github.com/gagliardetto/golang-go@v0.0.0-20201020153340-53909ea70814/cmd/compile/internal/gc/noder.go (about)

     1  // Copyright 2016 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  package gc
     6  
     7  import (
     8  	"fmt"
     9  	"os"
    10  	"path/filepath"
    11  	"runtime"
    12  	"strconv"
    13  	"strings"
    14  	"unicode/utf8"
    15  
    16  	"github.com/gagliardetto/golang-go/cmd/compile/internal/syntax"
    17  	"github.com/gagliardetto/golang-go/cmd/compile/internal/types"
    18  	"github.com/gagliardetto/golang-go/cmd/internal/obj"
    19  	"github.com/gagliardetto/golang-go/cmd/internal/objabi"
    20  	"github.com/gagliardetto/golang-go/cmd/internal/src"
    21  )
    22  
    23  // parseFiles concurrently parses files into *syntax.File structures.
    24  // Each declaration in every *syntax.File is converted to a syntax tree
    25  // and its root represented by *Node is appended to xtop.
    26  // Returns the total count of parsed lines.
    27  func parseFiles(filenames []string) uint {
    28  	noders := make([]*noder, 0, len(filenames))
    29  	// Limit the number of simultaneously open files.
    30  	sem := make(chan struct{}, runtime.GOMAXPROCS(0)+10)
    31  
    32  	for _, filename := range filenames {
    33  		p := &noder{
    34  			basemap: make(map[*syntax.PosBase]*src.PosBase),
    35  			err:     make(chan syntax.Error),
    36  		}
    37  		noders = append(noders, p)
    38  
    39  		go func(filename string) {
    40  			sem <- struct{}{}
    41  			defer func() { <-sem }()
    42  			defer close(p.err)
    43  			base := syntax.NewFileBase(filename)
    44  
    45  			f, err := os.Open(filename)
    46  			if err != nil {
    47  				p.error(syntax.Error{Pos: syntax.MakePos(base, 0, 0), Msg: err.Error()})
    48  				return
    49  			}
    50  			defer f.Close()
    51  
    52  			p.file, _ = syntax.Parse(base, f, p.error, p.pragma, syntax.CheckBranches) // errors are tracked via p.error
    53  		}(filename)
    54  	}
    55  
    56  	var lines uint
    57  	for _, p := range noders {
    58  		for e := range p.err {
    59  			p.yyerrorpos(e.Pos, "%s", e.Msg)
    60  		}
    61  
    62  		p.node()
    63  		lines += p.file.Lines
    64  		p.file = nil // release memory
    65  
    66  		if nsyntaxerrors != 0 {
    67  			errorexit()
    68  		}
    69  		// Always run testdclstack here, even when debug_dclstack is not set, as a sanity measure.
    70  		testdclstack()
    71  	}
    72  
    73  	localpkg.Height = myheight
    74  
    75  	return lines
    76  }
    77  
    78  // makeSrcPosBase translates from a *syntax.PosBase to a *src.PosBase.
    79  func (p *noder) makeSrcPosBase(b0 *syntax.PosBase) *src.PosBase {
    80  	// fast path: most likely PosBase hasn't changed
    81  	if p.basecache.last == b0 {
    82  		return p.basecache.base
    83  	}
    84  
    85  	b1, ok := p.basemap[b0]
    86  	if !ok {
    87  		fn := b0.Filename()
    88  		if b0.IsFileBase() {
    89  			b1 = src.NewFileBase(fn, absFilename(fn))
    90  		} else {
    91  			// line directive base
    92  			p0 := b0.Pos()
    93  			p1 := src.MakePos(p.makeSrcPosBase(p0.Base()), p0.Line(), p0.Col())
    94  			b1 = src.NewLinePragmaBase(p1, fn, fileh(fn), b0.Line(), b0.Col())
    95  		}
    96  		p.basemap[b0] = b1
    97  	}
    98  
    99  	// update cache
   100  	p.basecache.last = b0
   101  	p.basecache.base = b1
   102  
   103  	return b1
   104  }
   105  
   106  func (p *noder) makeXPos(pos syntax.Pos) (_ src.XPos) {
   107  	return Ctxt.PosTable.XPos(src.MakePos(p.makeSrcPosBase(pos.Base()), pos.Line(), pos.Col()))
   108  }
   109  
   110  func (p *noder) yyerrorpos(pos syntax.Pos, format string, args ...interface{}) {
   111  	yyerrorl(p.makeXPos(pos), format, args...)
   112  }
   113  
   114  var pathPrefix string
   115  
   116  // TODO(gri) Can we eliminate fileh in favor of absFilename?
   117  func fileh(name string) string {
   118  	return objabi.AbsFile("", name, pathPrefix)
   119  }
   120  
   121  func absFilename(name string) string {
   122  	return objabi.AbsFile(Ctxt.Pathname, name, pathPrefix)
   123  }
   124  
   125  // noder transforms package syntax's AST into a Node tree.
   126  type noder struct {
   127  	basemap   map[*syntax.PosBase]*src.PosBase
   128  	basecache struct {
   129  		last *syntax.PosBase
   130  		base *src.PosBase
   131  	}
   132  
   133  	file       *syntax.File
   134  	linknames  []linkname
   135  	pragcgobuf [][]string
   136  	err        chan syntax.Error
   137  	scope      ScopeID
   138  
   139  	// scopeVars is a stack tracking the number of variables declared in the
   140  	// current function at the moment each open scope was opened.
   141  	scopeVars []int
   142  
   143  	lastCloseScopePos syntax.Pos
   144  }
   145  
   146  func (p *noder) funcBody(fn *Node, block *syntax.BlockStmt) {
   147  	oldScope := p.scope
   148  	p.scope = 0
   149  	funchdr(fn)
   150  
   151  	if block != nil {
   152  		body := p.stmts(block.List)
   153  		if body == nil {
   154  			body = []*Node{nod(OEMPTY, nil, nil)}
   155  		}
   156  		fn.Nbody.Set(body)
   157  
   158  		lineno = p.makeXPos(block.Rbrace)
   159  		fn.Func.Endlineno = lineno
   160  	}
   161  
   162  	funcbody()
   163  	p.scope = oldScope
   164  }
   165  
   166  func (p *noder) openScope(pos syntax.Pos) {
   167  	types.Markdcl()
   168  
   169  	if trackScopes {
   170  		Curfn.Func.Parents = append(Curfn.Func.Parents, p.scope)
   171  		p.scopeVars = append(p.scopeVars, len(Curfn.Func.Dcl))
   172  		p.scope = ScopeID(len(Curfn.Func.Parents))
   173  
   174  		p.markScope(pos)
   175  	}
   176  }
   177  
   178  func (p *noder) closeScope(pos syntax.Pos) {
   179  	p.lastCloseScopePos = pos
   180  	types.Popdcl()
   181  
   182  	if trackScopes {
   183  		scopeVars := p.scopeVars[len(p.scopeVars)-1]
   184  		p.scopeVars = p.scopeVars[:len(p.scopeVars)-1]
   185  		if scopeVars == len(Curfn.Func.Dcl) {
   186  			// no variables were declared in this scope, so we can retract it.
   187  
   188  			if int(p.scope) != len(Curfn.Func.Parents) {
   189  				Fatalf("scope tracking inconsistency, no variables declared but scopes were not retracted")
   190  			}
   191  
   192  			p.scope = Curfn.Func.Parents[p.scope-1]
   193  			Curfn.Func.Parents = Curfn.Func.Parents[:len(Curfn.Func.Parents)-1]
   194  
   195  			nmarks := len(Curfn.Func.Marks)
   196  			Curfn.Func.Marks[nmarks-1].Scope = p.scope
   197  			prevScope := ScopeID(0)
   198  			if nmarks >= 2 {
   199  				prevScope = Curfn.Func.Marks[nmarks-2].Scope
   200  			}
   201  			if Curfn.Func.Marks[nmarks-1].Scope == prevScope {
   202  				Curfn.Func.Marks = Curfn.Func.Marks[:nmarks-1]
   203  			}
   204  			return
   205  		}
   206  
   207  		p.scope = Curfn.Func.Parents[p.scope-1]
   208  
   209  		p.markScope(pos)
   210  	}
   211  }
   212  
   213  func (p *noder) markScope(pos syntax.Pos) {
   214  	xpos := p.makeXPos(pos)
   215  	if i := len(Curfn.Func.Marks); i > 0 && Curfn.Func.Marks[i-1].Pos == xpos {
   216  		Curfn.Func.Marks[i-1].Scope = p.scope
   217  	} else {
   218  		Curfn.Func.Marks = append(Curfn.Func.Marks, Mark{xpos, p.scope})
   219  	}
   220  }
   221  
   222  // closeAnotherScope is like closeScope, but it reuses the same mark
   223  // position as the last closeScope call. This is useful for "for" and
   224  // "if" statements, as their implicit blocks always end at the same
   225  // position as an explicit block.
   226  func (p *noder) closeAnotherScope() {
   227  	p.closeScope(p.lastCloseScopePos)
   228  }
   229  
   230  // linkname records a //go:linkname directive.
   231  type linkname struct {
   232  	pos    syntax.Pos
   233  	local  string
   234  	remote string
   235  }
   236  
   237  func (p *noder) node() {
   238  	types.Block = 1
   239  	imported_unsafe = false
   240  
   241  	p.setlineno(p.file.PkgName)
   242  	mkpackage(p.file.PkgName.Value)
   243  
   244  	xtop = append(xtop, p.decls(p.file.DeclList)...)
   245  
   246  	for _, n := range p.linknames {
   247  		if !imported_unsafe {
   248  			p.yyerrorpos(n.pos, "//go:linkname only allowed in Go files that import \"unsafe\"")
   249  			continue
   250  		}
   251  		s := lookup(n.local)
   252  		if n.remote != "" {
   253  			s.Linkname = n.remote
   254  		} else {
   255  			// Use the default object symbol name if the
   256  			// user didn't provide one.
   257  			if myimportpath == "" {
   258  				p.yyerrorpos(n.pos, "//go:linkname requires linkname argument or -p compiler flag")
   259  			} else {
   260  				s.Linkname = objabi.PathToPrefix(myimportpath) + "." + n.local
   261  			}
   262  		}
   263  	}
   264  
   265  	// The linker expects an ABI0 wrapper for all cgo-exported
   266  	// functions.
   267  	for _, prag := range p.pragcgobuf {
   268  		switch prag[0] {
   269  		case "cgo_export_static", "cgo_export_dynamic":
   270  			if symabiRefs == nil {
   271  				symabiRefs = make(map[string]obj.ABI)
   272  			}
   273  			symabiRefs[prag[1]] = obj.ABI0
   274  		}
   275  	}
   276  
   277  	pragcgobuf = append(pragcgobuf, p.pragcgobuf...)
   278  	lineno = src.NoXPos
   279  	clearImports()
   280  }
   281  
   282  func (p *noder) decls(decls []syntax.Decl) (l []*Node) {
   283  	var cs constState
   284  
   285  	for _, decl := range decls {
   286  		p.setlineno(decl)
   287  		switch decl := decl.(type) {
   288  		case *syntax.ImportDecl:
   289  			p.importDecl(decl)
   290  
   291  		case *syntax.VarDecl:
   292  			l = append(l, p.varDecl(decl)...)
   293  
   294  		case *syntax.ConstDecl:
   295  			l = append(l, p.constDecl(decl, &cs)...)
   296  
   297  		case *syntax.TypeDecl:
   298  			l = append(l, p.typeDecl(decl))
   299  
   300  		case *syntax.FuncDecl:
   301  			l = append(l, p.funcDecl(decl))
   302  
   303  		default:
   304  			panic("unhandled Decl")
   305  		}
   306  	}
   307  
   308  	return
   309  }
   310  
   311  func (p *noder) importDecl(imp *syntax.ImportDecl) {
   312  	if imp.Path.Bad {
   313  		return // avoid follow-on errors if there was a syntax error
   314  	}
   315  
   316  	val := p.basicLit(imp.Path)
   317  	ipkg := importfile(&val)
   318  
   319  	if ipkg == nil {
   320  		if nerrors == 0 {
   321  			Fatalf("phase error in import")
   322  		}
   323  		return
   324  	}
   325  
   326  	ipkg.Direct = true
   327  
   328  	var my *types.Sym
   329  	if imp.LocalPkgName != nil {
   330  		my = p.name(imp.LocalPkgName)
   331  	} else {
   332  		my = lookup(ipkg.Name)
   333  	}
   334  
   335  	pack := p.nod(imp, OPACK, nil, nil)
   336  	pack.Sym = my
   337  	pack.Name.Pkg = ipkg
   338  
   339  	switch my.Name {
   340  	case ".":
   341  		importdot(ipkg, pack)
   342  		return
   343  	case "init":
   344  		yyerrorl(pack.Pos, "cannot import package as init - init must be a func")
   345  		return
   346  	case "_":
   347  		return
   348  	}
   349  	if my.Def != nil {
   350  		redeclare(pack.Pos, my, "as imported package name")
   351  	}
   352  	my.Def = asTypesNode(pack)
   353  	my.Lastlineno = pack.Pos
   354  	my.Block = 1 // at top level
   355  }
   356  
   357  func (p *noder) varDecl(decl *syntax.VarDecl) []*Node {
   358  	names := p.declNames(decl.NameList)
   359  	typ := p.typeExprOrNil(decl.Type)
   360  
   361  	var exprs []*Node
   362  	if decl.Values != nil {
   363  		exprs = p.exprList(decl.Values)
   364  	}
   365  
   366  	p.setlineno(decl)
   367  	return variter(names, typ, exprs)
   368  }
   369  
   370  // constState tracks state between constant specifiers within a
   371  // declaration group. This state is kept separate from noder so nested
   372  // constant declarations are handled correctly (e.g., issue 15550).
   373  type constState struct {
   374  	group  *syntax.Group
   375  	typ    *Node
   376  	values []*Node
   377  	iota   int64
   378  }
   379  
   380  func (p *noder) constDecl(decl *syntax.ConstDecl, cs *constState) []*Node {
   381  	if decl.Group == nil || decl.Group != cs.group {
   382  		*cs = constState{
   383  			group: decl.Group,
   384  		}
   385  	}
   386  
   387  	names := p.declNames(decl.NameList)
   388  	typ := p.typeExprOrNil(decl.Type)
   389  
   390  	var values []*Node
   391  	if decl.Values != nil {
   392  		values = p.exprList(decl.Values)
   393  		cs.typ, cs.values = typ, values
   394  	} else {
   395  		if typ != nil {
   396  			yyerror("const declaration cannot have type without expression")
   397  		}
   398  		typ, values = cs.typ, cs.values
   399  	}
   400  
   401  	nn := make([]*Node, 0, len(names))
   402  	for i, n := range names {
   403  		if i >= len(values) {
   404  			yyerror("missing value in const declaration")
   405  			break
   406  		}
   407  		v := values[i]
   408  		if decl.Values == nil {
   409  			v = treecopy(v, n.Pos)
   410  		}
   411  
   412  		n.Op = OLITERAL
   413  		declare(n, dclcontext)
   414  
   415  		n.Name.Param.Ntype = typ
   416  		n.Name.Defn = v
   417  		n.SetIota(cs.iota)
   418  
   419  		nn = append(nn, p.nod(decl, ODCLCONST, n, nil))
   420  	}
   421  
   422  	if len(values) > len(names) {
   423  		yyerror("extra expression in const declaration")
   424  	}
   425  
   426  	cs.iota++
   427  
   428  	return nn
   429  }
   430  
   431  func (p *noder) typeDecl(decl *syntax.TypeDecl) *Node {
   432  	n := p.declName(decl.Name)
   433  	n.Op = OTYPE
   434  	declare(n, dclcontext)
   435  
   436  	// decl.Type may be nil but in that case we got a syntax error during parsing
   437  	typ := p.typeExprOrNil(decl.Type)
   438  
   439  	param := n.Name.Param
   440  	param.Ntype = typ
   441  	param.Pragma = decl.Pragma
   442  	param.Alias = decl.Alias
   443  	if param.Alias && param.Pragma != 0 {
   444  		yyerror("cannot specify directive with type alias")
   445  		param.Pragma = 0
   446  	}
   447  
   448  	nod := p.nod(decl, ODCLTYPE, n, nil)
   449  	if param.Alias && !langSupported(1, 9, localpkg) {
   450  		yyerrorl(nod.Pos, "type aliases only supported as of -lang=go1.9")
   451  	}
   452  	return nod
   453  }
   454  
   455  func (p *noder) declNames(names []*syntax.Name) []*Node {
   456  	nodes := make([]*Node, 0, len(names))
   457  	for _, name := range names {
   458  		nodes = append(nodes, p.declName(name))
   459  	}
   460  	return nodes
   461  }
   462  
   463  func (p *noder) declName(name *syntax.Name) *Node {
   464  	n := dclname(p.name(name))
   465  	n.Pos = p.pos(name)
   466  	return n
   467  }
   468  
   469  func (p *noder) funcDecl(fun *syntax.FuncDecl) *Node {
   470  	name := p.name(fun.Name)
   471  	t := p.signature(fun.Recv, fun.Type)
   472  	f := p.nod(fun, ODCLFUNC, nil, nil)
   473  
   474  	if fun.Recv == nil {
   475  		if name.Name == "init" {
   476  			name = renameinit()
   477  			if t.List.Len() > 0 || t.Rlist.Len() > 0 {
   478  				yyerrorl(f.Pos, "func init must have no arguments and no return values")
   479  			}
   480  		}
   481  
   482  		if localpkg.Name == "main" && name.Name == "main" {
   483  			if t.List.Len() > 0 || t.Rlist.Len() > 0 {
   484  				yyerrorl(f.Pos, "func main must have no arguments and no return values")
   485  			}
   486  		}
   487  	} else {
   488  		f.Func.Shortname = name
   489  		name = nblank.Sym // filled in by typecheckfunc
   490  	}
   491  
   492  	f.Func.Nname = newfuncnamel(p.pos(fun.Name), name)
   493  	f.Func.Nname.Name.Defn = f
   494  	f.Func.Nname.Name.Param.Ntype = t
   495  
   496  	pragma := fun.Pragma
   497  	f.Func.Pragma = fun.Pragma
   498  	if pragma&Systemstack != 0 && pragma&Nosplit != 0 {
   499  		yyerrorl(f.Pos, "go:nosplit and go:systemstack cannot be combined")
   500  	}
   501  
   502  	if fun.Recv == nil {
   503  		declare(f.Func.Nname, PFUNC)
   504  	}
   505  
   506  	p.funcBody(f, fun.Body)
   507  
   508  	if fun.Body != nil {
   509  		if f.Func.Pragma&Noescape != 0 {
   510  			yyerrorl(f.Pos, "can only use //go:noescape with external func implementations")
   511  		}
   512  	} else {
   513  		if pure_go || strings.HasPrefix(f.funcname(), "init.") {
   514  			// Linknamed functions are allowed to have no body. Hopefully
   515  			// the linkname target has a body. See issue 23311.
   516  			isLinknamed := false
   517  			for _, n := range p.linknames {
   518  				if f.funcname() == n.local {
   519  					isLinknamed = true
   520  					break
   521  				}
   522  			}
   523  			if !isLinknamed {
   524  				yyerrorl(f.Pos, "missing function body")
   525  			}
   526  		}
   527  	}
   528  
   529  	return f
   530  }
   531  
   532  func (p *noder) signature(recv *syntax.Field, typ *syntax.FuncType) *Node {
   533  	n := p.nod(typ, OTFUNC, nil, nil)
   534  	if recv != nil {
   535  		n.Left = p.param(recv, false, false)
   536  	}
   537  	n.List.Set(p.params(typ.ParamList, true))
   538  	n.Rlist.Set(p.params(typ.ResultList, false))
   539  	return n
   540  }
   541  
   542  func (p *noder) params(params []*syntax.Field, dddOk bool) []*Node {
   543  	nodes := make([]*Node, 0, len(params))
   544  	for i, param := range params {
   545  		p.setlineno(param)
   546  		nodes = append(nodes, p.param(param, dddOk, i+1 == len(params)))
   547  	}
   548  	return nodes
   549  }
   550  
   551  func (p *noder) param(param *syntax.Field, dddOk, final bool) *Node {
   552  	var name *types.Sym
   553  	if param.Name != nil {
   554  		name = p.name(param.Name)
   555  	}
   556  
   557  	typ := p.typeExpr(param.Type)
   558  	n := p.nodSym(param, ODCLFIELD, typ, name)
   559  
   560  	// rewrite ...T parameter
   561  	if typ.Op == ODDD {
   562  		if !dddOk {
   563  			// We mark these as syntax errors to get automatic elimination
   564  			// of multiple such errors per line (see yyerrorl in subr.go).
   565  			yyerror("syntax error: cannot use ... in receiver or result parameter list")
   566  		} else if !final {
   567  			if param.Name == nil {
   568  				yyerror("syntax error: cannot use ... with non-final parameter")
   569  			} else {
   570  				p.yyerrorpos(param.Name.Pos(), "syntax error: cannot use ... with non-final parameter %s", param.Name.Value)
   571  			}
   572  		}
   573  		typ.Op = OTARRAY
   574  		typ.Right = typ.Left
   575  		typ.Left = nil
   576  		n.SetIsDDD(true)
   577  		if n.Left != nil {
   578  			n.Left.SetIsDDD(true)
   579  		}
   580  	}
   581  
   582  	return n
   583  }
   584  
   585  func (p *noder) exprList(expr syntax.Expr) []*Node {
   586  	if list, ok := expr.(*syntax.ListExpr); ok {
   587  		return p.exprs(list.ElemList)
   588  	}
   589  	return []*Node{p.expr(expr)}
   590  }
   591  
   592  func (p *noder) exprs(exprs []syntax.Expr) []*Node {
   593  	nodes := make([]*Node, 0, len(exprs))
   594  	for _, expr := range exprs {
   595  		nodes = append(nodes, p.expr(expr))
   596  	}
   597  	return nodes
   598  }
   599  
   600  func (p *noder) expr(expr syntax.Expr) *Node {
   601  	p.setlineno(expr)
   602  	switch expr := expr.(type) {
   603  	case nil, *syntax.BadExpr:
   604  		return nil
   605  	case *syntax.Name:
   606  		return p.mkname(expr)
   607  	case *syntax.BasicLit:
   608  		n := nodlit(p.basicLit(expr))
   609  		n.SetDiag(expr.Bad) // avoid follow-on errors if there was a syntax error
   610  		return n
   611  	case *syntax.CompositeLit:
   612  		n := p.nod(expr, OCOMPLIT, nil, nil)
   613  		if expr.Type != nil {
   614  			n.Right = p.expr(expr.Type)
   615  		}
   616  		l := p.exprs(expr.ElemList)
   617  		for i, e := range l {
   618  			l[i] = p.wrapname(expr.ElemList[i], e)
   619  		}
   620  		n.List.Set(l)
   621  		lineno = p.makeXPos(expr.Rbrace)
   622  		return n
   623  	case *syntax.KeyValueExpr:
   624  		// use position of expr.Key rather than of expr (which has position of ':')
   625  		return p.nod(expr.Key, OKEY, p.expr(expr.Key), p.wrapname(expr.Value, p.expr(expr.Value)))
   626  	case *syntax.FuncLit:
   627  		return p.funcLit(expr)
   628  	case *syntax.ParenExpr:
   629  		return p.nod(expr, OPAREN, p.expr(expr.X), nil)
   630  	case *syntax.SelectorExpr:
   631  		// parser.new_dotname
   632  		obj := p.expr(expr.X)
   633  		if obj.Op == OPACK {
   634  			obj.Name.SetUsed(true)
   635  			return oldname(restrictlookup(expr.Sel.Value, obj.Name.Pkg))
   636  		}
   637  		n := nodSym(OXDOT, obj, p.name(expr.Sel))
   638  		n.Pos = p.pos(expr) // lineno may have been changed by p.expr(expr.X)
   639  		return n
   640  	case *syntax.IndexExpr:
   641  		return p.nod(expr, OINDEX, p.expr(expr.X), p.expr(expr.Index))
   642  	case *syntax.SliceExpr:
   643  		op := OSLICE
   644  		if expr.Full {
   645  			op = OSLICE3
   646  		}
   647  		n := p.nod(expr, op, p.expr(expr.X), nil)
   648  		var index [3]*Node
   649  		for i, x := range expr.Index {
   650  			if x != nil {
   651  				index[i] = p.expr(x)
   652  			}
   653  		}
   654  		n.SetSliceBounds(index[0], index[1], index[2])
   655  		return n
   656  	case *syntax.AssertExpr:
   657  		return p.nod(expr, ODOTTYPE, p.expr(expr.X), p.typeExpr(expr.Type))
   658  	case *syntax.Operation:
   659  		if expr.Op == syntax.Add && expr.Y != nil {
   660  			return p.sum(expr)
   661  		}
   662  		x := p.expr(expr.X)
   663  		if expr.Y == nil {
   664  			return p.nod(expr, p.unOp(expr.Op), x, nil)
   665  		}
   666  		return p.nod(expr, p.binOp(expr.Op), x, p.expr(expr.Y))
   667  	case *syntax.CallExpr:
   668  		n := p.nod(expr, OCALL, p.expr(expr.Fun), nil)
   669  		n.List.Set(p.exprs(expr.ArgList))
   670  		n.SetIsDDD(expr.HasDots)
   671  		return n
   672  
   673  	case *syntax.ArrayType:
   674  		var len *Node
   675  		if expr.Len != nil {
   676  			len = p.expr(expr.Len)
   677  		} else {
   678  			len = p.nod(expr, ODDD, nil, nil)
   679  		}
   680  		return p.nod(expr, OTARRAY, len, p.typeExpr(expr.Elem))
   681  	case *syntax.SliceType:
   682  		return p.nod(expr, OTARRAY, nil, p.typeExpr(expr.Elem))
   683  	case *syntax.DotsType:
   684  		return p.nod(expr, ODDD, p.typeExpr(expr.Elem), nil)
   685  	case *syntax.StructType:
   686  		return p.structType(expr)
   687  	case *syntax.InterfaceType:
   688  		return p.interfaceType(expr)
   689  	case *syntax.FuncType:
   690  		return p.signature(nil, expr)
   691  	case *syntax.MapType:
   692  		return p.nod(expr, OTMAP, p.typeExpr(expr.Key), p.typeExpr(expr.Value))
   693  	case *syntax.ChanType:
   694  		n := p.nod(expr, OTCHAN, p.typeExpr(expr.Elem), nil)
   695  		n.SetTChanDir(p.chanDir(expr.Dir))
   696  		return n
   697  
   698  	case *syntax.TypeSwitchGuard:
   699  		n := p.nod(expr, OTYPESW, nil, p.expr(expr.X))
   700  		if expr.Lhs != nil {
   701  			n.Left = p.declName(expr.Lhs)
   702  			if n.Left.isBlank() {
   703  				yyerror("invalid variable name %v in type switch", n.Left)
   704  			}
   705  		}
   706  		return n
   707  	}
   708  	panic("unhandled Expr")
   709  }
   710  
   711  // sum efficiently handles very large summation expressions (such as
   712  // in issue #16394). In particular, it avoids left recursion and
   713  // collapses string literals.
   714  func (p *noder) sum(x syntax.Expr) *Node {
   715  	// While we need to handle long sums with asymptotic
   716  	// efficiency, the vast majority of sums are very small: ~95%
   717  	// have only 2 or 3 operands, and ~99% of string literals are
   718  	// never concatenated.
   719  
   720  	adds := make([]*syntax.Operation, 0, 2)
   721  	for {
   722  		add, ok := x.(*syntax.Operation)
   723  		if !ok || add.Op != syntax.Add || add.Y == nil {
   724  			break
   725  		}
   726  		adds = append(adds, add)
   727  		x = add.X
   728  	}
   729  
   730  	// nstr is the current rightmost string literal in the
   731  	// summation (if any), and chunks holds its accumulated
   732  	// substrings.
   733  	//
   734  	// Consider the expression x + "a" + "b" + "c" + y. When we
   735  	// reach the string literal "a", we assign nstr to point to
   736  	// its corresponding Node and initialize chunks to {"a"}.
   737  	// Visiting the subsequent string literals "b" and "c", we
   738  	// simply append their values to chunks. Finally, when we
   739  	// reach the non-constant operand y, we'll join chunks to form
   740  	// "abc" and reassign the "a" string literal's value.
   741  	//
   742  	// N.B., we need to be careful about named string constants
   743  	// (indicated by Sym != nil) because 1) we can't modify their
   744  	// value, as doing so would affect other uses of the string
   745  	// constant, and 2) they may have types, which we need to
   746  	// handle correctly. For now, we avoid these problems by
   747  	// treating named string constants the same as non-constant
   748  	// operands.
   749  	var nstr *Node
   750  	chunks := make([]string, 0, 1)
   751  
   752  	n := p.expr(x)
   753  	if Isconst(n, CTSTR) && n.Sym == nil {
   754  		nstr = n
   755  		chunks = append(chunks, strlit(nstr))
   756  	}
   757  
   758  	for i := len(adds) - 1; i >= 0; i-- {
   759  		add := adds[i]
   760  
   761  		r := p.expr(add.Y)
   762  		if Isconst(r, CTSTR) && r.Sym == nil {
   763  			if nstr != nil {
   764  				// Collapse r into nstr instead of adding to n.
   765  				chunks = append(chunks, strlit(r))
   766  				continue
   767  			}
   768  
   769  			nstr = r
   770  			chunks = append(chunks, strlit(nstr))
   771  		} else {
   772  			if len(chunks) > 1 {
   773  				nstr.SetVal(Val{U: strings.Join(chunks, "")})
   774  			}
   775  			nstr = nil
   776  			chunks = chunks[:0]
   777  		}
   778  		n = p.nod(add, OADD, n, r)
   779  	}
   780  	if len(chunks) > 1 {
   781  		nstr.SetVal(Val{U: strings.Join(chunks, "")})
   782  	}
   783  
   784  	return n
   785  }
   786  
   787  func (p *noder) typeExpr(typ syntax.Expr) *Node {
   788  	// TODO(mdempsky): Be stricter? typecheck should handle errors anyway.
   789  	return p.expr(typ)
   790  }
   791  
   792  func (p *noder) typeExprOrNil(typ syntax.Expr) *Node {
   793  	if typ != nil {
   794  		return p.expr(typ)
   795  	}
   796  	return nil
   797  }
   798  
   799  func (p *noder) chanDir(dir syntax.ChanDir) types.ChanDir {
   800  	switch dir {
   801  	case 0:
   802  		return types.Cboth
   803  	case syntax.SendOnly:
   804  		return types.Csend
   805  	case syntax.RecvOnly:
   806  		return types.Crecv
   807  	}
   808  	panic("unhandled ChanDir")
   809  }
   810  
   811  func (p *noder) structType(expr *syntax.StructType) *Node {
   812  	l := make([]*Node, 0, len(expr.FieldList))
   813  	for i, field := range expr.FieldList {
   814  		p.setlineno(field)
   815  		var n *Node
   816  		if field.Name == nil {
   817  			n = p.embedded(field.Type)
   818  		} else {
   819  			n = p.nodSym(field, ODCLFIELD, p.typeExpr(field.Type), p.name(field.Name))
   820  		}
   821  		if i < len(expr.TagList) && expr.TagList[i] != nil {
   822  			n.SetVal(p.basicLit(expr.TagList[i]))
   823  		}
   824  		l = append(l, n)
   825  	}
   826  
   827  	p.setlineno(expr)
   828  	n := p.nod(expr, OTSTRUCT, nil, nil)
   829  	n.List.Set(l)
   830  	return n
   831  }
   832  
   833  func (p *noder) interfaceType(expr *syntax.InterfaceType) *Node {
   834  	l := make([]*Node, 0, len(expr.MethodList))
   835  	for _, method := range expr.MethodList {
   836  		p.setlineno(method)
   837  		var n *Node
   838  		if method.Name == nil {
   839  			n = p.nodSym(method, ODCLFIELD, oldname(p.packname(method.Type)), nil)
   840  		} else {
   841  			mname := p.name(method.Name)
   842  			sig := p.typeExpr(method.Type)
   843  			sig.Left = fakeRecv()
   844  			n = p.nodSym(method, ODCLFIELD, sig, mname)
   845  			ifacedcl(n)
   846  		}
   847  		l = append(l, n)
   848  	}
   849  
   850  	n := p.nod(expr, OTINTER, nil, nil)
   851  	n.List.Set(l)
   852  	return n
   853  }
   854  
   855  func (p *noder) packname(expr syntax.Expr) *types.Sym {
   856  	switch expr := expr.(type) {
   857  	case *syntax.Name:
   858  		name := p.name(expr)
   859  		if n := oldname(name); n.Name != nil && n.Name.Pack != nil {
   860  			n.Name.Pack.Name.SetUsed(true)
   861  		}
   862  		return name
   863  	case *syntax.SelectorExpr:
   864  		name := p.name(expr.X.(*syntax.Name))
   865  		def := asNode(name.Def)
   866  		if def == nil {
   867  			yyerror("undefined: %v", name)
   868  			return name
   869  		}
   870  		var pkg *types.Pkg
   871  		if def.Op != OPACK {
   872  			yyerror("%v is not a package", name)
   873  			pkg = localpkg
   874  		} else {
   875  			def.Name.SetUsed(true)
   876  			pkg = def.Name.Pkg
   877  		}
   878  		return restrictlookup(expr.Sel.Value, pkg)
   879  	}
   880  	panic(fmt.Sprintf("unexpected packname: %#v", expr))
   881  }
   882  
   883  func (p *noder) embedded(typ syntax.Expr) *Node {
   884  	op, isStar := typ.(*syntax.Operation)
   885  	if isStar {
   886  		if op.Op != syntax.Mul || op.Y != nil {
   887  			panic("unexpected Operation")
   888  		}
   889  		typ = op.X
   890  	}
   891  
   892  	sym := p.packname(typ)
   893  	n := p.nodSym(typ, ODCLFIELD, oldname(sym), lookup(sym.Name))
   894  	n.SetEmbedded(true)
   895  
   896  	if isStar {
   897  		n.Left = p.nod(op, ODEREF, n.Left, nil)
   898  	}
   899  	return n
   900  }
   901  
   902  func (p *noder) stmts(stmts []syntax.Stmt) []*Node {
   903  	return p.stmtsFall(stmts, false)
   904  }
   905  
   906  func (p *noder) stmtsFall(stmts []syntax.Stmt, fallOK bool) []*Node {
   907  	var nodes []*Node
   908  	for i, stmt := range stmts {
   909  		s := p.stmtFall(stmt, fallOK && i+1 == len(stmts))
   910  		if s == nil {
   911  		} else if s.Op == OBLOCK && s.Ninit.Len() == 0 {
   912  			nodes = append(nodes, s.List.Slice()...)
   913  		} else {
   914  			nodes = append(nodes, s)
   915  		}
   916  	}
   917  	return nodes
   918  }
   919  
   920  func (p *noder) stmt(stmt syntax.Stmt) *Node {
   921  	return p.stmtFall(stmt, false)
   922  }
   923  
   924  func (p *noder) stmtFall(stmt syntax.Stmt, fallOK bool) *Node {
   925  	p.setlineno(stmt)
   926  	switch stmt := stmt.(type) {
   927  	case *syntax.EmptyStmt:
   928  		return nil
   929  	case *syntax.LabeledStmt:
   930  		return p.labeledStmt(stmt, fallOK)
   931  	case *syntax.BlockStmt:
   932  		l := p.blockStmt(stmt)
   933  		if len(l) == 0 {
   934  			// TODO(mdempsky): Line number?
   935  			return nod(OEMPTY, nil, nil)
   936  		}
   937  		return liststmt(l)
   938  	case *syntax.ExprStmt:
   939  		return p.wrapname(stmt, p.expr(stmt.X))
   940  	case *syntax.SendStmt:
   941  		return p.nod(stmt, OSEND, p.expr(stmt.Chan), p.expr(stmt.Value))
   942  	case *syntax.DeclStmt:
   943  		return liststmt(p.decls(stmt.DeclList))
   944  	case *syntax.AssignStmt:
   945  		if stmt.Op != 0 && stmt.Op != syntax.Def {
   946  			n := p.nod(stmt, OASOP, p.expr(stmt.Lhs), p.expr(stmt.Rhs))
   947  			n.SetImplicit(stmt.Rhs == syntax.ImplicitOne)
   948  			n.SetSubOp(p.binOp(stmt.Op))
   949  			return n
   950  		}
   951  
   952  		n := p.nod(stmt, OAS, nil, nil) // assume common case
   953  
   954  		rhs := p.exprList(stmt.Rhs)
   955  		lhs := p.assignList(stmt.Lhs, n, stmt.Op == syntax.Def)
   956  
   957  		if len(lhs) == 1 && len(rhs) == 1 {
   958  			// common case
   959  			n.Left = lhs[0]
   960  			n.Right = rhs[0]
   961  		} else {
   962  			n.Op = OAS2
   963  			n.List.Set(lhs)
   964  			n.Rlist.Set(rhs)
   965  		}
   966  		return n
   967  
   968  	case *syntax.BranchStmt:
   969  		var op Op
   970  		switch stmt.Tok {
   971  		case syntax.Break:
   972  			op = OBREAK
   973  		case syntax.Continue:
   974  			op = OCONTINUE
   975  		case syntax.Fallthrough:
   976  			if !fallOK {
   977  				yyerror("fallthrough statement out of place")
   978  			}
   979  			op = OFALL
   980  		case syntax.Goto:
   981  			op = OGOTO
   982  		default:
   983  			panic("unhandled BranchStmt")
   984  		}
   985  		n := p.nod(stmt, op, nil, nil)
   986  		if stmt.Label != nil {
   987  			n.Sym = p.name(stmt.Label)
   988  		}
   989  		return n
   990  	case *syntax.CallStmt:
   991  		var op Op
   992  		switch stmt.Tok {
   993  		case syntax.Defer:
   994  			op = ODEFER
   995  		case syntax.Go:
   996  			op = OGO
   997  		default:
   998  			panic("unhandled CallStmt")
   999  		}
  1000  		return p.nod(stmt, op, p.expr(stmt.Call), nil)
  1001  	case *syntax.ReturnStmt:
  1002  		var results []*Node
  1003  		if stmt.Results != nil {
  1004  			results = p.exprList(stmt.Results)
  1005  		}
  1006  		n := p.nod(stmt, ORETURN, nil, nil)
  1007  		n.List.Set(results)
  1008  		if n.List.Len() == 0 && Curfn != nil {
  1009  			for _, ln := range Curfn.Func.Dcl {
  1010  				if ln.Class() == PPARAM {
  1011  					continue
  1012  				}
  1013  				if ln.Class() != PPARAMOUT {
  1014  					break
  1015  				}
  1016  				if asNode(ln.Sym.Def) != ln {
  1017  					yyerror("%s is shadowed during return", ln.Sym.Name)
  1018  				}
  1019  			}
  1020  		}
  1021  		return n
  1022  	case *syntax.IfStmt:
  1023  		return p.ifStmt(stmt)
  1024  	case *syntax.ForStmt:
  1025  		return p.forStmt(stmt)
  1026  	case *syntax.SwitchStmt:
  1027  		return p.switchStmt(stmt)
  1028  	case *syntax.SelectStmt:
  1029  		return p.selectStmt(stmt)
  1030  	}
  1031  	panic("unhandled Stmt")
  1032  }
  1033  
  1034  func (p *noder) assignList(expr syntax.Expr, defn *Node, colas bool) []*Node {
  1035  	if !colas {
  1036  		return p.exprList(expr)
  1037  	}
  1038  
  1039  	defn.SetColas(true)
  1040  
  1041  	var exprs []syntax.Expr
  1042  	if list, ok := expr.(*syntax.ListExpr); ok {
  1043  		exprs = list.ElemList
  1044  	} else {
  1045  		exprs = []syntax.Expr{expr}
  1046  	}
  1047  
  1048  	res := make([]*Node, len(exprs))
  1049  	seen := make(map[*types.Sym]bool, len(exprs))
  1050  
  1051  	newOrErr := false
  1052  	for i, expr := range exprs {
  1053  		p.setlineno(expr)
  1054  		res[i] = nblank
  1055  
  1056  		name, ok := expr.(*syntax.Name)
  1057  		if !ok {
  1058  			p.yyerrorpos(expr.Pos(), "non-name %v on left side of :=", p.expr(expr))
  1059  			newOrErr = true
  1060  			continue
  1061  		}
  1062  
  1063  		sym := p.name(name)
  1064  		if sym.IsBlank() {
  1065  			continue
  1066  		}
  1067  
  1068  		if seen[sym] {
  1069  			p.yyerrorpos(expr.Pos(), "%v repeated on left side of :=", sym)
  1070  			newOrErr = true
  1071  			continue
  1072  		}
  1073  		seen[sym] = true
  1074  
  1075  		if sym.Block == types.Block {
  1076  			res[i] = oldname(sym)
  1077  			continue
  1078  		}
  1079  
  1080  		newOrErr = true
  1081  		n := newname(sym)
  1082  		declare(n, dclcontext)
  1083  		n.Name.Defn = defn
  1084  		defn.Ninit.Append(nod(ODCL, n, nil))
  1085  		res[i] = n
  1086  	}
  1087  
  1088  	if !newOrErr {
  1089  		yyerrorl(defn.Pos, "no new variables on left side of :=")
  1090  	}
  1091  	return res
  1092  }
  1093  
  1094  func (p *noder) blockStmt(stmt *syntax.BlockStmt) []*Node {
  1095  	p.openScope(stmt.Pos())
  1096  	nodes := p.stmts(stmt.List)
  1097  	p.closeScope(stmt.Rbrace)
  1098  	return nodes
  1099  }
  1100  
  1101  func (p *noder) ifStmt(stmt *syntax.IfStmt) *Node {
  1102  	p.openScope(stmt.Pos())
  1103  	n := p.nod(stmt, OIF, nil, nil)
  1104  	if stmt.Init != nil {
  1105  		n.Ninit.Set1(p.stmt(stmt.Init))
  1106  	}
  1107  	if stmt.Cond != nil {
  1108  		n.Left = p.expr(stmt.Cond)
  1109  	}
  1110  	n.Nbody.Set(p.blockStmt(stmt.Then))
  1111  	if stmt.Else != nil {
  1112  		e := p.stmt(stmt.Else)
  1113  		if e.Op == OBLOCK && e.Ninit.Len() == 0 {
  1114  			n.Rlist.Set(e.List.Slice())
  1115  		} else {
  1116  			n.Rlist.Set1(e)
  1117  		}
  1118  	}
  1119  	p.closeAnotherScope()
  1120  	return n
  1121  }
  1122  
  1123  func (p *noder) forStmt(stmt *syntax.ForStmt) *Node {
  1124  	p.openScope(stmt.Pos())
  1125  	var n *Node
  1126  	if r, ok := stmt.Init.(*syntax.RangeClause); ok {
  1127  		if stmt.Cond != nil || stmt.Post != nil {
  1128  			panic("unexpected RangeClause")
  1129  		}
  1130  
  1131  		n = p.nod(r, ORANGE, nil, p.expr(r.X))
  1132  		if r.Lhs != nil {
  1133  			n.List.Set(p.assignList(r.Lhs, n, r.Def))
  1134  		}
  1135  	} else {
  1136  		n = p.nod(stmt, OFOR, nil, nil)
  1137  		if stmt.Init != nil {
  1138  			n.Ninit.Set1(p.stmt(stmt.Init))
  1139  		}
  1140  		if stmt.Cond != nil {
  1141  			n.Left = p.expr(stmt.Cond)
  1142  		}
  1143  		if stmt.Post != nil {
  1144  			n.Right = p.stmt(stmt.Post)
  1145  		}
  1146  	}
  1147  	n.Nbody.Set(p.blockStmt(stmt.Body))
  1148  	p.closeAnotherScope()
  1149  	return n
  1150  }
  1151  
  1152  func (p *noder) switchStmt(stmt *syntax.SwitchStmt) *Node {
  1153  	p.openScope(stmt.Pos())
  1154  	n := p.nod(stmt, OSWITCH, nil, nil)
  1155  	if stmt.Init != nil {
  1156  		n.Ninit.Set1(p.stmt(stmt.Init))
  1157  	}
  1158  	if stmt.Tag != nil {
  1159  		n.Left = p.expr(stmt.Tag)
  1160  	}
  1161  
  1162  	tswitch := n.Left
  1163  	if tswitch != nil && tswitch.Op != OTYPESW {
  1164  		tswitch = nil
  1165  	}
  1166  	n.List.Set(p.caseClauses(stmt.Body, tswitch, stmt.Rbrace))
  1167  
  1168  	p.closeScope(stmt.Rbrace)
  1169  	return n
  1170  }
  1171  
  1172  func (p *noder) caseClauses(clauses []*syntax.CaseClause, tswitch *Node, rbrace syntax.Pos) []*Node {
  1173  	nodes := make([]*Node, 0, len(clauses))
  1174  	for i, clause := range clauses {
  1175  		p.setlineno(clause)
  1176  		if i > 0 {
  1177  			p.closeScope(clause.Pos())
  1178  		}
  1179  		p.openScope(clause.Pos())
  1180  
  1181  		n := p.nod(clause, OCASE, nil, nil)
  1182  		if clause.Cases != nil {
  1183  			n.List.Set(p.exprList(clause.Cases))
  1184  		}
  1185  		if tswitch != nil && tswitch.Left != nil {
  1186  			nn := newname(tswitch.Left.Sym)
  1187  			declare(nn, dclcontext)
  1188  			n.Rlist.Set1(nn)
  1189  			// keep track of the instances for reporting unused
  1190  			nn.Name.Defn = tswitch
  1191  		}
  1192  
  1193  		// Trim trailing empty statements. We omit them from
  1194  		// the Node AST anyway, and it's easier to identify
  1195  		// out-of-place fallthrough statements without them.
  1196  		body := clause.Body
  1197  		for len(body) > 0 {
  1198  			if _, ok := body[len(body)-1].(*syntax.EmptyStmt); !ok {
  1199  				break
  1200  			}
  1201  			body = body[:len(body)-1]
  1202  		}
  1203  
  1204  		n.Nbody.Set(p.stmtsFall(body, true))
  1205  		if l := n.Nbody.Len(); l > 0 && n.Nbody.Index(l-1).Op == OFALL {
  1206  			if tswitch != nil {
  1207  				yyerror("cannot fallthrough in type switch")
  1208  			}
  1209  			if i+1 == len(clauses) {
  1210  				yyerror("cannot fallthrough final case in switch")
  1211  			}
  1212  		}
  1213  
  1214  		nodes = append(nodes, n)
  1215  	}
  1216  	if len(clauses) > 0 {
  1217  		p.closeScope(rbrace)
  1218  	}
  1219  	return nodes
  1220  }
  1221  
  1222  func (p *noder) selectStmt(stmt *syntax.SelectStmt) *Node {
  1223  	n := p.nod(stmt, OSELECT, nil, nil)
  1224  	n.List.Set(p.commClauses(stmt.Body, stmt.Rbrace))
  1225  	return n
  1226  }
  1227  
  1228  func (p *noder) commClauses(clauses []*syntax.CommClause, rbrace syntax.Pos) []*Node {
  1229  	nodes := make([]*Node, 0, len(clauses))
  1230  	for i, clause := range clauses {
  1231  		p.setlineno(clause)
  1232  		if i > 0 {
  1233  			p.closeScope(clause.Pos())
  1234  		}
  1235  		p.openScope(clause.Pos())
  1236  
  1237  		n := p.nod(clause, OCASE, nil, nil)
  1238  		if clause.Comm != nil {
  1239  			n.List.Set1(p.stmt(clause.Comm))
  1240  		}
  1241  		n.Nbody.Set(p.stmts(clause.Body))
  1242  		nodes = append(nodes, n)
  1243  	}
  1244  	if len(clauses) > 0 {
  1245  		p.closeScope(rbrace)
  1246  	}
  1247  	return nodes
  1248  }
  1249  
  1250  func (p *noder) labeledStmt(label *syntax.LabeledStmt, fallOK bool) *Node {
  1251  	lhs := p.nodSym(label, OLABEL, nil, p.name(label.Label))
  1252  
  1253  	var ls *Node
  1254  	if label.Stmt != nil { // TODO(mdempsky): Should always be present.
  1255  		ls = p.stmtFall(label.Stmt, fallOK)
  1256  	}
  1257  
  1258  	lhs.Name.Defn = ls
  1259  	l := []*Node{lhs}
  1260  	if ls != nil {
  1261  		if ls.Op == OBLOCK && ls.Ninit.Len() == 0 {
  1262  			l = append(l, ls.List.Slice()...)
  1263  		} else {
  1264  			l = append(l, ls)
  1265  		}
  1266  	}
  1267  	return liststmt(l)
  1268  }
  1269  
  1270  var unOps = [...]Op{
  1271  	syntax.Recv: ORECV,
  1272  	syntax.Mul:  ODEREF,
  1273  	syntax.And:  OADDR,
  1274  
  1275  	syntax.Not: ONOT,
  1276  	syntax.Xor: OBITNOT,
  1277  	syntax.Add: OPLUS,
  1278  	syntax.Sub: ONEG,
  1279  }
  1280  
  1281  func (p *noder) unOp(op syntax.Operator) Op {
  1282  	if uint64(op) >= uint64(len(unOps)) || unOps[op] == 0 {
  1283  		panic("invalid Operator")
  1284  	}
  1285  	return unOps[op]
  1286  }
  1287  
  1288  var binOps = [...]Op{
  1289  	syntax.OrOr:   OOROR,
  1290  	syntax.AndAnd: OANDAND,
  1291  
  1292  	syntax.Eql: OEQ,
  1293  	syntax.Neq: ONE,
  1294  	syntax.Lss: OLT,
  1295  	syntax.Leq: OLE,
  1296  	syntax.Gtr: OGT,
  1297  	syntax.Geq: OGE,
  1298  
  1299  	syntax.Add: OADD,
  1300  	syntax.Sub: OSUB,
  1301  	syntax.Or:  OOR,
  1302  	syntax.Xor: OXOR,
  1303  
  1304  	syntax.Mul:    OMUL,
  1305  	syntax.Div:    ODIV,
  1306  	syntax.Rem:    OMOD,
  1307  	syntax.And:    OAND,
  1308  	syntax.AndNot: OANDNOT,
  1309  	syntax.Shl:    OLSH,
  1310  	syntax.Shr:    ORSH,
  1311  }
  1312  
  1313  func (p *noder) binOp(op syntax.Operator) Op {
  1314  	if uint64(op) >= uint64(len(binOps)) || binOps[op] == 0 {
  1315  		panic("invalid Operator")
  1316  	}
  1317  	return binOps[op]
  1318  }
  1319  
  1320  // checkLangCompat reports an error if the representation of a numeric
  1321  // literal is not compatible with the current language version.
  1322  func checkLangCompat(lit *syntax.BasicLit) {
  1323  	s := lit.Value
  1324  	if len(s) <= 2 || langSupported(1, 13, localpkg) {
  1325  		return
  1326  	}
  1327  	// len(s) > 2
  1328  	if strings.Contains(s, "_") {
  1329  		yyerrorv("go1.13", "underscores in numeric literals")
  1330  		return
  1331  	}
  1332  	if s[0] != '0' {
  1333  		return
  1334  	}
  1335  	base := s[1]
  1336  	if base == 'b' || base == 'B' {
  1337  		yyerrorv("go1.13", "binary literals")
  1338  		return
  1339  	}
  1340  	if base == 'o' || base == 'O' {
  1341  		yyerrorv("go1.13", "0o/0O-style octal literals")
  1342  		return
  1343  	}
  1344  	if lit.Kind != syntax.IntLit && (base == 'x' || base == 'X') {
  1345  		yyerrorv("go1.13", "hexadecimal floating-point literals")
  1346  	}
  1347  }
  1348  
  1349  func (p *noder) basicLit(lit *syntax.BasicLit) Val {
  1350  	// We don't use the errors of the conversion routines to determine
  1351  	// if a literal string is valid because the conversion routines may
  1352  	// accept a wider syntax than the language permits. Rely on lit.Bad
  1353  	// instead.
  1354  	switch s := lit.Value; lit.Kind {
  1355  	case syntax.IntLit:
  1356  		checkLangCompat(lit)
  1357  		x := new(Mpint)
  1358  		if !lit.Bad {
  1359  			x.SetString(s)
  1360  		}
  1361  		return Val{U: x}
  1362  
  1363  	case syntax.FloatLit:
  1364  		checkLangCompat(lit)
  1365  		x := newMpflt()
  1366  		if !lit.Bad {
  1367  			x.SetString(s)
  1368  		}
  1369  		return Val{U: x}
  1370  
  1371  	case syntax.ImagLit:
  1372  		checkLangCompat(lit)
  1373  		x := newMpcmplx()
  1374  		if !lit.Bad {
  1375  			x.Imag.SetString(strings.TrimSuffix(s, "i"))
  1376  		}
  1377  		return Val{U: x}
  1378  
  1379  	case syntax.RuneLit:
  1380  		x := new(Mpint)
  1381  		x.Rune = true
  1382  		if !lit.Bad {
  1383  			u, _ := strconv.Unquote(s)
  1384  			var r rune
  1385  			if len(u) == 1 {
  1386  				r = rune(u[0])
  1387  			} else {
  1388  				r, _ = utf8.DecodeRuneInString(u)
  1389  			}
  1390  			x.SetInt64(int64(r))
  1391  		}
  1392  		return Val{U: x}
  1393  
  1394  	case syntax.StringLit:
  1395  		var x string
  1396  		if !lit.Bad {
  1397  			if len(s) > 0 && s[0] == '`' {
  1398  				// strip carriage returns from raw string
  1399  				s = strings.Replace(s, "\r", "", -1)
  1400  			}
  1401  			x, _ = strconv.Unquote(s)
  1402  		}
  1403  		return Val{U: x}
  1404  
  1405  	default:
  1406  		panic("unhandled BasicLit kind")
  1407  	}
  1408  }
  1409  
  1410  func (p *noder) name(name *syntax.Name) *types.Sym {
  1411  	return lookup(name.Value)
  1412  }
  1413  
  1414  func (p *noder) mkname(name *syntax.Name) *Node {
  1415  	// TODO(mdempsky): Set line number?
  1416  	return mkname(p.name(name))
  1417  }
  1418  
  1419  func (p *noder) newname(name *syntax.Name) *Node {
  1420  	// TODO(mdempsky): Set line number?
  1421  	return newname(p.name(name))
  1422  }
  1423  
  1424  func (p *noder) wrapname(n syntax.Node, x *Node) *Node {
  1425  	// These nodes do not carry line numbers.
  1426  	// Introduce a wrapper node to give them the correct line.
  1427  	switch x.Op {
  1428  	case OTYPE, OLITERAL:
  1429  		if x.Sym == nil {
  1430  			break
  1431  		}
  1432  		fallthrough
  1433  	case ONAME, ONONAME, OPACK:
  1434  		x = p.nod(n, OPAREN, x, nil)
  1435  		x.SetImplicit(true)
  1436  	}
  1437  	return x
  1438  }
  1439  
  1440  func (p *noder) nod(orig syntax.Node, op Op, left, right *Node) *Node {
  1441  	return nodl(p.pos(orig), op, left, right)
  1442  }
  1443  
  1444  func (p *noder) nodSym(orig syntax.Node, op Op, left *Node, sym *types.Sym) *Node {
  1445  	n := nodSym(op, left, sym)
  1446  	n.Pos = p.pos(orig)
  1447  	return n
  1448  }
  1449  
  1450  func (p *noder) pos(n syntax.Node) src.XPos {
  1451  	// TODO(gri): orig.Pos() should always be known - fix package syntax
  1452  	xpos := lineno
  1453  	if pos := n.Pos(); pos.IsKnown() {
  1454  		xpos = p.makeXPos(pos)
  1455  	}
  1456  	return xpos
  1457  }
  1458  
  1459  func (p *noder) setlineno(n syntax.Node) {
  1460  	if n != nil {
  1461  		lineno = p.pos(n)
  1462  	}
  1463  }
  1464  
  1465  // error is called concurrently if files are parsed concurrently.
  1466  func (p *noder) error(err error) {
  1467  	p.err <- err.(syntax.Error)
  1468  }
  1469  
  1470  // pragmas that are allowed in the std lib, but don't have
  1471  // a syntax.Pragma value (see lex.go) associated with them.
  1472  var allowedStdPragmas = map[string]bool{
  1473  	"go:cgo_export_static":  true,
  1474  	"go:cgo_export_dynamic": true,
  1475  	"go:cgo_import_static":  true,
  1476  	"go:cgo_import_dynamic": true,
  1477  	"go:cgo_ldflag":         true,
  1478  	"go:cgo_dynamic_linker": true,
  1479  	"go:generate":           true,
  1480  }
  1481  
  1482  // pragma is called concurrently if files are parsed concurrently.
  1483  func (p *noder) pragma(pos syntax.Pos, text string) syntax.Pragma {
  1484  	switch {
  1485  	case strings.HasPrefix(text, "line "):
  1486  		// line directives are handled by syntax package
  1487  		panic("unreachable")
  1488  
  1489  	case strings.HasPrefix(text, "go:linkname "):
  1490  		f := strings.Fields(text)
  1491  		if !(2 <= len(f) && len(f) <= 3) {
  1492  			p.error(syntax.Error{Pos: pos, Msg: "usage: //go:linkname localname [linkname]"})
  1493  			break
  1494  		}
  1495  		// The second argument is optional. If omitted, we use
  1496  		// the default object symbol name for this and
  1497  		// linkname only serves to mark this symbol as
  1498  		// something that may be referenced via the object
  1499  		// symbol name from another package.
  1500  		var target string
  1501  		if len(f) == 3 {
  1502  			target = f[2]
  1503  		}
  1504  		p.linknames = append(p.linknames, linkname{pos, f[1], target})
  1505  
  1506  	case strings.HasPrefix(text, "go:cgo_import_dynamic "):
  1507  		// This is permitted for general use because Solaris
  1508  		// code relies on it in golang.org/x/sys/unix and others.
  1509  		fields := pragmaFields(text)
  1510  		if len(fields) >= 4 {
  1511  			lib := strings.Trim(fields[3], `"`)
  1512  			if lib != "" && !safeArg(lib) && !isCgoGeneratedFile(pos) {
  1513  				p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("invalid library name %q in cgo_import_dynamic directive", lib)})
  1514  			}
  1515  			p.pragcgo(pos, text)
  1516  			return pragmaValue("go:cgo_import_dynamic")
  1517  		}
  1518  		fallthrough
  1519  	case strings.HasPrefix(text, "go:cgo_"):
  1520  		// For security, we disallow //go:cgo_* directives other
  1521  		// than cgo_import_dynamic outside cgo-generated files.
  1522  		// Exception: they are allowed in the standard library, for runtime and syscall.
  1523  		if !isCgoGeneratedFile(pos) && !compiling_std {
  1524  			p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("//%s only allowed in cgo-generated code", text)})
  1525  		}
  1526  		p.pragcgo(pos, text)
  1527  		fallthrough // because of //go:cgo_unsafe_args
  1528  	default:
  1529  		verb := text
  1530  		if i := strings.Index(text, " "); i >= 0 {
  1531  			verb = verb[:i]
  1532  		}
  1533  		prag := pragmaValue(verb)
  1534  		const runtimePragmas = Systemstack | Nowritebarrier | Nowritebarrierrec | Yeswritebarrierrec
  1535  		if !compiling_runtime && prag&runtimePragmas != 0 {
  1536  			p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("//%s only allowed in runtime", verb)})
  1537  		}
  1538  		if prag == 0 && !allowedStdPragmas[verb] && compiling_std {
  1539  			p.error(syntax.Error{Pos: pos, Msg: fmt.Sprintf("//%s is not allowed in the standard library", verb)})
  1540  		}
  1541  		return prag
  1542  	}
  1543  
  1544  	return 0
  1545  }
  1546  
  1547  // isCgoGeneratedFile reports whether pos is in a file
  1548  // generated by cgo, which is to say a file with name
  1549  // beginning with "_cgo_". Such files are allowed to
  1550  // contain cgo directives, and for security reasons
  1551  // (primarily misuse of linker flags), other files are not.
  1552  // See golang.org/issue/23672.
  1553  func isCgoGeneratedFile(pos syntax.Pos) bool {
  1554  	return strings.HasPrefix(filepath.Base(filepath.Clean(fileh(pos.Base().Filename()))), "_cgo_")
  1555  }
  1556  
  1557  // safeArg reports whether arg is a "safe" command-line argument,
  1558  // meaning that when it appears in a command-line, it probably
  1559  // doesn't have some special meaning other than its own name.
  1560  // This is copied from SafeArg in cmd/go/internal/load/pkg.go.
  1561  func safeArg(name string) bool {
  1562  	if name == "" {
  1563  		return false
  1564  	}
  1565  	c := name[0]
  1566  	return '0' <= c && c <= '9' || 'A' <= c && c <= 'Z' || 'a' <= c && c <= 'z' || c == '.' || c == '_' || c == '/' || c >= utf8.RuneSelf
  1567  }
  1568  
  1569  func mkname(sym *types.Sym) *Node {
  1570  	n := oldname(sym)
  1571  	if n.Name != nil && n.Name.Pack != nil {
  1572  		n.Name.Pack.Name.SetUsed(true)
  1573  	}
  1574  	return n
  1575  }
  1576  
  1577  func unparen(x *Node) *Node {
  1578  	for x.Op == OPAREN {
  1579  		x = x.Left
  1580  	}
  1581  	return x
  1582  }