(*u)(unsafe.Pointer(t)).u
   100  	case kindInterface:
   101  		type u struct {
   102  			interfacetype
   103  			u uncommontype
   104  		}
   105  		return &(*u)(unsafe.Pointer(t)).u
   106  	default:
   107  		type u struct {
   108  			_type
   109  			u uncommontype
   110  		}
   111  		return &(*u)(unsafe.Pointer(t)).u
   112  	}
   113  }
   114  
   115  func hasPrefix(s, prefix string) bool {
   116  	return len(s) >= len(prefix) && s[:len(prefix)] == prefix
   117  }
   118  
   119  func (t *_type) name() string {
   120  	if t.tflag&tflagNamed == 0 {
   121  		return ""
   122  	}
   123  	s := t.string()
   124  	i := len(s) - 1
   125  	for i >= 0 {
   126  		if s[i] == '.' {
   127  			break
   128  		}
   129  		i--
   130  	}
   131  	return s[i+1:]
   132  }
   133  
   134  // reflectOffs holds type offsets defined at run time by the reflect package.
   135  //
   136  // When a type is defined at run time, its *rtype data lives on the heap.
   137  // There are a wide range of possible addresses the heap may use, that
   138  // may not be representable as a 32-bit offset. Moreover the GC may
   139  // one day start moving heap memory, in which case there is no stable
   140  // offset that can be defined.
   141  //
   142  // To provide stable offsets, we add pin *rtype objects in a global map
   143  // and treat the offset as an identifier. We use negative offsets that
   144  // do not overlap with any compile-time module offsets.
   145  //
   146  // Entries are created by reflect.addReflectOff.
   147  var reflectOffs struct {
   148  	lock mutex
   149  	next int32
   150  	m    map[int32]unsafe.Pointer
   151  	minv map[unsafe.Pointer]int32
   152  }
   153  
   154  func reflectOffsLock() {
   155  	lock(&reflectOffs.lock)
   156  	if raceenabled {
   157  		raceacquire(unsafe.Pointer(&reflectOffs.lock))
   158  	}
   159  }
   160  
   161  func reflectOffsUnlock() {
   162  	if raceenabled {
   163  		racerelease(unsafe.Pointer(&reflectOffs.lock))
   164  	}
   165  	unlock(&reflectOffs.lock)
   166  }
   167  
   168  func resolveNameOff(ptrInModule unsafe.Pointer, off nameOff) name {
   169  	if off == 0 {
   170  		return name{}
   171  	}
   172  	base := uintptr(ptrInModule)
   173  	for md := &firstmoduledata; md != nil; md = md.next {
   174  		if base >= md.types && base < md.etypes {
   175  			res := md.types + uintptr(off)
   176  			if res > md.etypes {
   177  				println("runtime: nameOff", hex(off), "out of range", hex(md.types), "-", hex(md.etypes))
   178  				throw("runtime: name offset out of range")
   179  			}
   180  			return name{(*byte)(unsafe.Pointer(res))}
   181  		}
   182  	}
   183  
   184  	// No module found. see if it is a run time name.
   185  	reflectOffsLock()
   186  	res, found := reflectOffs.m[int32(off)]
   187  	reflectOffsUnlock()
   188  	if !found {
   189  		println("runtime: nameOff", hex(off), "base", hex(base), "not in ranges:")
   190  		for next := &firstmoduledata; next != nil; next = next.next {
   191  			println("\ttypes", hex(next.types), "etypes", hex(next.etypes))
   192  		}
   193  		throw("runtime: name offset base pointer out of range")
   194  	}
   195  	return name{(*byte)(res)}
   196  }
   197  
   198  func (t *_type) nameOff(off nameOff) name {
   199  	return resolveNameOff(unsafe.Pointer(t), off)
   200  }
   201  
   202  func resolveTypeOff(ptrInModule unsafe.Pointer, off typeOff) *_type {
   203  	if off == 0 {
   204  		return nil
   205  	}
   206  	base := uintptr(ptrInModule)
   207  	var md *moduledata
   208  	for next := &firstmoduledata; next != nil; next = next.next {
   209  		if base >= next.types && base < next.etypes {
   210  			md = next
   211  			break
   212  		}
   213  	}
   214  	if md == nil {
   215  		reflectOffsLock()
   216  		res := reflectOffs.m[int32(off)]
   217  		reflectOffsUnlock()
   218  		if res == nil {
   219  			println("runtime: typeOff", hex(off), "base", hex(base), "not in ranges:")
   220  			for next := &firstmoduledata; next != nil; next = next.next {
   221  				println("\ttypes", hex(next.types), "etypes", hex(next.etypes))
   222  			}
   223  			throw("runtime: type offset base pointer out of range")
   224  		}
   225  		return (*_type)(res)
   226  	}
   227  	if t := md.typemap[off]; t != nil {
   228  		return t
   229  	}
   230  	res := md.types + uintptr(off)
   231  	if res > md.etypes {
   232  		println("runtime: typeOff", hex(off), "out of range", hex(md.types), "-", hex(md.etypes))
   233  		throw("runtime: type offset out of range")
   234  	}
   235  	return (*_type)(unsafe.Pointer(res))
   236  }
   237  
   238  func (t *_type) typeOff(off typeOff) *_type {
   239  	return resolveTypeOff(unsafe.Pointer(t), off)
   240  }
   241  
   242  func (t *_type) textOff(off textOff) unsafe.Pointer {
   243  	base := uintptr(unsafe.Pointer(t))
   244  	var md *moduledata
   245  	for next := &firstmoduledata; next != nil; next = next.next {
   246  		if base >= next.types && base < next.etypes {
   247  			md = next
   248  			break
   249  		}
   250  	}
   251  	if md == nil {
   252  		reflectOffsLock()
   253  		res := reflectOffs.m[int32(off)]
   254  		reflectOffsUnlock()
   255  		if res == nil {
   256  			println("runtime: textOff", hex(off), "base", hex(base), "not in ranges:")
   257  			for next := &firstmoduledata; next != nil; next = next.next {
   258  				println("\ttypes", hex(next.types), "etypes", hex(next.etypes))
   259  			}
   260  			throw("runtime: text offset base pointer out of range")
   261  		}
   262  		return res
   263  	}
   264  	res := uintptr(0)
   265  
   266  	// The text, or instruction stream is generated as one large buffer.  The off (offset) for a method is
   267  	// its offset within this buffer.  If the total text size gets too large, there can be issues on platforms like ppc64 if
   268  	// the target of calls are too far for the call instruction.  To resolve the large text issue, the text is split
   269  	// into multiple text sections to allow the linker to generate long calls when necessary.  When this happens, the vaddr
   270  	// for each text section is set to its offset within the text.  Each method's offset is compared against the section
   271  	// vaddrs and sizes to determine the containing section.  Then the section relative offset is added to the section's
   272  	// relocated baseaddr to compute the method addess.
   273  
   274  	if len(md.textsectmap) > 1 {
   275  		for i := range md.textsectmap {
   276  			sectaddr := md.textsectmap[i].vaddr
   277  			sectlen := md.textsectmap[i].length
   278  			if uintptr(off) >= sectaddr && uintptr(off) <= sectaddr+sectlen {
   279  				res = md.textsectmap[i].baseaddr + uintptr(off) - uintptr(md.textsectmap[i].vaddr)
   280  				break
   281  			}
   282  		}
   283  	} else {
   284  		// single text section
   285  		res = md.text + uintptr(off)
   286  	}
   287  
   288  	if res > md.etext {
   289  		println("runtime: textOff", hex(off), "out of range", hex(md.text), "-", hex(md.etext))
   290  		throw("runtime: text offset out of range")
   291  	}
   292  	return unsafe.Pointer(res)
   293  }
   294  
   295  func (t *functype) in() []*_type {
   296  	// See funcType in reflect/type.go for details on data layout.
   297  	uadd := uintptr(unsafe.Sizeof(functype{}))
   298  	if t.typ.tflag&tflagUncommon != 0 {
   299  		uadd += unsafe.Sizeof(uncommontype{})
   300  	}
   301  	return (*[1 << 20]*_type)(add(unsafe.Pointer(t), uadd))[:t.inCount]
   302  }
   303  
   304  func (t *functype) out() []*_type {
   305  	// See funcType in reflect/type.go for details on data layout.
   306  	uadd := uintptr(unsafe.Sizeof(functype{}))
   307  	if t.typ.tflag&tflagUncommon != 0 {
   308  		uadd += unsafe.Sizeof(uncommontype{})
   309  	}
   310  	outCount := t.outCount & (1<<15 - 1)
   311  	return (*[1 << 20]*_type)(add(unsafe.Pointer(t), uadd))[t.inCount : t.inCount+outCount]
   312  }
   313  
   314  func (t *functype) dotdotdot() bool {
   315  	return t.outCount&(1<<15) != 0
   316  }
   317  
   318  type nameOff int32
   319  type typeOff int32
   320  type textOff int32
   321  
   322  type method struct {
   323  	name nameOff
   324  	mtyp typeOff
   325  	ifn  textOff
   326  	tfn  textOff
   327  }
   328  
   329  type uncommontype struct {
   330  	pkgpath nameOff
   331  	mcount  uint16 // number of methods
   332  	_       uint16 // unused
   333  	moff    uint32 // offset from this uncommontype to [mcount]method
   334  	_       uint32 // unused
   335  }
   336  
   337  type imethod struct {
   338  	name nameOff
   339  	ityp typeOff
   340  }
   341  
   342  type interfacetype struct {
   343  	typ     _type
   344  	pkgpath name
   345  	mhdr    []imethod
   346  }
   347  
   348  type maptype struct {
   349  	typ           _type
   350  	key           *_type
   351  	elem          *_type
   352  	bucket        *_type // internal type representing a hash bucket
   353  	hmap          *_type // internal type representing a hmap
   354  	keysize       uint8  // size of key slot
   355  	indirectkey   bool   // store ptr to key instead of key itself
   356  	valuesize     uint8  // size of value slot
   357  	indirectvalue bool   // store ptr to value instead of value itself
   358  	bucketsize    uint16 // size of bucket
   359  	reflexivekey  bool   // true if k==k for all keys
   360  	needkeyupdate bool   // true if we need to update key on an overwrite
   361  }
   362  
   363  type arraytype struct {
   364  	typ   _type
   365  	elem  *_type
   366  	slice *_type
   367  	len   uintptr
   368  }
   369  
   370  type chantype struct {
   371  	typ  _type
   372  	elem *_type
   373  	dir  uintptr
   374  }
   375  
   376  type slicetype struct {
   377  	typ  _type
   378  	elem *_type
   379  }
   380  
   381  type functype struct {
   382  	typ      _type
   383  	inCount  uint16
   384  	outCount uint16
   385  }
   386  
   387  type ptrtype struct {
   388  	typ  _type
   389  	elem *_type
   390  }
   391  
   392  type structfield struct {
   393  	name   name
   394  	typ    *_type
   395  	offset uintptr
   396  }
   397  
   398  type structtype struct {
   399  	typ     _type
   400  	pkgPath name
   401  	fields  []structfield
   402  }
   403  
   404  // name is an encoded type name with optional extra data.
   405  // See reflect/type.go for details.
   406  type name struct {
   407  	bytes *byte
   408  }
   409  
   410  func (n name) data(off int) *byte {
   411  	return (*byte)(add(unsafe.Pointer(n.bytes), uintptr(off)))
   412  }
   413  
   414  func (n name) isExported() bool {
   415  	return (*n.bytes)&(1<<0) != 0
   416  }
   417  
   418  func (n name) nameLen() int {
   419  	return int(uint16(*n.data(1))<<8 | uint16(*n.data(2)))
   420  }
   421  
   422  func (n name) tagLen() int {
   423  	if *n.data(0)&(1<<1) == 0 {
   424  		return 0
   425  	}
   426  	off := 3 + n.nameLen()
   427  	return int(uint16(*n.data(off))<<8 | uint16(*n.data(off + 1)))
   428  }
   429  
   430  func (n name) name() (s string) {
   431  	if n.bytes == nil {
   432  		return ""
   433  	}
   434  	nl := n.nameLen()
   435  	if nl == 0 {
   436  		return ""
   437  	}
   438  	hdr := (*stringStruct)(unsafe.Pointer(&s))
   439  	hdr.str = unsafe.Pointer(n.data(3))
   440  	hdr.len = nl
   441  	return s
   442  }
   443  
   444  func (n name) tag() (s string) {
   445  	tl := n.tagLen()
   446  	if tl == 0 {
   447  		return ""
   448  	}
   449  	nl := n.nameLen()
   450  	hdr := (*stringStruct)(unsafe.Pointer(&s))
   451  	hdr.str = unsafe.Pointer(n.data(3 + nl + 2))
   452  	hdr.len = tl
   453  	return s
   454  }
   455  
   456  func (n name) pkgPath() string {
   457  	if n.bytes == nil || *n.data(0)&(1<<2) == 0 {
   458  		return ""
   459  	}
   460  	off := 3 + n.nameLen()
   461  	if tl := n.tagLen(); tl > 0 {
   462  		off += 2 + tl
   463  	}
   464  	var nameOff nameOff
   465  	copy((*[4]byte)(unsafe.Pointer(&nameOff))[:], (*[4]byte)(unsafe.Pointer(n.data(off)))[:])
   466  	pkgPathName := resolveNameOff(unsafe.Pointer(n.bytes), nameOff)
   467  	return pkgPathName.name()
   468  }
   469  
   470  // typelinksinit scans the types from extra modules and builds the
   471  // moduledata typemap used to de-duplicate type pointers.
   472  func typelinksinit() {
   473  	if firstmoduledata.next == nil {
   474  		return
   475  	}
   476  	typehash := make(map[uint32][]*_type, len(firstmoduledata.typelinks))
   477  
   478  	modules := activeModules()
   479  	prev := modules[0]
   480  	for _, md := range modules[1:] {
   481  		// Collect types from the previous module into typehash.
   482  	collect:
   483  		for _, tl := range prev.typelinks {
   484  			var t *_type
   485  			if prev.typemap == nil {
   486  				t = (*_type)(unsafe.Pointer(prev.types + uintptr(tl)))
   487  			} else {
   488  				t = prev.typemap[typeOff(tl)]
   489  			}
   490  			// Add to typehash if not seen before.
   491  			tlist := typehash[t.hash]
   492  			for _, tcur := range tlist {
   493  				if tcur == t {
   494  					continue collect
   495  				}
   496  			}
   497  			typehash[t.hash] = append(tlist, t)
   498  		}
   499  
   500  		if md.typemap == nil {
   501  			// If any of this module's typelinks match a type from a
   502  			// prior module, prefer that prior type by adding the offset
   503  			// to this module's typemap.
   504  			tm := make(map[typeOff]*_type, len(md.typelinks))
   505  			pinnedTypemaps = append(pinnedTypemaps, tm)
   506  			md.typemap = tm
   507  			for _, tl := range md.typelinks {
   508  				t := (*_type)(unsafe.Pointer(md.types + uintptr(tl)))
   509  				for _, candidate := range typehash[t.hash] {
   510  					if typesEqual(t, candidate) {
   511  						t = candidate
   512  						break
   513  					}
   514  				}
   515  				md.typemap[typeOff(tl)] = t
   516  			}
   517  		}
   518  
   519  		prev = md
   520  	}
   521  }
   522  
   523  // typesEqual reports whether two types are equal.
   524  //
   525  // Everywhere in the runtime and reflect packages, it is assumed that
   526  // there is exactly one *_type per Go type, so that pointer equality
   527  // can be used to test if types are equal. There is one place that
   528  // breaks this assumption: buildmode=shared. In this case a type can
   529  // appear as two different pieces of memory. This is hidden from the
   530  // runtime and reflect package by the per-module typemap built in
   531  // typelinksinit. It uses typesEqual to map types from later modules
   532  // back into earlier ones.
   533  //
   534  // Only typelinksinit needs this function.
   535  func typesEqual(t, v *_type) bool {
   536  	if t == v {
   537  		return true
   538  	}
   539  	kind := t.kind & kindMask
   540  	if kind != v.kind&kindMask {
   541  		return false
   542  	}
   543  	if t.string() != v.string() {
   544  		return false
   545  	}
   546  	ut := t.uncommon()
   547  	uv := v.uncommon()
   548  	if ut != nil || uv != nil {
   549  		if ut == nil || uv == nil {
   550  			return false
   551  		}
   552  		pkgpatht := t.nameOff(ut.pkgpath).name()
   553  		pkgpathv := v.nameOff(uv.pkgpath).name()
   554  		if pkgpatht != pkgpathv {
   555  			return false
   556  		}
   557  	}
   558  	if kindBool <= kind && kind <= kindComplex128 {
   559  		return true
   560  	}
   561  	switch kind {
   562  	case kindString, kindUnsafePointer:
   563  		return true
   564  	case kindArray:
   565  		at := (*arraytype)(unsafe.Pointer(t))
   566  		av := (*arraytype)(unsafe.Pointer(v))
   567  		return typesEqual(at.elem, av.elem) && at.len == av.len
   568  	case kindChan:
   569  		ct := (*chantype)(unsafe.Pointer(t))
   570  		cv := (*chantype)(unsafe.Pointer(v))
   571  		return ct.dir == cv.dir && typesEqual(ct.elem, cv.elem)
   572  	case kindFunc:
   573  		ft := (*functype)(unsafe.Pointer(t))
   574  		fv := (*functype)(unsafe.Pointer(v))
   575  		if ft.outCount != fv.outCount || ft.inCount != fv.inCount {
   576  			return false
   577  		}
   578  		tin, vin := ft.in(), fv.in()
   579  		for i := 0; i < len(tin); i++ {
   580  			if !typesEqual(tin[i], vin[i]) {
   581  				return false
   582  			}
   583  		}
   584  		tout, vout := ft.out(), fv.out()
   585  		for i := 0; i < len(tout); i++ {
   586  			if !typesEqual(tout[i], vout[i]) {
   587  				return false
   588  			}
   589  		}
   590  		return true
   591  	case kindInterface:
   592  		it := (*interfacetype)(unsafe.Pointer(t))
   593  		iv := (*interfacetype)(unsafe.Pointer(v))
   594  		if it.pkgpath.name() != iv.pkgpath.name() {
   595  			return false
   596  		}
   597  		if len(it.mhdr) != len(iv.mhdr) {
   598  			return false
   599  		}
   600  		for i := range it.mhdr {
   601  			tm := &it.mhdr[i]
   602  			vm := &iv.mhdr[i]
   603  			// Note the mhdr array can be relocated from
   604  			// another module. See #17724.
   605  			tname := resolveNameOff(unsafe.Pointer(tm), tm.name)
   606  			vname := resolveNameOff(unsafe.Pointer(vm), vm.name)
   607  			if tname.name() != vname.name() {
   608  				return false
   609  			}
   610  			if tname.pkgPath() != vname.pkgPath() {
   611  				return false
   612  			}
   613  			tityp := resolveTypeOff(unsafe.Pointer(tm), tm.ityp)
   614  			vityp := resolveTypeOff(unsafe.Pointer(vm), vm.ityp)
   615  			if !typesEqual(tityp, vityp) {
   616  				return false
   617  			}
   618  		}
   619  		return true
   620  	case kindMap:
   621  		mt := (*maptype)(unsafe.Pointer(t))
   622  		mv := (*maptype)(unsafe.Pointer(v))
   623  		return typesEqual(mt.key, mv.key) && typesEqual(mt.elem, mv.elem)
   624  	case kindPtr:
   625  		pt := (*ptrtype)(unsafe.Pointer(t))
   626  		pv := (*ptrtype)(unsafe.Pointer(v))
   627  		return typesEqual(pt.elem, pv.elem)
   628  	case kindSlice:
   629  		st := (*slicetype)(unsafe.Pointer(t))
   630  		sv := (*slicetype)(unsafe.Pointer(v))
   631  		return typesEqual(st.elem, sv.elem)
   632  	case kindStruct:
   633  		st := (*structtype)(unsafe.Pointer(t))
   634  		sv := (*structtype)(unsafe.Pointer(v))
   635  		if len(st.fields) != len(sv.fields) {
   636  			return false
   637  		}
   638  		for i := range st.fields {
   639  			tf := &st.fields[i]
   640  			vf := &sv.fields[i]
   641  			if tf.name.name() != vf.name.name() {
   642  				return false
   643  			}
   644  			if tf.name.pkgPath() != vf.name.pkgPath() {
   645  				return false
   646  			}
   647  			if !typesEqual(tf.typ, vf.typ) {
   648  				return false
   649  			}
   650  			if tf.name.tag() != vf.name.tag() {
   651  				return false
   652  			}
   653  			if tf.offset != vf.offset {
   654  				return false
   655  			}
   656  		}
   657  		return true
   658  	default:
   659  		println("runtime: impossible type kind", kind)
   660  		throw("runtime: impossible type kind")
   661  		return false
   662  	}
   663  }