github.com/gagliardetto/golang-go@v0.0.0-20201020153340-53909ea70814/cmd/compile/internal/amd64/ggen.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package amd64 6 7 import ( 8 "github.com/gagliardetto/golang-go/cmd/compile/internal/gc" 9 "github.com/gagliardetto/golang-go/cmd/internal/obj" 10 "github.com/gagliardetto/golang-go/cmd/internal/obj/x86" 11 "github.com/gagliardetto/golang-go/cmd/internal/objabi" 12 ) 13 14 // no floating point in note handlers on Plan 9 15 var isPlan9 = objabi.GOOS == "plan9" 16 17 // DUFFZERO consists of repeated blocks of 4 MOVUPSs + LEAQ, 18 // See runtime/mkduff.go. 19 const ( 20 dzBlocks = 16 // number of MOV/ADD blocks 21 dzBlockLen = 4 // number of clears per block 22 dzBlockSize = 19 // size of instructions in a single block 23 dzMovSize = 4 // size of single MOV instruction w/ offset 24 dzLeaqSize = 4 // size of single LEAQ instruction 25 dzClearStep = 16 // number of bytes cleared by each MOV instruction 26 27 dzClearLen = dzClearStep * dzBlockLen // bytes cleared by one block 28 dzSize = dzBlocks * dzBlockSize 29 ) 30 31 // dzOff returns the offset for a jump into DUFFZERO. 32 // b is the number of bytes to zero. 33 func dzOff(b int64) int64 { 34 off := int64(dzSize) 35 off -= b / dzClearLen * dzBlockSize 36 tailLen := b % dzClearLen 37 if tailLen >= dzClearStep { 38 off -= dzLeaqSize + dzMovSize*(tailLen/dzClearStep) 39 } 40 return off 41 } 42 43 // duffzeroDI returns the pre-adjustment to DI for a call to DUFFZERO. 44 // b is the number of bytes to zero. 45 func dzDI(b int64) int64 { 46 tailLen := b % dzClearLen 47 if tailLen < dzClearStep { 48 return 0 49 } 50 tailSteps := tailLen / dzClearStep 51 return -dzClearStep * (dzBlockLen - tailSteps) 52 } 53 54 func zerorange(pp *gc.Progs, p *obj.Prog, off, cnt int64, state *uint32) *obj.Prog { 55 const ( 56 ax = 1 << iota 57 x0 58 ) 59 60 if cnt == 0 { 61 return p 62 } 63 64 if cnt%int64(gc.Widthreg) != 0 { 65 // should only happen with nacl 66 if cnt%int64(gc.Widthptr) != 0 { 67 gc.Fatalf("zerorange count not a multiple of widthptr %d", cnt) 68 } 69 if *state&ax == 0 { 70 p = pp.Appendpp(p, x86.AMOVQ, obj.TYPE_CONST, 0, 0, obj.TYPE_REG, x86.REG_AX, 0) 71 *state |= ax 72 } 73 p = pp.Appendpp(p, x86.AMOVL, obj.TYPE_REG, x86.REG_AX, 0, obj.TYPE_MEM, x86.REG_SP, off) 74 off += int64(gc.Widthptr) 75 cnt -= int64(gc.Widthptr) 76 } 77 78 if cnt == 8 { 79 if *state&ax == 0 { 80 p = pp.Appendpp(p, x86.AMOVQ, obj.TYPE_CONST, 0, 0, obj.TYPE_REG, x86.REG_AX, 0) 81 *state |= ax 82 } 83 p = pp.Appendpp(p, x86.AMOVQ, obj.TYPE_REG, x86.REG_AX, 0, obj.TYPE_MEM, x86.REG_SP, off) 84 } else if !isPlan9 && cnt <= int64(8*gc.Widthreg) { 85 if *state&x0 == 0 { 86 p = pp.Appendpp(p, x86.AXORPS, obj.TYPE_REG, x86.REG_X0, 0, obj.TYPE_REG, x86.REG_X0, 0) 87 *state |= x0 88 } 89 90 for i := int64(0); i < cnt/16; i++ { 91 p = pp.Appendpp(p, x86.AMOVUPS, obj.TYPE_REG, x86.REG_X0, 0, obj.TYPE_MEM, x86.REG_SP, off+i*16) 92 } 93 94 if cnt%16 != 0 { 95 p = pp.Appendpp(p, x86.AMOVUPS, obj.TYPE_REG, x86.REG_X0, 0, obj.TYPE_MEM, x86.REG_SP, off+cnt-int64(16)) 96 } 97 } else if !isPlan9 && (cnt <= int64(128*gc.Widthreg)) { 98 if *state&x0 == 0 { 99 p = pp.Appendpp(p, x86.AXORPS, obj.TYPE_REG, x86.REG_X0, 0, obj.TYPE_REG, x86.REG_X0, 0) 100 *state |= x0 101 } 102 p = pp.Appendpp(p, leaptr, obj.TYPE_MEM, x86.REG_SP, off+dzDI(cnt), obj.TYPE_REG, x86.REG_DI, 0) 103 p = pp.Appendpp(p, obj.ADUFFZERO, obj.TYPE_NONE, 0, 0, obj.TYPE_ADDR, 0, dzOff(cnt)) 104 p.To.Sym = gc.Duffzero 105 106 if cnt%16 != 0 { 107 p = pp.Appendpp(p, x86.AMOVUPS, obj.TYPE_REG, x86.REG_X0, 0, obj.TYPE_MEM, x86.REG_DI, -int64(8)) 108 } 109 } else { 110 if *state&ax == 0 { 111 p = pp.Appendpp(p, x86.AMOVQ, obj.TYPE_CONST, 0, 0, obj.TYPE_REG, x86.REG_AX, 0) 112 *state |= ax 113 } 114 115 p = pp.Appendpp(p, x86.AMOVQ, obj.TYPE_CONST, 0, cnt/int64(gc.Widthreg), obj.TYPE_REG, x86.REG_CX, 0) 116 p = pp.Appendpp(p, leaptr, obj.TYPE_MEM, x86.REG_SP, off, obj.TYPE_REG, x86.REG_DI, 0) 117 p = pp.Appendpp(p, x86.AREP, obj.TYPE_NONE, 0, 0, obj.TYPE_NONE, 0, 0) 118 p = pp.Appendpp(p, x86.ASTOSQ, obj.TYPE_NONE, 0, 0, obj.TYPE_NONE, 0, 0) 119 } 120 121 return p 122 } 123 124 func ginsnop(pp *gc.Progs) *obj.Prog { 125 // This is a hardware nop (1-byte 0x90) instruction, 126 // even though we describe it as an explicit XCHGL here. 127 // Particularly, this does not zero the high 32 bits 128 // like typical *L opcodes. 129 // (gas assembles "xchg %eax,%eax" to 0x87 0xc0, which 130 // does zero the high 32 bits.) 131 p := pp.Prog(x86.AXCHGL) 132 p.From.Type = obj.TYPE_REG 133 p.From.Reg = x86.REG_AX 134 p.To.Type = obj.TYPE_REG 135 p.To.Reg = x86.REG_AX 136 return p 137 }