github.com/gagliardetto/golang-go@v0.0.0-20201020153340-53909ea70814/cmd/compile/internal/gc/ssa.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package gc 6 7 import ( 8 "encoding/binary" 9 "fmt" 10 "html" 11 "os" 12 "sort" 13 14 "bufio" 15 "bytes" 16 "github.com/gagliardetto/golang-go/cmd/compile/internal/ssa" 17 "github.com/gagliardetto/golang-go/cmd/compile/internal/types" 18 "github.com/gagliardetto/golang-go/cmd/internal/obj" 19 "github.com/gagliardetto/golang-go/cmd/internal/objabi" 20 "github.com/gagliardetto/golang-go/cmd/internal/src" 21 "github.com/gagliardetto/golang-go/cmd/internal/sys" 22 ) 23 24 var ssaConfig *ssa.Config 25 var ssaCaches []ssa.Cache 26 27 var ssaDump string // early copy of $GOSSAFUNC; the func name to dump output for 28 var ssaDumpStdout bool // whether to dump to stdout 29 var ssaDumpCFG string // generate CFGs for these phases 30 const ssaDumpFile = "ssa.html" 31 32 // The max number of defers in a function using open-coded defers. We enforce this 33 // limit because the deferBits bitmask is currently a single byte (to minimize code size) 34 const maxOpenDefers = 8 35 36 // ssaDumpInlined holds all inlined functions when ssaDump contains a function name. 37 var ssaDumpInlined []*Node 38 39 func initssaconfig() { 40 types_ := ssa.NewTypes() 41 42 if thearch.SoftFloat { 43 softfloatInit() 44 } 45 46 // Generate a few pointer types that are uncommon in the frontend but common in the backend. 47 // Caching is disabled in the backend, so generating these here avoids allocations. 48 _ = types.NewPtr(types.Types[TINTER]) // *interface{} 49 _ = types.NewPtr(types.NewPtr(types.Types[TSTRING])) // **string 50 _ = types.NewPtr(types.NewPtr(types.Idealstring)) // **string 51 _ = types.NewPtr(types.NewSlice(types.Types[TINTER])) // *[]interface{} 52 _ = types.NewPtr(types.NewPtr(types.Bytetype)) // **byte 53 _ = types.NewPtr(types.NewSlice(types.Bytetype)) // *[]byte 54 _ = types.NewPtr(types.NewSlice(types.Types[TSTRING])) // *[]string 55 _ = types.NewPtr(types.NewSlice(types.Idealstring)) // *[]string 56 _ = types.NewPtr(types.NewPtr(types.NewPtr(types.Types[TUINT8]))) // ***uint8 57 _ = types.NewPtr(types.Types[TINT16]) // *int16 58 _ = types.NewPtr(types.Types[TINT64]) // *int64 59 _ = types.NewPtr(types.Errortype) // *error 60 types.NewPtrCacheEnabled = false 61 ssaConfig = ssa.NewConfig(thearch.LinkArch.Name, *types_, Ctxt, Debug['N'] == 0) 62 if thearch.LinkArch.Name == "386" { 63 ssaConfig.Set387(thearch.Use387) 64 } 65 ssaConfig.SoftFloat = thearch.SoftFloat 66 ssaConfig.Race = flag_race 67 ssaCaches = make([]ssa.Cache, nBackendWorkers) 68 69 // Set up some runtime functions we'll need to call. 70 assertE2I = sysfunc("assertE2I") 71 assertE2I2 = sysfunc("assertE2I2") 72 assertI2I = sysfunc("assertI2I") 73 assertI2I2 = sysfunc("assertI2I2") 74 deferproc = sysfunc("deferproc") 75 deferprocStack = sysfunc("deferprocStack") 76 Deferreturn = sysfunc("deferreturn") 77 Duffcopy = sysvar("duffcopy") // asm func with special ABI 78 Duffzero = sysvar("duffzero") // asm func with special ABI 79 gcWriteBarrier = sysvar("gcWriteBarrier") // asm func with special ABI 80 goschedguarded = sysfunc("goschedguarded") 81 growslice = sysfunc("growslice") 82 msanread = sysfunc("msanread") 83 msanwrite = sysfunc("msanwrite") 84 newobject = sysfunc("newobject") 85 newproc = sysfunc("newproc") 86 panicdivide = sysfunc("panicdivide") 87 panicdottypeE = sysfunc("panicdottypeE") 88 panicdottypeI = sysfunc("panicdottypeI") 89 panicnildottype = sysfunc("panicnildottype") 90 panicoverflow = sysfunc("panicoverflow") 91 panicshift = sysfunc("panicshift") 92 raceread = sysfunc("raceread") 93 racereadrange = sysfunc("racereadrange") 94 racewrite = sysfunc("racewrite") 95 racewriterange = sysfunc("racewriterange") 96 x86HasPOPCNT = sysvar("x86HasPOPCNT") // bool 97 x86HasSSE41 = sysvar("x86HasSSE41") // bool 98 x86HasFMA = sysvar("x86HasFMA") // bool 99 armHasVFPv4 = sysvar("armHasVFPv4") // bool 100 arm64HasATOMICS = sysvar("arm64HasATOMICS") // bool 101 typedmemclr = sysfunc("typedmemclr") 102 typedmemmove = sysfunc("typedmemmove") 103 Udiv = sysvar("udiv") // asm func with special ABI 104 writeBarrier = sysvar("writeBarrier") // struct { bool; ... } 105 zerobaseSym = sysvar("zerobase") 106 107 if thearch.LinkArch.Family == sys.Wasm { 108 BoundsCheckFunc[ssa.BoundsIndex] = sysvar("goPanicIndex") 109 BoundsCheckFunc[ssa.BoundsIndexU] = sysvar("goPanicIndexU") 110 BoundsCheckFunc[ssa.BoundsSliceAlen] = sysvar("goPanicSliceAlen") 111 BoundsCheckFunc[ssa.BoundsSliceAlenU] = sysvar("goPanicSliceAlenU") 112 BoundsCheckFunc[ssa.BoundsSliceAcap] = sysvar("goPanicSliceAcap") 113 BoundsCheckFunc[ssa.BoundsSliceAcapU] = sysvar("goPanicSliceAcapU") 114 BoundsCheckFunc[ssa.BoundsSliceB] = sysvar("goPanicSliceB") 115 BoundsCheckFunc[ssa.BoundsSliceBU] = sysvar("goPanicSliceBU") 116 BoundsCheckFunc[ssa.BoundsSlice3Alen] = sysvar("goPanicSlice3Alen") 117 BoundsCheckFunc[ssa.BoundsSlice3AlenU] = sysvar("goPanicSlice3AlenU") 118 BoundsCheckFunc[ssa.BoundsSlice3Acap] = sysvar("goPanicSlice3Acap") 119 BoundsCheckFunc[ssa.BoundsSlice3AcapU] = sysvar("goPanicSlice3AcapU") 120 BoundsCheckFunc[ssa.BoundsSlice3B] = sysvar("goPanicSlice3B") 121 BoundsCheckFunc[ssa.BoundsSlice3BU] = sysvar("goPanicSlice3BU") 122 BoundsCheckFunc[ssa.BoundsSlice3C] = sysvar("goPanicSlice3C") 123 BoundsCheckFunc[ssa.BoundsSlice3CU] = sysvar("goPanicSlice3CU") 124 } else { 125 BoundsCheckFunc[ssa.BoundsIndex] = sysvar("panicIndex") 126 BoundsCheckFunc[ssa.BoundsIndexU] = sysvar("panicIndexU") 127 BoundsCheckFunc[ssa.BoundsSliceAlen] = sysvar("panicSliceAlen") 128 BoundsCheckFunc[ssa.BoundsSliceAlenU] = sysvar("panicSliceAlenU") 129 BoundsCheckFunc[ssa.BoundsSliceAcap] = sysvar("panicSliceAcap") 130 BoundsCheckFunc[ssa.BoundsSliceAcapU] = sysvar("panicSliceAcapU") 131 BoundsCheckFunc[ssa.BoundsSliceB] = sysvar("panicSliceB") 132 BoundsCheckFunc[ssa.BoundsSliceBU] = sysvar("panicSliceBU") 133 BoundsCheckFunc[ssa.BoundsSlice3Alen] = sysvar("panicSlice3Alen") 134 BoundsCheckFunc[ssa.BoundsSlice3AlenU] = sysvar("panicSlice3AlenU") 135 BoundsCheckFunc[ssa.BoundsSlice3Acap] = sysvar("panicSlice3Acap") 136 BoundsCheckFunc[ssa.BoundsSlice3AcapU] = sysvar("panicSlice3AcapU") 137 BoundsCheckFunc[ssa.BoundsSlice3B] = sysvar("panicSlice3B") 138 BoundsCheckFunc[ssa.BoundsSlice3BU] = sysvar("panicSlice3BU") 139 BoundsCheckFunc[ssa.BoundsSlice3C] = sysvar("panicSlice3C") 140 BoundsCheckFunc[ssa.BoundsSlice3CU] = sysvar("panicSlice3CU") 141 } 142 if thearch.LinkArch.PtrSize == 4 { 143 ExtendCheckFunc[ssa.BoundsIndex] = sysvar("panicExtendIndex") 144 ExtendCheckFunc[ssa.BoundsIndexU] = sysvar("panicExtendIndexU") 145 ExtendCheckFunc[ssa.BoundsSliceAlen] = sysvar("panicExtendSliceAlen") 146 ExtendCheckFunc[ssa.BoundsSliceAlenU] = sysvar("panicExtendSliceAlenU") 147 ExtendCheckFunc[ssa.BoundsSliceAcap] = sysvar("panicExtendSliceAcap") 148 ExtendCheckFunc[ssa.BoundsSliceAcapU] = sysvar("panicExtendSliceAcapU") 149 ExtendCheckFunc[ssa.BoundsSliceB] = sysvar("panicExtendSliceB") 150 ExtendCheckFunc[ssa.BoundsSliceBU] = sysvar("panicExtendSliceBU") 151 ExtendCheckFunc[ssa.BoundsSlice3Alen] = sysvar("panicExtendSlice3Alen") 152 ExtendCheckFunc[ssa.BoundsSlice3AlenU] = sysvar("panicExtendSlice3AlenU") 153 ExtendCheckFunc[ssa.BoundsSlice3Acap] = sysvar("panicExtendSlice3Acap") 154 ExtendCheckFunc[ssa.BoundsSlice3AcapU] = sysvar("panicExtendSlice3AcapU") 155 ExtendCheckFunc[ssa.BoundsSlice3B] = sysvar("panicExtendSlice3B") 156 ExtendCheckFunc[ssa.BoundsSlice3BU] = sysvar("panicExtendSlice3BU") 157 ExtendCheckFunc[ssa.BoundsSlice3C] = sysvar("panicExtendSlice3C") 158 ExtendCheckFunc[ssa.BoundsSlice3CU] = sysvar("panicExtendSlice3CU") 159 } 160 161 // GO386=387 runtime definitions 162 ControlWord64trunc = sysvar("controlWord64trunc") // uint16 163 ControlWord32 = sysvar("controlWord32") // uint16 164 165 // Wasm (all asm funcs with special ABIs) 166 WasmMove = sysvar("wasmMove") 167 WasmZero = sysvar("wasmZero") 168 WasmDiv = sysvar("wasmDiv") 169 WasmTruncS = sysvar("wasmTruncS") 170 WasmTruncU = sysvar("wasmTruncU") 171 SigPanic = sysfunc("sigpanic") 172 } 173 174 // getParam returns the Field of ith param of node n (which is a 175 // function/method/interface call), where the receiver of a method call is 176 // considered as the 0th parameter. This does not include the receiver of an 177 // interface call. 178 func getParam(n *Node, i int) *types.Field { 179 t := n.Left.Type 180 if n.Op == OCALLMETH { 181 if i == 0 { 182 return t.Recv() 183 } 184 return t.Params().Field(i - 1) 185 } 186 return t.Params().Field(i) 187 } 188 189 // dvarint writes a varint v to the funcdata in symbol x and returns the new offset 190 func dvarint(x *obj.LSym, off int, v int64) int { 191 if v < 0 || v > 1e9 { 192 panic(fmt.Sprintf("dvarint: bad offset for funcdata - %v", v)) 193 } 194 if v < 1<<7 { 195 return duint8(x, off, uint8(v)) 196 } 197 off = duint8(x, off, uint8((v&127)|128)) 198 if v < 1<<14 { 199 return duint8(x, off, uint8(v>>7)) 200 } 201 off = duint8(x, off, uint8(((v>>7)&127)|128)) 202 if v < 1<<21 { 203 return duint8(x, off, uint8(v>>14)) 204 } 205 off = duint8(x, off, uint8(((v>>14)&127)|128)) 206 if v < 1<<28 { 207 return duint8(x, off, uint8(v>>21)) 208 } 209 off = duint8(x, off, uint8(((v>>21)&127)|128)) 210 return duint8(x, off, uint8(v>>28)) 211 } 212 213 // emitOpenDeferInfo emits FUNCDATA information about the defers in a function 214 // that is using open-coded defers. This funcdata is used to determine the active 215 // defers in a function and execute those defers during panic processing. 216 // 217 // The funcdata is all encoded in varints (since values will almost always be less than 218 // 128, but stack offsets could potentially be up to 2Gbyte). All "locations" (offsets) 219 // for stack variables are specified as the number of bytes below varp (pointer to the 220 // top of the local variables) for their starting address. The format is: 221 // 222 // - Max total argument size among all the defers 223 // - Offset of the deferBits variable 224 // - Number of defers in the function 225 // - Information about each defer call, in reverse order of appearance in the function: 226 // - Total argument size of the call 227 // - Offset of the closure value to call 228 // - Number of arguments (including interface receiver or method receiver as first arg) 229 // - Information about each argument 230 // - Offset of the stored defer argument in this function's frame 231 // - Size of the argument 232 // - Offset of where argument should be placed in the args frame when making call 233 func (s *state) emitOpenDeferInfo() { 234 x := Ctxt.Lookup(s.curfn.Func.lsym.Name + ".opendefer") 235 s.curfn.Func.lsym.Func.OpenCodedDeferInfo = x 236 off := 0 237 238 // Compute maxargsize (max size of arguments for all defers) 239 // first, so we can output it first to the funcdata 240 var maxargsize int64 241 for i := len(s.openDefers) - 1; i >= 0; i-- { 242 r := s.openDefers[i] 243 argsize := r.n.Left.Type.ArgWidth() 244 if argsize > maxargsize { 245 maxargsize = argsize 246 } 247 } 248 off = dvarint(x, off, maxargsize) 249 off = dvarint(x, off, -s.deferBitsTemp.Xoffset) 250 off = dvarint(x, off, int64(len(s.openDefers))) 251 252 // Write in reverse-order, for ease of running in that order at runtime 253 for i := len(s.openDefers) - 1; i >= 0; i-- { 254 r := s.openDefers[i] 255 off = dvarint(x, off, r.n.Left.Type.ArgWidth()) 256 off = dvarint(x, off, -r.closureNode.Xoffset) 257 numArgs := len(r.argNodes) 258 if r.rcvrNode != nil { 259 // If there's an interface receiver, treat/place it as the first 260 // arg. (If there is a method receiver, it's already included as 261 // first arg in r.argNodes.) 262 numArgs++ 263 } 264 off = dvarint(x, off, int64(numArgs)) 265 if r.rcvrNode != nil { 266 off = dvarint(x, off, -r.rcvrNode.Xoffset) 267 off = dvarint(x, off, s.config.PtrSize) 268 off = dvarint(x, off, 0) 269 } 270 for j, arg := range r.argNodes { 271 f := getParam(r.n, j) 272 off = dvarint(x, off, -arg.Xoffset) 273 off = dvarint(x, off, f.Type.Size()) 274 off = dvarint(x, off, f.Offset) 275 } 276 } 277 } 278 279 // buildssa builds an SSA function for fn. 280 // worker indicates which of the backend workers is doing the processing. 281 func buildssa(fn *Node, worker int) *ssa.Func { 282 name := fn.funcname() 283 printssa := name == ssaDump 284 var astBuf *bytes.Buffer 285 if printssa { 286 astBuf = &bytes.Buffer{} 287 fdumplist(astBuf, "buildssa-enter", fn.Func.Enter) 288 fdumplist(astBuf, "buildssa-body", fn.Nbody) 289 fdumplist(astBuf, "buildssa-exit", fn.Func.Exit) 290 if ssaDumpStdout { 291 fmt.Println("generating SSA for", name) 292 fmt.Print(astBuf.String()) 293 } 294 } 295 296 var s state 297 s.pushLine(fn.Pos) 298 defer s.popLine() 299 300 s.hasdefer = fn.Func.HasDefer() 301 if fn.Func.Pragma&CgoUnsafeArgs != 0 { 302 s.cgoUnsafeArgs = true 303 } 304 305 fe := ssafn{ 306 curfn: fn, 307 log: printssa && ssaDumpStdout, 308 } 309 s.curfn = fn 310 311 s.f = ssa.NewFunc(&fe) 312 s.config = ssaConfig 313 s.f.Type = fn.Type 314 s.f.Config = ssaConfig 315 s.f.Cache = &ssaCaches[worker] 316 s.f.Cache.Reset() 317 s.f.DebugTest = s.f.DebugHashMatch("GOSSAHASH", name) 318 s.f.Name = name 319 s.f.PrintOrHtmlSSA = printssa 320 if fn.Func.Pragma&Nosplit != 0 { 321 s.f.NoSplit = true 322 } 323 s.panics = map[funcLine]*ssa.Block{} 324 s.softFloat = s.config.SoftFloat 325 326 if printssa { 327 s.f.HTMLWriter = ssa.NewHTMLWriter(ssaDumpFile, s.f.Frontend(), name, ssaDumpCFG) 328 // TODO: generate and print a mapping from nodes to values and blocks 329 dumpSourcesColumn(s.f.HTMLWriter, fn) 330 s.f.HTMLWriter.WriteAST("AST", astBuf) 331 } 332 333 // Allocate starting block 334 s.f.Entry = s.f.NewBlock(ssa.BlockPlain) 335 336 // Allocate starting values 337 s.labels = map[string]*ssaLabel{} 338 s.labeledNodes = map[*Node]*ssaLabel{} 339 s.fwdVars = map[*Node]*ssa.Value{} 340 s.startmem = s.entryNewValue0(ssa.OpInitMem, types.TypeMem) 341 342 s.hasOpenDefers = Debug['N'] == 0 && s.hasdefer && !s.curfn.Func.OpenCodedDeferDisallowed() 343 switch { 344 case s.hasOpenDefers && (Ctxt.Flag_shared || Ctxt.Flag_dynlink) && thearch.LinkArch.Name == "386": 345 // Don't support open-coded defers for 386 ONLY when using shared 346 // libraries, because there is extra code (added by rewriteToUseGot()) 347 // preceding the deferreturn/ret code that is generated by gencallret() 348 // that we don't track correctly. 349 s.hasOpenDefers = false 350 } 351 if s.hasOpenDefers && s.curfn.Func.Exit.Len() > 0 { 352 // Skip doing open defers if there is any extra exit code (likely 353 // copying heap-allocated return values or race detection), since 354 // we will not generate that code in the case of the extra 355 // deferreturn/ret segment. 356 s.hasOpenDefers = false 357 } 358 if s.hasOpenDefers && 359 s.curfn.Func.numReturns*s.curfn.Func.numDefers > 15 { 360 // Since we are generating defer calls at every exit for 361 // open-coded defers, skip doing open-coded defers if there are 362 // too many returns (especially if there are multiple defers). 363 // Open-coded defers are most important for improving performance 364 // for smaller functions (which don't have many returns). 365 s.hasOpenDefers = false 366 } 367 368 s.sp = s.entryNewValue0(ssa.OpSP, types.Types[TUINTPTR]) // TODO: use generic pointer type (unsafe.Pointer?) instead 369 s.sb = s.entryNewValue0(ssa.OpSB, types.Types[TUINTPTR]) 370 371 s.startBlock(s.f.Entry) 372 s.vars[&memVar] = s.startmem 373 if s.hasOpenDefers { 374 // Create the deferBits variable and stack slot. deferBits is a 375 // bitmask showing which of the open-coded defers in this function 376 // have been activated. 377 deferBitsTemp := tempAt(src.NoXPos, s.curfn, types.Types[TUINT8]) 378 s.deferBitsTemp = deferBitsTemp 379 // For this value, AuxInt is initialized to zero by default 380 startDeferBits := s.entryNewValue0(ssa.OpConst8, types.Types[TUINT8]) 381 s.vars[&deferBitsVar] = startDeferBits 382 s.deferBitsAddr = s.addr(deferBitsTemp, false) 383 s.store(types.Types[TUINT8], s.deferBitsAddr, startDeferBits) 384 // Make sure that the deferBits stack slot is kept alive (for use 385 // by panics) and stores to deferBits are not eliminated, even if 386 // all checking code on deferBits in the function exit can be 387 // eliminated, because the defer statements were all 388 // unconditional. 389 s.vars[&memVar] = s.newValue1Apos(ssa.OpVarLive, types.TypeMem, deferBitsTemp, s.mem(), false) 390 } 391 392 // Generate addresses of local declarations 393 s.decladdrs = map[*Node]*ssa.Value{} 394 for _, n := range fn.Func.Dcl { 395 switch n.Class() { 396 case PPARAM, PPARAMOUT: 397 s.decladdrs[n] = s.entryNewValue2A(ssa.OpLocalAddr, types.NewPtr(n.Type), n, s.sp, s.startmem) 398 if n.Class() == PPARAMOUT && s.canSSA(n) { 399 // Save ssa-able PPARAMOUT variables so we can 400 // store them back to the stack at the end of 401 // the function. 402 s.returns = append(s.returns, n) 403 } 404 case PAUTO: 405 // processed at each use, to prevent Addr coming 406 // before the decl. 407 case PAUTOHEAP: 408 // moved to heap - already handled by frontend 409 case PFUNC: 410 // local function - already handled by frontend 411 default: 412 s.Fatalf("local variable with class %v unimplemented", n.Class()) 413 } 414 } 415 416 // Populate SSAable arguments. 417 for _, n := range fn.Func.Dcl { 418 if n.Class() == PPARAM && s.canSSA(n) { 419 v := s.newValue0A(ssa.OpArg, n.Type, n) 420 s.vars[n] = v 421 s.addNamedValue(n, v) // This helps with debugging information, not needed for compilation itself. 422 } 423 } 424 425 // Convert the AST-based IR to the SSA-based IR 426 s.stmtList(fn.Func.Enter) 427 s.stmtList(fn.Nbody) 428 429 // fallthrough to exit 430 if s.curBlock != nil { 431 s.pushLine(fn.Func.Endlineno) 432 s.exit() 433 s.popLine() 434 } 435 436 for _, b := range s.f.Blocks { 437 if b.Pos != src.NoXPos { 438 s.updateUnsetPredPos(b) 439 } 440 } 441 442 s.insertPhis() 443 444 // Main call to ssa package to compile function 445 ssa.Compile(s.f) 446 447 if s.hasOpenDefers { 448 s.emitOpenDeferInfo() 449 } 450 451 return s.f 452 } 453 454 func dumpSourcesColumn(writer *ssa.HTMLWriter, fn *Node) { 455 // Read sources of target function fn. 456 fname := Ctxt.PosTable.Pos(fn.Pos).Filename() 457 targetFn, err := readFuncLines(fname, fn.Pos.Line(), fn.Func.Endlineno.Line()) 458 if err != nil { 459 writer.Logger.Logf("cannot read sources for function %v: %v", fn, err) 460 } 461 462 // Read sources of inlined functions. 463 var inlFns []*ssa.FuncLines 464 for _, fi := range ssaDumpInlined { 465 var elno src.XPos 466 if fi.Name.Defn == nil { 467 // Endlineno is filled from exported data. 468 elno = fi.Func.Endlineno 469 } else { 470 elno = fi.Name.Defn.Func.Endlineno 471 } 472 fname := Ctxt.PosTable.Pos(fi.Pos).Filename() 473 fnLines, err := readFuncLines(fname, fi.Pos.Line(), elno.Line()) 474 if err != nil { 475 writer.Logger.Logf("cannot read sources for function %v: %v", fi, err) 476 continue 477 } 478 inlFns = append(inlFns, fnLines) 479 } 480 481 sort.Sort(ssa.ByTopo(inlFns)) 482 if targetFn != nil { 483 inlFns = append([]*ssa.FuncLines{targetFn}, inlFns...) 484 } 485 486 writer.WriteSources("sources", inlFns) 487 } 488 489 func readFuncLines(file string, start, end uint) (*ssa.FuncLines, error) { 490 f, err := os.Open(os.ExpandEnv(file)) 491 if err != nil { 492 return nil, err 493 } 494 defer f.Close() 495 var lines []string 496 ln := uint(1) 497 scanner := bufio.NewScanner(f) 498 for scanner.Scan() && ln <= end { 499 if ln >= start { 500 lines = append(lines, scanner.Text()) 501 } 502 ln++ 503 } 504 return &ssa.FuncLines{Filename: file, StartLineno: start, Lines: lines}, nil 505 } 506 507 // updateUnsetPredPos propagates the earliest-value position information for b 508 // towards all of b's predecessors that need a position, and recurs on that 509 // predecessor if its position is updated. B should have a non-empty position. 510 func (s *state) updateUnsetPredPos(b *ssa.Block) { 511 if b.Pos == src.NoXPos { 512 s.Fatalf("Block %s should have a position", b) 513 } 514 bestPos := src.NoXPos 515 for _, e := range b.Preds { 516 p := e.Block() 517 if !p.LackingPos() { 518 continue 519 } 520 if bestPos == src.NoXPos { 521 bestPos = b.Pos 522 for _, v := range b.Values { 523 if v.LackingPos() { 524 continue 525 } 526 if v.Pos != src.NoXPos { 527 // Assume values are still in roughly textual order; 528 // TODO: could also seek minimum position? 529 bestPos = v.Pos 530 break 531 } 532 } 533 } 534 p.Pos = bestPos 535 s.updateUnsetPredPos(p) // We do not expect long chains of these, thus recursion is okay. 536 } 537 } 538 539 // Information about each open-coded defer. 540 type openDeferInfo struct { 541 // The ODEFER node representing the function call of the defer 542 n *Node 543 // If defer call is closure call, the address of the argtmp where the 544 // closure is stored. 545 closure *ssa.Value 546 // The node representing the argtmp where the closure is stored - used for 547 // function, method, or interface call, to store a closure that panic 548 // processing can use for this defer. 549 closureNode *Node 550 // If defer call is interface call, the address of the argtmp where the 551 // receiver is stored 552 rcvr *ssa.Value 553 // The node representing the argtmp where the receiver is stored 554 rcvrNode *Node 555 // The addresses of the argtmps where the evaluated arguments of the defer 556 // function call are stored. 557 argVals []*ssa.Value 558 // The nodes representing the argtmps where the args of the defer are stored 559 argNodes []*Node 560 } 561 562 type state struct { 563 // configuration (arch) information 564 config *ssa.Config 565 566 // function we're building 567 f *ssa.Func 568 569 // Node for function 570 curfn *Node 571 572 // labels and labeled control flow nodes (OFOR, OFORUNTIL, OSWITCH, OSELECT) in f 573 labels map[string]*ssaLabel 574 labeledNodes map[*Node]*ssaLabel 575 576 // unlabeled break and continue statement tracking 577 breakTo *ssa.Block // current target for plain break statement 578 continueTo *ssa.Block // current target for plain continue statement 579 580 // current location where we're interpreting the AST 581 curBlock *ssa.Block 582 583 // variable assignments in the current block (map from variable symbol to ssa value) 584 // *Node is the unique identifier (an ONAME Node) for the variable. 585 // TODO: keep a single varnum map, then make all of these maps slices instead? 586 vars map[*Node]*ssa.Value 587 588 // fwdVars are variables that are used before they are defined in the current block. 589 // This map exists just to coalesce multiple references into a single FwdRef op. 590 // *Node is the unique identifier (an ONAME Node) for the variable. 591 fwdVars map[*Node]*ssa.Value 592 593 // all defined variables at the end of each block. Indexed by block ID. 594 defvars []map[*Node]*ssa.Value 595 596 // addresses of PPARAM and PPARAMOUT variables. 597 decladdrs map[*Node]*ssa.Value 598 599 // starting values. Memory, stack pointer, and globals pointer 600 startmem *ssa.Value 601 sp *ssa.Value 602 sb *ssa.Value 603 // value representing address of where deferBits autotmp is stored 604 deferBitsAddr *ssa.Value 605 deferBitsTemp *Node 606 607 // line number stack. The current line number is top of stack 608 line []src.XPos 609 // the last line number processed; it may have been popped 610 lastPos src.XPos 611 612 // list of panic calls by function name and line number. 613 // Used to deduplicate panic calls. 614 panics map[funcLine]*ssa.Block 615 616 // list of PPARAMOUT (return) variables. 617 returns []*Node 618 619 cgoUnsafeArgs bool 620 hasdefer bool // whether the function contains a defer statement 621 softFloat bool 622 hasOpenDefers bool // whether we are doing open-coded defers 623 624 // If doing open-coded defers, list of info about the defer calls in 625 // scanning order. Hence, at exit we should run these defers in reverse 626 // order of this list 627 openDefers []*openDeferInfo 628 // For open-coded defers, this is the beginning and end blocks of the last 629 // defer exit code that we have generated so far. We use these to share 630 // code between exits if the shareDeferExits option (disabled by default) 631 // is on. 632 lastDeferExit *ssa.Block // Entry block of last defer exit code we generated 633 lastDeferFinalBlock *ssa.Block // Final block of last defer exit code we generated 634 lastDeferCount int // Number of defers encountered at that point 635 } 636 637 type funcLine struct { 638 f *obj.LSym 639 base *src.PosBase 640 line uint 641 } 642 643 type ssaLabel struct { 644 target *ssa.Block // block identified by this label 645 breakTarget *ssa.Block // block to break to in control flow node identified by this label 646 continueTarget *ssa.Block // block to continue to in control flow node identified by this label 647 } 648 649 // label returns the label associated with sym, creating it if necessary. 650 func (s *state) label(sym *types.Sym) *ssaLabel { 651 lab := s.labels[sym.Name] 652 if lab == nil { 653 lab = new(ssaLabel) 654 s.labels[sym.Name] = lab 655 } 656 return lab 657 } 658 659 func (s *state) Logf(msg string, args ...interface{}) { s.f.Logf(msg, args...) } 660 func (s *state) Log() bool { return s.f.Log() } 661 func (s *state) Fatalf(msg string, args ...interface{}) { 662 s.f.Frontend().Fatalf(s.peekPos(), msg, args...) 663 } 664 func (s *state) Warnl(pos src.XPos, msg string, args ...interface{}) { s.f.Warnl(pos, msg, args...) } 665 func (s *state) Debug_checknil() bool { return s.f.Frontend().Debug_checknil() } 666 667 var ( 668 // dummy node for the memory variable 669 memVar = Node{Op: ONAME, Sym: &types.Sym{Name: "mem"}} 670 671 // dummy nodes for temporary variables 672 ptrVar = Node{Op: ONAME, Sym: &types.Sym{Name: "ptr"}} 673 lenVar = Node{Op: ONAME, Sym: &types.Sym{Name: "len"}} 674 newlenVar = Node{Op: ONAME, Sym: &types.Sym{Name: "newlen"}} 675 capVar = Node{Op: ONAME, Sym: &types.Sym{Name: "cap"}} 676 typVar = Node{Op: ONAME, Sym: &types.Sym{Name: "typ"}} 677 okVar = Node{Op: ONAME, Sym: &types.Sym{Name: "ok"}} 678 deferBitsVar = Node{Op: ONAME, Sym: &types.Sym{Name: "deferBits"}} 679 ) 680 681 // startBlock sets the current block we're generating code in to b. 682 func (s *state) startBlock(b *ssa.Block) { 683 if s.curBlock != nil { 684 s.Fatalf("starting block %v when block %v has not ended", b, s.curBlock) 685 } 686 s.curBlock = b 687 s.vars = map[*Node]*ssa.Value{} 688 for n := range s.fwdVars { 689 delete(s.fwdVars, n) 690 } 691 } 692 693 // endBlock marks the end of generating code for the current block. 694 // Returns the (former) current block. Returns nil if there is no current 695 // block, i.e. if no code flows to the current execution point. 696 func (s *state) endBlock() *ssa.Block { 697 b := s.curBlock 698 if b == nil { 699 return nil 700 } 701 for len(s.defvars) <= int(b.ID) { 702 s.defvars = append(s.defvars, nil) 703 } 704 s.defvars[b.ID] = s.vars 705 s.curBlock = nil 706 s.vars = nil 707 if b.LackingPos() { 708 // Empty plain blocks get the line of their successor (handled after all blocks created), 709 // except for increment blocks in For statements (handled in ssa conversion of OFOR), 710 // and for blocks ending in GOTO/BREAK/CONTINUE. 711 b.Pos = src.NoXPos 712 } else { 713 b.Pos = s.lastPos 714 } 715 return b 716 } 717 718 // pushLine pushes a line number on the line number stack. 719 func (s *state) pushLine(line src.XPos) { 720 if !line.IsKnown() { 721 // the frontend may emit node with line number missing, 722 // use the parent line number in this case. 723 line = s.peekPos() 724 if Debug['K'] != 0 { 725 Warn("buildssa: unknown position (line 0)") 726 } 727 } else { 728 s.lastPos = line 729 } 730 731 s.line = append(s.line, line) 732 } 733 734 // popLine pops the top of the line number stack. 735 func (s *state) popLine() { 736 s.line = s.line[:len(s.line)-1] 737 } 738 739 // peekPos peeks the top of the line number stack. 740 func (s *state) peekPos() src.XPos { 741 return s.line[len(s.line)-1] 742 } 743 744 // newValue0 adds a new value with no arguments to the current block. 745 func (s *state) newValue0(op ssa.Op, t *types.Type) *ssa.Value { 746 return s.curBlock.NewValue0(s.peekPos(), op, t) 747 } 748 749 // newValue0A adds a new value with no arguments and an aux value to the current block. 750 func (s *state) newValue0A(op ssa.Op, t *types.Type, aux interface{}) *ssa.Value { 751 return s.curBlock.NewValue0A(s.peekPos(), op, t, aux) 752 } 753 754 // newValue0I adds a new value with no arguments and an auxint value to the current block. 755 func (s *state) newValue0I(op ssa.Op, t *types.Type, auxint int64) *ssa.Value { 756 return s.curBlock.NewValue0I(s.peekPos(), op, t, auxint) 757 } 758 759 // newValue1 adds a new value with one argument to the current block. 760 func (s *state) newValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value { 761 return s.curBlock.NewValue1(s.peekPos(), op, t, arg) 762 } 763 764 // newValue1A adds a new value with one argument and an aux value to the current block. 765 func (s *state) newValue1A(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value) *ssa.Value { 766 return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg) 767 } 768 769 // newValue1Apos adds a new value with one argument and an aux value to the current block. 770 // isStmt determines whether the created values may be a statement or not 771 // (i.e., false means never, yes means maybe). 772 func (s *state) newValue1Apos(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value, isStmt bool) *ssa.Value { 773 if isStmt { 774 return s.curBlock.NewValue1A(s.peekPos(), op, t, aux, arg) 775 } 776 return s.curBlock.NewValue1A(s.peekPos().WithNotStmt(), op, t, aux, arg) 777 } 778 779 // newValue1I adds a new value with one argument and an auxint value to the current block. 780 func (s *state) newValue1I(op ssa.Op, t *types.Type, aux int64, arg *ssa.Value) *ssa.Value { 781 return s.curBlock.NewValue1I(s.peekPos(), op, t, aux, arg) 782 } 783 784 // newValue2 adds a new value with two arguments to the current block. 785 func (s *state) newValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value { 786 return s.curBlock.NewValue2(s.peekPos(), op, t, arg0, arg1) 787 } 788 789 // newValue2Apos adds a new value with two arguments and an aux value to the current block. 790 // isStmt determines whether the created values may be a statement or not 791 // (i.e., false means never, yes means maybe). 792 func (s *state) newValue2Apos(op ssa.Op, t *types.Type, aux interface{}, arg0, arg1 *ssa.Value, isStmt bool) *ssa.Value { 793 if isStmt { 794 return s.curBlock.NewValue2A(s.peekPos(), op, t, aux, arg0, arg1) 795 } 796 return s.curBlock.NewValue2A(s.peekPos().WithNotStmt(), op, t, aux, arg0, arg1) 797 } 798 799 // newValue2I adds a new value with two arguments and an auxint value to the current block. 800 func (s *state) newValue2I(op ssa.Op, t *types.Type, aux int64, arg0, arg1 *ssa.Value) *ssa.Value { 801 return s.curBlock.NewValue2I(s.peekPos(), op, t, aux, arg0, arg1) 802 } 803 804 // newValue3 adds a new value with three arguments to the current block. 805 func (s *state) newValue3(op ssa.Op, t *types.Type, arg0, arg1, arg2 *ssa.Value) *ssa.Value { 806 return s.curBlock.NewValue3(s.peekPos(), op, t, arg0, arg1, arg2) 807 } 808 809 // newValue3I adds a new value with three arguments and an auxint value to the current block. 810 func (s *state) newValue3I(op ssa.Op, t *types.Type, aux int64, arg0, arg1, arg2 *ssa.Value) *ssa.Value { 811 return s.curBlock.NewValue3I(s.peekPos(), op, t, aux, arg0, arg1, arg2) 812 } 813 814 // newValue3A adds a new value with three arguments and an aux value to the current block. 815 func (s *state) newValue3A(op ssa.Op, t *types.Type, aux interface{}, arg0, arg1, arg2 *ssa.Value) *ssa.Value { 816 return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2) 817 } 818 819 // newValue3Apos adds a new value with three arguments and an aux value to the current block. 820 // isStmt determines whether the created values may be a statement or not 821 // (i.e., false means never, yes means maybe). 822 func (s *state) newValue3Apos(op ssa.Op, t *types.Type, aux interface{}, arg0, arg1, arg2 *ssa.Value, isStmt bool) *ssa.Value { 823 if isStmt { 824 return s.curBlock.NewValue3A(s.peekPos(), op, t, aux, arg0, arg1, arg2) 825 } 826 return s.curBlock.NewValue3A(s.peekPos().WithNotStmt(), op, t, aux, arg0, arg1, arg2) 827 } 828 829 // newValue4 adds a new value with four arguments to the current block. 830 func (s *state) newValue4(op ssa.Op, t *types.Type, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value { 831 return s.curBlock.NewValue4(s.peekPos(), op, t, arg0, arg1, arg2, arg3) 832 } 833 834 // newValue4 adds a new value with four arguments and an auxint value to the current block. 835 func (s *state) newValue4I(op ssa.Op, t *types.Type, aux int64, arg0, arg1, arg2, arg3 *ssa.Value) *ssa.Value { 836 return s.curBlock.NewValue4I(s.peekPos(), op, t, aux, arg0, arg1, arg2, arg3) 837 } 838 839 // entryNewValue0 adds a new value with no arguments to the entry block. 840 func (s *state) entryNewValue0(op ssa.Op, t *types.Type) *ssa.Value { 841 return s.f.Entry.NewValue0(src.NoXPos, op, t) 842 } 843 844 // entryNewValue0A adds a new value with no arguments and an aux value to the entry block. 845 func (s *state) entryNewValue0A(op ssa.Op, t *types.Type, aux interface{}) *ssa.Value { 846 return s.f.Entry.NewValue0A(src.NoXPos, op, t, aux) 847 } 848 849 // entryNewValue1 adds a new value with one argument to the entry block. 850 func (s *state) entryNewValue1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value { 851 return s.f.Entry.NewValue1(src.NoXPos, op, t, arg) 852 } 853 854 // entryNewValue1 adds a new value with one argument and an auxint value to the entry block. 855 func (s *state) entryNewValue1I(op ssa.Op, t *types.Type, auxint int64, arg *ssa.Value) *ssa.Value { 856 return s.f.Entry.NewValue1I(src.NoXPos, op, t, auxint, arg) 857 } 858 859 // entryNewValue1A adds a new value with one argument and an aux value to the entry block. 860 func (s *state) entryNewValue1A(op ssa.Op, t *types.Type, aux interface{}, arg *ssa.Value) *ssa.Value { 861 return s.f.Entry.NewValue1A(src.NoXPos, op, t, aux, arg) 862 } 863 864 // entryNewValue2 adds a new value with two arguments to the entry block. 865 func (s *state) entryNewValue2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value { 866 return s.f.Entry.NewValue2(src.NoXPos, op, t, arg0, arg1) 867 } 868 869 // entryNewValue2A adds a new value with two arguments and an aux value to the entry block. 870 func (s *state) entryNewValue2A(op ssa.Op, t *types.Type, aux interface{}, arg0, arg1 *ssa.Value) *ssa.Value { 871 return s.f.Entry.NewValue2A(src.NoXPos, op, t, aux, arg0, arg1) 872 } 873 874 // const* routines add a new const value to the entry block. 875 func (s *state) constSlice(t *types.Type) *ssa.Value { 876 return s.f.ConstSlice(t) 877 } 878 func (s *state) constInterface(t *types.Type) *ssa.Value { 879 return s.f.ConstInterface(t) 880 } 881 func (s *state) constNil(t *types.Type) *ssa.Value { return s.f.ConstNil(t) } 882 func (s *state) constEmptyString(t *types.Type) *ssa.Value { 883 return s.f.ConstEmptyString(t) 884 } 885 func (s *state) constBool(c bool) *ssa.Value { 886 return s.f.ConstBool(types.Types[TBOOL], c) 887 } 888 func (s *state) constInt8(t *types.Type, c int8) *ssa.Value { 889 return s.f.ConstInt8(t, c) 890 } 891 func (s *state) constInt16(t *types.Type, c int16) *ssa.Value { 892 return s.f.ConstInt16(t, c) 893 } 894 func (s *state) constInt32(t *types.Type, c int32) *ssa.Value { 895 return s.f.ConstInt32(t, c) 896 } 897 func (s *state) constInt64(t *types.Type, c int64) *ssa.Value { 898 return s.f.ConstInt64(t, c) 899 } 900 func (s *state) constFloat32(t *types.Type, c float64) *ssa.Value { 901 return s.f.ConstFloat32(t, c) 902 } 903 func (s *state) constFloat64(t *types.Type, c float64) *ssa.Value { 904 return s.f.ConstFloat64(t, c) 905 } 906 func (s *state) constInt(t *types.Type, c int64) *ssa.Value { 907 if s.config.PtrSize == 8 { 908 return s.constInt64(t, c) 909 } 910 if int64(int32(c)) != c { 911 s.Fatalf("integer constant too big %d", c) 912 } 913 return s.constInt32(t, int32(c)) 914 } 915 func (s *state) constOffPtrSP(t *types.Type, c int64) *ssa.Value { 916 return s.f.ConstOffPtrSP(t, c, s.sp) 917 } 918 919 // newValueOrSfCall* are wrappers around newValue*, which may create a call to a 920 // soft-float runtime function instead (when emitting soft-float code). 921 func (s *state) newValueOrSfCall1(op ssa.Op, t *types.Type, arg *ssa.Value) *ssa.Value { 922 if s.softFloat { 923 if c, ok := s.sfcall(op, arg); ok { 924 return c 925 } 926 } 927 return s.newValue1(op, t, arg) 928 } 929 func (s *state) newValueOrSfCall2(op ssa.Op, t *types.Type, arg0, arg1 *ssa.Value) *ssa.Value { 930 if s.softFloat { 931 if c, ok := s.sfcall(op, arg0, arg1); ok { 932 return c 933 } 934 } 935 return s.newValue2(op, t, arg0, arg1) 936 } 937 938 func (s *state) instrument(t *types.Type, addr *ssa.Value, wr bool) { 939 if !s.curfn.Func.InstrumentBody() { 940 return 941 } 942 943 w := t.Size() 944 if w == 0 { 945 return // can't race on zero-sized things 946 } 947 948 if ssa.IsSanitizerSafeAddr(addr) { 949 return 950 } 951 952 var fn *obj.LSym 953 needWidth := false 954 955 if flag_msan { 956 fn = msanread 957 if wr { 958 fn = msanwrite 959 } 960 needWidth = true 961 } else if flag_race && t.NumComponents(types.CountBlankFields) > 1 { 962 // for composite objects we have to write every address 963 // because a write might happen to any subobject. 964 // composites with only one element don't have subobjects, though. 965 fn = racereadrange 966 if wr { 967 fn = racewriterange 968 } 969 needWidth = true 970 } else if flag_race { 971 // for non-composite objects we can write just the start 972 // address, as any write must write the first byte. 973 fn = raceread 974 if wr { 975 fn = racewrite 976 } 977 } else { 978 panic("unreachable") 979 } 980 981 args := []*ssa.Value{addr} 982 if needWidth { 983 args = append(args, s.constInt(types.Types[TUINTPTR], w)) 984 } 985 s.rtcall(fn, true, nil, args...) 986 } 987 988 func (s *state) load(t *types.Type, src *ssa.Value) *ssa.Value { 989 s.instrument(t, src, false) 990 return s.rawLoad(t, src) 991 } 992 993 func (s *state) rawLoad(t *types.Type, src *ssa.Value) *ssa.Value { 994 return s.newValue2(ssa.OpLoad, t, src, s.mem()) 995 } 996 997 func (s *state) store(t *types.Type, dst, val *ssa.Value) { 998 s.vars[&memVar] = s.newValue3A(ssa.OpStore, types.TypeMem, t, dst, val, s.mem()) 999 } 1000 1001 func (s *state) zero(t *types.Type, dst *ssa.Value) { 1002 s.instrument(t, dst, true) 1003 store := s.newValue2I(ssa.OpZero, types.TypeMem, t.Size(), dst, s.mem()) 1004 store.Aux = t 1005 s.vars[&memVar] = store 1006 } 1007 1008 func (s *state) move(t *types.Type, dst, src *ssa.Value) { 1009 s.instrument(t, src, false) 1010 s.instrument(t, dst, true) 1011 store := s.newValue3I(ssa.OpMove, types.TypeMem, t.Size(), dst, src, s.mem()) 1012 store.Aux = t 1013 s.vars[&memVar] = store 1014 } 1015 1016 // stmtList converts the statement list n to SSA and adds it to s. 1017 func (s *state) stmtList(l Nodes) { 1018 for _, n := range l.Slice() { 1019 s.stmt(n) 1020 } 1021 } 1022 1023 // stmt converts the statement n to SSA and adds it to s. 1024 func (s *state) stmt(n *Node) { 1025 if !(n.Op == OVARKILL || n.Op == OVARLIVE || n.Op == OVARDEF) { 1026 // OVARKILL, OVARLIVE, and OVARDEF are invisible to the programmer, so we don't use their line numbers to avoid confusion in debugging. 1027 s.pushLine(n.Pos) 1028 defer s.popLine() 1029 } 1030 1031 // If s.curBlock is nil, and n isn't a label (which might have an associated goto somewhere), 1032 // then this code is dead. Stop here. 1033 if s.curBlock == nil && n.Op != OLABEL { 1034 return 1035 } 1036 1037 s.stmtList(n.Ninit) 1038 switch n.Op { 1039 1040 case OBLOCK: 1041 s.stmtList(n.List) 1042 1043 // No-ops 1044 case OEMPTY, ODCLCONST, ODCLTYPE, OFALL: 1045 1046 // Expression statements 1047 case OCALLFUNC: 1048 if isIntrinsicCall(n) { 1049 s.intrinsicCall(n) 1050 return 1051 } 1052 fallthrough 1053 1054 case OCALLMETH, OCALLINTER: 1055 s.call(n, callNormal) 1056 if n.Op == OCALLFUNC && n.Left.Op == ONAME && n.Left.Class() == PFUNC { 1057 if fn := n.Left.Sym.Name; compiling_runtime && fn == "throw" || 1058 n.Left.Sym.Pkg == Runtimepkg && (fn == "throwinit" || fn == "gopanic" || fn == "panicwrap" || fn == "block" || fn == "panicmakeslicelen" || fn == "panicmakeslicecap") { 1059 m := s.mem() 1060 b := s.endBlock() 1061 b.Kind = ssa.BlockExit 1062 b.SetControl(m) 1063 // TODO: never rewrite OPANIC to OCALLFUNC in the 1064 // first place. Need to wait until all backends 1065 // go through SSA. 1066 } 1067 } 1068 case ODEFER: 1069 if Debug_defer > 0 { 1070 var defertype string 1071 if s.hasOpenDefers { 1072 defertype = "open-coded" 1073 } else if n.Esc == EscNever { 1074 defertype = "stack-allocated" 1075 } else { 1076 defertype = "heap-allocated" 1077 } 1078 Warnl(n.Pos, "%s defer", defertype) 1079 } 1080 if s.hasOpenDefers { 1081 s.openDeferRecord(n.Left) 1082 } else { 1083 d := callDefer 1084 if n.Esc == EscNever { 1085 d = callDeferStack 1086 } 1087 s.call(n.Left, d) 1088 } 1089 case OGO: 1090 s.call(n.Left, callGo) 1091 1092 case OAS2DOTTYPE: 1093 res, resok := s.dottype(n.Right, true) 1094 deref := false 1095 if !canSSAType(n.Right.Type) { 1096 if res.Op != ssa.OpLoad { 1097 s.Fatalf("dottype of non-load") 1098 } 1099 mem := s.mem() 1100 if mem.Op == ssa.OpVarKill { 1101 mem = mem.Args[0] 1102 } 1103 if res.Args[1] != mem { 1104 s.Fatalf("memory no longer live from 2-result dottype load") 1105 } 1106 deref = true 1107 res = res.Args[0] 1108 } 1109 s.assign(n.List.First(), res, deref, 0) 1110 s.assign(n.List.Second(), resok, false, 0) 1111 return 1112 1113 case OAS2FUNC: 1114 // We come here only when it is an intrinsic call returning two values. 1115 if !isIntrinsicCall(n.Right) { 1116 s.Fatalf("non-intrinsic AS2FUNC not expanded %v", n.Right) 1117 } 1118 v := s.intrinsicCall(n.Right) 1119 v1 := s.newValue1(ssa.OpSelect0, n.List.First().Type, v) 1120 v2 := s.newValue1(ssa.OpSelect1, n.List.Second().Type, v) 1121 s.assign(n.List.First(), v1, false, 0) 1122 s.assign(n.List.Second(), v2, false, 0) 1123 return 1124 1125 case ODCL: 1126 if n.Left.Class() == PAUTOHEAP { 1127 s.Fatalf("DCL %v", n) 1128 } 1129 1130 case OLABEL: 1131 sym := n.Sym 1132 lab := s.label(sym) 1133 1134 // Associate label with its control flow node, if any 1135 if ctl := n.labeledControl(); ctl != nil { 1136 s.labeledNodes[ctl] = lab 1137 } 1138 1139 // The label might already have a target block via a goto. 1140 if lab.target == nil { 1141 lab.target = s.f.NewBlock(ssa.BlockPlain) 1142 } 1143 1144 // Go to that label. 1145 // (We pretend "label:" is preceded by "goto label", unless the predecessor is unreachable.) 1146 if s.curBlock != nil { 1147 b := s.endBlock() 1148 b.AddEdgeTo(lab.target) 1149 } 1150 s.startBlock(lab.target) 1151 1152 case OGOTO: 1153 sym := n.Sym 1154 1155 lab := s.label(sym) 1156 if lab.target == nil { 1157 lab.target = s.f.NewBlock(ssa.BlockPlain) 1158 } 1159 1160 b := s.endBlock() 1161 b.Pos = s.lastPos.WithIsStmt() // Do this even if b is an empty block. 1162 b.AddEdgeTo(lab.target) 1163 1164 case OAS: 1165 if n.Left == n.Right && n.Left.Op == ONAME { 1166 // An x=x assignment. No point in doing anything 1167 // here. In addition, skipping this assignment 1168 // prevents generating: 1169 // VARDEF x 1170 // COPY x -> x 1171 // which is bad because x is incorrectly considered 1172 // dead before the vardef. See issue #14904. 1173 return 1174 } 1175 1176 // Evaluate RHS. 1177 rhs := n.Right 1178 if rhs != nil { 1179 switch rhs.Op { 1180 case OSTRUCTLIT, OARRAYLIT, OSLICELIT: 1181 // All literals with nonzero fields have already been 1182 // rewritten during walk. Any that remain are just T{} 1183 // or equivalents. Use the zero value. 1184 if !isZero(rhs) { 1185 s.Fatalf("literal with nonzero value in SSA: %v", rhs) 1186 } 1187 rhs = nil 1188 case OAPPEND: 1189 // Check whether we're writing the result of an append back to the same slice. 1190 // If so, we handle it specially to avoid write barriers on the fast 1191 // (non-growth) path. 1192 if !samesafeexpr(n.Left, rhs.List.First()) || Debug['N'] != 0 { 1193 break 1194 } 1195 // If the slice can be SSA'd, it'll be on the stack, 1196 // so there will be no write barriers, 1197 // so there's no need to attempt to prevent them. 1198 if s.canSSA(n.Left) { 1199 if Debug_append > 0 { // replicating old diagnostic message 1200 Warnl(n.Pos, "append: len-only update (in local slice)") 1201 } 1202 break 1203 } 1204 if Debug_append > 0 { 1205 Warnl(n.Pos, "append: len-only update") 1206 } 1207 s.append(rhs, true) 1208 return 1209 } 1210 } 1211 1212 if n.Left.isBlank() { 1213 // _ = rhs 1214 // Just evaluate rhs for side-effects. 1215 if rhs != nil { 1216 s.expr(rhs) 1217 } 1218 return 1219 } 1220 1221 var t *types.Type 1222 if n.Right != nil { 1223 t = n.Right.Type 1224 } else { 1225 t = n.Left.Type 1226 } 1227 1228 var r *ssa.Value 1229 deref := !canSSAType(t) 1230 if deref { 1231 if rhs == nil { 1232 r = nil // Signal assign to use OpZero. 1233 } else { 1234 r = s.addr(rhs, false) 1235 } 1236 } else { 1237 if rhs == nil { 1238 r = s.zeroVal(t) 1239 } else { 1240 r = s.expr(rhs) 1241 } 1242 } 1243 1244 var skip skipMask 1245 if rhs != nil && (rhs.Op == OSLICE || rhs.Op == OSLICE3 || rhs.Op == OSLICESTR) && samesafeexpr(rhs.Left, n.Left) { 1246 // We're assigning a slicing operation back to its source. 1247 // Don't write back fields we aren't changing. See issue #14855. 1248 i, j, k := rhs.SliceBounds() 1249 if i != nil && (i.Op == OLITERAL && i.Val().Ctype() == CTINT && i.Int64() == 0) { 1250 // [0:...] is the same as [:...] 1251 i = nil 1252 } 1253 // TODO: detect defaults for len/cap also. 1254 // Currently doesn't really work because (*p)[:len(*p)] appears here as: 1255 // tmp = len(*p) 1256 // (*p)[:tmp] 1257 //if j != nil && (j.Op == OLEN && samesafeexpr(j.Left, n.Left)) { 1258 // j = nil 1259 //} 1260 //if k != nil && (k.Op == OCAP && samesafeexpr(k.Left, n.Left)) { 1261 // k = nil 1262 //} 1263 if i == nil { 1264 skip |= skipPtr 1265 if j == nil { 1266 skip |= skipLen 1267 } 1268 if k == nil { 1269 skip |= skipCap 1270 } 1271 } 1272 } 1273 1274 s.assign(n.Left, r, deref, skip) 1275 1276 case OIF: 1277 bEnd := s.f.NewBlock(ssa.BlockPlain) 1278 var likely int8 1279 if n.Likely() { 1280 likely = 1 1281 } 1282 var bThen *ssa.Block 1283 if n.Nbody.Len() != 0 { 1284 bThen = s.f.NewBlock(ssa.BlockPlain) 1285 } else { 1286 bThen = bEnd 1287 } 1288 var bElse *ssa.Block 1289 if n.Rlist.Len() != 0 { 1290 bElse = s.f.NewBlock(ssa.BlockPlain) 1291 } else { 1292 bElse = bEnd 1293 } 1294 s.condBranch(n.Left, bThen, bElse, likely) 1295 1296 if n.Nbody.Len() != 0 { 1297 s.startBlock(bThen) 1298 s.stmtList(n.Nbody) 1299 if b := s.endBlock(); b != nil { 1300 b.AddEdgeTo(bEnd) 1301 } 1302 } 1303 if n.Rlist.Len() != 0 { 1304 s.startBlock(bElse) 1305 s.stmtList(n.Rlist) 1306 if b := s.endBlock(); b != nil { 1307 b.AddEdgeTo(bEnd) 1308 } 1309 } 1310 s.startBlock(bEnd) 1311 1312 case ORETURN: 1313 s.stmtList(n.List) 1314 b := s.exit() 1315 b.Pos = s.lastPos.WithIsStmt() 1316 1317 case ORETJMP: 1318 s.stmtList(n.List) 1319 b := s.exit() 1320 b.Kind = ssa.BlockRetJmp // override BlockRet 1321 b.Aux = n.Sym.Linksym() 1322 1323 case OCONTINUE, OBREAK: 1324 var to *ssa.Block 1325 if n.Sym == nil { 1326 // plain break/continue 1327 switch n.Op { 1328 case OCONTINUE: 1329 to = s.continueTo 1330 case OBREAK: 1331 to = s.breakTo 1332 } 1333 } else { 1334 // labeled break/continue; look up the target 1335 sym := n.Sym 1336 lab := s.label(sym) 1337 switch n.Op { 1338 case OCONTINUE: 1339 to = lab.continueTarget 1340 case OBREAK: 1341 to = lab.breakTarget 1342 } 1343 } 1344 1345 b := s.endBlock() 1346 b.Pos = s.lastPos.WithIsStmt() // Do this even if b is an empty block. 1347 b.AddEdgeTo(to) 1348 1349 case OFOR, OFORUNTIL: 1350 // OFOR: for Ninit; Left; Right { Nbody } 1351 // cond (Left); body (Nbody); incr (Right) 1352 // 1353 // OFORUNTIL: for Ninit; Left; Right; List { Nbody } 1354 // => body: { Nbody }; incr: Right; if Left { lateincr: List; goto body }; end: 1355 bCond := s.f.NewBlock(ssa.BlockPlain) 1356 bBody := s.f.NewBlock(ssa.BlockPlain) 1357 bIncr := s.f.NewBlock(ssa.BlockPlain) 1358 bEnd := s.f.NewBlock(ssa.BlockPlain) 1359 1360 // ensure empty for loops have correct position; issue #30167 1361 bBody.Pos = n.Pos 1362 1363 // first, jump to condition test (OFOR) or body (OFORUNTIL) 1364 b := s.endBlock() 1365 if n.Op == OFOR { 1366 b.AddEdgeTo(bCond) 1367 // generate code to test condition 1368 s.startBlock(bCond) 1369 if n.Left != nil { 1370 s.condBranch(n.Left, bBody, bEnd, 1) 1371 } else { 1372 b := s.endBlock() 1373 b.Kind = ssa.BlockPlain 1374 b.AddEdgeTo(bBody) 1375 } 1376 1377 } else { 1378 b.AddEdgeTo(bBody) 1379 } 1380 1381 // set up for continue/break in body 1382 prevContinue := s.continueTo 1383 prevBreak := s.breakTo 1384 s.continueTo = bIncr 1385 s.breakTo = bEnd 1386 lab := s.labeledNodes[n] 1387 if lab != nil { 1388 // labeled for loop 1389 lab.continueTarget = bIncr 1390 lab.breakTarget = bEnd 1391 } 1392 1393 // generate body 1394 s.startBlock(bBody) 1395 s.stmtList(n.Nbody) 1396 1397 // tear down continue/break 1398 s.continueTo = prevContinue 1399 s.breakTo = prevBreak 1400 if lab != nil { 1401 lab.continueTarget = nil 1402 lab.breakTarget = nil 1403 } 1404 1405 // done with body, goto incr 1406 if b := s.endBlock(); b != nil { 1407 b.AddEdgeTo(bIncr) 1408 } 1409 1410 // generate incr (and, for OFORUNTIL, condition) 1411 s.startBlock(bIncr) 1412 if n.Right != nil { 1413 s.stmt(n.Right) 1414 } 1415 if n.Op == OFOR { 1416 if b := s.endBlock(); b != nil { 1417 b.AddEdgeTo(bCond) 1418 // It can happen that bIncr ends in a block containing only VARKILL, 1419 // and that muddles the debugging experience. 1420 if n.Op != OFORUNTIL && b.Pos == src.NoXPos { 1421 b.Pos = bCond.Pos 1422 } 1423 } 1424 } else { 1425 // bCond is unused in OFORUNTIL, so repurpose it. 1426 bLateIncr := bCond 1427 // test condition 1428 s.condBranch(n.Left, bLateIncr, bEnd, 1) 1429 // generate late increment 1430 s.startBlock(bLateIncr) 1431 s.stmtList(n.List) 1432 s.endBlock().AddEdgeTo(bBody) 1433 } 1434 1435 s.startBlock(bEnd) 1436 1437 case OSWITCH, OSELECT: 1438 // These have been mostly rewritten by the front end into their Nbody fields. 1439 // Our main task is to correctly hook up any break statements. 1440 bEnd := s.f.NewBlock(ssa.BlockPlain) 1441 1442 prevBreak := s.breakTo 1443 s.breakTo = bEnd 1444 lab := s.labeledNodes[n] 1445 if lab != nil { 1446 // labeled 1447 lab.breakTarget = bEnd 1448 } 1449 1450 // generate body code 1451 s.stmtList(n.Nbody) 1452 1453 s.breakTo = prevBreak 1454 if lab != nil { 1455 lab.breakTarget = nil 1456 } 1457 1458 // walk adds explicit OBREAK nodes to the end of all reachable code paths. 1459 // If we still have a current block here, then mark it unreachable. 1460 if s.curBlock != nil { 1461 m := s.mem() 1462 b := s.endBlock() 1463 b.Kind = ssa.BlockExit 1464 b.SetControl(m) 1465 } 1466 s.startBlock(bEnd) 1467 1468 case OVARDEF: 1469 if !s.canSSA(n.Left) { 1470 s.vars[&memVar] = s.newValue1Apos(ssa.OpVarDef, types.TypeMem, n.Left, s.mem(), false) 1471 } 1472 case OVARKILL: 1473 // Insert a varkill op to record that a variable is no longer live. 1474 // We only care about liveness info at call sites, so putting the 1475 // varkill in the store chain is enough to keep it correctly ordered 1476 // with respect to call ops. 1477 if !s.canSSA(n.Left) { 1478 s.vars[&memVar] = s.newValue1Apos(ssa.OpVarKill, types.TypeMem, n.Left, s.mem(), false) 1479 } 1480 1481 case OVARLIVE: 1482 // Insert a varlive op to record that a variable is still live. 1483 if !n.Left.Name.Addrtaken() { 1484 s.Fatalf("VARLIVE variable %v must have Addrtaken set", n.Left) 1485 } 1486 switch n.Left.Class() { 1487 case PAUTO, PPARAM, PPARAMOUT: 1488 default: 1489 s.Fatalf("VARLIVE variable %v must be Auto or Arg", n.Left) 1490 } 1491 s.vars[&memVar] = s.newValue1A(ssa.OpVarLive, types.TypeMem, n.Left, s.mem()) 1492 1493 case OCHECKNIL: 1494 p := s.expr(n.Left) 1495 s.nilCheck(p) 1496 1497 case OINLMARK: 1498 s.newValue1I(ssa.OpInlMark, types.TypeVoid, n.Xoffset, s.mem()) 1499 1500 default: 1501 s.Fatalf("unhandled stmt %v", n.Op) 1502 } 1503 } 1504 1505 // If true, share as many open-coded defer exits as possible (with the downside of 1506 // worse line-number information) 1507 const shareDeferExits = false 1508 1509 // exit processes any code that needs to be generated just before returning. 1510 // It returns a BlockRet block that ends the control flow. Its control value 1511 // will be set to the final memory state. 1512 func (s *state) exit() *ssa.Block { 1513 if s.hasdefer { 1514 if s.hasOpenDefers { 1515 if shareDeferExits && s.lastDeferExit != nil && len(s.openDefers) == s.lastDeferCount { 1516 if s.curBlock.Kind != ssa.BlockPlain { 1517 panic("Block for an exit should be BlockPlain") 1518 } 1519 s.curBlock.AddEdgeTo(s.lastDeferExit) 1520 s.endBlock() 1521 return s.lastDeferFinalBlock 1522 } 1523 s.openDeferExit() 1524 } else { 1525 s.rtcall(Deferreturn, true, nil) 1526 } 1527 } 1528 1529 // Run exit code. Typically, this code copies heap-allocated PPARAMOUT 1530 // variables back to the stack. 1531 s.stmtList(s.curfn.Func.Exit) 1532 1533 // Store SSAable PPARAMOUT variables back to stack locations. 1534 for _, n := range s.returns { 1535 addr := s.decladdrs[n] 1536 val := s.variable(n, n.Type) 1537 s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, n, s.mem()) 1538 s.store(n.Type, addr, val) 1539 // TODO: if val is ever spilled, we'd like to use the 1540 // PPARAMOUT slot for spilling it. That won't happen 1541 // currently. 1542 } 1543 1544 // Do actual return. 1545 m := s.mem() 1546 b := s.endBlock() 1547 b.Kind = ssa.BlockRet 1548 b.SetControl(m) 1549 if s.hasdefer && s.hasOpenDefers { 1550 s.lastDeferFinalBlock = b 1551 } 1552 return b 1553 } 1554 1555 type opAndType struct { 1556 op Op 1557 etype types.EType 1558 } 1559 1560 var opToSSA = map[opAndType]ssa.Op{ 1561 opAndType{OADD, TINT8}: ssa.OpAdd8, 1562 opAndType{OADD, TUINT8}: ssa.OpAdd8, 1563 opAndType{OADD, TINT16}: ssa.OpAdd16, 1564 opAndType{OADD, TUINT16}: ssa.OpAdd16, 1565 opAndType{OADD, TINT32}: ssa.OpAdd32, 1566 opAndType{OADD, TUINT32}: ssa.OpAdd32, 1567 opAndType{OADD, TINT64}: ssa.OpAdd64, 1568 opAndType{OADD, TUINT64}: ssa.OpAdd64, 1569 opAndType{OADD, TFLOAT32}: ssa.OpAdd32F, 1570 opAndType{OADD, TFLOAT64}: ssa.OpAdd64F, 1571 1572 opAndType{OSUB, TINT8}: ssa.OpSub8, 1573 opAndType{OSUB, TUINT8}: ssa.OpSub8, 1574 opAndType{OSUB, TINT16}: ssa.OpSub16, 1575 opAndType{OSUB, TUINT16}: ssa.OpSub16, 1576 opAndType{OSUB, TINT32}: ssa.OpSub32, 1577 opAndType{OSUB, TUINT32}: ssa.OpSub32, 1578 opAndType{OSUB, TINT64}: ssa.OpSub64, 1579 opAndType{OSUB, TUINT64}: ssa.OpSub64, 1580 opAndType{OSUB, TFLOAT32}: ssa.OpSub32F, 1581 opAndType{OSUB, TFLOAT64}: ssa.OpSub64F, 1582 1583 opAndType{ONOT, TBOOL}: ssa.OpNot, 1584 1585 opAndType{ONEG, TINT8}: ssa.OpNeg8, 1586 opAndType{ONEG, TUINT8}: ssa.OpNeg8, 1587 opAndType{ONEG, TINT16}: ssa.OpNeg16, 1588 opAndType{ONEG, TUINT16}: ssa.OpNeg16, 1589 opAndType{ONEG, TINT32}: ssa.OpNeg32, 1590 opAndType{ONEG, TUINT32}: ssa.OpNeg32, 1591 opAndType{ONEG, TINT64}: ssa.OpNeg64, 1592 opAndType{ONEG, TUINT64}: ssa.OpNeg64, 1593 opAndType{ONEG, TFLOAT32}: ssa.OpNeg32F, 1594 opAndType{ONEG, TFLOAT64}: ssa.OpNeg64F, 1595 1596 opAndType{OBITNOT, TINT8}: ssa.OpCom8, 1597 opAndType{OBITNOT, TUINT8}: ssa.OpCom8, 1598 opAndType{OBITNOT, TINT16}: ssa.OpCom16, 1599 opAndType{OBITNOT, TUINT16}: ssa.OpCom16, 1600 opAndType{OBITNOT, TINT32}: ssa.OpCom32, 1601 opAndType{OBITNOT, TUINT32}: ssa.OpCom32, 1602 opAndType{OBITNOT, TINT64}: ssa.OpCom64, 1603 opAndType{OBITNOT, TUINT64}: ssa.OpCom64, 1604 1605 opAndType{OIMAG, TCOMPLEX64}: ssa.OpComplexImag, 1606 opAndType{OIMAG, TCOMPLEX128}: ssa.OpComplexImag, 1607 opAndType{OREAL, TCOMPLEX64}: ssa.OpComplexReal, 1608 opAndType{OREAL, TCOMPLEX128}: ssa.OpComplexReal, 1609 1610 opAndType{OMUL, TINT8}: ssa.OpMul8, 1611 opAndType{OMUL, TUINT8}: ssa.OpMul8, 1612 opAndType{OMUL, TINT16}: ssa.OpMul16, 1613 opAndType{OMUL, TUINT16}: ssa.OpMul16, 1614 opAndType{OMUL, TINT32}: ssa.OpMul32, 1615 opAndType{OMUL, TUINT32}: ssa.OpMul32, 1616 opAndType{OMUL, TINT64}: ssa.OpMul64, 1617 opAndType{OMUL, TUINT64}: ssa.OpMul64, 1618 opAndType{OMUL, TFLOAT32}: ssa.OpMul32F, 1619 opAndType{OMUL, TFLOAT64}: ssa.OpMul64F, 1620 1621 opAndType{ODIV, TFLOAT32}: ssa.OpDiv32F, 1622 opAndType{ODIV, TFLOAT64}: ssa.OpDiv64F, 1623 1624 opAndType{ODIV, TINT8}: ssa.OpDiv8, 1625 opAndType{ODIV, TUINT8}: ssa.OpDiv8u, 1626 opAndType{ODIV, TINT16}: ssa.OpDiv16, 1627 opAndType{ODIV, TUINT16}: ssa.OpDiv16u, 1628 opAndType{ODIV, TINT32}: ssa.OpDiv32, 1629 opAndType{ODIV, TUINT32}: ssa.OpDiv32u, 1630 opAndType{ODIV, TINT64}: ssa.OpDiv64, 1631 opAndType{ODIV, TUINT64}: ssa.OpDiv64u, 1632 1633 opAndType{OMOD, TINT8}: ssa.OpMod8, 1634 opAndType{OMOD, TUINT8}: ssa.OpMod8u, 1635 opAndType{OMOD, TINT16}: ssa.OpMod16, 1636 opAndType{OMOD, TUINT16}: ssa.OpMod16u, 1637 opAndType{OMOD, TINT32}: ssa.OpMod32, 1638 opAndType{OMOD, TUINT32}: ssa.OpMod32u, 1639 opAndType{OMOD, TINT64}: ssa.OpMod64, 1640 opAndType{OMOD, TUINT64}: ssa.OpMod64u, 1641 1642 opAndType{OAND, TINT8}: ssa.OpAnd8, 1643 opAndType{OAND, TUINT8}: ssa.OpAnd8, 1644 opAndType{OAND, TINT16}: ssa.OpAnd16, 1645 opAndType{OAND, TUINT16}: ssa.OpAnd16, 1646 opAndType{OAND, TINT32}: ssa.OpAnd32, 1647 opAndType{OAND, TUINT32}: ssa.OpAnd32, 1648 opAndType{OAND, TINT64}: ssa.OpAnd64, 1649 opAndType{OAND, TUINT64}: ssa.OpAnd64, 1650 1651 opAndType{OOR, TINT8}: ssa.OpOr8, 1652 opAndType{OOR, TUINT8}: ssa.OpOr8, 1653 opAndType{OOR, TINT16}: ssa.OpOr16, 1654 opAndType{OOR, TUINT16}: ssa.OpOr16, 1655 opAndType{OOR, TINT32}: ssa.OpOr32, 1656 opAndType{OOR, TUINT32}: ssa.OpOr32, 1657 opAndType{OOR, TINT64}: ssa.OpOr64, 1658 opAndType{OOR, TUINT64}: ssa.OpOr64, 1659 1660 opAndType{OXOR, TINT8}: ssa.OpXor8, 1661 opAndType{OXOR, TUINT8}: ssa.OpXor8, 1662 opAndType{OXOR, TINT16}: ssa.OpXor16, 1663 opAndType{OXOR, TUINT16}: ssa.OpXor16, 1664 opAndType{OXOR, TINT32}: ssa.OpXor32, 1665 opAndType{OXOR, TUINT32}: ssa.OpXor32, 1666 opAndType{OXOR, TINT64}: ssa.OpXor64, 1667 opAndType{OXOR, TUINT64}: ssa.OpXor64, 1668 1669 opAndType{OEQ, TBOOL}: ssa.OpEqB, 1670 opAndType{OEQ, TINT8}: ssa.OpEq8, 1671 opAndType{OEQ, TUINT8}: ssa.OpEq8, 1672 opAndType{OEQ, TINT16}: ssa.OpEq16, 1673 opAndType{OEQ, TUINT16}: ssa.OpEq16, 1674 opAndType{OEQ, TINT32}: ssa.OpEq32, 1675 opAndType{OEQ, TUINT32}: ssa.OpEq32, 1676 opAndType{OEQ, TINT64}: ssa.OpEq64, 1677 opAndType{OEQ, TUINT64}: ssa.OpEq64, 1678 opAndType{OEQ, TINTER}: ssa.OpEqInter, 1679 opAndType{OEQ, TSLICE}: ssa.OpEqSlice, 1680 opAndType{OEQ, TFUNC}: ssa.OpEqPtr, 1681 opAndType{OEQ, TMAP}: ssa.OpEqPtr, 1682 opAndType{OEQ, TCHAN}: ssa.OpEqPtr, 1683 opAndType{OEQ, TPTR}: ssa.OpEqPtr, 1684 opAndType{OEQ, TUINTPTR}: ssa.OpEqPtr, 1685 opAndType{OEQ, TUNSAFEPTR}: ssa.OpEqPtr, 1686 opAndType{OEQ, TFLOAT64}: ssa.OpEq64F, 1687 opAndType{OEQ, TFLOAT32}: ssa.OpEq32F, 1688 1689 opAndType{ONE, TBOOL}: ssa.OpNeqB, 1690 opAndType{ONE, TINT8}: ssa.OpNeq8, 1691 opAndType{ONE, TUINT8}: ssa.OpNeq8, 1692 opAndType{ONE, TINT16}: ssa.OpNeq16, 1693 opAndType{ONE, TUINT16}: ssa.OpNeq16, 1694 opAndType{ONE, TINT32}: ssa.OpNeq32, 1695 opAndType{ONE, TUINT32}: ssa.OpNeq32, 1696 opAndType{ONE, TINT64}: ssa.OpNeq64, 1697 opAndType{ONE, TUINT64}: ssa.OpNeq64, 1698 opAndType{ONE, TINTER}: ssa.OpNeqInter, 1699 opAndType{ONE, TSLICE}: ssa.OpNeqSlice, 1700 opAndType{ONE, TFUNC}: ssa.OpNeqPtr, 1701 opAndType{ONE, TMAP}: ssa.OpNeqPtr, 1702 opAndType{ONE, TCHAN}: ssa.OpNeqPtr, 1703 opAndType{ONE, TPTR}: ssa.OpNeqPtr, 1704 opAndType{ONE, TUINTPTR}: ssa.OpNeqPtr, 1705 opAndType{ONE, TUNSAFEPTR}: ssa.OpNeqPtr, 1706 opAndType{ONE, TFLOAT64}: ssa.OpNeq64F, 1707 opAndType{ONE, TFLOAT32}: ssa.OpNeq32F, 1708 1709 opAndType{OLT, TINT8}: ssa.OpLess8, 1710 opAndType{OLT, TUINT8}: ssa.OpLess8U, 1711 opAndType{OLT, TINT16}: ssa.OpLess16, 1712 opAndType{OLT, TUINT16}: ssa.OpLess16U, 1713 opAndType{OLT, TINT32}: ssa.OpLess32, 1714 opAndType{OLT, TUINT32}: ssa.OpLess32U, 1715 opAndType{OLT, TINT64}: ssa.OpLess64, 1716 opAndType{OLT, TUINT64}: ssa.OpLess64U, 1717 opAndType{OLT, TFLOAT64}: ssa.OpLess64F, 1718 opAndType{OLT, TFLOAT32}: ssa.OpLess32F, 1719 1720 opAndType{OGT, TINT8}: ssa.OpGreater8, 1721 opAndType{OGT, TUINT8}: ssa.OpGreater8U, 1722 opAndType{OGT, TINT16}: ssa.OpGreater16, 1723 opAndType{OGT, TUINT16}: ssa.OpGreater16U, 1724 opAndType{OGT, TINT32}: ssa.OpGreater32, 1725 opAndType{OGT, TUINT32}: ssa.OpGreater32U, 1726 opAndType{OGT, TINT64}: ssa.OpGreater64, 1727 opAndType{OGT, TUINT64}: ssa.OpGreater64U, 1728 opAndType{OGT, TFLOAT64}: ssa.OpGreater64F, 1729 opAndType{OGT, TFLOAT32}: ssa.OpGreater32F, 1730 1731 opAndType{OLE, TINT8}: ssa.OpLeq8, 1732 opAndType{OLE, TUINT8}: ssa.OpLeq8U, 1733 opAndType{OLE, TINT16}: ssa.OpLeq16, 1734 opAndType{OLE, TUINT16}: ssa.OpLeq16U, 1735 opAndType{OLE, TINT32}: ssa.OpLeq32, 1736 opAndType{OLE, TUINT32}: ssa.OpLeq32U, 1737 opAndType{OLE, TINT64}: ssa.OpLeq64, 1738 opAndType{OLE, TUINT64}: ssa.OpLeq64U, 1739 opAndType{OLE, TFLOAT64}: ssa.OpLeq64F, 1740 opAndType{OLE, TFLOAT32}: ssa.OpLeq32F, 1741 1742 opAndType{OGE, TINT8}: ssa.OpGeq8, 1743 opAndType{OGE, TUINT8}: ssa.OpGeq8U, 1744 opAndType{OGE, TINT16}: ssa.OpGeq16, 1745 opAndType{OGE, TUINT16}: ssa.OpGeq16U, 1746 opAndType{OGE, TINT32}: ssa.OpGeq32, 1747 opAndType{OGE, TUINT32}: ssa.OpGeq32U, 1748 opAndType{OGE, TINT64}: ssa.OpGeq64, 1749 opAndType{OGE, TUINT64}: ssa.OpGeq64U, 1750 opAndType{OGE, TFLOAT64}: ssa.OpGeq64F, 1751 opAndType{OGE, TFLOAT32}: ssa.OpGeq32F, 1752 } 1753 1754 func (s *state) concreteEtype(t *types.Type) types.EType { 1755 e := t.Etype 1756 switch e { 1757 default: 1758 return e 1759 case TINT: 1760 if s.config.PtrSize == 8 { 1761 return TINT64 1762 } 1763 return TINT32 1764 case TUINT: 1765 if s.config.PtrSize == 8 { 1766 return TUINT64 1767 } 1768 return TUINT32 1769 case TUINTPTR: 1770 if s.config.PtrSize == 8 { 1771 return TUINT64 1772 } 1773 return TUINT32 1774 } 1775 } 1776 1777 func (s *state) ssaOp(op Op, t *types.Type) ssa.Op { 1778 etype := s.concreteEtype(t) 1779 x, ok := opToSSA[opAndType{op, etype}] 1780 if !ok { 1781 s.Fatalf("unhandled binary op %v %s", op, etype) 1782 } 1783 return x 1784 } 1785 1786 func floatForComplex(t *types.Type) *types.Type { 1787 switch t.Etype { 1788 case TCOMPLEX64: 1789 return types.Types[TFLOAT32] 1790 case TCOMPLEX128: 1791 return types.Types[TFLOAT64] 1792 } 1793 Fatalf("unexpected type: %v", t) 1794 return nil 1795 } 1796 1797 func complexForFloat(t *types.Type) *types.Type { 1798 switch t.Etype { 1799 case TFLOAT32: 1800 return types.Types[TCOMPLEX64] 1801 case TFLOAT64: 1802 return types.Types[TCOMPLEX128] 1803 } 1804 Fatalf("unexpected type: %v", t) 1805 return nil 1806 } 1807 1808 type opAndTwoTypes struct { 1809 op Op 1810 etype1 types.EType 1811 etype2 types.EType 1812 } 1813 1814 type twoTypes struct { 1815 etype1 types.EType 1816 etype2 types.EType 1817 } 1818 1819 type twoOpsAndType struct { 1820 op1 ssa.Op 1821 op2 ssa.Op 1822 intermediateType types.EType 1823 } 1824 1825 var fpConvOpToSSA = map[twoTypes]twoOpsAndType{ 1826 1827 twoTypes{TINT8, TFLOAT32}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to32F, TINT32}, 1828 twoTypes{TINT16, TFLOAT32}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to32F, TINT32}, 1829 twoTypes{TINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to32F, TINT32}, 1830 twoTypes{TINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to32F, TINT64}, 1831 1832 twoTypes{TINT8, TFLOAT64}: twoOpsAndType{ssa.OpSignExt8to32, ssa.OpCvt32to64F, TINT32}, 1833 twoTypes{TINT16, TFLOAT64}: twoOpsAndType{ssa.OpSignExt16to32, ssa.OpCvt32to64F, TINT32}, 1834 twoTypes{TINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32to64F, TINT32}, 1835 twoTypes{TINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64to64F, TINT64}, 1836 1837 twoTypes{TFLOAT32, TINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32}, 1838 twoTypes{TFLOAT32, TINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32}, 1839 twoTypes{TFLOAT32, TINT32}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpCopy, TINT32}, 1840 twoTypes{TFLOAT32, TINT64}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpCopy, TINT64}, 1841 1842 twoTypes{TFLOAT64, TINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32}, 1843 twoTypes{TFLOAT64, TINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32}, 1844 twoTypes{TFLOAT64, TINT32}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpCopy, TINT32}, 1845 twoTypes{TFLOAT64, TINT64}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpCopy, TINT64}, 1846 // unsigned 1847 twoTypes{TUINT8, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to32F, TINT32}, 1848 twoTypes{TUINT16, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to32F, TINT32}, 1849 twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to32F, TINT64}, // go wide to dodge unsigned 1850 twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64}, // Cvt64Uto32F, branchy code expansion instead 1851 1852 twoTypes{TUINT8, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt8to32, ssa.OpCvt32to64F, TINT32}, 1853 twoTypes{TUINT16, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt16to32, ssa.OpCvt32to64F, TINT32}, 1854 twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpZeroExt32to64, ssa.OpCvt64to64F, TINT64}, // go wide to dodge unsigned 1855 twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpInvalid, TUINT64}, // Cvt64Uto64F, branchy code expansion instead 1856 1857 twoTypes{TFLOAT32, TUINT8}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to8, TINT32}, 1858 twoTypes{TFLOAT32, TUINT16}: twoOpsAndType{ssa.OpCvt32Fto32, ssa.OpTrunc32to16, TINT32}, 1859 twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned 1860 twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64}, // Cvt32Fto64U, branchy code expansion instead 1861 1862 twoTypes{TFLOAT64, TUINT8}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to8, TINT32}, 1863 twoTypes{TFLOAT64, TUINT16}: twoOpsAndType{ssa.OpCvt64Fto32, ssa.OpTrunc32to16, TINT32}, 1864 twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto64, ssa.OpTrunc64to32, TINT64}, // go wide to dodge unsigned 1865 twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpInvalid, ssa.OpCopy, TUINT64}, // Cvt64Fto64U, branchy code expansion instead 1866 1867 // float 1868 twoTypes{TFLOAT64, TFLOAT32}: twoOpsAndType{ssa.OpCvt64Fto32F, ssa.OpCopy, TFLOAT32}, 1869 twoTypes{TFLOAT64, TFLOAT64}: twoOpsAndType{ssa.OpRound64F, ssa.OpCopy, TFLOAT64}, 1870 twoTypes{TFLOAT32, TFLOAT32}: twoOpsAndType{ssa.OpRound32F, ssa.OpCopy, TFLOAT32}, 1871 twoTypes{TFLOAT32, TFLOAT64}: twoOpsAndType{ssa.OpCvt32Fto64F, ssa.OpCopy, TFLOAT64}, 1872 } 1873 1874 // this map is used only for 32-bit arch, and only includes the difference 1875 // on 32-bit arch, don't use int64<->float conversion for uint32 1876 var fpConvOpToSSA32 = map[twoTypes]twoOpsAndType{ 1877 twoTypes{TUINT32, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto32F, TUINT32}, 1878 twoTypes{TUINT32, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt32Uto64F, TUINT32}, 1879 twoTypes{TFLOAT32, TUINT32}: twoOpsAndType{ssa.OpCvt32Fto32U, ssa.OpCopy, TUINT32}, 1880 twoTypes{TFLOAT64, TUINT32}: twoOpsAndType{ssa.OpCvt64Fto32U, ssa.OpCopy, TUINT32}, 1881 } 1882 1883 // uint64<->float conversions, only on machines that have instructions for that 1884 var uint64fpConvOpToSSA = map[twoTypes]twoOpsAndType{ 1885 twoTypes{TUINT64, TFLOAT32}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto32F, TUINT64}, 1886 twoTypes{TUINT64, TFLOAT64}: twoOpsAndType{ssa.OpCopy, ssa.OpCvt64Uto64F, TUINT64}, 1887 twoTypes{TFLOAT32, TUINT64}: twoOpsAndType{ssa.OpCvt32Fto64U, ssa.OpCopy, TUINT64}, 1888 twoTypes{TFLOAT64, TUINT64}: twoOpsAndType{ssa.OpCvt64Fto64U, ssa.OpCopy, TUINT64}, 1889 } 1890 1891 var shiftOpToSSA = map[opAndTwoTypes]ssa.Op{ 1892 opAndTwoTypes{OLSH, TINT8, TUINT8}: ssa.OpLsh8x8, 1893 opAndTwoTypes{OLSH, TUINT8, TUINT8}: ssa.OpLsh8x8, 1894 opAndTwoTypes{OLSH, TINT8, TUINT16}: ssa.OpLsh8x16, 1895 opAndTwoTypes{OLSH, TUINT8, TUINT16}: ssa.OpLsh8x16, 1896 opAndTwoTypes{OLSH, TINT8, TUINT32}: ssa.OpLsh8x32, 1897 opAndTwoTypes{OLSH, TUINT8, TUINT32}: ssa.OpLsh8x32, 1898 opAndTwoTypes{OLSH, TINT8, TUINT64}: ssa.OpLsh8x64, 1899 opAndTwoTypes{OLSH, TUINT8, TUINT64}: ssa.OpLsh8x64, 1900 1901 opAndTwoTypes{OLSH, TINT16, TUINT8}: ssa.OpLsh16x8, 1902 opAndTwoTypes{OLSH, TUINT16, TUINT8}: ssa.OpLsh16x8, 1903 opAndTwoTypes{OLSH, TINT16, TUINT16}: ssa.OpLsh16x16, 1904 opAndTwoTypes{OLSH, TUINT16, TUINT16}: ssa.OpLsh16x16, 1905 opAndTwoTypes{OLSH, TINT16, TUINT32}: ssa.OpLsh16x32, 1906 opAndTwoTypes{OLSH, TUINT16, TUINT32}: ssa.OpLsh16x32, 1907 opAndTwoTypes{OLSH, TINT16, TUINT64}: ssa.OpLsh16x64, 1908 opAndTwoTypes{OLSH, TUINT16, TUINT64}: ssa.OpLsh16x64, 1909 1910 opAndTwoTypes{OLSH, TINT32, TUINT8}: ssa.OpLsh32x8, 1911 opAndTwoTypes{OLSH, TUINT32, TUINT8}: ssa.OpLsh32x8, 1912 opAndTwoTypes{OLSH, TINT32, TUINT16}: ssa.OpLsh32x16, 1913 opAndTwoTypes{OLSH, TUINT32, TUINT16}: ssa.OpLsh32x16, 1914 opAndTwoTypes{OLSH, TINT32, TUINT32}: ssa.OpLsh32x32, 1915 opAndTwoTypes{OLSH, TUINT32, TUINT32}: ssa.OpLsh32x32, 1916 opAndTwoTypes{OLSH, TINT32, TUINT64}: ssa.OpLsh32x64, 1917 opAndTwoTypes{OLSH, TUINT32, TUINT64}: ssa.OpLsh32x64, 1918 1919 opAndTwoTypes{OLSH, TINT64, TUINT8}: ssa.OpLsh64x8, 1920 opAndTwoTypes{OLSH, TUINT64, TUINT8}: ssa.OpLsh64x8, 1921 opAndTwoTypes{OLSH, TINT64, TUINT16}: ssa.OpLsh64x16, 1922 opAndTwoTypes{OLSH, TUINT64, TUINT16}: ssa.OpLsh64x16, 1923 opAndTwoTypes{OLSH, TINT64, TUINT32}: ssa.OpLsh64x32, 1924 opAndTwoTypes{OLSH, TUINT64, TUINT32}: ssa.OpLsh64x32, 1925 opAndTwoTypes{OLSH, TINT64, TUINT64}: ssa.OpLsh64x64, 1926 opAndTwoTypes{OLSH, TUINT64, TUINT64}: ssa.OpLsh64x64, 1927 1928 opAndTwoTypes{ORSH, TINT8, TUINT8}: ssa.OpRsh8x8, 1929 opAndTwoTypes{ORSH, TUINT8, TUINT8}: ssa.OpRsh8Ux8, 1930 opAndTwoTypes{ORSH, TINT8, TUINT16}: ssa.OpRsh8x16, 1931 opAndTwoTypes{ORSH, TUINT8, TUINT16}: ssa.OpRsh8Ux16, 1932 opAndTwoTypes{ORSH, TINT8, TUINT32}: ssa.OpRsh8x32, 1933 opAndTwoTypes{ORSH, TUINT8, TUINT32}: ssa.OpRsh8Ux32, 1934 opAndTwoTypes{ORSH, TINT8, TUINT64}: ssa.OpRsh8x64, 1935 opAndTwoTypes{ORSH, TUINT8, TUINT64}: ssa.OpRsh8Ux64, 1936 1937 opAndTwoTypes{ORSH, TINT16, TUINT8}: ssa.OpRsh16x8, 1938 opAndTwoTypes{ORSH, TUINT16, TUINT8}: ssa.OpRsh16Ux8, 1939 opAndTwoTypes{ORSH, TINT16, TUINT16}: ssa.OpRsh16x16, 1940 opAndTwoTypes{ORSH, TUINT16, TUINT16}: ssa.OpRsh16Ux16, 1941 opAndTwoTypes{ORSH, TINT16, TUINT32}: ssa.OpRsh16x32, 1942 opAndTwoTypes{ORSH, TUINT16, TUINT32}: ssa.OpRsh16Ux32, 1943 opAndTwoTypes{ORSH, TINT16, TUINT64}: ssa.OpRsh16x64, 1944 opAndTwoTypes{ORSH, TUINT16, TUINT64}: ssa.OpRsh16Ux64, 1945 1946 opAndTwoTypes{ORSH, TINT32, TUINT8}: ssa.OpRsh32x8, 1947 opAndTwoTypes{ORSH, TUINT32, TUINT8}: ssa.OpRsh32Ux8, 1948 opAndTwoTypes{ORSH, TINT32, TUINT16}: ssa.OpRsh32x16, 1949 opAndTwoTypes{ORSH, TUINT32, TUINT16}: ssa.OpRsh32Ux16, 1950 opAndTwoTypes{ORSH, TINT32, TUINT32}: ssa.OpRsh32x32, 1951 opAndTwoTypes{ORSH, TUINT32, TUINT32}: ssa.OpRsh32Ux32, 1952 opAndTwoTypes{ORSH, TINT32, TUINT64}: ssa.OpRsh32x64, 1953 opAndTwoTypes{ORSH, TUINT32, TUINT64}: ssa.OpRsh32Ux64, 1954 1955 opAndTwoTypes{ORSH, TINT64, TUINT8}: ssa.OpRsh64x8, 1956 opAndTwoTypes{ORSH, TUINT64, TUINT8}: ssa.OpRsh64Ux8, 1957 opAndTwoTypes{ORSH, TINT64, TUINT16}: ssa.OpRsh64x16, 1958 opAndTwoTypes{ORSH, TUINT64, TUINT16}: ssa.OpRsh64Ux16, 1959 opAndTwoTypes{ORSH, TINT64, TUINT32}: ssa.OpRsh64x32, 1960 opAndTwoTypes{ORSH, TUINT64, TUINT32}: ssa.OpRsh64Ux32, 1961 opAndTwoTypes{ORSH, TINT64, TUINT64}: ssa.OpRsh64x64, 1962 opAndTwoTypes{ORSH, TUINT64, TUINT64}: ssa.OpRsh64Ux64, 1963 } 1964 1965 func (s *state) ssaShiftOp(op Op, t *types.Type, u *types.Type) ssa.Op { 1966 etype1 := s.concreteEtype(t) 1967 etype2 := s.concreteEtype(u) 1968 x, ok := shiftOpToSSA[opAndTwoTypes{op, etype1, etype2}] 1969 if !ok { 1970 s.Fatalf("unhandled shift op %v etype=%s/%s", op, etype1, etype2) 1971 } 1972 return x 1973 } 1974 1975 // expr converts the expression n to ssa, adds it to s and returns the ssa result. 1976 func (s *state) expr(n *Node) *ssa.Value { 1977 if !(n.Op == ONAME || n.Op == OLITERAL && n.Sym != nil) { 1978 // ONAMEs and named OLITERALs have the line number 1979 // of the decl, not the use. See issue 14742. 1980 s.pushLine(n.Pos) 1981 defer s.popLine() 1982 } 1983 1984 s.stmtList(n.Ninit) 1985 switch n.Op { 1986 case OBYTES2STRTMP: 1987 slice := s.expr(n.Left) 1988 ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice) 1989 len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice) 1990 return s.newValue2(ssa.OpStringMake, n.Type, ptr, len) 1991 case OSTR2BYTESTMP: 1992 str := s.expr(n.Left) 1993 ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, str) 1994 len := s.newValue1(ssa.OpStringLen, types.Types[TINT], str) 1995 return s.newValue3(ssa.OpSliceMake, n.Type, ptr, len, len) 1996 case OCFUNC: 1997 aux := n.Left.Sym.Linksym() 1998 return s.entryNewValue1A(ssa.OpAddr, n.Type, aux, s.sb) 1999 case ONAME: 2000 if n.Class() == PFUNC { 2001 // "value" of a function is the address of the function's closure 2002 sym := funcsym(n.Sym).Linksym() 2003 return s.entryNewValue1A(ssa.OpAddr, types.NewPtr(n.Type), sym, s.sb) 2004 } 2005 if s.canSSA(n) { 2006 return s.variable(n, n.Type) 2007 } 2008 addr := s.addr(n, false) 2009 return s.load(n.Type, addr) 2010 case OCLOSUREVAR: 2011 addr := s.addr(n, false) 2012 return s.load(n.Type, addr) 2013 case OLITERAL: 2014 switch u := n.Val().U.(type) { 2015 case *Mpint: 2016 i := u.Int64() 2017 switch n.Type.Size() { 2018 case 1: 2019 return s.constInt8(n.Type, int8(i)) 2020 case 2: 2021 return s.constInt16(n.Type, int16(i)) 2022 case 4: 2023 return s.constInt32(n.Type, int32(i)) 2024 case 8: 2025 return s.constInt64(n.Type, i) 2026 default: 2027 s.Fatalf("bad integer size %d", n.Type.Size()) 2028 return nil 2029 } 2030 case string: 2031 if u == "" { 2032 return s.constEmptyString(n.Type) 2033 } 2034 return s.entryNewValue0A(ssa.OpConstString, n.Type, u) 2035 case bool: 2036 return s.constBool(u) 2037 case *NilVal: 2038 t := n.Type 2039 switch { 2040 case t.IsSlice(): 2041 return s.constSlice(t) 2042 case t.IsInterface(): 2043 return s.constInterface(t) 2044 default: 2045 return s.constNil(t) 2046 } 2047 case *Mpflt: 2048 switch n.Type.Size() { 2049 case 4: 2050 return s.constFloat32(n.Type, u.Float32()) 2051 case 8: 2052 return s.constFloat64(n.Type, u.Float64()) 2053 default: 2054 s.Fatalf("bad float size %d", n.Type.Size()) 2055 return nil 2056 } 2057 case *Mpcplx: 2058 r := &u.Real 2059 i := &u.Imag 2060 switch n.Type.Size() { 2061 case 8: 2062 pt := types.Types[TFLOAT32] 2063 return s.newValue2(ssa.OpComplexMake, n.Type, 2064 s.constFloat32(pt, r.Float32()), 2065 s.constFloat32(pt, i.Float32())) 2066 case 16: 2067 pt := types.Types[TFLOAT64] 2068 return s.newValue2(ssa.OpComplexMake, n.Type, 2069 s.constFloat64(pt, r.Float64()), 2070 s.constFloat64(pt, i.Float64())) 2071 default: 2072 s.Fatalf("bad float size %d", n.Type.Size()) 2073 return nil 2074 } 2075 2076 default: 2077 s.Fatalf("unhandled OLITERAL %v", n.Val().Ctype()) 2078 return nil 2079 } 2080 case OCONVNOP: 2081 to := n.Type 2082 from := n.Left.Type 2083 2084 // Assume everything will work out, so set up our return value. 2085 // Anything interesting that happens from here is a fatal. 2086 x := s.expr(n.Left) 2087 2088 // Special case for not confusing GC and liveness. 2089 // We don't want pointers accidentally classified 2090 // as not-pointers or vice-versa because of copy 2091 // elision. 2092 if to.IsPtrShaped() != from.IsPtrShaped() { 2093 return s.newValue2(ssa.OpConvert, to, x, s.mem()) 2094 } 2095 2096 v := s.newValue1(ssa.OpCopy, to, x) // ensure that v has the right type 2097 2098 // CONVNOP closure 2099 if to.Etype == TFUNC && from.IsPtrShaped() { 2100 return v 2101 } 2102 2103 // named <--> unnamed type or typed <--> untyped const 2104 if from.Etype == to.Etype { 2105 return v 2106 } 2107 2108 // unsafe.Pointer <--> *T 2109 if to.Etype == TUNSAFEPTR && from.IsPtrShaped() || from.Etype == TUNSAFEPTR && to.IsPtrShaped() { 2110 return v 2111 } 2112 2113 // map <--> *hmap 2114 if to.Etype == TMAP && from.IsPtr() && 2115 to.MapType().Hmap == from.Elem() { 2116 return v 2117 } 2118 2119 dowidth(from) 2120 dowidth(to) 2121 if from.Width != to.Width { 2122 s.Fatalf("CONVNOP width mismatch %v (%d) -> %v (%d)\n", from, from.Width, to, to.Width) 2123 return nil 2124 } 2125 if etypesign(from.Etype) != etypesign(to.Etype) { 2126 s.Fatalf("CONVNOP sign mismatch %v (%s) -> %v (%s)\n", from, from.Etype, to, to.Etype) 2127 return nil 2128 } 2129 2130 if instrumenting { 2131 // These appear to be fine, but they fail the 2132 // integer constraint below, so okay them here. 2133 // Sample non-integer conversion: map[string]string -> *uint8 2134 return v 2135 } 2136 2137 if etypesign(from.Etype) == 0 { 2138 s.Fatalf("CONVNOP unrecognized non-integer %v -> %v\n", from, to) 2139 return nil 2140 } 2141 2142 // integer, same width, same sign 2143 return v 2144 2145 case OCONV: 2146 x := s.expr(n.Left) 2147 ft := n.Left.Type // from type 2148 tt := n.Type // to type 2149 if ft.IsBoolean() && tt.IsKind(TUINT8) { 2150 // Bool -> uint8 is generated internally when indexing into runtime.staticbyte. 2151 return s.newValue1(ssa.OpCopy, n.Type, x) 2152 } 2153 if ft.IsInteger() && tt.IsInteger() { 2154 var op ssa.Op 2155 if tt.Size() == ft.Size() { 2156 op = ssa.OpCopy 2157 } else if tt.Size() < ft.Size() { 2158 // truncation 2159 switch 10*ft.Size() + tt.Size() { 2160 case 21: 2161 op = ssa.OpTrunc16to8 2162 case 41: 2163 op = ssa.OpTrunc32to8 2164 case 42: 2165 op = ssa.OpTrunc32to16 2166 case 81: 2167 op = ssa.OpTrunc64to8 2168 case 82: 2169 op = ssa.OpTrunc64to16 2170 case 84: 2171 op = ssa.OpTrunc64to32 2172 default: 2173 s.Fatalf("weird integer truncation %v -> %v", ft, tt) 2174 } 2175 } else if ft.IsSigned() { 2176 // sign extension 2177 switch 10*ft.Size() + tt.Size() { 2178 case 12: 2179 op = ssa.OpSignExt8to16 2180 case 14: 2181 op = ssa.OpSignExt8to32 2182 case 18: 2183 op = ssa.OpSignExt8to64 2184 case 24: 2185 op = ssa.OpSignExt16to32 2186 case 28: 2187 op = ssa.OpSignExt16to64 2188 case 48: 2189 op = ssa.OpSignExt32to64 2190 default: 2191 s.Fatalf("bad integer sign extension %v -> %v", ft, tt) 2192 } 2193 } else { 2194 // zero extension 2195 switch 10*ft.Size() + tt.Size() { 2196 case 12: 2197 op = ssa.OpZeroExt8to16 2198 case 14: 2199 op = ssa.OpZeroExt8to32 2200 case 18: 2201 op = ssa.OpZeroExt8to64 2202 case 24: 2203 op = ssa.OpZeroExt16to32 2204 case 28: 2205 op = ssa.OpZeroExt16to64 2206 case 48: 2207 op = ssa.OpZeroExt32to64 2208 default: 2209 s.Fatalf("weird integer sign extension %v -> %v", ft, tt) 2210 } 2211 } 2212 return s.newValue1(op, n.Type, x) 2213 } 2214 2215 if ft.IsFloat() || tt.IsFloat() { 2216 conv, ok := fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}] 2217 if s.config.RegSize == 4 && thearch.LinkArch.Family != sys.MIPS && !s.softFloat { 2218 if conv1, ok1 := fpConvOpToSSA32[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 { 2219 conv = conv1 2220 } 2221 } 2222 if thearch.LinkArch.Family == sys.ARM64 || thearch.LinkArch.Family == sys.Wasm || s.softFloat { 2223 if conv1, ok1 := uint64fpConvOpToSSA[twoTypes{s.concreteEtype(ft), s.concreteEtype(tt)}]; ok1 { 2224 conv = conv1 2225 } 2226 } 2227 2228 if thearch.LinkArch.Family == sys.MIPS && !s.softFloat { 2229 if ft.Size() == 4 && ft.IsInteger() && !ft.IsSigned() { 2230 // tt is float32 or float64, and ft is also unsigned 2231 if tt.Size() == 4 { 2232 return s.uint32Tofloat32(n, x, ft, tt) 2233 } 2234 if tt.Size() == 8 { 2235 return s.uint32Tofloat64(n, x, ft, tt) 2236 } 2237 } else if tt.Size() == 4 && tt.IsInteger() && !tt.IsSigned() { 2238 // ft is float32 or float64, and tt is unsigned integer 2239 if ft.Size() == 4 { 2240 return s.float32ToUint32(n, x, ft, tt) 2241 } 2242 if ft.Size() == 8 { 2243 return s.float64ToUint32(n, x, ft, tt) 2244 } 2245 } 2246 } 2247 2248 if !ok { 2249 s.Fatalf("weird float conversion %v -> %v", ft, tt) 2250 } 2251 op1, op2, it := conv.op1, conv.op2, conv.intermediateType 2252 2253 if op1 != ssa.OpInvalid && op2 != ssa.OpInvalid { 2254 // normal case, not tripping over unsigned 64 2255 if op1 == ssa.OpCopy { 2256 if op2 == ssa.OpCopy { 2257 return x 2258 } 2259 return s.newValueOrSfCall1(op2, n.Type, x) 2260 } 2261 if op2 == ssa.OpCopy { 2262 return s.newValueOrSfCall1(op1, n.Type, x) 2263 } 2264 return s.newValueOrSfCall1(op2, n.Type, s.newValueOrSfCall1(op1, types.Types[it], x)) 2265 } 2266 // Tricky 64-bit unsigned cases. 2267 if ft.IsInteger() { 2268 // tt is float32 or float64, and ft is also unsigned 2269 if tt.Size() == 4 { 2270 return s.uint64Tofloat32(n, x, ft, tt) 2271 } 2272 if tt.Size() == 8 { 2273 return s.uint64Tofloat64(n, x, ft, tt) 2274 } 2275 s.Fatalf("weird unsigned integer to float conversion %v -> %v", ft, tt) 2276 } 2277 // ft is float32 or float64, and tt is unsigned integer 2278 if ft.Size() == 4 { 2279 return s.float32ToUint64(n, x, ft, tt) 2280 } 2281 if ft.Size() == 8 { 2282 return s.float64ToUint64(n, x, ft, tt) 2283 } 2284 s.Fatalf("weird float to unsigned integer conversion %v -> %v", ft, tt) 2285 return nil 2286 } 2287 2288 if ft.IsComplex() && tt.IsComplex() { 2289 var op ssa.Op 2290 if ft.Size() == tt.Size() { 2291 switch ft.Size() { 2292 case 8: 2293 op = ssa.OpRound32F 2294 case 16: 2295 op = ssa.OpRound64F 2296 default: 2297 s.Fatalf("weird complex conversion %v -> %v", ft, tt) 2298 } 2299 } else if ft.Size() == 8 && tt.Size() == 16 { 2300 op = ssa.OpCvt32Fto64F 2301 } else if ft.Size() == 16 && tt.Size() == 8 { 2302 op = ssa.OpCvt64Fto32F 2303 } else { 2304 s.Fatalf("weird complex conversion %v -> %v", ft, tt) 2305 } 2306 ftp := floatForComplex(ft) 2307 ttp := floatForComplex(tt) 2308 return s.newValue2(ssa.OpComplexMake, tt, 2309 s.newValueOrSfCall1(op, ttp, s.newValue1(ssa.OpComplexReal, ftp, x)), 2310 s.newValueOrSfCall1(op, ttp, s.newValue1(ssa.OpComplexImag, ftp, x))) 2311 } 2312 2313 s.Fatalf("unhandled OCONV %s -> %s", n.Left.Type.Etype, n.Type.Etype) 2314 return nil 2315 2316 case ODOTTYPE: 2317 res, _ := s.dottype(n, false) 2318 return res 2319 2320 // binary ops 2321 case OLT, OEQ, ONE, OLE, OGE, OGT: 2322 a := s.expr(n.Left) 2323 b := s.expr(n.Right) 2324 if n.Left.Type.IsComplex() { 2325 pt := floatForComplex(n.Left.Type) 2326 op := s.ssaOp(OEQ, pt) 2327 r := s.newValueOrSfCall2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)) 2328 i := s.newValueOrSfCall2(op, types.Types[TBOOL], s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b)) 2329 c := s.newValue2(ssa.OpAndB, types.Types[TBOOL], r, i) 2330 switch n.Op { 2331 case OEQ: 2332 return c 2333 case ONE: 2334 return s.newValue1(ssa.OpNot, types.Types[TBOOL], c) 2335 default: 2336 s.Fatalf("ordered complex compare %v", n.Op) 2337 } 2338 } 2339 if n.Left.Type.IsFloat() { 2340 return s.newValueOrSfCall2(s.ssaOp(n.Op, n.Left.Type), types.Types[TBOOL], a, b) 2341 } 2342 return s.newValue2(s.ssaOp(n.Op, n.Left.Type), types.Types[TBOOL], a, b) 2343 case OMUL: 2344 a := s.expr(n.Left) 2345 b := s.expr(n.Right) 2346 if n.Type.IsComplex() { 2347 mulop := ssa.OpMul64F 2348 addop := ssa.OpAdd64F 2349 subop := ssa.OpSub64F 2350 pt := floatForComplex(n.Type) // Could be Float32 or Float64 2351 wt := types.Types[TFLOAT64] // Compute in Float64 to minimize cancellation error 2352 2353 areal := s.newValue1(ssa.OpComplexReal, pt, a) 2354 breal := s.newValue1(ssa.OpComplexReal, pt, b) 2355 aimag := s.newValue1(ssa.OpComplexImag, pt, a) 2356 bimag := s.newValue1(ssa.OpComplexImag, pt, b) 2357 2358 if pt != wt { // Widen for calculation 2359 areal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, areal) 2360 breal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, breal) 2361 aimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, aimag) 2362 bimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, bimag) 2363 } 2364 2365 xreal := s.newValueOrSfCall2(subop, wt, s.newValueOrSfCall2(mulop, wt, areal, breal), s.newValueOrSfCall2(mulop, wt, aimag, bimag)) 2366 ximag := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, areal, bimag), s.newValueOrSfCall2(mulop, wt, aimag, breal)) 2367 2368 if pt != wt { // Narrow to store back 2369 xreal = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, xreal) 2370 ximag = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, ximag) 2371 } 2372 2373 return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag) 2374 } 2375 2376 if n.Type.IsFloat() { 2377 return s.newValueOrSfCall2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 2378 } 2379 2380 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 2381 2382 case ODIV: 2383 a := s.expr(n.Left) 2384 b := s.expr(n.Right) 2385 if n.Type.IsComplex() { 2386 // TODO this is not executed because the front-end substitutes a runtime call. 2387 // That probably ought to change; with modest optimization the widen/narrow 2388 // conversions could all be elided in larger expression trees. 2389 mulop := ssa.OpMul64F 2390 addop := ssa.OpAdd64F 2391 subop := ssa.OpSub64F 2392 divop := ssa.OpDiv64F 2393 pt := floatForComplex(n.Type) // Could be Float32 or Float64 2394 wt := types.Types[TFLOAT64] // Compute in Float64 to minimize cancellation error 2395 2396 areal := s.newValue1(ssa.OpComplexReal, pt, a) 2397 breal := s.newValue1(ssa.OpComplexReal, pt, b) 2398 aimag := s.newValue1(ssa.OpComplexImag, pt, a) 2399 bimag := s.newValue1(ssa.OpComplexImag, pt, b) 2400 2401 if pt != wt { // Widen for calculation 2402 areal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, areal) 2403 breal = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, breal) 2404 aimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, aimag) 2405 bimag = s.newValueOrSfCall1(ssa.OpCvt32Fto64F, wt, bimag) 2406 } 2407 2408 denom := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, breal, breal), s.newValueOrSfCall2(mulop, wt, bimag, bimag)) 2409 xreal := s.newValueOrSfCall2(addop, wt, s.newValueOrSfCall2(mulop, wt, areal, breal), s.newValueOrSfCall2(mulop, wt, aimag, bimag)) 2410 ximag := s.newValueOrSfCall2(subop, wt, s.newValueOrSfCall2(mulop, wt, aimag, breal), s.newValueOrSfCall2(mulop, wt, areal, bimag)) 2411 2412 // TODO not sure if this is best done in wide precision or narrow 2413 // Double-rounding might be an issue. 2414 // Note that the pre-SSA implementation does the entire calculation 2415 // in wide format, so wide is compatible. 2416 xreal = s.newValueOrSfCall2(divop, wt, xreal, denom) 2417 ximag = s.newValueOrSfCall2(divop, wt, ximag, denom) 2418 2419 if pt != wt { // Narrow to store back 2420 xreal = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, xreal) 2421 ximag = s.newValueOrSfCall1(ssa.OpCvt64Fto32F, pt, ximag) 2422 } 2423 return s.newValue2(ssa.OpComplexMake, n.Type, xreal, ximag) 2424 } 2425 if n.Type.IsFloat() { 2426 return s.newValueOrSfCall2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 2427 } 2428 return s.intDivide(n, a, b) 2429 case OMOD: 2430 a := s.expr(n.Left) 2431 b := s.expr(n.Right) 2432 return s.intDivide(n, a, b) 2433 case OADD, OSUB: 2434 a := s.expr(n.Left) 2435 b := s.expr(n.Right) 2436 if n.Type.IsComplex() { 2437 pt := floatForComplex(n.Type) 2438 op := s.ssaOp(n.Op, pt) 2439 return s.newValue2(ssa.OpComplexMake, n.Type, 2440 s.newValueOrSfCall2(op, pt, s.newValue1(ssa.OpComplexReal, pt, a), s.newValue1(ssa.OpComplexReal, pt, b)), 2441 s.newValueOrSfCall2(op, pt, s.newValue1(ssa.OpComplexImag, pt, a), s.newValue1(ssa.OpComplexImag, pt, b))) 2442 } 2443 if n.Type.IsFloat() { 2444 return s.newValueOrSfCall2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 2445 } 2446 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 2447 case OAND, OOR, OXOR: 2448 a := s.expr(n.Left) 2449 b := s.expr(n.Right) 2450 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 2451 case OLSH, ORSH: 2452 a := s.expr(n.Left) 2453 b := s.expr(n.Right) 2454 bt := b.Type 2455 if bt.IsSigned() { 2456 cmp := s.newValue2(s.ssaOp(OGE, bt), types.Types[TBOOL], b, s.zeroVal(bt)) 2457 s.check(cmp, panicshift) 2458 bt = bt.ToUnsigned() 2459 } 2460 return s.newValue2(s.ssaShiftOp(n.Op, n.Type, bt), a.Type, a, b) 2461 case OANDAND, OOROR: 2462 // To implement OANDAND (and OOROR), we introduce a 2463 // new temporary variable to hold the result. The 2464 // variable is associated with the OANDAND node in the 2465 // s.vars table (normally variables are only 2466 // associated with ONAME nodes). We convert 2467 // A && B 2468 // to 2469 // var = A 2470 // if var { 2471 // var = B 2472 // } 2473 // Using var in the subsequent block introduces the 2474 // necessary phi variable. 2475 el := s.expr(n.Left) 2476 s.vars[n] = el 2477 2478 b := s.endBlock() 2479 b.Kind = ssa.BlockIf 2480 b.SetControl(el) 2481 // In theory, we should set b.Likely here based on context. 2482 // However, gc only gives us likeliness hints 2483 // in a single place, for plain OIF statements, 2484 // and passing around context is finnicky, so don't bother for now. 2485 2486 bRight := s.f.NewBlock(ssa.BlockPlain) 2487 bResult := s.f.NewBlock(ssa.BlockPlain) 2488 if n.Op == OANDAND { 2489 b.AddEdgeTo(bRight) 2490 b.AddEdgeTo(bResult) 2491 } else if n.Op == OOROR { 2492 b.AddEdgeTo(bResult) 2493 b.AddEdgeTo(bRight) 2494 } 2495 2496 s.startBlock(bRight) 2497 er := s.expr(n.Right) 2498 s.vars[n] = er 2499 2500 b = s.endBlock() 2501 b.AddEdgeTo(bResult) 2502 2503 s.startBlock(bResult) 2504 return s.variable(n, types.Types[TBOOL]) 2505 case OCOMPLEX: 2506 r := s.expr(n.Left) 2507 i := s.expr(n.Right) 2508 return s.newValue2(ssa.OpComplexMake, n.Type, r, i) 2509 2510 // unary ops 2511 case ONEG: 2512 a := s.expr(n.Left) 2513 if n.Type.IsComplex() { 2514 tp := floatForComplex(n.Type) 2515 negop := s.ssaOp(n.Op, tp) 2516 return s.newValue2(ssa.OpComplexMake, n.Type, 2517 s.newValue1(negop, tp, s.newValue1(ssa.OpComplexReal, tp, a)), 2518 s.newValue1(negop, tp, s.newValue1(ssa.OpComplexImag, tp, a))) 2519 } 2520 return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a) 2521 case ONOT, OBITNOT: 2522 a := s.expr(n.Left) 2523 return s.newValue1(s.ssaOp(n.Op, n.Type), a.Type, a) 2524 case OIMAG, OREAL: 2525 a := s.expr(n.Left) 2526 return s.newValue1(s.ssaOp(n.Op, n.Left.Type), n.Type, a) 2527 case OPLUS: 2528 return s.expr(n.Left) 2529 2530 case OADDR: 2531 return s.addr(n.Left, n.Bounded()) 2532 2533 case ORESULT: 2534 addr := s.constOffPtrSP(types.NewPtr(n.Type), n.Xoffset) 2535 return s.load(n.Type, addr) 2536 2537 case ODEREF: 2538 p := s.exprPtr(n.Left, false, n.Pos) 2539 return s.load(n.Type, p) 2540 2541 case ODOT: 2542 if n.Left.Op == OSTRUCTLIT { 2543 // All literals with nonzero fields have already been 2544 // rewritten during walk. Any that remain are just T{} 2545 // or equivalents. Use the zero value. 2546 if !isZero(n.Left) { 2547 s.Fatalf("literal with nonzero value in SSA: %v", n.Left) 2548 } 2549 return s.zeroVal(n.Type) 2550 } 2551 // If n is addressable and can't be represented in 2552 // SSA, then load just the selected field. This 2553 // prevents false memory dependencies in race/msan 2554 // instrumentation. 2555 if islvalue(n) && !s.canSSA(n) { 2556 p := s.addr(n, false) 2557 return s.load(n.Type, p) 2558 } 2559 v := s.expr(n.Left) 2560 return s.newValue1I(ssa.OpStructSelect, n.Type, int64(fieldIdx(n)), v) 2561 2562 case ODOTPTR: 2563 p := s.exprPtr(n.Left, false, n.Pos) 2564 p = s.newValue1I(ssa.OpOffPtr, types.NewPtr(n.Type), n.Xoffset, p) 2565 return s.load(n.Type, p) 2566 2567 case OINDEX: 2568 switch { 2569 case n.Left.Type.IsString(): 2570 if n.Bounded() && Isconst(n.Left, CTSTR) && Isconst(n.Right, CTINT) { 2571 // Replace "abc"[1] with 'b'. 2572 // Delayed until now because "abc"[1] is not an ideal constant. 2573 // See test/fixedbugs/issue11370.go. 2574 return s.newValue0I(ssa.OpConst8, types.Types[TUINT8], int64(int8(strlit(n.Left)[n.Right.Int64()]))) 2575 } 2576 a := s.expr(n.Left) 2577 i := s.expr(n.Right) 2578 len := s.newValue1(ssa.OpStringLen, types.Types[TINT], a) 2579 i = s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded()) 2580 ptrtyp := s.f.Config.Types.BytePtr 2581 ptr := s.newValue1(ssa.OpStringPtr, ptrtyp, a) 2582 if Isconst(n.Right, CTINT) { 2583 ptr = s.newValue1I(ssa.OpOffPtr, ptrtyp, n.Right.Int64(), ptr) 2584 } else { 2585 ptr = s.newValue2(ssa.OpAddPtr, ptrtyp, ptr, i) 2586 } 2587 return s.load(types.Types[TUINT8], ptr) 2588 case n.Left.Type.IsSlice(): 2589 p := s.addr(n, false) 2590 return s.load(n.Left.Type.Elem(), p) 2591 case n.Left.Type.IsArray(): 2592 if canSSAType(n.Left.Type) { 2593 // SSA can handle arrays of length at most 1. 2594 bound := n.Left.Type.NumElem() 2595 a := s.expr(n.Left) 2596 i := s.expr(n.Right) 2597 if bound == 0 { 2598 // Bounds check will never succeed. Might as well 2599 // use constants for the bounds check. 2600 z := s.constInt(types.Types[TINT], 0) 2601 s.boundsCheck(z, z, ssa.BoundsIndex, false) 2602 // The return value won't be live, return junk. 2603 return s.newValue0(ssa.OpUnknown, n.Type) 2604 } 2605 len := s.constInt(types.Types[TINT], bound) 2606 i = s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded()) 2607 return s.newValue1I(ssa.OpArraySelect, n.Type, 0, a) 2608 } 2609 p := s.addr(n, false) 2610 return s.load(n.Left.Type.Elem(), p) 2611 default: 2612 s.Fatalf("bad type for index %v", n.Left.Type) 2613 return nil 2614 } 2615 2616 case OLEN, OCAP: 2617 switch { 2618 case n.Left.Type.IsSlice(): 2619 op := ssa.OpSliceLen 2620 if n.Op == OCAP { 2621 op = ssa.OpSliceCap 2622 } 2623 return s.newValue1(op, types.Types[TINT], s.expr(n.Left)) 2624 case n.Left.Type.IsString(): // string; not reachable for OCAP 2625 return s.newValue1(ssa.OpStringLen, types.Types[TINT], s.expr(n.Left)) 2626 case n.Left.Type.IsMap(), n.Left.Type.IsChan(): 2627 return s.referenceTypeBuiltin(n, s.expr(n.Left)) 2628 default: // array 2629 return s.constInt(types.Types[TINT], n.Left.Type.NumElem()) 2630 } 2631 2632 case OSPTR: 2633 a := s.expr(n.Left) 2634 if n.Left.Type.IsSlice() { 2635 return s.newValue1(ssa.OpSlicePtr, n.Type, a) 2636 } else { 2637 return s.newValue1(ssa.OpStringPtr, n.Type, a) 2638 } 2639 2640 case OITAB: 2641 a := s.expr(n.Left) 2642 return s.newValue1(ssa.OpITab, n.Type, a) 2643 2644 case OIDATA: 2645 a := s.expr(n.Left) 2646 return s.newValue1(ssa.OpIData, n.Type, a) 2647 2648 case OEFACE: 2649 tab := s.expr(n.Left) 2650 data := s.expr(n.Right) 2651 return s.newValue2(ssa.OpIMake, n.Type, tab, data) 2652 2653 case OSLICEHEADER: 2654 p := s.expr(n.Left) 2655 l := s.expr(n.List.First()) 2656 c := s.expr(n.List.Second()) 2657 return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c) 2658 2659 case OSLICE, OSLICEARR, OSLICE3, OSLICE3ARR: 2660 v := s.expr(n.Left) 2661 var i, j, k *ssa.Value 2662 low, high, max := n.SliceBounds() 2663 if low != nil { 2664 i = s.expr(low) 2665 } 2666 if high != nil { 2667 j = s.expr(high) 2668 } 2669 if max != nil { 2670 k = s.expr(max) 2671 } 2672 p, l, c := s.slice(v, i, j, k, n.Bounded()) 2673 return s.newValue3(ssa.OpSliceMake, n.Type, p, l, c) 2674 2675 case OSLICESTR: 2676 v := s.expr(n.Left) 2677 var i, j *ssa.Value 2678 low, high, _ := n.SliceBounds() 2679 if low != nil { 2680 i = s.expr(low) 2681 } 2682 if high != nil { 2683 j = s.expr(high) 2684 } 2685 p, l, _ := s.slice(v, i, j, nil, n.Bounded()) 2686 return s.newValue2(ssa.OpStringMake, n.Type, p, l) 2687 2688 case OCALLFUNC: 2689 if isIntrinsicCall(n) { 2690 return s.intrinsicCall(n) 2691 } 2692 fallthrough 2693 2694 case OCALLINTER, OCALLMETH: 2695 a := s.call(n, callNormal) 2696 return s.load(n.Type, a) 2697 2698 case OGETG: 2699 return s.newValue1(ssa.OpGetG, n.Type, s.mem()) 2700 2701 case OAPPEND: 2702 return s.append(n, false) 2703 2704 case OSTRUCTLIT, OARRAYLIT: 2705 // All literals with nonzero fields have already been 2706 // rewritten during walk. Any that remain are just T{} 2707 // or equivalents. Use the zero value. 2708 if !isZero(n) { 2709 s.Fatalf("literal with nonzero value in SSA: %v", n) 2710 } 2711 return s.zeroVal(n.Type) 2712 2713 case ONEWOBJ: 2714 if n.Type.Elem().Size() == 0 { 2715 return s.newValue1A(ssa.OpAddr, n.Type, zerobaseSym, s.sb) 2716 } 2717 typ := s.expr(n.Left) 2718 vv := s.rtcall(newobject, true, []*types.Type{n.Type}, typ) 2719 return vv[0] 2720 2721 default: 2722 s.Fatalf("unhandled expr %v", n.Op) 2723 return nil 2724 } 2725 } 2726 2727 // append converts an OAPPEND node to SSA. 2728 // If inplace is false, it converts the OAPPEND expression n to an ssa.Value, 2729 // adds it to s, and returns the Value. 2730 // If inplace is true, it writes the result of the OAPPEND expression n 2731 // back to the slice being appended to, and returns nil. 2732 // inplace MUST be set to false if the slice can be SSA'd. 2733 func (s *state) append(n *Node, inplace bool) *ssa.Value { 2734 // If inplace is false, process as expression "append(s, e1, e2, e3)": 2735 // 2736 // ptr, len, cap := s 2737 // newlen := len + 3 2738 // if newlen > cap { 2739 // ptr, len, cap = growslice(s, newlen) 2740 // newlen = len + 3 // recalculate to avoid a spill 2741 // } 2742 // // with write barriers, if needed: 2743 // *(ptr+len) = e1 2744 // *(ptr+len+1) = e2 2745 // *(ptr+len+2) = e3 2746 // return makeslice(ptr, newlen, cap) 2747 // 2748 // 2749 // If inplace is true, process as statement "s = append(s, e1, e2, e3)": 2750 // 2751 // a := &s 2752 // ptr, len, cap := s 2753 // newlen := len + 3 2754 // if uint(newlen) > uint(cap) { 2755 // newptr, len, newcap = growslice(ptr, len, cap, newlen) 2756 // vardef(a) // if necessary, advise liveness we are writing a new a 2757 // *a.cap = newcap // write before ptr to avoid a spill 2758 // *a.ptr = newptr // with write barrier 2759 // } 2760 // newlen = len + 3 // recalculate to avoid a spill 2761 // *a.len = newlen 2762 // // with write barriers, if needed: 2763 // *(ptr+len) = e1 2764 // *(ptr+len+1) = e2 2765 // *(ptr+len+2) = e3 2766 2767 et := n.Type.Elem() 2768 pt := types.NewPtr(et) 2769 2770 // Evaluate slice 2771 sn := n.List.First() // the slice node is the first in the list 2772 2773 var slice, addr *ssa.Value 2774 if inplace { 2775 addr = s.addr(sn, false) 2776 slice = s.load(n.Type, addr) 2777 } else { 2778 slice = s.expr(sn) 2779 } 2780 2781 // Allocate new blocks 2782 grow := s.f.NewBlock(ssa.BlockPlain) 2783 assign := s.f.NewBlock(ssa.BlockPlain) 2784 2785 // Decide if we need to grow 2786 nargs := int64(n.List.Len() - 1) 2787 p := s.newValue1(ssa.OpSlicePtr, pt, slice) 2788 l := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice) 2789 c := s.newValue1(ssa.OpSliceCap, types.Types[TINT], slice) 2790 nl := s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs)) 2791 2792 cmp := s.newValue2(s.ssaOp(OGT, types.Types[TUINT]), types.Types[TBOOL], nl, c) 2793 s.vars[&ptrVar] = p 2794 2795 if !inplace { 2796 s.vars[&newlenVar] = nl 2797 s.vars[&capVar] = c 2798 } else { 2799 s.vars[&lenVar] = l 2800 } 2801 2802 b := s.endBlock() 2803 b.Kind = ssa.BlockIf 2804 b.Likely = ssa.BranchUnlikely 2805 b.SetControl(cmp) 2806 b.AddEdgeTo(grow) 2807 b.AddEdgeTo(assign) 2808 2809 // Call growslice 2810 s.startBlock(grow) 2811 taddr := s.expr(n.Left) 2812 r := s.rtcall(growslice, true, []*types.Type{pt, types.Types[TINT], types.Types[TINT]}, taddr, p, l, c, nl) 2813 2814 if inplace { 2815 if sn.Op == ONAME && sn.Class() != PEXTERN { 2816 // Tell liveness we're about to build a new slice 2817 s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, sn, s.mem()) 2818 } 2819 capaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, int64(slice_cap), addr) 2820 s.store(types.Types[TINT], capaddr, r[2]) 2821 s.store(pt, addr, r[0]) 2822 // load the value we just stored to avoid having to spill it 2823 s.vars[&ptrVar] = s.load(pt, addr) 2824 s.vars[&lenVar] = r[1] // avoid a spill in the fast path 2825 } else { 2826 s.vars[&ptrVar] = r[0] 2827 s.vars[&newlenVar] = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], r[1], s.constInt(types.Types[TINT], nargs)) 2828 s.vars[&capVar] = r[2] 2829 } 2830 2831 b = s.endBlock() 2832 b.AddEdgeTo(assign) 2833 2834 // assign new elements to slots 2835 s.startBlock(assign) 2836 2837 if inplace { 2838 l = s.variable(&lenVar, types.Types[TINT]) // generates phi for len 2839 nl = s.newValue2(s.ssaOp(OADD, types.Types[TINT]), types.Types[TINT], l, s.constInt(types.Types[TINT], nargs)) 2840 lenaddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, int64(slice_nel), addr) 2841 s.store(types.Types[TINT], lenaddr, nl) 2842 } 2843 2844 // Evaluate args 2845 type argRec struct { 2846 // if store is true, we're appending the value v. If false, we're appending the 2847 // value at *v. 2848 v *ssa.Value 2849 store bool 2850 } 2851 args := make([]argRec, 0, nargs) 2852 for _, n := range n.List.Slice()[1:] { 2853 if canSSAType(n.Type) { 2854 args = append(args, argRec{v: s.expr(n), store: true}) 2855 } else { 2856 v := s.addr(n, false) 2857 args = append(args, argRec{v: v}) 2858 } 2859 } 2860 2861 p = s.variable(&ptrVar, pt) // generates phi for ptr 2862 if !inplace { 2863 nl = s.variable(&newlenVar, types.Types[TINT]) // generates phi for nl 2864 c = s.variable(&capVar, types.Types[TINT]) // generates phi for cap 2865 } 2866 p2 := s.newValue2(ssa.OpPtrIndex, pt, p, l) 2867 for i, arg := range args { 2868 addr := s.newValue2(ssa.OpPtrIndex, pt, p2, s.constInt(types.Types[TINT], int64(i))) 2869 if arg.store { 2870 s.storeType(et, addr, arg.v, 0, true) 2871 } else { 2872 s.move(et, addr, arg.v) 2873 } 2874 } 2875 2876 delete(s.vars, &ptrVar) 2877 if inplace { 2878 delete(s.vars, &lenVar) 2879 return nil 2880 } 2881 delete(s.vars, &newlenVar) 2882 delete(s.vars, &capVar) 2883 // make result 2884 return s.newValue3(ssa.OpSliceMake, n.Type, p, nl, c) 2885 } 2886 2887 // condBranch evaluates the boolean expression cond and branches to yes 2888 // if cond is true and no if cond is false. 2889 // This function is intended to handle && and || better than just calling 2890 // s.expr(cond) and branching on the result. 2891 func (s *state) condBranch(cond *Node, yes, no *ssa.Block, likely int8) { 2892 switch cond.Op { 2893 case OANDAND: 2894 mid := s.f.NewBlock(ssa.BlockPlain) 2895 s.stmtList(cond.Ninit) 2896 s.condBranch(cond.Left, mid, no, max8(likely, 0)) 2897 s.startBlock(mid) 2898 s.condBranch(cond.Right, yes, no, likely) 2899 return 2900 // Note: if likely==1, then both recursive calls pass 1. 2901 // If likely==-1, then we don't have enough information to decide 2902 // whether the first branch is likely or not. So we pass 0 for 2903 // the likeliness of the first branch. 2904 // TODO: have the frontend give us branch prediction hints for 2905 // OANDAND and OOROR nodes (if it ever has such info). 2906 case OOROR: 2907 mid := s.f.NewBlock(ssa.BlockPlain) 2908 s.stmtList(cond.Ninit) 2909 s.condBranch(cond.Left, yes, mid, min8(likely, 0)) 2910 s.startBlock(mid) 2911 s.condBranch(cond.Right, yes, no, likely) 2912 return 2913 // Note: if likely==-1, then both recursive calls pass -1. 2914 // If likely==1, then we don't have enough info to decide 2915 // the likelihood of the first branch. 2916 case ONOT: 2917 s.stmtList(cond.Ninit) 2918 s.condBranch(cond.Left, no, yes, -likely) 2919 return 2920 } 2921 c := s.expr(cond) 2922 b := s.endBlock() 2923 b.Kind = ssa.BlockIf 2924 b.SetControl(c) 2925 b.Likely = ssa.BranchPrediction(likely) // gc and ssa both use -1/0/+1 for likeliness 2926 b.AddEdgeTo(yes) 2927 b.AddEdgeTo(no) 2928 } 2929 2930 type skipMask uint8 2931 2932 const ( 2933 skipPtr skipMask = 1 << iota 2934 skipLen 2935 skipCap 2936 ) 2937 2938 // assign does left = right. 2939 // Right has already been evaluated to ssa, left has not. 2940 // If deref is true, then we do left = *right instead (and right has already been nil-checked). 2941 // If deref is true and right == nil, just do left = 0. 2942 // skip indicates assignments (at the top level) that can be avoided. 2943 func (s *state) assign(left *Node, right *ssa.Value, deref bool, skip skipMask) { 2944 if left.Op == ONAME && left.isBlank() { 2945 return 2946 } 2947 t := left.Type 2948 dowidth(t) 2949 if s.canSSA(left) { 2950 if deref { 2951 s.Fatalf("can SSA LHS %v but not RHS %s", left, right) 2952 } 2953 if left.Op == ODOT { 2954 // We're assigning to a field of an ssa-able value. 2955 // We need to build a new structure with the new value for the 2956 // field we're assigning and the old values for the other fields. 2957 // For instance: 2958 // type T struct {a, b, c int} 2959 // var T x 2960 // x.b = 5 2961 // For the x.b = 5 assignment we want to generate x = T{x.a, 5, x.c} 2962 2963 // Grab information about the structure type. 2964 t := left.Left.Type 2965 nf := t.NumFields() 2966 idx := fieldIdx(left) 2967 2968 // Grab old value of structure. 2969 old := s.expr(left.Left) 2970 2971 // Make new structure. 2972 new := s.newValue0(ssa.StructMakeOp(t.NumFields()), t) 2973 2974 // Add fields as args. 2975 for i := 0; i < nf; i++ { 2976 if i == idx { 2977 new.AddArg(right) 2978 } else { 2979 new.AddArg(s.newValue1I(ssa.OpStructSelect, t.FieldType(i), int64(i), old)) 2980 } 2981 } 2982 2983 // Recursively assign the new value we've made to the base of the dot op. 2984 s.assign(left.Left, new, false, 0) 2985 // TODO: do we need to update named values here? 2986 return 2987 } 2988 if left.Op == OINDEX && left.Left.Type.IsArray() { 2989 s.pushLine(left.Pos) 2990 defer s.popLine() 2991 // We're assigning to an element of an ssa-able array. 2992 // a[i] = v 2993 t := left.Left.Type 2994 n := t.NumElem() 2995 2996 i := s.expr(left.Right) // index 2997 if n == 0 { 2998 // The bounds check must fail. Might as well 2999 // ignore the actual index and just use zeros. 3000 z := s.constInt(types.Types[TINT], 0) 3001 s.boundsCheck(z, z, ssa.BoundsIndex, false) 3002 return 3003 } 3004 if n != 1 { 3005 s.Fatalf("assigning to non-1-length array") 3006 } 3007 // Rewrite to a = [1]{v} 3008 len := s.constInt(types.Types[TINT], 1) 3009 i = s.boundsCheck(i, len, ssa.BoundsIndex, false) 3010 v := s.newValue1(ssa.OpArrayMake1, t, right) 3011 s.assign(left.Left, v, false, 0) 3012 return 3013 } 3014 // Update variable assignment. 3015 s.vars[left] = right 3016 s.addNamedValue(left, right) 3017 return 3018 } 3019 3020 // If this assignment clobbers an entire local variable, then emit 3021 // OpVarDef so liveness analysis knows the variable is redefined. 3022 if base := clobberBase(left); base.Op == ONAME && base.Class() != PEXTERN && skip == 0 { 3023 s.vars[&memVar] = s.newValue1Apos(ssa.OpVarDef, types.TypeMem, base, s.mem(), !base.IsAutoTmp()) 3024 } 3025 3026 // Left is not ssa-able. Compute its address. 3027 addr := s.addr(left, false) 3028 if isReflectHeaderDataField(left) { 3029 // Package unsafe's documentation says storing pointers into 3030 // reflect.SliceHeader and reflect.StringHeader's Data fields 3031 // is valid, even though they have type uintptr (#19168). 3032 // Mark it pointer type to signal the writebarrier pass to 3033 // insert a write barrier. 3034 t = types.Types[TUNSAFEPTR] 3035 } 3036 if deref { 3037 // Treat as a mem->mem move. 3038 if right == nil { 3039 s.zero(t, addr) 3040 } else { 3041 s.move(t, addr, right) 3042 } 3043 return 3044 } 3045 // Treat as a store. 3046 s.storeType(t, addr, right, skip, !left.IsAutoTmp()) 3047 } 3048 3049 // zeroVal returns the zero value for type t. 3050 func (s *state) zeroVal(t *types.Type) *ssa.Value { 3051 switch { 3052 case t.IsInteger(): 3053 switch t.Size() { 3054 case 1: 3055 return s.constInt8(t, 0) 3056 case 2: 3057 return s.constInt16(t, 0) 3058 case 4: 3059 return s.constInt32(t, 0) 3060 case 8: 3061 return s.constInt64(t, 0) 3062 default: 3063 s.Fatalf("bad sized integer type %v", t) 3064 } 3065 case t.IsFloat(): 3066 switch t.Size() { 3067 case 4: 3068 return s.constFloat32(t, 0) 3069 case 8: 3070 return s.constFloat64(t, 0) 3071 default: 3072 s.Fatalf("bad sized float type %v", t) 3073 } 3074 case t.IsComplex(): 3075 switch t.Size() { 3076 case 8: 3077 z := s.constFloat32(types.Types[TFLOAT32], 0) 3078 return s.entryNewValue2(ssa.OpComplexMake, t, z, z) 3079 case 16: 3080 z := s.constFloat64(types.Types[TFLOAT64], 0) 3081 return s.entryNewValue2(ssa.OpComplexMake, t, z, z) 3082 default: 3083 s.Fatalf("bad sized complex type %v", t) 3084 } 3085 3086 case t.IsString(): 3087 return s.constEmptyString(t) 3088 case t.IsPtrShaped(): 3089 return s.constNil(t) 3090 case t.IsBoolean(): 3091 return s.constBool(false) 3092 case t.IsInterface(): 3093 return s.constInterface(t) 3094 case t.IsSlice(): 3095 return s.constSlice(t) 3096 case t.IsStruct(): 3097 n := t.NumFields() 3098 v := s.entryNewValue0(ssa.StructMakeOp(t.NumFields()), t) 3099 for i := 0; i < n; i++ { 3100 v.AddArg(s.zeroVal(t.FieldType(i))) 3101 } 3102 return v 3103 case t.IsArray(): 3104 switch t.NumElem() { 3105 case 0: 3106 return s.entryNewValue0(ssa.OpArrayMake0, t) 3107 case 1: 3108 return s.entryNewValue1(ssa.OpArrayMake1, t, s.zeroVal(t.Elem())) 3109 } 3110 } 3111 s.Fatalf("zero for type %v not implemented", t) 3112 return nil 3113 } 3114 3115 type callKind int8 3116 3117 const ( 3118 callNormal callKind = iota 3119 callDefer 3120 callDeferStack 3121 callGo 3122 ) 3123 3124 type sfRtCallDef struct { 3125 rtfn *obj.LSym 3126 rtype types.EType 3127 } 3128 3129 var softFloatOps map[ssa.Op]sfRtCallDef 3130 3131 func softfloatInit() { 3132 // Some of these operations get transformed by sfcall. 3133 softFloatOps = map[ssa.Op]sfRtCallDef{ 3134 ssa.OpAdd32F: sfRtCallDef{sysfunc("fadd32"), TFLOAT32}, 3135 ssa.OpAdd64F: sfRtCallDef{sysfunc("fadd64"), TFLOAT64}, 3136 ssa.OpSub32F: sfRtCallDef{sysfunc("fadd32"), TFLOAT32}, 3137 ssa.OpSub64F: sfRtCallDef{sysfunc("fadd64"), TFLOAT64}, 3138 ssa.OpMul32F: sfRtCallDef{sysfunc("fmul32"), TFLOAT32}, 3139 ssa.OpMul64F: sfRtCallDef{sysfunc("fmul64"), TFLOAT64}, 3140 ssa.OpDiv32F: sfRtCallDef{sysfunc("fdiv32"), TFLOAT32}, 3141 ssa.OpDiv64F: sfRtCallDef{sysfunc("fdiv64"), TFLOAT64}, 3142 3143 ssa.OpEq64F: sfRtCallDef{sysfunc("feq64"), TBOOL}, 3144 ssa.OpEq32F: sfRtCallDef{sysfunc("feq32"), TBOOL}, 3145 ssa.OpNeq64F: sfRtCallDef{sysfunc("feq64"), TBOOL}, 3146 ssa.OpNeq32F: sfRtCallDef{sysfunc("feq32"), TBOOL}, 3147 ssa.OpLess64F: sfRtCallDef{sysfunc("fgt64"), TBOOL}, 3148 ssa.OpLess32F: sfRtCallDef{sysfunc("fgt32"), TBOOL}, 3149 ssa.OpGreater64F: sfRtCallDef{sysfunc("fgt64"), TBOOL}, 3150 ssa.OpGreater32F: sfRtCallDef{sysfunc("fgt32"), TBOOL}, 3151 ssa.OpLeq64F: sfRtCallDef{sysfunc("fge64"), TBOOL}, 3152 ssa.OpLeq32F: sfRtCallDef{sysfunc("fge32"), TBOOL}, 3153 ssa.OpGeq64F: sfRtCallDef{sysfunc("fge64"), TBOOL}, 3154 ssa.OpGeq32F: sfRtCallDef{sysfunc("fge32"), TBOOL}, 3155 3156 ssa.OpCvt32to32F: sfRtCallDef{sysfunc("fint32to32"), TFLOAT32}, 3157 ssa.OpCvt32Fto32: sfRtCallDef{sysfunc("f32toint32"), TINT32}, 3158 ssa.OpCvt64to32F: sfRtCallDef{sysfunc("fint64to32"), TFLOAT32}, 3159 ssa.OpCvt32Fto64: sfRtCallDef{sysfunc("f32toint64"), TINT64}, 3160 ssa.OpCvt64Uto32F: sfRtCallDef{sysfunc("fuint64to32"), TFLOAT32}, 3161 ssa.OpCvt32Fto64U: sfRtCallDef{sysfunc("f32touint64"), TUINT64}, 3162 ssa.OpCvt32to64F: sfRtCallDef{sysfunc("fint32to64"), TFLOAT64}, 3163 ssa.OpCvt64Fto32: sfRtCallDef{sysfunc("f64toint32"), TINT32}, 3164 ssa.OpCvt64to64F: sfRtCallDef{sysfunc("fint64to64"), TFLOAT64}, 3165 ssa.OpCvt64Fto64: sfRtCallDef{sysfunc("f64toint64"), TINT64}, 3166 ssa.OpCvt64Uto64F: sfRtCallDef{sysfunc("fuint64to64"), TFLOAT64}, 3167 ssa.OpCvt64Fto64U: sfRtCallDef{sysfunc("f64touint64"), TUINT64}, 3168 ssa.OpCvt32Fto64F: sfRtCallDef{sysfunc("f32to64"), TFLOAT64}, 3169 ssa.OpCvt64Fto32F: sfRtCallDef{sysfunc("f64to32"), TFLOAT32}, 3170 } 3171 } 3172 3173 // TODO: do not emit sfcall if operation can be optimized to constant in later 3174 // opt phase 3175 func (s *state) sfcall(op ssa.Op, args ...*ssa.Value) (*ssa.Value, bool) { 3176 if callDef, ok := softFloatOps[op]; ok { 3177 switch op { 3178 case ssa.OpLess32F, 3179 ssa.OpLess64F, 3180 ssa.OpLeq32F, 3181 ssa.OpLeq64F: 3182 args[0], args[1] = args[1], args[0] 3183 case ssa.OpSub32F, 3184 ssa.OpSub64F: 3185 args[1] = s.newValue1(s.ssaOp(ONEG, types.Types[callDef.rtype]), args[1].Type, args[1]) 3186 } 3187 3188 result := s.rtcall(callDef.rtfn, true, []*types.Type{types.Types[callDef.rtype]}, args...)[0] 3189 if op == ssa.OpNeq32F || op == ssa.OpNeq64F { 3190 result = s.newValue1(ssa.OpNot, result.Type, result) 3191 } 3192 return result, true 3193 } 3194 return nil, false 3195 } 3196 3197 var intrinsics map[intrinsicKey]intrinsicBuilder 3198 3199 // An intrinsicBuilder converts a call node n into an ssa value that 3200 // implements that call as an intrinsic. args is a list of arguments to the func. 3201 type intrinsicBuilder func(s *state, n *Node, args []*ssa.Value) *ssa.Value 3202 3203 type intrinsicKey struct { 3204 arch *sys.Arch 3205 pkg string 3206 fn string 3207 } 3208 3209 func init() { 3210 intrinsics = map[intrinsicKey]intrinsicBuilder{} 3211 3212 var all []*sys.Arch 3213 var p4 []*sys.Arch 3214 var p8 []*sys.Arch 3215 var lwatomics []*sys.Arch 3216 for _, a := range sys.Archs { 3217 all = append(all, a) 3218 if a.PtrSize == 4 { 3219 p4 = append(p4, a) 3220 } else { 3221 p8 = append(p8, a) 3222 } 3223 if a.Family != sys.PPC64 { 3224 lwatomics = append(lwatomics, a) 3225 } 3226 } 3227 3228 // add adds the intrinsic b for pkg.fn for the given list of architectures. 3229 add := func(pkg, fn string, b intrinsicBuilder, archs ...*sys.Arch) { 3230 for _, a := range archs { 3231 intrinsics[intrinsicKey{a, pkg, fn}] = b 3232 } 3233 } 3234 // addF does the same as add but operates on architecture families. 3235 addF := func(pkg, fn string, b intrinsicBuilder, archFamilies ...sys.ArchFamily) { 3236 m := 0 3237 for _, f := range archFamilies { 3238 if f >= 32 { 3239 panic("too many architecture families") 3240 } 3241 m |= 1 << uint(f) 3242 } 3243 for _, a := range all { 3244 if m>>uint(a.Family)&1 != 0 { 3245 intrinsics[intrinsicKey{a, pkg, fn}] = b 3246 } 3247 } 3248 } 3249 // alias defines pkg.fn = pkg2.fn2 for all architectures in archs for which pkg2.fn2 exists. 3250 alias := func(pkg, fn, pkg2, fn2 string, archs ...*sys.Arch) { 3251 for _, a := range archs { 3252 if b, ok := intrinsics[intrinsicKey{a, pkg2, fn2}]; ok { 3253 intrinsics[intrinsicKey{a, pkg, fn}] = b 3254 } 3255 } 3256 } 3257 3258 /******** runtime ********/ 3259 if !instrumenting { 3260 add("runtime", "slicebytetostringtmp", 3261 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3262 // Compiler frontend optimizations emit OBYTES2STRTMP nodes 3263 // for the backend instead of slicebytetostringtmp calls 3264 // when not instrumenting. 3265 slice := args[0] 3266 ptr := s.newValue1(ssa.OpSlicePtr, s.f.Config.Types.BytePtr, slice) 3267 len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], slice) 3268 return s.newValue2(ssa.OpStringMake, n.Type, ptr, len) 3269 }, 3270 all...) 3271 } 3272 addF("runtime/internal/math", "MulUintptr", 3273 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3274 if s.config.PtrSize == 4 { 3275 return s.newValue2(ssa.OpMul32uover, types.NewTuple(types.Types[TUINT], types.Types[TUINT]), args[0], args[1]) 3276 } 3277 return s.newValue2(ssa.OpMul64uover, types.NewTuple(types.Types[TUINT], types.Types[TUINT]), args[0], args[1]) 3278 }, 3279 sys.AMD64, sys.I386) 3280 add("runtime", "KeepAlive", 3281 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3282 data := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, args[0]) 3283 s.vars[&memVar] = s.newValue2(ssa.OpKeepAlive, types.TypeMem, data, s.mem()) 3284 return nil 3285 }, 3286 all...) 3287 add("runtime", "getclosureptr", 3288 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3289 return s.newValue0(ssa.OpGetClosurePtr, s.f.Config.Types.Uintptr) 3290 }, 3291 all...) 3292 3293 add("runtime", "getcallerpc", 3294 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3295 return s.newValue0(ssa.OpGetCallerPC, s.f.Config.Types.Uintptr) 3296 }, 3297 all...) 3298 3299 add("runtime", "getcallersp", 3300 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3301 return s.newValue0(ssa.OpGetCallerSP, s.f.Config.Types.Uintptr) 3302 }, 3303 all...) 3304 3305 /******** runtime/internal/sys ********/ 3306 addF("runtime/internal/sys", "Ctz32", 3307 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3308 return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0]) 3309 }, 3310 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 3311 addF("runtime/internal/sys", "Ctz64", 3312 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3313 return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0]) 3314 }, 3315 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64) 3316 addF("runtime/internal/sys", "Bswap32", 3317 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3318 return s.newValue1(ssa.OpBswap32, types.Types[TUINT32], args[0]) 3319 }, 3320 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X) 3321 addF("runtime/internal/sys", "Bswap64", 3322 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3323 return s.newValue1(ssa.OpBswap64, types.Types[TUINT64], args[0]) 3324 }, 3325 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X) 3326 3327 /******** runtime/internal/atomic ********/ 3328 addF("runtime/internal/atomic", "Load", 3329 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3330 v := s.newValue2(ssa.OpAtomicLoad32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], s.mem()) 3331 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3332 return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v) 3333 }, 3334 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64) 3335 addF("runtime/internal/atomic", "Load8", 3336 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3337 v := s.newValue2(ssa.OpAtomicLoad8, types.NewTuple(types.Types[TUINT8], types.TypeMem), args[0], s.mem()) 3338 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3339 return s.newValue1(ssa.OpSelect0, types.Types[TUINT8], v) 3340 }, 3341 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64) 3342 addF("runtime/internal/atomic", "Load64", 3343 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3344 v := s.newValue2(ssa.OpAtomicLoad64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], s.mem()) 3345 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3346 return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v) 3347 }, 3348 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64) 3349 addF("runtime/internal/atomic", "LoadAcq", 3350 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3351 v := s.newValue2(ssa.OpAtomicLoadAcq32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], s.mem()) 3352 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3353 return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v) 3354 }, 3355 sys.PPC64, sys.S390X) 3356 addF("runtime/internal/atomic", "Loadp", 3357 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3358 v := s.newValue2(ssa.OpAtomicLoadPtr, types.NewTuple(s.f.Config.Types.BytePtr, types.TypeMem), args[0], s.mem()) 3359 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3360 return s.newValue1(ssa.OpSelect0, s.f.Config.Types.BytePtr, v) 3361 }, 3362 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64) 3363 3364 addF("runtime/internal/atomic", "Store", 3365 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3366 s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore32, types.TypeMem, args[0], args[1], s.mem()) 3367 return nil 3368 }, 3369 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64) 3370 addF("runtime/internal/atomic", "Store8", 3371 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3372 s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore8, types.TypeMem, args[0], args[1], s.mem()) 3373 return nil 3374 }, 3375 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64) 3376 addF("runtime/internal/atomic", "Store64", 3377 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3378 s.vars[&memVar] = s.newValue3(ssa.OpAtomicStore64, types.TypeMem, args[0], args[1], s.mem()) 3379 return nil 3380 }, 3381 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64) 3382 addF("runtime/internal/atomic", "StorepNoWB", 3383 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3384 s.vars[&memVar] = s.newValue3(ssa.OpAtomicStorePtrNoWB, types.TypeMem, args[0], args[1], s.mem()) 3385 return nil 3386 }, 3387 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64) 3388 addF("runtime/internal/atomic", "StoreRel", 3389 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3390 s.vars[&memVar] = s.newValue3(ssa.OpAtomicStoreRel32, types.TypeMem, args[0], args[1], s.mem()) 3391 return nil 3392 }, 3393 sys.PPC64, sys.S390X) 3394 3395 addF("runtime/internal/atomic", "Xchg", 3396 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3397 v := s.newValue3(ssa.OpAtomicExchange32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], args[1], s.mem()) 3398 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3399 return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v) 3400 }, 3401 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64) 3402 addF("runtime/internal/atomic", "Xchg64", 3403 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3404 v := s.newValue3(ssa.OpAtomicExchange64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], args[1], s.mem()) 3405 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3406 return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v) 3407 }, 3408 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64) 3409 3410 addF("runtime/internal/atomic", "Xadd", 3411 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3412 v := s.newValue3(ssa.OpAtomicAdd32, types.NewTuple(types.Types[TUINT32], types.TypeMem), args[0], args[1], s.mem()) 3413 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3414 return s.newValue1(ssa.OpSelect0, types.Types[TUINT32], v) 3415 }, 3416 sys.AMD64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64) 3417 addF("runtime/internal/atomic", "Xadd64", 3418 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3419 v := s.newValue3(ssa.OpAtomicAdd64, types.NewTuple(types.Types[TUINT64], types.TypeMem), args[0], args[1], s.mem()) 3420 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3421 return s.newValue1(ssa.OpSelect0, types.Types[TUINT64], v) 3422 }, 3423 sys.AMD64, sys.S390X, sys.MIPS64, sys.PPC64) 3424 3425 makeXaddARM64 := func(op0 ssa.Op, op1 ssa.Op, ty types.EType) func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3426 return func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3427 // Target Atomic feature is identified by dynamic detection 3428 addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), arm64HasATOMICS, s.sb) 3429 v := s.load(types.Types[TBOOL], addr) 3430 b := s.endBlock() 3431 b.Kind = ssa.BlockIf 3432 b.SetControl(v) 3433 bTrue := s.f.NewBlock(ssa.BlockPlain) 3434 bFalse := s.f.NewBlock(ssa.BlockPlain) 3435 bEnd := s.f.NewBlock(ssa.BlockPlain) 3436 b.AddEdgeTo(bTrue) 3437 b.AddEdgeTo(bFalse) 3438 b.Likely = ssa.BranchUnlikely // most machines don't have Atomics nowadays 3439 3440 // We have atomic instructions - use it directly. 3441 s.startBlock(bTrue) 3442 v0 := s.newValue3(op1, types.NewTuple(types.Types[ty], types.TypeMem), args[0], args[1], s.mem()) 3443 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v0) 3444 s.vars[n] = s.newValue1(ssa.OpSelect0, types.Types[ty], v0) 3445 s.endBlock().AddEdgeTo(bEnd) 3446 3447 // Use original instruction sequence. 3448 s.startBlock(bFalse) 3449 v1 := s.newValue3(op0, types.NewTuple(types.Types[ty], types.TypeMem), args[0], args[1], s.mem()) 3450 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v1) 3451 s.vars[n] = s.newValue1(ssa.OpSelect0, types.Types[ty], v1) 3452 s.endBlock().AddEdgeTo(bEnd) 3453 3454 // Merge results. 3455 s.startBlock(bEnd) 3456 return s.variable(n, types.Types[ty]) 3457 } 3458 } 3459 3460 addF("runtime/internal/atomic", "Xadd", 3461 makeXaddARM64(ssa.OpAtomicAdd32, ssa.OpAtomicAdd32Variant, TUINT32), 3462 sys.ARM64) 3463 addF("runtime/internal/atomic", "Xadd64", 3464 makeXaddARM64(ssa.OpAtomicAdd64, ssa.OpAtomicAdd64Variant, TUINT64), 3465 sys.ARM64) 3466 3467 addF("runtime/internal/atomic", "Cas", 3468 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3469 v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem()) 3470 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3471 return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v) 3472 }, 3473 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS, sys.MIPS64, sys.PPC64) 3474 addF("runtime/internal/atomic", "Cas64", 3475 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3476 v := s.newValue4(ssa.OpAtomicCompareAndSwap64, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem()) 3477 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3478 return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v) 3479 }, 3480 sys.AMD64, sys.ARM64, sys.S390X, sys.MIPS64, sys.PPC64) 3481 addF("runtime/internal/atomic", "CasRel", 3482 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3483 v := s.newValue4(ssa.OpAtomicCompareAndSwap32, types.NewTuple(types.Types[TBOOL], types.TypeMem), args[0], args[1], args[2], s.mem()) 3484 s.vars[&memVar] = s.newValue1(ssa.OpSelect1, types.TypeMem, v) 3485 return s.newValue1(ssa.OpSelect0, types.Types[TBOOL], v) 3486 }, 3487 sys.PPC64) 3488 3489 addF("runtime/internal/atomic", "And8", 3490 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3491 s.vars[&memVar] = s.newValue3(ssa.OpAtomicAnd8, types.TypeMem, args[0], args[1], s.mem()) 3492 return nil 3493 }, 3494 sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64, sys.S390X) 3495 addF("runtime/internal/atomic", "Or8", 3496 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3497 s.vars[&memVar] = s.newValue3(ssa.OpAtomicOr8, types.TypeMem, args[0], args[1], s.mem()) 3498 return nil 3499 }, 3500 sys.AMD64, sys.ARM64, sys.MIPS, sys.PPC64, sys.S390X) 3501 3502 alias("runtime/internal/atomic", "Loadint64", "runtime/internal/atomic", "Load64", all...) 3503 alias("runtime/internal/atomic", "Xaddint64", "runtime/internal/atomic", "Xadd64", all...) 3504 alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load", p4...) 3505 alias("runtime/internal/atomic", "Loaduint", "runtime/internal/atomic", "Load64", p8...) 3506 alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load", p4...) 3507 alias("runtime/internal/atomic", "Loaduintptr", "runtime/internal/atomic", "Load64", p8...) 3508 alias("runtime/internal/atomic", "LoadAcq", "runtime/internal/atomic", "Load", lwatomics...) 3509 alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store", p4...) 3510 alias("runtime/internal/atomic", "Storeuintptr", "runtime/internal/atomic", "Store64", p8...) 3511 alias("runtime/internal/atomic", "StoreRel", "runtime/internal/atomic", "Store", lwatomics...) 3512 alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg", p4...) 3513 alias("runtime/internal/atomic", "Xchguintptr", "runtime/internal/atomic", "Xchg64", p8...) 3514 alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd", p4...) 3515 alias("runtime/internal/atomic", "Xadduintptr", "runtime/internal/atomic", "Xadd64", p8...) 3516 alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas", p4...) 3517 alias("runtime/internal/atomic", "Casuintptr", "runtime/internal/atomic", "Cas64", p8...) 3518 alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas", p4...) 3519 alias("runtime/internal/atomic", "Casp1", "runtime/internal/atomic", "Cas64", p8...) 3520 alias("runtime/internal/atomic", "CasRel", "runtime/internal/atomic", "Cas", lwatomics...) 3521 3522 alias("runtime/internal/sys", "Ctz8", "math/bits", "TrailingZeros8", all...) 3523 alias("runtime/internal/sys", "TrailingZeros8", "math/bits", "TrailingZeros8", all...) 3524 alias("runtime/internal/sys", "TrailingZeros64", "math/bits", "TrailingZeros64", all...) 3525 alias("runtime/internal/sys", "Len8", "math/bits", "Len8", all...) 3526 alias("runtime/internal/sys", "Len64", "math/bits", "Len64", all...) 3527 alias("runtime/internal/sys", "OnesCount64", "math/bits", "OnesCount64", all...) 3528 3529 /******** math ********/ 3530 addF("math", "Sqrt", 3531 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3532 return s.newValue1(ssa.OpSqrt, types.Types[TFLOAT64], args[0]) 3533 }, 3534 sys.I386, sys.AMD64, sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64, sys.PPC64, sys.S390X, sys.Wasm) 3535 addF("math", "Trunc", 3536 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3537 return s.newValue1(ssa.OpTrunc, types.Types[TFLOAT64], args[0]) 3538 }, 3539 sys.ARM64, sys.PPC64, sys.S390X, sys.Wasm) 3540 addF("math", "Ceil", 3541 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3542 return s.newValue1(ssa.OpCeil, types.Types[TFLOAT64], args[0]) 3543 }, 3544 sys.ARM64, sys.PPC64, sys.S390X, sys.Wasm) 3545 addF("math", "Floor", 3546 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3547 return s.newValue1(ssa.OpFloor, types.Types[TFLOAT64], args[0]) 3548 }, 3549 sys.ARM64, sys.PPC64, sys.S390X, sys.Wasm) 3550 addF("math", "Round", 3551 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3552 return s.newValue1(ssa.OpRound, types.Types[TFLOAT64], args[0]) 3553 }, 3554 sys.ARM64, sys.PPC64, sys.S390X) 3555 addF("math", "RoundToEven", 3556 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3557 return s.newValue1(ssa.OpRoundToEven, types.Types[TFLOAT64], args[0]) 3558 }, 3559 sys.ARM64, sys.S390X, sys.Wasm) 3560 addF("math", "Abs", 3561 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3562 return s.newValue1(ssa.OpAbs, types.Types[TFLOAT64], args[0]) 3563 }, 3564 sys.ARM64, sys.ARM, sys.PPC64, sys.Wasm) 3565 addF("math", "Copysign", 3566 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3567 return s.newValue2(ssa.OpCopysign, types.Types[TFLOAT64], args[0], args[1]) 3568 }, 3569 sys.PPC64, sys.Wasm) 3570 addF("math", "FMA", 3571 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3572 return s.newValue3(ssa.OpFMA, types.Types[TFLOAT64], args[0], args[1], args[2]) 3573 }, 3574 sys.ARM64, sys.PPC64, sys.S390X) 3575 addF("math", "FMA", 3576 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3577 if !s.config.UseFMA { 3578 a := s.call(n, callNormal) 3579 s.vars[n] = s.load(types.Types[TFLOAT64], a) 3580 return s.variable(n, types.Types[TFLOAT64]) 3581 } 3582 addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), x86HasFMA, s.sb) 3583 v := s.load(types.Types[TBOOL], addr) 3584 b := s.endBlock() 3585 b.Kind = ssa.BlockIf 3586 b.SetControl(v) 3587 bTrue := s.f.NewBlock(ssa.BlockPlain) 3588 bFalse := s.f.NewBlock(ssa.BlockPlain) 3589 bEnd := s.f.NewBlock(ssa.BlockPlain) 3590 b.AddEdgeTo(bTrue) 3591 b.AddEdgeTo(bFalse) 3592 b.Likely = ssa.BranchLikely // >= haswell cpus are common 3593 3594 // We have the intrinsic - use it directly. 3595 s.startBlock(bTrue) 3596 s.vars[n] = s.newValue3(ssa.OpFMA, types.Types[TFLOAT64], args[0], args[1], args[2]) 3597 s.endBlock().AddEdgeTo(bEnd) 3598 3599 // Call the pure Go version. 3600 s.startBlock(bFalse) 3601 a := s.call(n, callNormal) 3602 s.vars[n] = s.load(types.Types[TFLOAT64], a) 3603 s.endBlock().AddEdgeTo(bEnd) 3604 3605 // Merge results. 3606 s.startBlock(bEnd) 3607 return s.variable(n, types.Types[TFLOAT64]) 3608 }, 3609 sys.AMD64) 3610 addF("math", "FMA", 3611 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3612 if !s.config.UseFMA { 3613 a := s.call(n, callNormal) 3614 s.vars[n] = s.load(types.Types[TFLOAT64], a) 3615 return s.variable(n, types.Types[TFLOAT64]) 3616 } 3617 addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), armHasVFPv4, s.sb) 3618 v := s.load(types.Types[TBOOL], addr) 3619 b := s.endBlock() 3620 b.Kind = ssa.BlockIf 3621 b.SetControl(v) 3622 bTrue := s.f.NewBlock(ssa.BlockPlain) 3623 bFalse := s.f.NewBlock(ssa.BlockPlain) 3624 bEnd := s.f.NewBlock(ssa.BlockPlain) 3625 b.AddEdgeTo(bTrue) 3626 b.AddEdgeTo(bFalse) 3627 b.Likely = ssa.BranchLikely 3628 3629 // We have the intrinsic - use it directly. 3630 s.startBlock(bTrue) 3631 s.vars[n] = s.newValue3(ssa.OpFMA, types.Types[TFLOAT64], args[0], args[1], args[2]) 3632 s.endBlock().AddEdgeTo(bEnd) 3633 3634 // Call the pure Go version. 3635 s.startBlock(bFalse) 3636 a := s.call(n, callNormal) 3637 s.vars[n] = s.load(types.Types[TFLOAT64], a) 3638 s.endBlock().AddEdgeTo(bEnd) 3639 3640 // Merge results. 3641 s.startBlock(bEnd) 3642 return s.variable(n, types.Types[TFLOAT64]) 3643 }, 3644 sys.ARM) 3645 3646 makeRoundAMD64 := func(op ssa.Op) func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3647 return func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3648 addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), x86HasSSE41, s.sb) 3649 v := s.load(types.Types[TBOOL], addr) 3650 b := s.endBlock() 3651 b.Kind = ssa.BlockIf 3652 b.SetControl(v) 3653 bTrue := s.f.NewBlock(ssa.BlockPlain) 3654 bFalse := s.f.NewBlock(ssa.BlockPlain) 3655 bEnd := s.f.NewBlock(ssa.BlockPlain) 3656 b.AddEdgeTo(bTrue) 3657 b.AddEdgeTo(bFalse) 3658 b.Likely = ssa.BranchLikely // most machines have sse4.1 nowadays 3659 3660 // We have the intrinsic - use it directly. 3661 s.startBlock(bTrue) 3662 s.vars[n] = s.newValue1(op, types.Types[TFLOAT64], args[0]) 3663 s.endBlock().AddEdgeTo(bEnd) 3664 3665 // Call the pure Go version. 3666 s.startBlock(bFalse) 3667 a := s.call(n, callNormal) 3668 s.vars[n] = s.load(types.Types[TFLOAT64], a) 3669 s.endBlock().AddEdgeTo(bEnd) 3670 3671 // Merge results. 3672 s.startBlock(bEnd) 3673 return s.variable(n, types.Types[TFLOAT64]) 3674 } 3675 } 3676 addF("math", "RoundToEven", 3677 makeRoundAMD64(ssa.OpRoundToEven), 3678 sys.AMD64) 3679 addF("math", "Floor", 3680 makeRoundAMD64(ssa.OpFloor), 3681 sys.AMD64) 3682 addF("math", "Ceil", 3683 makeRoundAMD64(ssa.OpCeil), 3684 sys.AMD64) 3685 addF("math", "Trunc", 3686 makeRoundAMD64(ssa.OpTrunc), 3687 sys.AMD64) 3688 3689 /******** math/bits ********/ 3690 addF("math/bits", "TrailingZeros64", 3691 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3692 return s.newValue1(ssa.OpCtz64, types.Types[TINT], args[0]) 3693 }, 3694 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm) 3695 addF("math/bits", "TrailingZeros32", 3696 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3697 return s.newValue1(ssa.OpCtz32, types.Types[TINT], args[0]) 3698 }, 3699 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm) 3700 addF("math/bits", "TrailingZeros16", 3701 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3702 x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0]) 3703 c := s.constInt32(types.Types[TUINT32], 1<<16) 3704 y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c) 3705 return s.newValue1(ssa.OpCtz32, types.Types[TINT], y) 3706 }, 3707 sys.MIPS) 3708 addF("math/bits", "TrailingZeros16", 3709 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3710 return s.newValue1(ssa.OpCtz16, types.Types[TINT], args[0]) 3711 }, 3712 sys.AMD64, sys.I386, sys.ARM, sys.ARM64, sys.Wasm) 3713 addF("math/bits", "TrailingZeros16", 3714 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3715 x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0]) 3716 c := s.constInt64(types.Types[TUINT64], 1<<16) 3717 y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c) 3718 return s.newValue1(ssa.OpCtz64, types.Types[TINT], y) 3719 }, 3720 sys.S390X, sys.PPC64) 3721 addF("math/bits", "TrailingZeros8", 3722 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3723 x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0]) 3724 c := s.constInt32(types.Types[TUINT32], 1<<8) 3725 y := s.newValue2(ssa.OpOr32, types.Types[TUINT32], x, c) 3726 return s.newValue1(ssa.OpCtz32, types.Types[TINT], y) 3727 }, 3728 sys.MIPS) 3729 addF("math/bits", "TrailingZeros8", 3730 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3731 return s.newValue1(ssa.OpCtz8, types.Types[TINT], args[0]) 3732 }, 3733 sys.AMD64, sys.ARM, sys.ARM64, sys.Wasm) 3734 addF("math/bits", "TrailingZeros8", 3735 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3736 x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0]) 3737 c := s.constInt64(types.Types[TUINT64], 1<<8) 3738 y := s.newValue2(ssa.OpOr64, types.Types[TUINT64], x, c) 3739 return s.newValue1(ssa.OpCtz64, types.Types[TINT], y) 3740 }, 3741 sys.S390X) 3742 alias("math/bits", "ReverseBytes64", "runtime/internal/sys", "Bswap64", all...) 3743 alias("math/bits", "ReverseBytes32", "runtime/internal/sys", "Bswap32", all...) 3744 // ReverseBytes inlines correctly, no need to intrinsify it. 3745 // ReverseBytes16 lowers to a rotate, no need for anything special here. 3746 addF("math/bits", "Len64", 3747 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3748 return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0]) 3749 }, 3750 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm) 3751 addF("math/bits", "Len32", 3752 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3753 return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0]) 3754 }, 3755 sys.AMD64, sys.ARM64) 3756 addF("math/bits", "Len32", 3757 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3758 if s.config.PtrSize == 4 { 3759 return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0]) 3760 } 3761 x := s.newValue1(ssa.OpZeroExt32to64, types.Types[TUINT64], args[0]) 3762 return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x) 3763 }, 3764 sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm) 3765 addF("math/bits", "Len16", 3766 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3767 if s.config.PtrSize == 4 { 3768 x := s.newValue1(ssa.OpZeroExt16to32, types.Types[TUINT32], args[0]) 3769 return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x) 3770 } 3771 x := s.newValue1(ssa.OpZeroExt16to64, types.Types[TUINT64], args[0]) 3772 return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x) 3773 }, 3774 sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm) 3775 addF("math/bits", "Len16", 3776 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3777 return s.newValue1(ssa.OpBitLen16, types.Types[TINT], args[0]) 3778 }, 3779 sys.AMD64) 3780 addF("math/bits", "Len8", 3781 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3782 if s.config.PtrSize == 4 { 3783 x := s.newValue1(ssa.OpZeroExt8to32, types.Types[TUINT32], args[0]) 3784 return s.newValue1(ssa.OpBitLen32, types.Types[TINT], x) 3785 } 3786 x := s.newValue1(ssa.OpZeroExt8to64, types.Types[TUINT64], args[0]) 3787 return s.newValue1(ssa.OpBitLen64, types.Types[TINT], x) 3788 }, 3789 sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm) 3790 addF("math/bits", "Len8", 3791 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3792 return s.newValue1(ssa.OpBitLen8, types.Types[TINT], args[0]) 3793 }, 3794 sys.AMD64) 3795 addF("math/bits", "Len", 3796 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3797 if s.config.PtrSize == 4 { 3798 return s.newValue1(ssa.OpBitLen32, types.Types[TINT], args[0]) 3799 } 3800 return s.newValue1(ssa.OpBitLen64, types.Types[TINT], args[0]) 3801 }, 3802 sys.AMD64, sys.ARM64, sys.ARM, sys.S390X, sys.MIPS, sys.PPC64, sys.Wasm) 3803 // LeadingZeros is handled because it trivially calls Len. 3804 addF("math/bits", "Reverse64", 3805 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3806 return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0]) 3807 }, 3808 sys.ARM64) 3809 addF("math/bits", "Reverse32", 3810 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3811 return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0]) 3812 }, 3813 sys.ARM64) 3814 addF("math/bits", "Reverse16", 3815 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3816 return s.newValue1(ssa.OpBitRev16, types.Types[TINT], args[0]) 3817 }, 3818 sys.ARM64) 3819 addF("math/bits", "Reverse8", 3820 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3821 return s.newValue1(ssa.OpBitRev8, types.Types[TINT], args[0]) 3822 }, 3823 sys.ARM64) 3824 addF("math/bits", "Reverse", 3825 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3826 if s.config.PtrSize == 4 { 3827 return s.newValue1(ssa.OpBitRev32, types.Types[TINT], args[0]) 3828 } 3829 return s.newValue1(ssa.OpBitRev64, types.Types[TINT], args[0]) 3830 }, 3831 sys.ARM64) 3832 addF("math/bits", "RotateLeft8", 3833 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3834 return s.newValue2(ssa.OpRotateLeft8, types.Types[TUINT8], args[0], args[1]) 3835 }, 3836 sys.AMD64) 3837 addF("math/bits", "RotateLeft16", 3838 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3839 return s.newValue2(ssa.OpRotateLeft16, types.Types[TUINT16], args[0], args[1]) 3840 }, 3841 sys.AMD64) 3842 addF("math/bits", "RotateLeft32", 3843 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3844 return s.newValue2(ssa.OpRotateLeft32, types.Types[TUINT32], args[0], args[1]) 3845 }, 3846 sys.AMD64, sys.ARM, sys.ARM64, sys.S390X, sys.PPC64, sys.Wasm) 3847 addF("math/bits", "RotateLeft64", 3848 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3849 return s.newValue2(ssa.OpRotateLeft64, types.Types[TUINT64], args[0], args[1]) 3850 }, 3851 sys.AMD64, sys.ARM64, sys.S390X, sys.PPC64, sys.Wasm) 3852 alias("math/bits", "RotateLeft", "math/bits", "RotateLeft64", p8...) 3853 3854 makeOnesCountAMD64 := func(op64 ssa.Op, op32 ssa.Op) func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3855 return func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3856 addr := s.entryNewValue1A(ssa.OpAddr, types.Types[TBOOL].PtrTo(), x86HasPOPCNT, s.sb) 3857 v := s.load(types.Types[TBOOL], addr) 3858 b := s.endBlock() 3859 b.Kind = ssa.BlockIf 3860 b.SetControl(v) 3861 bTrue := s.f.NewBlock(ssa.BlockPlain) 3862 bFalse := s.f.NewBlock(ssa.BlockPlain) 3863 bEnd := s.f.NewBlock(ssa.BlockPlain) 3864 b.AddEdgeTo(bTrue) 3865 b.AddEdgeTo(bFalse) 3866 b.Likely = ssa.BranchLikely // most machines have popcnt nowadays 3867 3868 // We have the intrinsic - use it directly. 3869 s.startBlock(bTrue) 3870 op := op64 3871 if s.config.PtrSize == 4 { 3872 op = op32 3873 } 3874 s.vars[n] = s.newValue1(op, types.Types[TINT], args[0]) 3875 s.endBlock().AddEdgeTo(bEnd) 3876 3877 // Call the pure Go version. 3878 s.startBlock(bFalse) 3879 a := s.call(n, callNormal) 3880 s.vars[n] = s.load(types.Types[TINT], a) 3881 s.endBlock().AddEdgeTo(bEnd) 3882 3883 // Merge results. 3884 s.startBlock(bEnd) 3885 return s.variable(n, types.Types[TINT]) 3886 } 3887 } 3888 addF("math/bits", "OnesCount64", 3889 makeOnesCountAMD64(ssa.OpPopCount64, ssa.OpPopCount64), 3890 sys.AMD64) 3891 addF("math/bits", "OnesCount64", 3892 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3893 return s.newValue1(ssa.OpPopCount64, types.Types[TINT], args[0]) 3894 }, 3895 sys.PPC64, sys.ARM64, sys.S390X, sys.Wasm) 3896 addF("math/bits", "OnesCount32", 3897 makeOnesCountAMD64(ssa.OpPopCount32, ssa.OpPopCount32), 3898 sys.AMD64) 3899 addF("math/bits", "OnesCount32", 3900 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3901 return s.newValue1(ssa.OpPopCount32, types.Types[TINT], args[0]) 3902 }, 3903 sys.PPC64, sys.ARM64, sys.S390X, sys.Wasm) 3904 addF("math/bits", "OnesCount16", 3905 makeOnesCountAMD64(ssa.OpPopCount16, ssa.OpPopCount16), 3906 sys.AMD64) 3907 addF("math/bits", "OnesCount16", 3908 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3909 return s.newValue1(ssa.OpPopCount16, types.Types[TINT], args[0]) 3910 }, 3911 sys.ARM64, sys.S390X, sys.PPC64, sys.Wasm) 3912 addF("math/bits", "OnesCount8", 3913 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3914 return s.newValue1(ssa.OpPopCount8, types.Types[TINT], args[0]) 3915 }, 3916 sys.S390X, sys.PPC64, sys.Wasm) 3917 addF("math/bits", "OnesCount", 3918 makeOnesCountAMD64(ssa.OpPopCount64, ssa.OpPopCount32), 3919 sys.AMD64) 3920 addF("math/bits", "Mul64", 3921 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3922 return s.newValue2(ssa.OpMul64uhilo, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1]) 3923 }, 3924 sys.AMD64, sys.ARM64, sys.PPC64, sys.S390X, sys.MIPS64) 3925 alias("math/bits", "Mul", "math/bits", "Mul64", sys.ArchAMD64, sys.ArchARM64, sys.ArchPPC64, sys.ArchS390X, sys.ArchMIPS64, sys.ArchMIPS64LE) 3926 addF("math/bits", "Add64", 3927 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3928 return s.newValue3(ssa.OpAdd64carry, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1], args[2]) 3929 }, 3930 sys.AMD64, sys.ARM64, sys.PPC64, sys.S390X) 3931 alias("math/bits", "Add", "math/bits", "Add64", sys.ArchAMD64, sys.ArchARM64, sys.ArchPPC64, sys.ArchS390X) 3932 addF("math/bits", "Sub64", 3933 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3934 return s.newValue3(ssa.OpSub64borrow, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1], args[2]) 3935 }, 3936 sys.AMD64, sys.ARM64, sys.S390X) 3937 alias("math/bits", "Sub", "math/bits", "Sub64", sys.ArchAMD64, sys.ArchARM64, sys.ArchS390X) 3938 addF("math/bits", "Div64", 3939 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3940 // check for divide-by-zero/overflow and panic with appropriate message 3941 cmpZero := s.newValue2(s.ssaOp(ONE, types.Types[TUINT64]), types.Types[TBOOL], args[2], s.zeroVal(types.Types[TUINT64])) 3942 s.check(cmpZero, panicdivide) 3943 cmpOverflow := s.newValue2(s.ssaOp(OLT, types.Types[TUINT64]), types.Types[TBOOL], args[0], args[2]) 3944 s.check(cmpOverflow, panicoverflow) 3945 return s.newValue3(ssa.OpDiv128u, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1], args[2]) 3946 }, 3947 sys.AMD64) 3948 alias("math/bits", "Div", "math/bits", "Div64", sys.ArchAMD64) 3949 3950 /******** sync/atomic ********/ 3951 3952 // Note: these are disabled by flag_race in findIntrinsic below. 3953 alias("sync/atomic", "LoadInt32", "runtime/internal/atomic", "Load", all...) 3954 alias("sync/atomic", "LoadInt64", "runtime/internal/atomic", "Load64", all...) 3955 alias("sync/atomic", "LoadPointer", "runtime/internal/atomic", "Loadp", all...) 3956 alias("sync/atomic", "LoadUint32", "runtime/internal/atomic", "Load", all...) 3957 alias("sync/atomic", "LoadUint64", "runtime/internal/atomic", "Load64", all...) 3958 alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load", p4...) 3959 alias("sync/atomic", "LoadUintptr", "runtime/internal/atomic", "Load64", p8...) 3960 3961 alias("sync/atomic", "StoreInt32", "runtime/internal/atomic", "Store", all...) 3962 alias("sync/atomic", "StoreInt64", "runtime/internal/atomic", "Store64", all...) 3963 // Note: not StorePointer, that needs a write barrier. Same below for {CompareAnd}Swap. 3964 alias("sync/atomic", "StoreUint32", "runtime/internal/atomic", "Store", all...) 3965 alias("sync/atomic", "StoreUint64", "runtime/internal/atomic", "Store64", all...) 3966 alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store", p4...) 3967 alias("sync/atomic", "StoreUintptr", "runtime/internal/atomic", "Store64", p8...) 3968 3969 alias("sync/atomic", "SwapInt32", "runtime/internal/atomic", "Xchg", all...) 3970 alias("sync/atomic", "SwapInt64", "runtime/internal/atomic", "Xchg64", all...) 3971 alias("sync/atomic", "SwapUint32", "runtime/internal/atomic", "Xchg", all...) 3972 alias("sync/atomic", "SwapUint64", "runtime/internal/atomic", "Xchg64", all...) 3973 alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg", p4...) 3974 alias("sync/atomic", "SwapUintptr", "runtime/internal/atomic", "Xchg64", p8...) 3975 3976 alias("sync/atomic", "CompareAndSwapInt32", "runtime/internal/atomic", "Cas", all...) 3977 alias("sync/atomic", "CompareAndSwapInt64", "runtime/internal/atomic", "Cas64", all...) 3978 alias("sync/atomic", "CompareAndSwapUint32", "runtime/internal/atomic", "Cas", all...) 3979 alias("sync/atomic", "CompareAndSwapUint64", "runtime/internal/atomic", "Cas64", all...) 3980 alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas", p4...) 3981 alias("sync/atomic", "CompareAndSwapUintptr", "runtime/internal/atomic", "Cas64", p8...) 3982 3983 alias("sync/atomic", "AddInt32", "runtime/internal/atomic", "Xadd", all...) 3984 alias("sync/atomic", "AddInt64", "runtime/internal/atomic", "Xadd64", all...) 3985 alias("sync/atomic", "AddUint32", "runtime/internal/atomic", "Xadd", all...) 3986 alias("sync/atomic", "AddUint64", "runtime/internal/atomic", "Xadd64", all...) 3987 alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd", p4...) 3988 alias("sync/atomic", "AddUintptr", "runtime/internal/atomic", "Xadd64", p8...) 3989 3990 /******** math/big ********/ 3991 add("math/big", "mulWW", 3992 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3993 return s.newValue2(ssa.OpMul64uhilo, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1]) 3994 }, 3995 sys.ArchAMD64, sys.ArchARM64, sys.ArchPPC64LE, sys.ArchPPC64, sys.ArchS390X) 3996 add("math/big", "divWW", 3997 func(s *state, n *Node, args []*ssa.Value) *ssa.Value { 3998 return s.newValue3(ssa.OpDiv128u, types.NewTuple(types.Types[TUINT64], types.Types[TUINT64]), args[0], args[1], args[2]) 3999 }, 4000 sys.ArchAMD64) 4001 } 4002 4003 // findIntrinsic returns a function which builds the SSA equivalent of the 4004 // function identified by the symbol sym. If sym is not an intrinsic call, returns nil. 4005 func findIntrinsic(sym *types.Sym) intrinsicBuilder { 4006 if sym == nil || sym.Pkg == nil { 4007 return nil 4008 } 4009 pkg := sym.Pkg.Path 4010 if sym.Pkg == localpkg { 4011 pkg = myimportpath 4012 } 4013 if flag_race && pkg == "sync/atomic" { 4014 // The race detector needs to be able to intercept these calls. 4015 // We can't intrinsify them. 4016 return nil 4017 } 4018 // Skip intrinsifying math functions (which may contain hard-float 4019 // instructions) when soft-float 4020 if thearch.SoftFloat && pkg == "math" { 4021 return nil 4022 } 4023 4024 fn := sym.Name 4025 if ssa.IntrinsicsDisable { 4026 if pkg == "runtime" && (fn == "getcallerpc" || fn == "getcallersp" || fn == "getclosureptr") { 4027 // These runtime functions don't have definitions, must be intrinsics. 4028 } else { 4029 return nil 4030 } 4031 } 4032 return intrinsics[intrinsicKey{thearch.LinkArch.Arch, pkg, fn}] 4033 } 4034 4035 func isIntrinsicCall(n *Node) bool { 4036 if n == nil || n.Left == nil { 4037 return false 4038 } 4039 return findIntrinsic(n.Left.Sym) != nil 4040 } 4041 4042 // intrinsicCall converts a call to a recognized intrinsic function into the intrinsic SSA operation. 4043 func (s *state) intrinsicCall(n *Node) *ssa.Value { 4044 v := findIntrinsic(n.Left.Sym)(s, n, s.intrinsicArgs(n)) 4045 if ssa.IntrinsicsDebug > 0 { 4046 x := v 4047 if x == nil { 4048 x = s.mem() 4049 } 4050 if x.Op == ssa.OpSelect0 || x.Op == ssa.OpSelect1 { 4051 x = x.Args[0] 4052 } 4053 Warnl(n.Pos, "intrinsic substitution for %v with %s", n.Left.Sym.Name, x.LongString()) 4054 } 4055 return v 4056 } 4057 4058 // intrinsicArgs extracts args from n, evaluates them to SSA values, and returns them. 4059 func (s *state) intrinsicArgs(n *Node) []*ssa.Value { 4060 // Construct map of temps; see comments in s.call about the structure of n. 4061 temps := map[*Node]*ssa.Value{} 4062 for _, a := range n.List.Slice() { 4063 if a.Op != OAS { 4064 s.Fatalf("non-assignment as a temp function argument %v", a.Op) 4065 } 4066 l, r := a.Left, a.Right 4067 if l.Op != ONAME { 4068 s.Fatalf("non-ONAME temp function argument %v", a.Op) 4069 } 4070 // Evaluate and store to "temporary". 4071 // Walk ensures these temporaries are dead outside of n. 4072 temps[l] = s.expr(r) 4073 } 4074 args := make([]*ssa.Value, n.Rlist.Len()) 4075 for i, n := range n.Rlist.Slice() { 4076 // Store a value to an argument slot. 4077 if x, ok := temps[n]; ok { 4078 // This is a previously computed temporary. 4079 args[i] = x 4080 continue 4081 } 4082 // This is an explicit value; evaluate it. 4083 args[i] = s.expr(n) 4084 } 4085 return args 4086 } 4087 4088 // openDeferRecord adds code to evaluate and store the args for an open-code defer 4089 // call, and records info about the defer, so we can generate proper code on the 4090 // exit paths. n is the sub-node of the defer node that is the actual function 4091 // call. We will also record funcdata information on where the args are stored 4092 // (as well as the deferBits variable), and this will enable us to run the proper 4093 // defer calls during panics. 4094 func (s *state) openDeferRecord(n *Node) { 4095 // Do any needed expression evaluation for the args (including the 4096 // receiver, if any). This may be evaluating something like 'autotmp_3 = 4097 // once.mutex'. Such a statement will create a mapping in s.vars[] from 4098 // the autotmp name to the evaluated SSA arg value, but won't do any 4099 // stores to the stack. 4100 s.stmtList(n.List) 4101 4102 var args []*ssa.Value 4103 var argNodes []*Node 4104 4105 opendefer := &openDeferInfo{ 4106 n: n, 4107 } 4108 fn := n.Left 4109 if n.Op == OCALLFUNC { 4110 // We must always store the function value in a stack slot for the 4111 // runtime panic code to use. But in the defer exit code, we will 4112 // call the function directly if it is a static function. 4113 closureVal := s.expr(fn) 4114 closure := s.openDeferSave(nil, fn.Type, closureVal) 4115 opendefer.closureNode = closure.Aux.(*Node) 4116 if !(fn.Op == ONAME && fn.Class() == PFUNC) { 4117 opendefer.closure = closure 4118 } 4119 } else if n.Op == OCALLMETH { 4120 if fn.Op != ODOTMETH { 4121 Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn) 4122 } 4123 closureVal := s.getMethodClosure(fn) 4124 // We must always store the function value in a stack slot for the 4125 // runtime panic code to use. But in the defer exit code, we will 4126 // call the method directly. 4127 closure := s.openDeferSave(nil, fn.Type, closureVal) 4128 opendefer.closureNode = closure.Aux.(*Node) 4129 } else { 4130 if fn.Op != ODOTINTER { 4131 Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op) 4132 } 4133 closure, rcvr := s.getClosureAndRcvr(fn) 4134 opendefer.closure = s.openDeferSave(nil, closure.Type, closure) 4135 // Important to get the receiver type correct, so it is recognized 4136 // as a pointer for GC purposes. 4137 opendefer.rcvr = s.openDeferSave(nil, fn.Type.Recv().Type, rcvr) 4138 opendefer.closureNode = opendefer.closure.Aux.(*Node) 4139 opendefer.rcvrNode = opendefer.rcvr.Aux.(*Node) 4140 } 4141 for _, argn := range n.Rlist.Slice() { 4142 var v *ssa.Value 4143 if canSSAType(argn.Type) { 4144 v = s.openDeferSave(nil, argn.Type, s.expr(argn)) 4145 } else { 4146 v = s.openDeferSave(argn, argn.Type, nil) 4147 } 4148 args = append(args, v) 4149 argNodes = append(argNodes, v.Aux.(*Node)) 4150 } 4151 opendefer.argVals = args 4152 opendefer.argNodes = argNodes 4153 index := len(s.openDefers) 4154 s.openDefers = append(s.openDefers, opendefer) 4155 4156 // Update deferBits only after evaluation and storage to stack of 4157 // args/receiver/interface is successful. 4158 bitvalue := s.constInt8(types.Types[TUINT8], 1<<uint(index)) 4159 newDeferBits := s.newValue2(ssa.OpOr8, types.Types[TUINT8], s.variable(&deferBitsVar, types.Types[TUINT8]), bitvalue) 4160 s.vars[&deferBitsVar] = newDeferBits 4161 s.store(types.Types[TUINT8], s.deferBitsAddr, newDeferBits) 4162 } 4163 4164 // openDeferSave generates SSA nodes to store a value (with type t) for an 4165 // open-coded defer at an explicit autotmp location on the stack, so it can be 4166 // reloaded and used for the appropriate call on exit. If type t is SSAable, then 4167 // val must be non-nil (and n should be nil) and val is the value to be stored. If 4168 // type t is non-SSAable, then n must be non-nil (and val should be nil) and n is 4169 // evaluated (via s.addr() below) to get the value that is to be stored. The 4170 // function returns an SSA value representing a pointer to the autotmp location. 4171 func (s *state) openDeferSave(n *Node, t *types.Type, val *ssa.Value) *ssa.Value { 4172 canSSA := canSSAType(t) 4173 var pos src.XPos 4174 if canSSA { 4175 pos = val.Pos 4176 } else { 4177 pos = n.Pos 4178 } 4179 argTemp := tempAt(pos.WithNotStmt(), s.curfn, t) 4180 argTemp.Name.SetOpenDeferSlot(true) 4181 var addrArgTemp *ssa.Value 4182 // Use OpVarLive to make sure stack slots for the args, etc. are not 4183 // removed by dead-store elimination 4184 if s.curBlock.ID != s.f.Entry.ID { 4185 // Force the argtmp storing this defer function/receiver/arg to be 4186 // declared in the entry block, so that it will be live for the 4187 // defer exit code (which will actually access it only if the 4188 // associated defer call has been activated). 4189 s.defvars[s.f.Entry.ID][&memVar] = s.entryNewValue1A(ssa.OpVarDef, types.TypeMem, argTemp, s.defvars[s.f.Entry.ID][&memVar]) 4190 s.defvars[s.f.Entry.ID][&memVar] = s.entryNewValue1A(ssa.OpVarLive, types.TypeMem, argTemp, s.defvars[s.f.Entry.ID][&memVar]) 4191 addrArgTemp = s.entryNewValue2A(ssa.OpLocalAddr, types.NewPtr(argTemp.Type), argTemp, s.sp, s.defvars[s.f.Entry.ID][&memVar]) 4192 } else { 4193 // Special case if we're still in the entry block. We can't use 4194 // the above code, since s.defvars[s.f.Entry.ID] isn't defined 4195 // until we end the entry block with s.endBlock(). 4196 s.vars[&memVar] = s.newValue1Apos(ssa.OpVarDef, types.TypeMem, argTemp, s.mem(), false) 4197 s.vars[&memVar] = s.newValue1Apos(ssa.OpVarLive, types.TypeMem, argTemp, s.mem(), false) 4198 addrArgTemp = s.newValue2Apos(ssa.OpLocalAddr, types.NewPtr(argTemp.Type), argTemp, s.sp, s.mem(), false) 4199 } 4200 if types.Haspointers(t) { 4201 // Since we may use this argTemp during exit depending on the 4202 // deferBits, we must define it unconditionally on entry. 4203 // Therefore, we must make sure it is zeroed out in the entry 4204 // block if it contains pointers, else GC may wrongly follow an 4205 // uninitialized pointer value. 4206 argTemp.Name.SetNeedzero(true) 4207 } 4208 if !canSSA { 4209 a := s.addr(n, false) 4210 s.move(t, addrArgTemp, a) 4211 return addrArgTemp 4212 } 4213 // We are storing to the stack, hence we can avoid the full checks in 4214 // storeType() (no write barrier) and do a simple store(). 4215 s.store(t, addrArgTemp, val) 4216 return addrArgTemp 4217 } 4218 4219 // openDeferExit generates SSA for processing all the open coded defers at exit. 4220 // The code involves loading deferBits, and checking each of the bits to see if 4221 // the corresponding defer statement was executed. For each bit that is turned 4222 // on, the associated defer call is made. 4223 func (s *state) openDeferExit() { 4224 deferExit := s.f.NewBlock(ssa.BlockPlain) 4225 s.endBlock().AddEdgeTo(deferExit) 4226 s.startBlock(deferExit) 4227 s.lastDeferExit = deferExit 4228 s.lastDeferCount = len(s.openDefers) 4229 zeroval := s.constInt8(types.Types[TUINT8], 0) 4230 // Test for and run defers in reverse order 4231 for i := len(s.openDefers) - 1; i >= 0; i-- { 4232 r := s.openDefers[i] 4233 bCond := s.f.NewBlock(ssa.BlockPlain) 4234 bEnd := s.f.NewBlock(ssa.BlockPlain) 4235 4236 deferBits := s.variable(&deferBitsVar, types.Types[TUINT8]) 4237 // Generate code to check if the bit associated with the current 4238 // defer is set. 4239 bitval := s.constInt8(types.Types[TUINT8], 1<<uint(i)) 4240 andval := s.newValue2(ssa.OpAnd8, types.Types[TUINT8], deferBits, bitval) 4241 eqVal := s.newValue2(ssa.OpEq8, types.Types[TBOOL], andval, zeroval) 4242 b := s.endBlock() 4243 b.Kind = ssa.BlockIf 4244 b.SetControl(eqVal) 4245 b.AddEdgeTo(bEnd) 4246 b.AddEdgeTo(bCond) 4247 bCond.AddEdgeTo(bEnd) 4248 s.startBlock(bCond) 4249 4250 // Clear this bit in deferBits and force store back to stack, so 4251 // we will not try to re-run this defer call if this defer call panics. 4252 nbitval := s.newValue1(ssa.OpCom8, types.Types[TUINT8], bitval) 4253 maskedval := s.newValue2(ssa.OpAnd8, types.Types[TUINT8], deferBits, nbitval) 4254 s.store(types.Types[TUINT8], s.deferBitsAddr, maskedval) 4255 // Use this value for following tests, so we keep previous 4256 // bits cleared. 4257 s.vars[&deferBitsVar] = maskedval 4258 4259 // Generate code to call the function call of the defer, using the 4260 // closure/receiver/args that were stored in argtmps at the point 4261 // of the defer statement. 4262 argStart := Ctxt.FixedFrameSize() 4263 fn := r.n.Left 4264 stksize := fn.Type.ArgWidth() 4265 if r.rcvr != nil { 4266 // rcvr in case of OCALLINTER 4267 v := s.load(r.rcvr.Type.Elem(), r.rcvr) 4268 addr := s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart) 4269 s.store(types.Types[TUINTPTR], addr, v) 4270 } 4271 for j, argAddrVal := range r.argVals { 4272 f := getParam(r.n, j) 4273 pt := types.NewPtr(f.Type) 4274 addr := s.constOffPtrSP(pt, argStart+f.Offset) 4275 if !canSSAType(f.Type) { 4276 s.move(f.Type, addr, argAddrVal) 4277 } else { 4278 argVal := s.load(f.Type, argAddrVal) 4279 s.storeType(f.Type, addr, argVal, 0, false) 4280 } 4281 } 4282 var call *ssa.Value 4283 if r.closure != nil { 4284 v := s.load(r.closure.Type.Elem(), r.closure) 4285 s.maybeNilCheckClosure(v, callDefer) 4286 codeptr := s.rawLoad(types.Types[TUINTPTR], v) 4287 call = s.newValue3(ssa.OpClosureCall, types.TypeMem, codeptr, v, s.mem()) 4288 } else { 4289 // Do a static call if the original call was a static function or method 4290 call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, fn.Sym.Linksym(), s.mem()) 4291 } 4292 call.AuxInt = stksize 4293 s.vars[&memVar] = call 4294 // Make sure that the stack slots with pointers are kept live 4295 // through the call (which is a pre-emption point). Also, we will 4296 // use the first call of the last defer exit to compute liveness 4297 // for the deferreturn, so we want all stack slots to be live. 4298 if r.closureNode != nil { 4299 s.vars[&memVar] = s.newValue1Apos(ssa.OpVarLive, types.TypeMem, r.closureNode, s.mem(), false) 4300 } 4301 if r.rcvrNode != nil { 4302 if types.Haspointers(r.rcvrNode.Type) { 4303 s.vars[&memVar] = s.newValue1Apos(ssa.OpVarLive, types.TypeMem, r.rcvrNode, s.mem(), false) 4304 } 4305 } 4306 for _, argNode := range r.argNodes { 4307 if types.Haspointers(argNode.Type) { 4308 s.vars[&memVar] = s.newValue1Apos(ssa.OpVarLive, types.TypeMem, argNode, s.mem(), false) 4309 } 4310 } 4311 4312 if i == len(s.openDefers)-1 { 4313 // Record the call of the first defer. This will be used 4314 // to set liveness info for the deferreturn (which is also 4315 // used for any location that causes a runtime panic) 4316 s.f.LastDeferExit = call 4317 } 4318 s.endBlock() 4319 s.startBlock(bEnd) 4320 } 4321 } 4322 4323 // Calls the function n using the specified call type. 4324 // Returns the address of the return value (or nil if none). 4325 func (s *state) call(n *Node, k callKind) *ssa.Value { 4326 var sym *types.Sym // target symbol (if static) 4327 var closure *ssa.Value // ptr to closure to run (if dynamic) 4328 var codeptr *ssa.Value // ptr to target code (if dynamic) 4329 var rcvr *ssa.Value // receiver to set 4330 fn := n.Left 4331 switch n.Op { 4332 case OCALLFUNC: 4333 if k == callNormal && fn.Op == ONAME && fn.Class() == PFUNC { 4334 sym = fn.Sym 4335 break 4336 } 4337 closure = s.expr(fn) 4338 if k != callDefer && k != callDeferStack { 4339 // Deferred nil function needs to panic when the function is invoked, 4340 // not the point of defer statement. 4341 s.maybeNilCheckClosure(closure, k) 4342 } 4343 case OCALLMETH: 4344 if fn.Op != ODOTMETH { 4345 s.Fatalf("OCALLMETH: n.Left not an ODOTMETH: %v", fn) 4346 } 4347 if k == callNormal { 4348 sym = fn.Sym 4349 break 4350 } 4351 closure = s.getMethodClosure(fn) 4352 // Note: receiver is already present in n.Rlist, so we don't 4353 // want to set it here. 4354 case OCALLINTER: 4355 if fn.Op != ODOTINTER { 4356 s.Fatalf("OCALLINTER: n.Left not an ODOTINTER: %v", fn.Op) 4357 } 4358 var iclosure *ssa.Value 4359 iclosure, rcvr = s.getClosureAndRcvr(fn) 4360 if k == callNormal { 4361 codeptr = s.load(types.Types[TUINTPTR], iclosure) 4362 } else { 4363 closure = iclosure 4364 } 4365 } 4366 dowidth(fn.Type) 4367 stksize := fn.Type.ArgWidth() // includes receiver, args, and results 4368 4369 // Run all assignments of temps. 4370 // The temps are introduced to avoid overwriting argument 4371 // slots when arguments themselves require function calls. 4372 s.stmtList(n.List) 4373 4374 var call *ssa.Value 4375 if k == callDeferStack { 4376 // Make a defer struct d on the stack. 4377 t := deferstruct(stksize) 4378 d := tempAt(n.Pos, s.curfn, t) 4379 4380 s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, d, s.mem()) 4381 addr := s.addr(d, false) 4382 4383 // Must match reflect.go:deferstruct and src/runtime/runtime2.go:_defer. 4384 // 0: siz 4385 s.store(types.Types[TUINT32], 4386 s.newValue1I(ssa.OpOffPtr, types.Types[TUINT32].PtrTo(), t.FieldOff(0), addr), 4387 s.constInt32(types.Types[TUINT32], int32(stksize))) 4388 // 1: started, set in deferprocStack 4389 // 2: heap, set in deferprocStack 4390 // 3: openDefer 4391 // 4: sp, set in deferprocStack 4392 // 5: pc, set in deferprocStack 4393 // 6: fn 4394 s.store(closure.Type, 4395 s.newValue1I(ssa.OpOffPtr, closure.Type.PtrTo(), t.FieldOff(6), addr), 4396 closure) 4397 // 7: panic, set in deferprocStack 4398 // 8: link, set in deferprocStack 4399 // 9: framepc 4400 // 10: varp 4401 // 11: fd 4402 4403 // Then, store all the arguments of the defer call. 4404 ft := fn.Type 4405 off := t.FieldOff(12) 4406 args := n.Rlist.Slice() 4407 4408 // Set receiver (for interface calls). Always a pointer. 4409 if rcvr != nil { 4410 p := s.newValue1I(ssa.OpOffPtr, ft.Recv().Type.PtrTo(), off, addr) 4411 s.store(types.Types[TUINTPTR], p, rcvr) 4412 } 4413 // Set receiver (for method calls). 4414 if n.Op == OCALLMETH { 4415 f := ft.Recv() 4416 s.storeArgWithBase(args[0], f.Type, addr, off+f.Offset) 4417 args = args[1:] 4418 } 4419 // Set other args. 4420 for _, f := range ft.Params().Fields().Slice() { 4421 s.storeArgWithBase(args[0], f.Type, addr, off+f.Offset) 4422 args = args[1:] 4423 } 4424 4425 // Call runtime.deferprocStack with pointer to _defer record. 4426 arg0 := s.constOffPtrSP(types.Types[TUINTPTR], Ctxt.FixedFrameSize()) 4427 s.store(types.Types[TUINTPTR], arg0, addr) 4428 call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, deferprocStack, s.mem()) 4429 if stksize < int64(Widthptr) { 4430 // We need room for both the call to deferprocStack and the call to 4431 // the deferred function. 4432 stksize = int64(Widthptr) 4433 } 4434 call.AuxInt = stksize 4435 } else { 4436 // Store arguments to stack, including defer/go arguments and receiver for method calls. 4437 // These are written in SP-offset order. 4438 argStart := Ctxt.FixedFrameSize() 4439 // Defer/go args. 4440 if k != callNormal { 4441 // Write argsize and closure (args to newproc/deferproc). 4442 argsize := s.constInt32(types.Types[TUINT32], int32(stksize)) 4443 addr := s.constOffPtrSP(s.f.Config.Types.UInt32Ptr, argStart) 4444 s.store(types.Types[TUINT32], addr, argsize) 4445 addr = s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart+int64(Widthptr)) 4446 s.store(types.Types[TUINTPTR], addr, closure) 4447 stksize += 2 * int64(Widthptr) 4448 argStart += 2 * int64(Widthptr) 4449 } 4450 4451 // Set receiver (for interface calls). 4452 if rcvr != nil { 4453 addr := s.constOffPtrSP(s.f.Config.Types.UintptrPtr, argStart) 4454 s.store(types.Types[TUINTPTR], addr, rcvr) 4455 } 4456 4457 // Write args. 4458 t := n.Left.Type 4459 args := n.Rlist.Slice() 4460 if n.Op == OCALLMETH { 4461 f := t.Recv() 4462 s.storeArg(args[0], f.Type, argStart+f.Offset) 4463 args = args[1:] 4464 } 4465 for i, n := range args { 4466 f := t.Params().Field(i) 4467 s.storeArg(n, f.Type, argStart+f.Offset) 4468 } 4469 4470 // call target 4471 switch { 4472 case k == callDefer: 4473 call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, deferproc, s.mem()) 4474 case k == callGo: 4475 call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, newproc, s.mem()) 4476 case closure != nil: 4477 // rawLoad because loading the code pointer from a 4478 // closure is always safe, but IsSanitizerSafeAddr 4479 // can't always figure that out currently, and it's 4480 // critical that we not clobber any arguments already 4481 // stored onto the stack. 4482 codeptr = s.rawLoad(types.Types[TUINTPTR], closure) 4483 call = s.newValue3(ssa.OpClosureCall, types.TypeMem, codeptr, closure, s.mem()) 4484 case codeptr != nil: 4485 call = s.newValue2(ssa.OpInterCall, types.TypeMem, codeptr, s.mem()) 4486 case sym != nil: 4487 call = s.newValue1A(ssa.OpStaticCall, types.TypeMem, sym.Linksym(), s.mem()) 4488 default: 4489 s.Fatalf("bad call type %v %v", n.Op, n) 4490 } 4491 call.AuxInt = stksize // Call operations carry the argsize of the callee along with them 4492 } 4493 s.vars[&memVar] = call 4494 4495 // Finish block for defers 4496 if k == callDefer || k == callDeferStack { 4497 b := s.endBlock() 4498 b.Kind = ssa.BlockDefer 4499 b.SetControl(call) 4500 bNext := s.f.NewBlock(ssa.BlockPlain) 4501 b.AddEdgeTo(bNext) 4502 // Add recover edge to exit code. 4503 r := s.f.NewBlock(ssa.BlockPlain) 4504 s.startBlock(r) 4505 s.exit() 4506 b.AddEdgeTo(r) 4507 b.Likely = ssa.BranchLikely 4508 s.startBlock(bNext) 4509 } 4510 4511 res := n.Left.Type.Results() 4512 if res.NumFields() == 0 || k != callNormal { 4513 // call has no return value. Continue with the next statement. 4514 return nil 4515 } 4516 fp := res.Field(0) 4517 return s.constOffPtrSP(types.NewPtr(fp.Type), fp.Offset+Ctxt.FixedFrameSize()) 4518 } 4519 4520 // maybeNilCheckClosure checks if a nil check of a closure is needed in some 4521 // architecture-dependent situations and, if so, emits the nil check. 4522 func (s *state) maybeNilCheckClosure(closure *ssa.Value, k callKind) { 4523 if thearch.LinkArch.Family == sys.Wasm || objabi.GOOS == "aix" && k != callGo { 4524 // On AIX, the closure needs to be verified as fn can be nil, except if it's a call go. This needs to be handled by the runtime to have the "go of nil func value" error. 4525 // TODO(neelance): On other architectures this should be eliminated by the optimization steps 4526 s.nilCheck(closure) 4527 } 4528 } 4529 4530 // getMethodClosure returns a value representing the closure for a method call 4531 func (s *state) getMethodClosure(fn *Node) *ssa.Value { 4532 // Make a name n2 for the function. 4533 // fn.Sym might be sync.(*Mutex).Unlock. 4534 // Make a PFUNC node out of that, then evaluate it. 4535 // We get back an SSA value representing &sync.(*Mutex).Unlock·f. 4536 // We can then pass that to defer or go. 4537 n2 := newnamel(fn.Pos, fn.Sym) 4538 n2.Name.Curfn = s.curfn 4539 n2.SetClass(PFUNC) 4540 // n2.Sym already existed, so it's already marked as a function. 4541 n2.Pos = fn.Pos 4542 n2.Type = types.Types[TUINT8] // dummy type for a static closure. Could use runtime.funcval if we had it. 4543 return s.expr(n2) 4544 } 4545 4546 // getClosureAndRcvr returns values for the appropriate closure and receiver of an 4547 // interface call 4548 func (s *state) getClosureAndRcvr(fn *Node) (*ssa.Value, *ssa.Value) { 4549 i := s.expr(fn.Left) 4550 itab := s.newValue1(ssa.OpITab, types.Types[TUINTPTR], i) 4551 s.nilCheck(itab) 4552 itabidx := fn.Xoffset + 2*int64(Widthptr) + 8 // offset of fun field in runtime.itab 4553 closure := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.UintptrPtr, itabidx, itab) 4554 rcvr := s.newValue1(ssa.OpIData, types.Types[TUINTPTR], i) 4555 return closure, rcvr 4556 } 4557 4558 // etypesign returns the signed-ness of e, for integer/pointer etypes. 4559 // -1 means signed, +1 means unsigned, 0 means non-integer/non-pointer. 4560 func etypesign(e types.EType) int8 { 4561 switch e { 4562 case TINT8, TINT16, TINT32, TINT64, TINT: 4563 return -1 4564 case TUINT8, TUINT16, TUINT32, TUINT64, TUINT, TUINTPTR, TUNSAFEPTR: 4565 return +1 4566 } 4567 return 0 4568 } 4569 4570 // addr converts the address of the expression n to SSA, adds it to s and returns the SSA result. 4571 // The value that the returned Value represents is guaranteed to be non-nil. 4572 // If bounded is true then this address does not require a nil check for its operand 4573 // even if that would otherwise be implied. 4574 func (s *state) addr(n *Node, bounded bool) *ssa.Value { 4575 if n.Op != ONAME { 4576 s.pushLine(n.Pos) 4577 defer s.popLine() 4578 } 4579 4580 t := types.NewPtr(n.Type) 4581 switch n.Op { 4582 case ONAME: 4583 switch n.Class() { 4584 case PEXTERN: 4585 // global variable 4586 v := s.entryNewValue1A(ssa.OpAddr, t, n.Sym.Linksym(), s.sb) 4587 // TODO: Make OpAddr use AuxInt as well as Aux. 4588 if n.Xoffset != 0 { 4589 v = s.entryNewValue1I(ssa.OpOffPtr, v.Type, n.Xoffset, v) 4590 } 4591 return v 4592 case PPARAM: 4593 // parameter slot 4594 v := s.decladdrs[n] 4595 if v != nil { 4596 return v 4597 } 4598 if n == nodfp { 4599 // Special arg that points to the frame pointer (Used by ORECOVER). 4600 return s.entryNewValue2A(ssa.OpLocalAddr, t, n, s.sp, s.startmem) 4601 } 4602 s.Fatalf("addr of undeclared ONAME %v. declared: %v", n, s.decladdrs) 4603 return nil 4604 case PAUTO: 4605 return s.newValue2Apos(ssa.OpLocalAddr, t, n, s.sp, s.mem(), !n.IsAutoTmp()) 4606 4607 case PPARAMOUT: // Same as PAUTO -- cannot generate LEA early. 4608 // ensure that we reuse symbols for out parameters so 4609 // that cse works on their addresses 4610 return s.newValue2Apos(ssa.OpLocalAddr, t, n, s.sp, s.mem(), true) 4611 default: 4612 s.Fatalf("variable address class %v not implemented", n.Class()) 4613 return nil 4614 } 4615 case ORESULT: 4616 // load return from callee 4617 return s.constOffPtrSP(t, n.Xoffset) 4618 case OINDEX: 4619 if n.Left.Type.IsSlice() { 4620 a := s.expr(n.Left) 4621 i := s.expr(n.Right) 4622 len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], a) 4623 i = s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded()) 4624 p := s.newValue1(ssa.OpSlicePtr, t, a) 4625 return s.newValue2(ssa.OpPtrIndex, t, p, i) 4626 } else { // array 4627 a := s.addr(n.Left, bounded) 4628 i := s.expr(n.Right) 4629 len := s.constInt(types.Types[TINT], n.Left.Type.NumElem()) 4630 i = s.boundsCheck(i, len, ssa.BoundsIndex, n.Bounded()) 4631 return s.newValue2(ssa.OpPtrIndex, types.NewPtr(n.Left.Type.Elem()), a, i) 4632 } 4633 case ODEREF: 4634 return s.exprPtr(n.Left, bounded, n.Pos) 4635 case ODOT: 4636 p := s.addr(n.Left, bounded) 4637 return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p) 4638 case ODOTPTR: 4639 p := s.exprPtr(n.Left, bounded, n.Pos) 4640 return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, p) 4641 case OCLOSUREVAR: 4642 return s.newValue1I(ssa.OpOffPtr, t, n.Xoffset, 4643 s.entryNewValue0(ssa.OpGetClosurePtr, s.f.Config.Types.BytePtr)) 4644 case OCONVNOP: 4645 addr := s.addr(n.Left, bounded) 4646 return s.newValue1(ssa.OpCopy, t, addr) // ensure that addr has the right type 4647 case OCALLFUNC, OCALLINTER, OCALLMETH: 4648 return s.call(n, callNormal) 4649 case ODOTTYPE: 4650 v, _ := s.dottype(n, false) 4651 if v.Op != ssa.OpLoad { 4652 s.Fatalf("dottype of non-load") 4653 } 4654 if v.Args[1] != s.mem() { 4655 s.Fatalf("memory no longer live from dottype load") 4656 } 4657 return v.Args[0] 4658 default: 4659 s.Fatalf("unhandled addr %v", n.Op) 4660 return nil 4661 } 4662 } 4663 4664 // canSSA reports whether n is SSA-able. 4665 // n must be an ONAME (or an ODOT sequence with an ONAME base). 4666 func (s *state) canSSA(n *Node) bool { 4667 if Debug['N'] != 0 { 4668 return false 4669 } 4670 for n.Op == ODOT || (n.Op == OINDEX && n.Left.Type.IsArray()) { 4671 n = n.Left 4672 } 4673 if n.Op != ONAME { 4674 return false 4675 } 4676 if n.Name.Addrtaken() { 4677 return false 4678 } 4679 if n.isParamHeapCopy() { 4680 return false 4681 } 4682 if n.Class() == PAUTOHEAP { 4683 s.Fatalf("canSSA of PAUTOHEAP %v", n) 4684 } 4685 switch n.Class() { 4686 case PEXTERN: 4687 return false 4688 case PPARAMOUT: 4689 if s.hasdefer { 4690 // TODO: handle this case? Named return values must be 4691 // in memory so that the deferred function can see them. 4692 // Maybe do: if !strings.HasPrefix(n.String(), "~") { return false } 4693 // Or maybe not, see issue 18860. Even unnamed return values 4694 // must be written back so if a defer recovers, the caller can see them. 4695 return false 4696 } 4697 if s.cgoUnsafeArgs { 4698 // Cgo effectively takes the address of all result args, 4699 // but the compiler can't see that. 4700 return false 4701 } 4702 } 4703 if n.Class() == PPARAM && n.Sym != nil && n.Sym.Name == ".this" { 4704 // wrappers generated by genwrapper need to update 4705 // the .this pointer in place. 4706 // TODO: treat as a PPARMOUT? 4707 return false 4708 } 4709 return canSSAType(n.Type) 4710 // TODO: try to make more variables SSAable? 4711 } 4712 4713 // canSSA reports whether variables of type t are SSA-able. 4714 func canSSAType(t *types.Type) bool { 4715 dowidth(t) 4716 if t.Width > int64(4*Widthptr) { 4717 // 4*Widthptr is an arbitrary constant. We want it 4718 // to be at least 3*Widthptr so slices can be registerized. 4719 // Too big and we'll introduce too much register pressure. 4720 return false 4721 } 4722 switch t.Etype { 4723 case TARRAY: 4724 // We can't do larger arrays because dynamic indexing is 4725 // not supported on SSA variables. 4726 // TODO: allow if all indexes are constant. 4727 if t.NumElem() <= 1 { 4728 return canSSAType(t.Elem()) 4729 } 4730 return false 4731 case TSTRUCT: 4732 if t.NumFields() > ssa.MaxStruct { 4733 return false 4734 } 4735 for _, t1 := range t.Fields().Slice() { 4736 if !canSSAType(t1.Type) { 4737 return false 4738 } 4739 } 4740 return true 4741 default: 4742 return true 4743 } 4744 } 4745 4746 // exprPtr evaluates n to a pointer and nil-checks it. 4747 func (s *state) exprPtr(n *Node, bounded bool, lineno src.XPos) *ssa.Value { 4748 p := s.expr(n) 4749 if bounded || n.NonNil() { 4750 if s.f.Frontend().Debug_checknil() && lineno.Line() > 1 { 4751 s.f.Warnl(lineno, "removed nil check") 4752 } 4753 return p 4754 } 4755 s.nilCheck(p) 4756 return p 4757 } 4758 4759 // nilCheck generates nil pointer checking code. 4760 // Used only for automatically inserted nil checks, 4761 // not for user code like 'x != nil'. 4762 func (s *state) nilCheck(ptr *ssa.Value) { 4763 if disable_checknil != 0 || s.curfn.Func.NilCheckDisabled() { 4764 return 4765 } 4766 s.newValue2(ssa.OpNilCheck, types.TypeVoid, ptr, s.mem()) 4767 } 4768 4769 // boundsCheck generates bounds checking code. Checks if 0 <= idx <[=] len, branches to exit if not. 4770 // Starts a new block on return. 4771 // On input, len must be converted to full int width and be nonnegative. 4772 // Returns idx converted to full int width. 4773 // If bounded is true then caller guarantees the index is not out of bounds 4774 // (but boundsCheck will still extend the index to full int width). 4775 func (s *state) boundsCheck(idx, len *ssa.Value, kind ssa.BoundsKind, bounded bool) *ssa.Value { 4776 idx = s.extendIndex(idx, len, kind, bounded) 4777 4778 if bounded || Debug['B'] != 0 { 4779 // If bounded or bounds checking is flag-disabled, then no check necessary, 4780 // just return the extended index. 4781 return idx 4782 } 4783 4784 bNext := s.f.NewBlock(ssa.BlockPlain) 4785 bPanic := s.f.NewBlock(ssa.BlockExit) 4786 4787 if !idx.Type.IsSigned() { 4788 switch kind { 4789 case ssa.BoundsIndex: 4790 kind = ssa.BoundsIndexU 4791 case ssa.BoundsSliceAlen: 4792 kind = ssa.BoundsSliceAlenU 4793 case ssa.BoundsSliceAcap: 4794 kind = ssa.BoundsSliceAcapU 4795 case ssa.BoundsSliceB: 4796 kind = ssa.BoundsSliceBU 4797 case ssa.BoundsSlice3Alen: 4798 kind = ssa.BoundsSlice3AlenU 4799 case ssa.BoundsSlice3Acap: 4800 kind = ssa.BoundsSlice3AcapU 4801 case ssa.BoundsSlice3B: 4802 kind = ssa.BoundsSlice3BU 4803 case ssa.BoundsSlice3C: 4804 kind = ssa.BoundsSlice3CU 4805 } 4806 } 4807 4808 var cmp *ssa.Value 4809 if kind == ssa.BoundsIndex || kind == ssa.BoundsIndexU { 4810 cmp = s.newValue2(ssa.OpIsInBounds, types.Types[TBOOL], idx, len) 4811 } else { 4812 cmp = s.newValue2(ssa.OpIsSliceInBounds, types.Types[TBOOL], idx, len) 4813 } 4814 b := s.endBlock() 4815 b.Kind = ssa.BlockIf 4816 b.SetControl(cmp) 4817 b.Likely = ssa.BranchLikely 4818 b.AddEdgeTo(bNext) 4819 b.AddEdgeTo(bPanic) 4820 4821 s.startBlock(bPanic) 4822 if thearch.LinkArch.Family == sys.Wasm { 4823 // TODO(khr): figure out how to do "register" based calling convention for bounds checks. 4824 // Should be similar to gcWriteBarrier, but I can't make it work. 4825 s.rtcall(BoundsCheckFunc[kind], false, nil, idx, len) 4826 } else { 4827 mem := s.newValue3I(ssa.OpPanicBounds, types.TypeMem, int64(kind), idx, len, s.mem()) 4828 s.endBlock().SetControl(mem) 4829 } 4830 s.startBlock(bNext) 4831 4832 return idx 4833 } 4834 4835 // If cmp (a bool) is false, panic using the given function. 4836 func (s *state) check(cmp *ssa.Value, fn *obj.LSym) { 4837 b := s.endBlock() 4838 b.Kind = ssa.BlockIf 4839 b.SetControl(cmp) 4840 b.Likely = ssa.BranchLikely 4841 bNext := s.f.NewBlock(ssa.BlockPlain) 4842 line := s.peekPos() 4843 pos := Ctxt.PosTable.Pos(line) 4844 fl := funcLine{f: fn, base: pos.Base(), line: pos.Line()} 4845 bPanic := s.panics[fl] 4846 if bPanic == nil { 4847 bPanic = s.f.NewBlock(ssa.BlockPlain) 4848 s.panics[fl] = bPanic 4849 s.startBlock(bPanic) 4850 // The panic call takes/returns memory to ensure that the right 4851 // memory state is observed if the panic happens. 4852 s.rtcall(fn, false, nil) 4853 } 4854 b.AddEdgeTo(bNext) 4855 b.AddEdgeTo(bPanic) 4856 s.startBlock(bNext) 4857 } 4858 4859 func (s *state) intDivide(n *Node, a, b *ssa.Value) *ssa.Value { 4860 needcheck := true 4861 switch b.Op { 4862 case ssa.OpConst8, ssa.OpConst16, ssa.OpConst32, ssa.OpConst64: 4863 if b.AuxInt != 0 { 4864 needcheck = false 4865 } 4866 } 4867 if needcheck { 4868 // do a size-appropriate check for zero 4869 cmp := s.newValue2(s.ssaOp(ONE, n.Type), types.Types[TBOOL], b, s.zeroVal(n.Type)) 4870 s.check(cmp, panicdivide) 4871 } 4872 return s.newValue2(s.ssaOp(n.Op, n.Type), a.Type, a, b) 4873 } 4874 4875 // rtcall issues a call to the given runtime function fn with the listed args. 4876 // Returns a slice of results of the given result types. 4877 // The call is added to the end of the current block. 4878 // If returns is false, the block is marked as an exit block. 4879 func (s *state) rtcall(fn *obj.LSym, returns bool, results []*types.Type, args ...*ssa.Value) []*ssa.Value { 4880 // Write args to the stack 4881 off := Ctxt.FixedFrameSize() 4882 for _, arg := range args { 4883 t := arg.Type 4884 off = Rnd(off, t.Alignment()) 4885 ptr := s.constOffPtrSP(t.PtrTo(), off) 4886 size := t.Size() 4887 s.store(t, ptr, arg) 4888 off += size 4889 } 4890 off = Rnd(off, int64(Widthreg)) 4891 4892 // Issue call 4893 call := s.newValue1A(ssa.OpStaticCall, types.TypeMem, fn, s.mem()) 4894 s.vars[&memVar] = call 4895 4896 if !returns { 4897 // Finish block 4898 b := s.endBlock() 4899 b.Kind = ssa.BlockExit 4900 b.SetControl(call) 4901 call.AuxInt = off - Ctxt.FixedFrameSize() 4902 if len(results) > 0 { 4903 s.Fatalf("panic call can't have results") 4904 } 4905 return nil 4906 } 4907 4908 // Load results 4909 res := make([]*ssa.Value, len(results)) 4910 for i, t := range results { 4911 off = Rnd(off, t.Alignment()) 4912 ptr := s.constOffPtrSP(types.NewPtr(t), off) 4913 res[i] = s.load(t, ptr) 4914 off += t.Size() 4915 } 4916 off = Rnd(off, int64(Widthptr)) 4917 4918 // Remember how much callee stack space we needed. 4919 call.AuxInt = off 4920 4921 return res 4922 } 4923 4924 // do *left = right for type t. 4925 func (s *state) storeType(t *types.Type, left, right *ssa.Value, skip skipMask, leftIsStmt bool) { 4926 s.instrument(t, left, true) 4927 4928 if skip == 0 && (!types.Haspointers(t) || ssa.IsStackAddr(left)) { 4929 // Known to not have write barrier. Store the whole type. 4930 s.vars[&memVar] = s.newValue3Apos(ssa.OpStore, types.TypeMem, t, left, right, s.mem(), leftIsStmt) 4931 return 4932 } 4933 4934 // store scalar fields first, so write barrier stores for 4935 // pointer fields can be grouped together, and scalar values 4936 // don't need to be live across the write barrier call. 4937 // TODO: if the writebarrier pass knows how to reorder stores, 4938 // we can do a single store here as long as skip==0. 4939 s.storeTypeScalars(t, left, right, skip) 4940 if skip&skipPtr == 0 && types.Haspointers(t) { 4941 s.storeTypePtrs(t, left, right) 4942 } 4943 } 4944 4945 // do *left = right for all scalar (non-pointer) parts of t. 4946 func (s *state) storeTypeScalars(t *types.Type, left, right *ssa.Value, skip skipMask) { 4947 switch { 4948 case t.IsBoolean() || t.IsInteger() || t.IsFloat() || t.IsComplex(): 4949 s.store(t, left, right) 4950 case t.IsPtrShaped(): 4951 // no scalar fields. 4952 case t.IsString(): 4953 if skip&skipLen != 0 { 4954 return 4955 } 4956 len := s.newValue1(ssa.OpStringLen, types.Types[TINT], right) 4957 lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left) 4958 s.store(types.Types[TINT], lenAddr, len) 4959 case t.IsSlice(): 4960 if skip&skipLen == 0 { 4961 len := s.newValue1(ssa.OpSliceLen, types.Types[TINT], right) 4962 lenAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, s.config.PtrSize, left) 4963 s.store(types.Types[TINT], lenAddr, len) 4964 } 4965 if skip&skipCap == 0 { 4966 cap := s.newValue1(ssa.OpSliceCap, types.Types[TINT], right) 4967 capAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.IntPtr, 2*s.config.PtrSize, left) 4968 s.store(types.Types[TINT], capAddr, cap) 4969 } 4970 case t.IsInterface(): 4971 // itab field doesn't need a write barrier (even though it is a pointer). 4972 itab := s.newValue1(ssa.OpITab, s.f.Config.Types.BytePtr, right) 4973 s.store(types.Types[TUINTPTR], left, itab) 4974 case t.IsStruct(): 4975 n := t.NumFields() 4976 for i := 0; i < n; i++ { 4977 ft := t.FieldType(i) 4978 addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left) 4979 val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right) 4980 s.storeTypeScalars(ft, addr, val, 0) 4981 } 4982 case t.IsArray() && t.NumElem() == 0: 4983 // nothing 4984 case t.IsArray() && t.NumElem() == 1: 4985 s.storeTypeScalars(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right), 0) 4986 default: 4987 s.Fatalf("bad write barrier type %v", t) 4988 } 4989 } 4990 4991 // do *left = right for all pointer parts of t. 4992 func (s *state) storeTypePtrs(t *types.Type, left, right *ssa.Value) { 4993 switch { 4994 case t.IsPtrShaped(): 4995 s.store(t, left, right) 4996 case t.IsString(): 4997 ptr := s.newValue1(ssa.OpStringPtr, s.f.Config.Types.BytePtr, right) 4998 s.store(s.f.Config.Types.BytePtr, left, ptr) 4999 case t.IsSlice(): 5000 elType := types.NewPtr(t.Elem()) 5001 ptr := s.newValue1(ssa.OpSlicePtr, elType, right) 5002 s.store(elType, left, ptr) 5003 case t.IsInterface(): 5004 // itab field is treated as a scalar. 5005 idata := s.newValue1(ssa.OpIData, s.f.Config.Types.BytePtr, right) 5006 idataAddr := s.newValue1I(ssa.OpOffPtr, s.f.Config.Types.BytePtrPtr, s.config.PtrSize, left) 5007 s.store(s.f.Config.Types.BytePtr, idataAddr, idata) 5008 case t.IsStruct(): 5009 n := t.NumFields() 5010 for i := 0; i < n; i++ { 5011 ft := t.FieldType(i) 5012 if !types.Haspointers(ft) { 5013 continue 5014 } 5015 addr := s.newValue1I(ssa.OpOffPtr, ft.PtrTo(), t.FieldOff(i), left) 5016 val := s.newValue1I(ssa.OpStructSelect, ft, int64(i), right) 5017 s.storeTypePtrs(ft, addr, val) 5018 } 5019 case t.IsArray() && t.NumElem() == 0: 5020 // nothing 5021 case t.IsArray() && t.NumElem() == 1: 5022 s.storeTypePtrs(t.Elem(), left, s.newValue1I(ssa.OpArraySelect, t.Elem(), 0, right)) 5023 default: 5024 s.Fatalf("bad write barrier type %v", t) 5025 } 5026 } 5027 5028 func (s *state) storeArg(n *Node, t *types.Type, off int64) { 5029 s.storeArgWithBase(n, t, s.sp, off) 5030 } 5031 5032 func (s *state) storeArgWithBase(n *Node, t *types.Type, base *ssa.Value, off int64) { 5033 pt := types.NewPtr(t) 5034 var addr *ssa.Value 5035 if base == s.sp { 5036 // Use special routine that avoids allocation on duplicate offsets. 5037 addr = s.constOffPtrSP(pt, off) 5038 } else { 5039 addr = s.newValue1I(ssa.OpOffPtr, pt, off, base) 5040 } 5041 5042 if !canSSAType(t) { 5043 a := s.addr(n, false) 5044 s.move(t, addr, a) 5045 return 5046 } 5047 5048 a := s.expr(n) 5049 s.storeType(t, addr, a, 0, false) 5050 } 5051 5052 // slice computes the slice v[i:j:k] and returns ptr, len, and cap of result. 5053 // i,j,k may be nil, in which case they are set to their default value. 5054 // v may be a slice, string or pointer to an array. 5055 func (s *state) slice(v, i, j, k *ssa.Value, bounded bool) (p, l, c *ssa.Value) { 5056 t := v.Type 5057 var ptr, len, cap *ssa.Value 5058 switch { 5059 case t.IsSlice(): 5060 ptr = s.newValue1(ssa.OpSlicePtr, types.NewPtr(t.Elem()), v) 5061 len = s.newValue1(ssa.OpSliceLen, types.Types[TINT], v) 5062 cap = s.newValue1(ssa.OpSliceCap, types.Types[TINT], v) 5063 case t.IsString(): 5064 ptr = s.newValue1(ssa.OpStringPtr, types.NewPtr(types.Types[TUINT8]), v) 5065 len = s.newValue1(ssa.OpStringLen, types.Types[TINT], v) 5066 cap = len 5067 case t.IsPtr(): 5068 if !t.Elem().IsArray() { 5069 s.Fatalf("bad ptr to array in slice %v\n", t) 5070 } 5071 s.nilCheck(v) 5072 ptr = s.newValue1(ssa.OpCopy, types.NewPtr(t.Elem().Elem()), v) 5073 len = s.constInt(types.Types[TINT], t.Elem().NumElem()) 5074 cap = len 5075 default: 5076 s.Fatalf("bad type in slice %v\n", t) 5077 } 5078 5079 // Set default values 5080 if i == nil { 5081 i = s.constInt(types.Types[TINT], 0) 5082 } 5083 if j == nil { 5084 j = len 5085 } 5086 three := true 5087 if k == nil { 5088 three = false 5089 k = cap 5090 } 5091 5092 // Panic if slice indices are not in bounds. 5093 // Make sure we check these in reverse order so that we're always 5094 // comparing against a value known to be nonnegative. See issue 28797. 5095 if three { 5096 if k != cap { 5097 kind := ssa.BoundsSlice3Alen 5098 if t.IsSlice() { 5099 kind = ssa.BoundsSlice3Acap 5100 } 5101 k = s.boundsCheck(k, cap, kind, bounded) 5102 } 5103 if j != k { 5104 j = s.boundsCheck(j, k, ssa.BoundsSlice3B, bounded) 5105 } 5106 i = s.boundsCheck(i, j, ssa.BoundsSlice3C, bounded) 5107 } else { 5108 if j != k { 5109 kind := ssa.BoundsSliceAlen 5110 if t.IsSlice() { 5111 kind = ssa.BoundsSliceAcap 5112 } 5113 j = s.boundsCheck(j, k, kind, bounded) 5114 } 5115 i = s.boundsCheck(i, j, ssa.BoundsSliceB, bounded) 5116 } 5117 5118 // Word-sized integer operations. 5119 subOp := s.ssaOp(OSUB, types.Types[TINT]) 5120 mulOp := s.ssaOp(OMUL, types.Types[TINT]) 5121 andOp := s.ssaOp(OAND, types.Types[TINT]) 5122 5123 // Calculate the length (rlen) and capacity (rcap) of the new slice. 5124 // For strings the capacity of the result is unimportant. However, 5125 // we use rcap to test if we've generated a zero-length slice. 5126 // Use length of strings for that. 5127 rlen := s.newValue2(subOp, types.Types[TINT], j, i) 5128 rcap := rlen 5129 if j != k && !t.IsString() { 5130 rcap = s.newValue2(subOp, types.Types[TINT], k, i) 5131 } 5132 5133 if (i.Op == ssa.OpConst64 || i.Op == ssa.OpConst32) && i.AuxInt == 0 { 5134 // No pointer arithmetic necessary. 5135 return ptr, rlen, rcap 5136 } 5137 5138 // Calculate the base pointer (rptr) for the new slice. 5139 // 5140 // Generate the following code assuming that indexes are in bounds. 5141 // The masking is to make sure that we don't generate a slice 5142 // that points to the next object in memory. We cannot just set 5143 // the pointer to nil because then we would create a nil slice or 5144 // string. 5145 // 5146 // rcap = k - i 5147 // rlen = j - i 5148 // rptr = ptr + (mask(rcap) & (i * stride)) 5149 // 5150 // Where mask(x) is 0 if x==0 and -1 if x>0 and stride is the width 5151 // of the element type. 5152 stride := s.constInt(types.Types[TINT], ptr.Type.Elem().Width) 5153 5154 // The delta is the number of bytes to offset ptr by. 5155 delta := s.newValue2(mulOp, types.Types[TINT], i, stride) 5156 5157 // If we're slicing to the point where the capacity is zero, 5158 // zero out the delta. 5159 mask := s.newValue1(ssa.OpSlicemask, types.Types[TINT], rcap) 5160 delta = s.newValue2(andOp, types.Types[TINT], delta, mask) 5161 5162 // Compute rptr = ptr + delta. 5163 rptr := s.newValue2(ssa.OpAddPtr, ptr.Type, ptr, delta) 5164 5165 return rptr, rlen, rcap 5166 } 5167 5168 type u642fcvtTab struct { 5169 geq, cvt2F, and, rsh, or, add ssa.Op 5170 one func(*state, *types.Type, int64) *ssa.Value 5171 } 5172 5173 var u64_f64 = u642fcvtTab{ 5174 geq: ssa.OpGeq64, 5175 cvt2F: ssa.OpCvt64to64F, 5176 and: ssa.OpAnd64, 5177 rsh: ssa.OpRsh64Ux64, 5178 or: ssa.OpOr64, 5179 add: ssa.OpAdd64F, 5180 one: (*state).constInt64, 5181 } 5182 5183 var u64_f32 = u642fcvtTab{ 5184 geq: ssa.OpGeq64, 5185 cvt2F: ssa.OpCvt64to32F, 5186 and: ssa.OpAnd64, 5187 rsh: ssa.OpRsh64Ux64, 5188 or: ssa.OpOr64, 5189 add: ssa.OpAdd32F, 5190 one: (*state).constInt64, 5191 } 5192 5193 func (s *state) uint64Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 5194 return s.uint64Tofloat(&u64_f64, n, x, ft, tt) 5195 } 5196 5197 func (s *state) uint64Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 5198 return s.uint64Tofloat(&u64_f32, n, x, ft, tt) 5199 } 5200 5201 func (s *state) uint64Tofloat(cvttab *u642fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 5202 // if x >= 0 { 5203 // result = (floatY) x 5204 // } else { 5205 // y = uintX(x) ; y = x & 1 5206 // z = uintX(x) ; z = z >> 1 5207 // z = z >> 1 5208 // z = z | y 5209 // result = floatY(z) 5210 // result = result + result 5211 // } 5212 // 5213 // Code borrowed from old code generator. 5214 // What's going on: large 64-bit "unsigned" looks like 5215 // negative number to hardware's integer-to-float 5216 // conversion. However, because the mantissa is only 5217 // 63 bits, we don't need the LSB, so instead we do an 5218 // unsigned right shift (divide by two), convert, and 5219 // double. However, before we do that, we need to be 5220 // sure that we do not lose a "1" if that made the 5221 // difference in the resulting rounding. Therefore, we 5222 // preserve it, and OR (not ADD) it back in. The case 5223 // that matters is when the eleven discarded bits are 5224 // equal to 10000000001; that rounds up, and the 1 cannot 5225 // be lost else it would round down if the LSB of the 5226 // candidate mantissa is 0. 5227 cmp := s.newValue2(cvttab.geq, types.Types[TBOOL], x, s.zeroVal(ft)) 5228 b := s.endBlock() 5229 b.Kind = ssa.BlockIf 5230 b.SetControl(cmp) 5231 b.Likely = ssa.BranchLikely 5232 5233 bThen := s.f.NewBlock(ssa.BlockPlain) 5234 bElse := s.f.NewBlock(ssa.BlockPlain) 5235 bAfter := s.f.NewBlock(ssa.BlockPlain) 5236 5237 b.AddEdgeTo(bThen) 5238 s.startBlock(bThen) 5239 a0 := s.newValue1(cvttab.cvt2F, tt, x) 5240 s.vars[n] = a0 5241 s.endBlock() 5242 bThen.AddEdgeTo(bAfter) 5243 5244 b.AddEdgeTo(bElse) 5245 s.startBlock(bElse) 5246 one := cvttab.one(s, ft, 1) 5247 y := s.newValue2(cvttab.and, ft, x, one) 5248 z := s.newValue2(cvttab.rsh, ft, x, one) 5249 z = s.newValue2(cvttab.or, ft, z, y) 5250 a := s.newValue1(cvttab.cvt2F, tt, z) 5251 a1 := s.newValue2(cvttab.add, tt, a, a) 5252 s.vars[n] = a1 5253 s.endBlock() 5254 bElse.AddEdgeTo(bAfter) 5255 5256 s.startBlock(bAfter) 5257 return s.variable(n, n.Type) 5258 } 5259 5260 type u322fcvtTab struct { 5261 cvtI2F, cvtF2F ssa.Op 5262 } 5263 5264 var u32_f64 = u322fcvtTab{ 5265 cvtI2F: ssa.OpCvt32to64F, 5266 cvtF2F: ssa.OpCopy, 5267 } 5268 5269 var u32_f32 = u322fcvtTab{ 5270 cvtI2F: ssa.OpCvt32to32F, 5271 cvtF2F: ssa.OpCvt64Fto32F, 5272 } 5273 5274 func (s *state) uint32Tofloat64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 5275 return s.uint32Tofloat(&u32_f64, n, x, ft, tt) 5276 } 5277 5278 func (s *state) uint32Tofloat32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 5279 return s.uint32Tofloat(&u32_f32, n, x, ft, tt) 5280 } 5281 5282 func (s *state) uint32Tofloat(cvttab *u322fcvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 5283 // if x >= 0 { 5284 // result = floatY(x) 5285 // } else { 5286 // result = floatY(float64(x) + (1<<32)) 5287 // } 5288 cmp := s.newValue2(ssa.OpGeq32, types.Types[TBOOL], x, s.zeroVal(ft)) 5289 b := s.endBlock() 5290 b.Kind = ssa.BlockIf 5291 b.SetControl(cmp) 5292 b.Likely = ssa.BranchLikely 5293 5294 bThen := s.f.NewBlock(ssa.BlockPlain) 5295 bElse := s.f.NewBlock(ssa.BlockPlain) 5296 bAfter := s.f.NewBlock(ssa.BlockPlain) 5297 5298 b.AddEdgeTo(bThen) 5299 s.startBlock(bThen) 5300 a0 := s.newValue1(cvttab.cvtI2F, tt, x) 5301 s.vars[n] = a0 5302 s.endBlock() 5303 bThen.AddEdgeTo(bAfter) 5304 5305 b.AddEdgeTo(bElse) 5306 s.startBlock(bElse) 5307 a1 := s.newValue1(ssa.OpCvt32to64F, types.Types[TFLOAT64], x) 5308 twoToThe32 := s.constFloat64(types.Types[TFLOAT64], float64(1<<32)) 5309 a2 := s.newValue2(ssa.OpAdd64F, types.Types[TFLOAT64], a1, twoToThe32) 5310 a3 := s.newValue1(cvttab.cvtF2F, tt, a2) 5311 5312 s.vars[n] = a3 5313 s.endBlock() 5314 bElse.AddEdgeTo(bAfter) 5315 5316 s.startBlock(bAfter) 5317 return s.variable(n, n.Type) 5318 } 5319 5320 // referenceTypeBuiltin generates code for the len/cap builtins for maps and channels. 5321 func (s *state) referenceTypeBuiltin(n *Node, x *ssa.Value) *ssa.Value { 5322 if !n.Left.Type.IsMap() && !n.Left.Type.IsChan() { 5323 s.Fatalf("node must be a map or a channel") 5324 } 5325 // if n == nil { 5326 // return 0 5327 // } else { 5328 // // len 5329 // return *((*int)n) 5330 // // cap 5331 // return *(((*int)n)+1) 5332 // } 5333 lenType := n.Type 5334 nilValue := s.constNil(types.Types[TUINTPTR]) 5335 cmp := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], x, nilValue) 5336 b := s.endBlock() 5337 b.Kind = ssa.BlockIf 5338 b.SetControl(cmp) 5339 b.Likely = ssa.BranchUnlikely 5340 5341 bThen := s.f.NewBlock(ssa.BlockPlain) 5342 bElse := s.f.NewBlock(ssa.BlockPlain) 5343 bAfter := s.f.NewBlock(ssa.BlockPlain) 5344 5345 // length/capacity of a nil map/chan is zero 5346 b.AddEdgeTo(bThen) 5347 s.startBlock(bThen) 5348 s.vars[n] = s.zeroVal(lenType) 5349 s.endBlock() 5350 bThen.AddEdgeTo(bAfter) 5351 5352 b.AddEdgeTo(bElse) 5353 s.startBlock(bElse) 5354 switch n.Op { 5355 case OLEN: 5356 // length is stored in the first word for map/chan 5357 s.vars[n] = s.load(lenType, x) 5358 case OCAP: 5359 // capacity is stored in the second word for chan 5360 sw := s.newValue1I(ssa.OpOffPtr, lenType.PtrTo(), lenType.Width, x) 5361 s.vars[n] = s.load(lenType, sw) 5362 default: 5363 s.Fatalf("op must be OLEN or OCAP") 5364 } 5365 s.endBlock() 5366 bElse.AddEdgeTo(bAfter) 5367 5368 s.startBlock(bAfter) 5369 return s.variable(n, lenType) 5370 } 5371 5372 type f2uCvtTab struct { 5373 ltf, cvt2U, subf, or ssa.Op 5374 floatValue func(*state, *types.Type, float64) *ssa.Value 5375 intValue func(*state, *types.Type, int64) *ssa.Value 5376 cutoff uint64 5377 } 5378 5379 var f32_u64 = f2uCvtTab{ 5380 ltf: ssa.OpLess32F, 5381 cvt2U: ssa.OpCvt32Fto64, 5382 subf: ssa.OpSub32F, 5383 or: ssa.OpOr64, 5384 floatValue: (*state).constFloat32, 5385 intValue: (*state).constInt64, 5386 cutoff: 1 << 63, 5387 } 5388 5389 var f64_u64 = f2uCvtTab{ 5390 ltf: ssa.OpLess64F, 5391 cvt2U: ssa.OpCvt64Fto64, 5392 subf: ssa.OpSub64F, 5393 or: ssa.OpOr64, 5394 floatValue: (*state).constFloat64, 5395 intValue: (*state).constInt64, 5396 cutoff: 1 << 63, 5397 } 5398 5399 var f32_u32 = f2uCvtTab{ 5400 ltf: ssa.OpLess32F, 5401 cvt2U: ssa.OpCvt32Fto32, 5402 subf: ssa.OpSub32F, 5403 or: ssa.OpOr32, 5404 floatValue: (*state).constFloat32, 5405 intValue: func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) }, 5406 cutoff: 1 << 31, 5407 } 5408 5409 var f64_u32 = f2uCvtTab{ 5410 ltf: ssa.OpLess64F, 5411 cvt2U: ssa.OpCvt64Fto32, 5412 subf: ssa.OpSub64F, 5413 or: ssa.OpOr32, 5414 floatValue: (*state).constFloat64, 5415 intValue: func(s *state, t *types.Type, v int64) *ssa.Value { return s.constInt32(t, int32(v)) }, 5416 cutoff: 1 << 31, 5417 } 5418 5419 func (s *state) float32ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 5420 return s.floatToUint(&f32_u64, n, x, ft, tt) 5421 } 5422 func (s *state) float64ToUint64(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 5423 return s.floatToUint(&f64_u64, n, x, ft, tt) 5424 } 5425 5426 func (s *state) float32ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 5427 return s.floatToUint(&f32_u32, n, x, ft, tt) 5428 } 5429 5430 func (s *state) float64ToUint32(n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 5431 return s.floatToUint(&f64_u32, n, x, ft, tt) 5432 } 5433 5434 func (s *state) floatToUint(cvttab *f2uCvtTab, n *Node, x *ssa.Value, ft, tt *types.Type) *ssa.Value { 5435 // cutoff:=1<<(intY_Size-1) 5436 // if x < floatX(cutoff) { 5437 // result = uintY(x) 5438 // } else { 5439 // y = x - floatX(cutoff) 5440 // z = uintY(y) 5441 // result = z | -(cutoff) 5442 // } 5443 cutoff := cvttab.floatValue(s, ft, float64(cvttab.cutoff)) 5444 cmp := s.newValue2(cvttab.ltf, types.Types[TBOOL], x, cutoff) 5445 b := s.endBlock() 5446 b.Kind = ssa.BlockIf 5447 b.SetControl(cmp) 5448 b.Likely = ssa.BranchLikely 5449 5450 bThen := s.f.NewBlock(ssa.BlockPlain) 5451 bElse := s.f.NewBlock(ssa.BlockPlain) 5452 bAfter := s.f.NewBlock(ssa.BlockPlain) 5453 5454 b.AddEdgeTo(bThen) 5455 s.startBlock(bThen) 5456 a0 := s.newValue1(cvttab.cvt2U, tt, x) 5457 s.vars[n] = a0 5458 s.endBlock() 5459 bThen.AddEdgeTo(bAfter) 5460 5461 b.AddEdgeTo(bElse) 5462 s.startBlock(bElse) 5463 y := s.newValue2(cvttab.subf, ft, x, cutoff) 5464 y = s.newValue1(cvttab.cvt2U, tt, y) 5465 z := cvttab.intValue(s, tt, int64(-cvttab.cutoff)) 5466 a1 := s.newValue2(cvttab.or, tt, y, z) 5467 s.vars[n] = a1 5468 s.endBlock() 5469 bElse.AddEdgeTo(bAfter) 5470 5471 s.startBlock(bAfter) 5472 return s.variable(n, n.Type) 5473 } 5474 5475 // dottype generates SSA for a type assertion node. 5476 // commaok indicates whether to panic or return a bool. 5477 // If commaok is false, resok will be nil. 5478 func (s *state) dottype(n *Node, commaok bool) (res, resok *ssa.Value) { 5479 iface := s.expr(n.Left) // input interface 5480 target := s.expr(n.Right) // target type 5481 byteptr := s.f.Config.Types.BytePtr 5482 5483 if n.Type.IsInterface() { 5484 if n.Type.IsEmptyInterface() { 5485 // Converting to an empty interface. 5486 // Input could be an empty or nonempty interface. 5487 if Debug_typeassert > 0 { 5488 Warnl(n.Pos, "type assertion inlined") 5489 } 5490 5491 // Get itab/type field from input. 5492 itab := s.newValue1(ssa.OpITab, byteptr, iface) 5493 // Conversion succeeds iff that field is not nil. 5494 cond := s.newValue2(ssa.OpNeqPtr, types.Types[TBOOL], itab, s.constNil(byteptr)) 5495 5496 if n.Left.Type.IsEmptyInterface() && commaok { 5497 // Converting empty interface to empty interface with ,ok is just a nil check. 5498 return iface, cond 5499 } 5500 5501 // Branch on nilness. 5502 b := s.endBlock() 5503 b.Kind = ssa.BlockIf 5504 b.SetControl(cond) 5505 b.Likely = ssa.BranchLikely 5506 bOk := s.f.NewBlock(ssa.BlockPlain) 5507 bFail := s.f.NewBlock(ssa.BlockPlain) 5508 b.AddEdgeTo(bOk) 5509 b.AddEdgeTo(bFail) 5510 5511 if !commaok { 5512 // On failure, panic by calling panicnildottype. 5513 s.startBlock(bFail) 5514 s.rtcall(panicnildottype, false, nil, target) 5515 5516 // On success, return (perhaps modified) input interface. 5517 s.startBlock(bOk) 5518 if n.Left.Type.IsEmptyInterface() { 5519 res = iface // Use input interface unchanged. 5520 return 5521 } 5522 // Load type out of itab, build interface with existing idata. 5523 off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab) 5524 typ := s.load(byteptr, off) 5525 idata := s.newValue1(ssa.OpIData, n.Type, iface) 5526 res = s.newValue2(ssa.OpIMake, n.Type, typ, idata) 5527 return 5528 } 5529 5530 s.startBlock(bOk) 5531 // nonempty -> empty 5532 // Need to load type from itab 5533 off := s.newValue1I(ssa.OpOffPtr, byteptr, int64(Widthptr), itab) 5534 s.vars[&typVar] = s.load(byteptr, off) 5535 s.endBlock() 5536 5537 // itab is nil, might as well use that as the nil result. 5538 s.startBlock(bFail) 5539 s.vars[&typVar] = itab 5540 s.endBlock() 5541 5542 // Merge point. 5543 bEnd := s.f.NewBlock(ssa.BlockPlain) 5544 bOk.AddEdgeTo(bEnd) 5545 bFail.AddEdgeTo(bEnd) 5546 s.startBlock(bEnd) 5547 idata := s.newValue1(ssa.OpIData, n.Type, iface) 5548 res = s.newValue2(ssa.OpIMake, n.Type, s.variable(&typVar, byteptr), idata) 5549 resok = cond 5550 delete(s.vars, &typVar) 5551 return 5552 } 5553 // converting to a nonempty interface needs a runtime call. 5554 if Debug_typeassert > 0 { 5555 Warnl(n.Pos, "type assertion not inlined") 5556 } 5557 if n.Left.Type.IsEmptyInterface() { 5558 if commaok { 5559 call := s.rtcall(assertE2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface) 5560 return call[0], call[1] 5561 } 5562 return s.rtcall(assertE2I, true, []*types.Type{n.Type}, target, iface)[0], nil 5563 } 5564 if commaok { 5565 call := s.rtcall(assertI2I2, true, []*types.Type{n.Type, types.Types[TBOOL]}, target, iface) 5566 return call[0], call[1] 5567 } 5568 return s.rtcall(assertI2I, true, []*types.Type{n.Type}, target, iface)[0], nil 5569 } 5570 5571 if Debug_typeassert > 0 { 5572 Warnl(n.Pos, "type assertion inlined") 5573 } 5574 5575 // Converting to a concrete type. 5576 direct := isdirectiface(n.Type) 5577 itab := s.newValue1(ssa.OpITab, byteptr, iface) // type word of interface 5578 if Debug_typeassert > 0 { 5579 Warnl(n.Pos, "type assertion inlined") 5580 } 5581 var targetITab *ssa.Value 5582 if n.Left.Type.IsEmptyInterface() { 5583 // Looking for pointer to target type. 5584 targetITab = target 5585 } else { 5586 // Looking for pointer to itab for target type and source interface. 5587 targetITab = s.expr(n.List.First()) 5588 } 5589 5590 var tmp *Node // temporary for use with large types 5591 var addr *ssa.Value // address of tmp 5592 if commaok && !canSSAType(n.Type) { 5593 // unSSAable type, use temporary. 5594 // TODO: get rid of some of these temporaries. 5595 tmp = tempAt(n.Pos, s.curfn, n.Type) 5596 s.vars[&memVar] = s.newValue1A(ssa.OpVarDef, types.TypeMem, tmp, s.mem()) 5597 addr = s.addr(tmp, false) 5598 } 5599 5600 cond := s.newValue2(ssa.OpEqPtr, types.Types[TBOOL], itab, targetITab) 5601 b := s.endBlock() 5602 b.Kind = ssa.BlockIf 5603 b.SetControl(cond) 5604 b.Likely = ssa.BranchLikely 5605 5606 bOk := s.f.NewBlock(ssa.BlockPlain) 5607 bFail := s.f.NewBlock(ssa.BlockPlain) 5608 b.AddEdgeTo(bOk) 5609 b.AddEdgeTo(bFail) 5610 5611 if !commaok { 5612 // on failure, panic by calling panicdottype 5613 s.startBlock(bFail) 5614 taddr := s.expr(n.Right.Right) 5615 if n.Left.Type.IsEmptyInterface() { 5616 s.rtcall(panicdottypeE, false, nil, itab, target, taddr) 5617 } else { 5618 s.rtcall(panicdottypeI, false, nil, itab, target, taddr) 5619 } 5620 5621 // on success, return data from interface 5622 s.startBlock(bOk) 5623 if direct { 5624 return s.newValue1(ssa.OpIData, n.Type, iface), nil 5625 } 5626 p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface) 5627 return s.load(n.Type, p), nil 5628 } 5629 5630 // commaok is the more complicated case because we have 5631 // a control flow merge point. 5632 bEnd := s.f.NewBlock(ssa.BlockPlain) 5633 // Note that we need a new valVar each time (unlike okVar where we can 5634 // reuse the variable) because it might have a different type every time. 5635 valVar := &Node{Op: ONAME, Sym: &types.Sym{Name: "val"}} 5636 5637 // type assertion succeeded 5638 s.startBlock(bOk) 5639 if tmp == nil { 5640 if direct { 5641 s.vars[valVar] = s.newValue1(ssa.OpIData, n.Type, iface) 5642 } else { 5643 p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface) 5644 s.vars[valVar] = s.load(n.Type, p) 5645 } 5646 } else { 5647 p := s.newValue1(ssa.OpIData, types.NewPtr(n.Type), iface) 5648 s.move(n.Type, addr, p) 5649 } 5650 s.vars[&okVar] = s.constBool(true) 5651 s.endBlock() 5652 bOk.AddEdgeTo(bEnd) 5653 5654 // type assertion failed 5655 s.startBlock(bFail) 5656 if tmp == nil { 5657 s.vars[valVar] = s.zeroVal(n.Type) 5658 } else { 5659 s.zero(n.Type, addr) 5660 } 5661 s.vars[&okVar] = s.constBool(false) 5662 s.endBlock() 5663 bFail.AddEdgeTo(bEnd) 5664 5665 // merge point 5666 s.startBlock(bEnd) 5667 if tmp == nil { 5668 res = s.variable(valVar, n.Type) 5669 delete(s.vars, valVar) 5670 } else { 5671 res = s.load(n.Type, addr) 5672 s.vars[&memVar] = s.newValue1A(ssa.OpVarKill, types.TypeMem, tmp, s.mem()) 5673 } 5674 resok = s.variable(&okVar, types.Types[TBOOL]) 5675 delete(s.vars, &okVar) 5676 return res, resok 5677 } 5678 5679 // variable returns the value of a variable at the current location. 5680 func (s *state) variable(name *Node, t *types.Type) *ssa.Value { 5681 v := s.vars[name] 5682 if v != nil { 5683 return v 5684 } 5685 v = s.fwdVars[name] 5686 if v != nil { 5687 return v 5688 } 5689 5690 if s.curBlock == s.f.Entry { 5691 // No variable should be live at entry. 5692 s.Fatalf("Value live at entry. It shouldn't be. func %s, node %v, value %v", s.f.Name, name, v) 5693 } 5694 // Make a FwdRef, which records a value that's live on block input. 5695 // We'll find the matching definition as part of insertPhis. 5696 v = s.newValue0A(ssa.OpFwdRef, t, name) 5697 s.fwdVars[name] = v 5698 s.addNamedValue(name, v) 5699 return v 5700 } 5701 5702 func (s *state) mem() *ssa.Value { 5703 return s.variable(&memVar, types.TypeMem) 5704 } 5705 5706 func (s *state) addNamedValue(n *Node, v *ssa.Value) { 5707 if n.Class() == Pxxx { 5708 // Don't track our dummy nodes (&memVar etc.). 5709 return 5710 } 5711 if n.IsAutoTmp() { 5712 // Don't track temporary variables. 5713 return 5714 } 5715 if n.Class() == PPARAMOUT { 5716 // Don't track named output values. This prevents return values 5717 // from being assigned too early. See #14591 and #14762. TODO: allow this. 5718 return 5719 } 5720 if n.Class() == PAUTO && n.Xoffset != 0 { 5721 s.Fatalf("AUTO var with offset %v %d", n, n.Xoffset) 5722 } 5723 loc := ssa.LocalSlot{N: n, Type: n.Type, Off: 0} 5724 values, ok := s.f.NamedValues[loc] 5725 if !ok { 5726 s.f.Names = append(s.f.Names, loc) 5727 } 5728 s.f.NamedValues[loc] = append(values, v) 5729 } 5730 5731 // Generate a disconnected call to a runtime routine and a return. 5732 func gencallret(pp *Progs, sym *obj.LSym) *obj.Prog { 5733 p := pp.Prog(obj.ACALL) 5734 p.To.Type = obj.TYPE_MEM 5735 p.To.Name = obj.NAME_EXTERN 5736 p.To.Sym = sym 5737 p = pp.Prog(obj.ARET) 5738 return p 5739 } 5740 5741 // Branch is an unresolved branch. 5742 type Branch struct { 5743 P *obj.Prog // branch instruction 5744 B *ssa.Block // target 5745 } 5746 5747 // SSAGenState contains state needed during Prog generation. 5748 type SSAGenState struct { 5749 pp *Progs 5750 5751 // Branches remembers all the branch instructions we've seen 5752 // and where they would like to go. 5753 Branches []Branch 5754 5755 // bstart remembers where each block starts (indexed by block ID) 5756 bstart []*obj.Prog 5757 5758 // 387 port: maps from SSE registers (REG_X?) to 387 registers (REG_F?) 5759 SSEto387 map[int16]int16 5760 // Some architectures require a 64-bit temporary for FP-related register shuffling. Examples include x86-387, PPC, and Sparc V8. 5761 ScratchFpMem *Node 5762 5763 maxarg int64 // largest frame size for arguments to calls made by the function 5764 5765 // Map from GC safe points to liveness index, generated by 5766 // liveness analysis. 5767 livenessMap LivenessMap 5768 5769 // lineRunStart records the beginning of the current run of instructions 5770 // within a single block sharing the same line number 5771 // Used to move statement marks to the beginning of such runs. 5772 lineRunStart *obj.Prog 5773 5774 // wasm: The number of values on the WebAssembly stack. This is only used as a safeguard. 5775 OnWasmStackSkipped int 5776 5777 // Liveness index for the first function call in the final defer exit code 5778 // path that we generated. All defer functions and args should be live at 5779 // this point. This will be used to set the liveness for the deferreturn. 5780 lastDeferLiveness LivenessIndex 5781 } 5782 5783 // Prog appends a new Prog. 5784 func (s *SSAGenState) Prog(as obj.As) *obj.Prog { 5785 p := s.pp.Prog(as) 5786 if ssa.LosesStmtMark(as) { 5787 return p 5788 } 5789 // Float a statement start to the beginning of any same-line run. 5790 // lineRunStart is reset at block boundaries, which appears to work well. 5791 if s.lineRunStart == nil || s.lineRunStart.Pos.Line() != p.Pos.Line() { 5792 s.lineRunStart = p 5793 } else if p.Pos.IsStmt() == src.PosIsStmt { 5794 s.lineRunStart.Pos = s.lineRunStart.Pos.WithIsStmt() 5795 p.Pos = p.Pos.WithNotStmt() 5796 } 5797 return p 5798 } 5799 5800 // Pc returns the current Prog. 5801 func (s *SSAGenState) Pc() *obj.Prog { 5802 return s.pp.next 5803 } 5804 5805 // SetPos sets the current source position. 5806 func (s *SSAGenState) SetPos(pos src.XPos) { 5807 s.pp.pos = pos 5808 } 5809 5810 // Br emits a single branch instruction and returns the instruction. 5811 // Not all architectures need the returned instruction, but otherwise 5812 // the boilerplate is common to all. 5813 func (s *SSAGenState) Br(op obj.As, target *ssa.Block) *obj.Prog { 5814 p := s.Prog(op) 5815 p.To.Type = obj.TYPE_BRANCH 5816 s.Branches = append(s.Branches, Branch{P: p, B: target}) 5817 return p 5818 } 5819 5820 // DebugFriendlySetPosFrom adjusts Pos.IsStmt subject to heuristics 5821 // that reduce "jumpy" line number churn when debugging. 5822 // Spill/fill/copy instructions from the register allocator, 5823 // phi functions, and instructions with a no-pos position 5824 // are examples of instructions that can cause churn. 5825 func (s *SSAGenState) DebugFriendlySetPosFrom(v *ssa.Value) { 5826 switch v.Op { 5827 case ssa.OpPhi, ssa.OpCopy, ssa.OpLoadReg, ssa.OpStoreReg: 5828 // These are not statements 5829 s.SetPos(v.Pos.WithNotStmt()) 5830 default: 5831 p := v.Pos 5832 if p != src.NoXPos { 5833 // If the position is defined, update the position. 5834 // Also convert default IsStmt to NotStmt; only 5835 // explicit statement boundaries should appear 5836 // in the generated code. 5837 if p.IsStmt() != src.PosIsStmt { 5838 p = p.WithNotStmt() 5839 // Calls use the pos attached to v, but copy the statement mark from SSAGenState 5840 } 5841 s.SetPos(p) 5842 } else { 5843 s.SetPos(s.pp.pos.WithNotStmt()) 5844 } 5845 } 5846 } 5847 5848 // byXoffset implements sort.Interface for []*Node using Xoffset as the ordering. 5849 type byXoffset []*Node 5850 5851 func (s byXoffset) Len() int { return len(s) } 5852 func (s byXoffset) Less(i, j int) bool { return s[i].Xoffset < s[j].Xoffset } 5853 func (s byXoffset) Swap(i, j int) { s[i], s[j] = s[j], s[i] } 5854 5855 func emitStackObjects(e *ssafn, pp *Progs) { 5856 var vars []*Node 5857 for _, n := range e.curfn.Func.Dcl { 5858 if livenessShouldTrack(n) && n.Name.Addrtaken() { 5859 vars = append(vars, n) 5860 } 5861 } 5862 if len(vars) == 0 { 5863 return 5864 } 5865 5866 // Sort variables from lowest to highest address. 5867 sort.Sort(byXoffset(vars)) 5868 5869 // Populate the stack object data. 5870 // Format must match runtime/stack.go:stackObjectRecord. 5871 x := e.curfn.Func.lsym.Func.StackObjects 5872 off := 0 5873 off = duintptr(x, off, uint64(len(vars))) 5874 for _, v := range vars { 5875 // Note: arguments and return values have non-negative Xoffset, 5876 // in which case the offset is relative to argp. 5877 // Locals have a negative Xoffset, in which case the offset is relative to varp. 5878 off = duintptr(x, off, uint64(v.Xoffset)) 5879 if !typesym(v.Type).Siggen() { 5880 e.Fatalf(v.Pos, "stack object's type symbol not generated for type %s", v.Type) 5881 } 5882 off = dsymptr(x, off, dtypesym(v.Type), 0) 5883 } 5884 5885 // Emit a funcdata pointing at the stack object data. 5886 p := pp.Prog(obj.AFUNCDATA) 5887 Addrconst(&p.From, objabi.FUNCDATA_StackObjects) 5888 p.To.Type = obj.TYPE_MEM 5889 p.To.Name = obj.NAME_EXTERN 5890 p.To.Sym = x 5891 5892 if debuglive != 0 { 5893 for _, v := range vars { 5894 Warnl(v.Pos, "stack object %v %s", v, v.Type.String()) 5895 } 5896 } 5897 } 5898 5899 // genssa appends entries to pp for each instruction in f. 5900 func genssa(f *ssa.Func, pp *Progs) { 5901 var s SSAGenState 5902 5903 e := f.Frontend().(*ssafn) 5904 5905 s.livenessMap = liveness(e, f, pp) 5906 emitStackObjects(e, pp) 5907 5908 openDeferInfo := e.curfn.Func.lsym.Func.OpenCodedDeferInfo 5909 if openDeferInfo != nil { 5910 // This function uses open-coded defers -- write out the funcdata 5911 // info that we computed at the end of genssa. 5912 p := pp.Prog(obj.AFUNCDATA) 5913 Addrconst(&p.From, objabi.FUNCDATA_OpenCodedDeferInfo) 5914 p.To.Type = obj.TYPE_MEM 5915 p.To.Name = obj.NAME_EXTERN 5916 p.To.Sym = openDeferInfo 5917 } 5918 5919 // Remember where each block starts. 5920 s.bstart = make([]*obj.Prog, f.NumBlocks()) 5921 s.pp = pp 5922 var progToValue map[*obj.Prog]*ssa.Value 5923 var progToBlock map[*obj.Prog]*ssa.Block 5924 var valueToProgAfter []*obj.Prog // The first Prog following computation of a value v; v is visible at this point. 5925 if f.PrintOrHtmlSSA { 5926 progToValue = make(map[*obj.Prog]*ssa.Value, f.NumValues()) 5927 progToBlock = make(map[*obj.Prog]*ssa.Block, f.NumBlocks()) 5928 f.Logf("genssa %s\n", f.Name) 5929 progToBlock[s.pp.next] = f.Blocks[0] 5930 } 5931 5932 if thearch.Use387 { 5933 s.SSEto387 = map[int16]int16{} 5934 } 5935 5936 s.ScratchFpMem = e.scratchFpMem 5937 5938 if Ctxt.Flag_locationlists { 5939 if cap(f.Cache.ValueToProgAfter) < f.NumValues() { 5940 f.Cache.ValueToProgAfter = make([]*obj.Prog, f.NumValues()) 5941 } 5942 valueToProgAfter = f.Cache.ValueToProgAfter[:f.NumValues()] 5943 for i := range valueToProgAfter { 5944 valueToProgAfter[i] = nil 5945 } 5946 } 5947 5948 // If the very first instruction is not tagged as a statement, 5949 // debuggers may attribute it to previous function in program. 5950 firstPos := src.NoXPos 5951 for _, v := range f.Entry.Values { 5952 if v.Pos.IsStmt() == src.PosIsStmt { 5953 firstPos = v.Pos 5954 v.Pos = firstPos.WithDefaultStmt() 5955 break 5956 } 5957 } 5958 5959 // inlMarks has an entry for each Prog that implements an inline mark. 5960 // It maps from that Prog to the global inlining id of the inlined body 5961 // which should unwind to this Prog's location. 5962 var inlMarks map[*obj.Prog]int32 5963 var inlMarkList []*obj.Prog 5964 5965 // inlMarksByPos maps from a (column 1) source position to the set of 5966 // Progs that are in the set above and have that source position. 5967 var inlMarksByPos map[src.XPos][]*obj.Prog 5968 5969 // Emit basic blocks 5970 for i, b := range f.Blocks { 5971 s.bstart[b.ID] = s.pp.next 5972 s.lineRunStart = nil 5973 5974 // Attach a "default" liveness info. Normally this will be 5975 // overwritten in the Values loop below for each Value. But 5976 // for an empty block this will be used for its control 5977 // instruction. We won't use the actual liveness map on a 5978 // control instruction. Just mark it something that is 5979 // preemptible. 5980 s.pp.nextLive = LivenessIndex{-1, -1} 5981 5982 // Emit values in block 5983 thearch.SSAMarkMoves(&s, b) 5984 for _, v := range b.Values { 5985 x := s.pp.next 5986 s.DebugFriendlySetPosFrom(v) 5987 5988 switch v.Op { 5989 case ssa.OpInitMem: 5990 // memory arg needs no code 5991 case ssa.OpArg: 5992 // input args need no code 5993 case ssa.OpSP, ssa.OpSB: 5994 // nothing to do 5995 case ssa.OpSelect0, ssa.OpSelect1: 5996 // nothing to do 5997 case ssa.OpGetG: 5998 // nothing to do when there's a g register, 5999 // and checkLower complains if there's not 6000 case ssa.OpVarDef, ssa.OpVarLive, ssa.OpKeepAlive, ssa.OpVarKill: 6001 // nothing to do; already used by liveness 6002 case ssa.OpPhi: 6003 CheckLoweredPhi(v) 6004 case ssa.OpConvert: 6005 // nothing to do; no-op conversion for liveness 6006 if v.Args[0].Reg() != v.Reg() { 6007 v.Fatalf("OpConvert should be a no-op: %s; %s", v.Args[0].LongString(), v.LongString()) 6008 } 6009 case ssa.OpInlMark: 6010 p := thearch.Ginsnop(s.pp) 6011 if inlMarks == nil { 6012 inlMarks = map[*obj.Prog]int32{} 6013 inlMarksByPos = map[src.XPos][]*obj.Prog{} 6014 } 6015 inlMarks[p] = v.AuxInt32() 6016 inlMarkList = append(inlMarkList, p) 6017 pos := v.Pos.AtColumn1() 6018 inlMarksByPos[pos] = append(inlMarksByPos[pos], p) 6019 6020 default: 6021 // Attach this safe point to the next 6022 // instruction. 6023 s.pp.nextLive = s.livenessMap.Get(v) 6024 6025 // Remember the liveness index of the first defer call of 6026 // the last defer exit 6027 if v.Block.Func.LastDeferExit != nil && v == v.Block.Func.LastDeferExit { 6028 s.lastDeferLiveness = s.pp.nextLive 6029 } 6030 6031 // Special case for first line in function; move it to the start. 6032 if firstPos != src.NoXPos { 6033 s.SetPos(firstPos) 6034 firstPos = src.NoXPos 6035 } 6036 // let the backend handle it 6037 thearch.SSAGenValue(&s, v) 6038 } 6039 6040 if Ctxt.Flag_locationlists { 6041 valueToProgAfter[v.ID] = s.pp.next 6042 } 6043 6044 if f.PrintOrHtmlSSA { 6045 for ; x != s.pp.next; x = x.Link { 6046 progToValue[x] = v 6047 } 6048 } 6049 } 6050 // If this is an empty infinite loop, stick a hardware NOP in there so that debuggers are less confused. 6051 if s.bstart[b.ID] == s.pp.next && len(b.Succs) == 1 && b.Succs[0].Block() == b { 6052 p := thearch.Ginsnop(s.pp) 6053 p.Pos = p.Pos.WithIsStmt() 6054 if b.Pos == src.NoXPos { 6055 b.Pos = p.Pos // It needs a file, otherwise a no-file non-zero line causes confusion. See #35652. 6056 if b.Pos == src.NoXPos { 6057 b.Pos = pp.Text.Pos // Sometimes p.Pos is empty. See #35695. 6058 } 6059 } 6060 b.Pos = b.Pos.WithBogusLine() // Debuggers are not good about infinite loops, force a change in line number 6061 } 6062 // Emit control flow instructions for block 6063 var next *ssa.Block 6064 if i < len(f.Blocks)-1 && Debug['N'] == 0 { 6065 // If -N, leave next==nil so every block with successors 6066 // ends in a JMP (except call blocks - plive doesn't like 6067 // select{send,recv} followed by a JMP call). Helps keep 6068 // line numbers for otherwise empty blocks. 6069 next = f.Blocks[i+1] 6070 } 6071 x := s.pp.next 6072 s.SetPos(b.Pos) 6073 thearch.SSAGenBlock(&s, b, next) 6074 if f.PrintOrHtmlSSA { 6075 for ; x != s.pp.next; x = x.Link { 6076 progToBlock[x] = b 6077 } 6078 } 6079 } 6080 if f.Blocks[len(f.Blocks)-1].Kind == ssa.BlockExit { 6081 // We need the return address of a panic call to 6082 // still be inside the function in question. So if 6083 // it ends in a call which doesn't return, add a 6084 // nop (which will never execute) after the call. 6085 thearch.Ginsnop(pp) 6086 } 6087 if openDeferInfo != nil { 6088 // When doing open-coded defers, generate a disconnected call to 6089 // deferreturn and a return. This will be used to during panic 6090 // recovery to unwind the stack and return back to the runtime. 6091 s.pp.nextLive = s.lastDeferLiveness 6092 gencallret(pp, Deferreturn) 6093 } 6094 6095 if inlMarks != nil { 6096 // We have some inline marks. Try to find other instructions we're 6097 // going to emit anyway, and use those instructions instead of the 6098 // inline marks. 6099 for p := pp.Text; p != nil; p = p.Link { 6100 if p.As == obj.ANOP || p.As == obj.AFUNCDATA || p.As == obj.APCDATA || p.As == obj.ATEXT || p.As == obj.APCALIGN || thearch.LinkArch.Family == sys.Wasm { 6101 // Don't use 0-sized instructions as inline marks, because we need 6102 // to identify inline mark instructions by pc offset. 6103 // (Some of these instructions are sometimes zero-sized, sometimes not. 6104 // We must not use anything that even might be zero-sized.) 6105 // TODO: are there others? 6106 continue 6107 } 6108 if _, ok := inlMarks[p]; ok { 6109 // Don't use inline marks themselves. We don't know 6110 // whether they will be zero-sized or not yet. 6111 continue 6112 } 6113 pos := p.Pos.AtColumn1() 6114 s := inlMarksByPos[pos] 6115 if len(s) == 0 { 6116 continue 6117 } 6118 for _, m := range s { 6119 // We found an instruction with the same source position as 6120 // some of the inline marks. 6121 // Use this instruction instead. 6122 p.Pos = p.Pos.WithIsStmt() // promote position to a statement 6123 pp.curfn.Func.lsym.Func.AddInlMark(p, inlMarks[m]) 6124 // Make the inline mark a real nop, so it doesn't generate any code. 6125 m.As = obj.ANOP 6126 m.Pos = src.NoXPos 6127 m.From = obj.Addr{} 6128 m.To = obj.Addr{} 6129 } 6130 delete(inlMarksByPos, pos) 6131 } 6132 // Any unmatched inline marks now need to be added to the inlining tree (and will generate a nop instruction). 6133 for _, p := range inlMarkList { 6134 if p.As != obj.ANOP { 6135 pp.curfn.Func.lsym.Func.AddInlMark(p, inlMarks[p]) 6136 } 6137 } 6138 } 6139 6140 if Ctxt.Flag_locationlists { 6141 e.curfn.Func.DebugInfo = ssa.BuildFuncDebug(Ctxt, f, Debug_locationlist > 1, stackOffset) 6142 bstart := s.bstart 6143 // Note that at this moment, Prog.Pc is a sequence number; it's 6144 // not a real PC until after assembly, so this mapping has to 6145 // be done later. 6146 e.curfn.Func.DebugInfo.GetPC = func(b, v ssa.ID) int64 { 6147 switch v { 6148 case ssa.BlockStart.ID: 6149 if b == f.Entry.ID { 6150 return 0 // Start at the very beginning, at the assembler-generated prologue. 6151 // this should only happen for function args (ssa.OpArg) 6152 } 6153 return bstart[b].Pc 6154 case ssa.BlockEnd.ID: 6155 return e.curfn.Func.lsym.Size 6156 default: 6157 return valueToProgAfter[v].Pc 6158 } 6159 } 6160 } 6161 6162 // Resolve branches, and relax DefaultStmt into NotStmt 6163 for _, br := range s.Branches { 6164 br.P.To.Val = s.bstart[br.B.ID] 6165 if br.P.Pos.IsStmt() != src.PosIsStmt { 6166 br.P.Pos = br.P.Pos.WithNotStmt() 6167 } else if v0 := br.B.FirstPossibleStmtValue(); v0 != nil && v0.Pos.Line() == br.P.Pos.Line() && v0.Pos.IsStmt() == src.PosIsStmt { 6168 br.P.Pos = br.P.Pos.WithNotStmt() 6169 } 6170 6171 } 6172 6173 if e.log { // spew to stdout 6174 filename := "" 6175 for p := pp.Text; p != nil; p = p.Link { 6176 if p.Pos.IsKnown() && p.InnermostFilename() != filename { 6177 filename = p.InnermostFilename() 6178 f.Logf("# %s\n", filename) 6179 } 6180 6181 var s string 6182 if v, ok := progToValue[p]; ok { 6183 s = v.String() 6184 } else if b, ok := progToBlock[p]; ok { 6185 s = b.String() 6186 } else { 6187 s = " " // most value and branch strings are 2-3 characters long 6188 } 6189 f.Logf(" %-6s\t%.5d (%s)\t%s\n", s, p.Pc, p.InnermostLineNumber(), p.InstructionString()) 6190 } 6191 } 6192 if f.HTMLWriter != nil { // spew to ssa.html 6193 var buf bytes.Buffer 6194 buf.WriteString("<code>") 6195 buf.WriteString("<dl class=\"ssa-gen\">") 6196 filename := "" 6197 for p := pp.Text; p != nil; p = p.Link { 6198 // Don't spam every line with the file name, which is often huge. 6199 // Only print changes, and "unknown" is not a change. 6200 if p.Pos.IsKnown() && p.InnermostFilename() != filename { 6201 filename = p.InnermostFilename() 6202 buf.WriteString("<dt class=\"ssa-prog-src\"></dt><dd class=\"ssa-prog\">") 6203 buf.WriteString(html.EscapeString("# " + filename)) 6204 buf.WriteString("</dd>") 6205 } 6206 6207 buf.WriteString("<dt class=\"ssa-prog-src\">") 6208 if v, ok := progToValue[p]; ok { 6209 buf.WriteString(v.HTML()) 6210 } else if b, ok := progToBlock[p]; ok { 6211 buf.WriteString("<b>" + b.HTML() + "</b>") 6212 } 6213 buf.WriteString("</dt>") 6214 buf.WriteString("<dd class=\"ssa-prog\">") 6215 buf.WriteString(fmt.Sprintf("%.5d <span class=\"l%v line-number\">(%s)</span> %s", p.Pc, p.InnermostLineNumber(), p.InnermostLineNumberHTML(), html.EscapeString(p.InstructionString()))) 6216 buf.WriteString("</dd>") 6217 } 6218 buf.WriteString("</dl>") 6219 buf.WriteString("</code>") 6220 f.HTMLWriter.WriteColumn("genssa", "genssa", "ssa-prog", buf.String()) 6221 } 6222 6223 defframe(&s, e) 6224 6225 f.HTMLWriter.Close() 6226 f.HTMLWriter = nil 6227 } 6228 6229 func defframe(s *SSAGenState, e *ssafn) { 6230 pp := s.pp 6231 6232 frame := Rnd(s.maxarg+e.stksize, int64(Widthreg)) 6233 if thearch.PadFrame != nil { 6234 frame = thearch.PadFrame(frame) 6235 } 6236 6237 // Fill in argument and frame size. 6238 pp.Text.To.Type = obj.TYPE_TEXTSIZE 6239 pp.Text.To.Val = int32(Rnd(e.curfn.Type.ArgWidth(), int64(Widthreg))) 6240 pp.Text.To.Offset = frame 6241 6242 // Insert code to zero ambiguously live variables so that the 6243 // garbage collector only sees initialized values when it 6244 // looks for pointers. 6245 p := pp.Text 6246 var lo, hi int64 6247 6248 // Opaque state for backend to use. Current backends use it to 6249 // keep track of which helper registers have been zeroed. 6250 var state uint32 6251 6252 // Iterate through declarations. They are sorted in decreasing Xoffset order. 6253 for _, n := range e.curfn.Func.Dcl { 6254 if !n.Name.Needzero() { 6255 continue 6256 } 6257 if n.Class() != PAUTO { 6258 e.Fatalf(n.Pos, "needzero class %d", n.Class()) 6259 } 6260 if n.Type.Size()%int64(Widthptr) != 0 || n.Xoffset%int64(Widthptr) != 0 || n.Type.Size() == 0 { 6261 e.Fatalf(n.Pos, "var %L has size %d offset %d", n, n.Type.Size(), n.Xoffset) 6262 } 6263 6264 if lo != hi && n.Xoffset+n.Type.Size() >= lo-int64(2*Widthreg) { 6265 // Merge with range we already have. 6266 lo = n.Xoffset 6267 continue 6268 } 6269 6270 // Zero old range 6271 p = thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state) 6272 6273 // Set new range. 6274 lo = n.Xoffset 6275 hi = lo + n.Type.Size() 6276 } 6277 6278 // Zero final range. 6279 thearch.ZeroRange(pp, p, frame+lo, hi-lo, &state) 6280 } 6281 6282 type FloatingEQNEJump struct { 6283 Jump obj.As 6284 Index int 6285 } 6286 6287 func (s *SSAGenState) oneFPJump(b *ssa.Block, jumps *FloatingEQNEJump) { 6288 p := s.Prog(jumps.Jump) 6289 p.To.Type = obj.TYPE_BRANCH 6290 p.Pos = b.Pos 6291 to := jumps.Index 6292 s.Branches = append(s.Branches, Branch{p, b.Succs[to].Block()}) 6293 } 6294 6295 func (s *SSAGenState) FPJump(b, next *ssa.Block, jumps *[2][2]FloatingEQNEJump) { 6296 switch next { 6297 case b.Succs[0].Block(): 6298 s.oneFPJump(b, &jumps[0][0]) 6299 s.oneFPJump(b, &jumps[0][1]) 6300 case b.Succs[1].Block(): 6301 s.oneFPJump(b, &jumps[1][0]) 6302 s.oneFPJump(b, &jumps[1][1]) 6303 default: 6304 s.oneFPJump(b, &jumps[1][0]) 6305 s.oneFPJump(b, &jumps[1][1]) 6306 q := s.Prog(obj.AJMP) 6307 q.Pos = b.Pos 6308 q.To.Type = obj.TYPE_BRANCH 6309 s.Branches = append(s.Branches, Branch{q, b.Succs[1].Block()}) 6310 } 6311 } 6312 6313 func AuxOffset(v *ssa.Value) (offset int64) { 6314 if v.Aux == nil { 6315 return 0 6316 } 6317 n, ok := v.Aux.(*Node) 6318 if !ok { 6319 v.Fatalf("bad aux type in %s\n", v.LongString()) 6320 } 6321 if n.Class() == PAUTO { 6322 return n.Xoffset 6323 } 6324 return 0 6325 } 6326 6327 // AddAux adds the offset in the aux fields (AuxInt and Aux) of v to a. 6328 func AddAux(a *obj.Addr, v *ssa.Value) { 6329 AddAux2(a, v, v.AuxInt) 6330 } 6331 func AddAux2(a *obj.Addr, v *ssa.Value, offset int64) { 6332 if a.Type != obj.TYPE_MEM && a.Type != obj.TYPE_ADDR { 6333 v.Fatalf("bad AddAux addr %v", a) 6334 } 6335 // add integer offset 6336 a.Offset += offset 6337 6338 // If no additional symbol offset, we're done. 6339 if v.Aux == nil { 6340 return 6341 } 6342 // Add symbol's offset from its base register. 6343 switch n := v.Aux.(type) { 6344 case *obj.LSym: 6345 a.Name = obj.NAME_EXTERN 6346 a.Sym = n 6347 case *Node: 6348 if n.Class() == PPARAM || n.Class() == PPARAMOUT { 6349 a.Name = obj.NAME_PARAM 6350 a.Sym = n.Orig.Sym.Linksym() 6351 a.Offset += n.Xoffset 6352 break 6353 } 6354 a.Name = obj.NAME_AUTO 6355 a.Sym = n.Sym.Linksym() 6356 a.Offset += n.Xoffset 6357 default: 6358 v.Fatalf("aux in %s not implemented %#v", v, v.Aux) 6359 } 6360 } 6361 6362 // extendIndex extends v to a full int width. 6363 // panic with the given kind if v does not fit in an int (only on 32-bit archs). 6364 func (s *state) extendIndex(idx, len *ssa.Value, kind ssa.BoundsKind, bounded bool) *ssa.Value { 6365 size := idx.Type.Size() 6366 if size == s.config.PtrSize { 6367 return idx 6368 } 6369 if size > s.config.PtrSize { 6370 // truncate 64-bit indexes on 32-bit pointer archs. Test the 6371 // high word and branch to out-of-bounds failure if it is not 0. 6372 var lo *ssa.Value 6373 if idx.Type.IsSigned() { 6374 lo = s.newValue1(ssa.OpInt64Lo, types.Types[TINT], idx) 6375 } else { 6376 lo = s.newValue1(ssa.OpInt64Lo, types.Types[TUINT], idx) 6377 } 6378 if bounded || Debug['B'] != 0 { 6379 return lo 6380 } 6381 bNext := s.f.NewBlock(ssa.BlockPlain) 6382 bPanic := s.f.NewBlock(ssa.BlockExit) 6383 hi := s.newValue1(ssa.OpInt64Hi, types.Types[TUINT32], idx) 6384 cmp := s.newValue2(ssa.OpEq32, types.Types[TBOOL], hi, s.constInt32(types.Types[TUINT32], 0)) 6385 if !idx.Type.IsSigned() { 6386 switch kind { 6387 case ssa.BoundsIndex: 6388 kind = ssa.BoundsIndexU 6389 case ssa.BoundsSliceAlen: 6390 kind = ssa.BoundsSliceAlenU 6391 case ssa.BoundsSliceAcap: 6392 kind = ssa.BoundsSliceAcapU 6393 case ssa.BoundsSliceB: 6394 kind = ssa.BoundsSliceBU 6395 case ssa.BoundsSlice3Alen: 6396 kind = ssa.BoundsSlice3AlenU 6397 case ssa.BoundsSlice3Acap: 6398 kind = ssa.BoundsSlice3AcapU 6399 case ssa.BoundsSlice3B: 6400 kind = ssa.BoundsSlice3BU 6401 case ssa.BoundsSlice3C: 6402 kind = ssa.BoundsSlice3CU 6403 } 6404 } 6405 b := s.endBlock() 6406 b.Kind = ssa.BlockIf 6407 b.SetControl(cmp) 6408 b.Likely = ssa.BranchLikely 6409 b.AddEdgeTo(bNext) 6410 b.AddEdgeTo(bPanic) 6411 6412 s.startBlock(bPanic) 6413 mem := s.newValue4I(ssa.OpPanicExtend, types.TypeMem, int64(kind), hi, lo, len, s.mem()) 6414 s.endBlock().SetControl(mem) 6415 s.startBlock(bNext) 6416 6417 return lo 6418 } 6419 6420 // Extend value to the required size 6421 var op ssa.Op 6422 if idx.Type.IsSigned() { 6423 switch 10*size + s.config.PtrSize { 6424 case 14: 6425 op = ssa.OpSignExt8to32 6426 case 18: 6427 op = ssa.OpSignExt8to64 6428 case 24: 6429 op = ssa.OpSignExt16to32 6430 case 28: 6431 op = ssa.OpSignExt16to64 6432 case 48: 6433 op = ssa.OpSignExt32to64 6434 default: 6435 s.Fatalf("bad signed index extension %s", idx.Type) 6436 } 6437 } else { 6438 switch 10*size + s.config.PtrSize { 6439 case 14: 6440 op = ssa.OpZeroExt8to32 6441 case 18: 6442 op = ssa.OpZeroExt8to64 6443 case 24: 6444 op = ssa.OpZeroExt16to32 6445 case 28: 6446 op = ssa.OpZeroExt16to64 6447 case 48: 6448 op = ssa.OpZeroExt32to64 6449 default: 6450 s.Fatalf("bad unsigned index extension %s", idx.Type) 6451 } 6452 } 6453 return s.newValue1(op, types.Types[TINT], idx) 6454 } 6455 6456 // CheckLoweredPhi checks that regalloc and stackalloc correctly handled phi values. 6457 // Called during ssaGenValue. 6458 func CheckLoweredPhi(v *ssa.Value) { 6459 if v.Op != ssa.OpPhi { 6460 v.Fatalf("CheckLoweredPhi called with non-phi value: %v", v.LongString()) 6461 } 6462 if v.Type.IsMemory() { 6463 return 6464 } 6465 f := v.Block.Func 6466 loc := f.RegAlloc[v.ID] 6467 for _, a := range v.Args { 6468 if aloc := f.RegAlloc[a.ID]; aloc != loc { // TODO: .Equal() instead? 6469 v.Fatalf("phi arg at different location than phi: %v @ %s, but arg %v @ %s\n%s\n", v, loc, a, aloc, v.Block.Func) 6470 } 6471 } 6472 } 6473 6474 // CheckLoweredGetClosurePtr checks that v is the first instruction in the function's entry block. 6475 // The output of LoweredGetClosurePtr is generally hardwired to the correct register. 6476 // That register contains the closure pointer on closure entry. 6477 func CheckLoweredGetClosurePtr(v *ssa.Value) { 6478 entry := v.Block.Func.Entry 6479 if entry != v.Block || entry.Values[0] != v { 6480 Fatalf("in %s, badly placed LoweredGetClosurePtr: %v %v", v.Block.Func.Name, v.Block, v) 6481 } 6482 } 6483 6484 // AutoVar returns a *Node and int64 representing the auto variable and offset within it 6485 // where v should be spilled. 6486 func AutoVar(v *ssa.Value) (*Node, int64) { 6487 loc := v.Block.Func.RegAlloc[v.ID].(ssa.LocalSlot) 6488 if v.Type.Size() > loc.Type.Size() { 6489 v.Fatalf("spill/restore type %s doesn't fit in slot type %s", v.Type, loc.Type) 6490 } 6491 return loc.N.(*Node), loc.Off 6492 } 6493 6494 func AddrAuto(a *obj.Addr, v *ssa.Value) { 6495 n, off := AutoVar(v) 6496 a.Type = obj.TYPE_MEM 6497 a.Sym = n.Sym.Linksym() 6498 a.Reg = int16(thearch.REGSP) 6499 a.Offset = n.Xoffset + off 6500 if n.Class() == PPARAM || n.Class() == PPARAMOUT { 6501 a.Name = obj.NAME_PARAM 6502 } else { 6503 a.Name = obj.NAME_AUTO 6504 } 6505 } 6506 6507 func (s *SSAGenState) AddrScratch(a *obj.Addr) { 6508 if s.ScratchFpMem == nil { 6509 panic("no scratch memory available; forgot to declare usesScratch for Op?") 6510 } 6511 a.Type = obj.TYPE_MEM 6512 a.Name = obj.NAME_AUTO 6513 a.Sym = s.ScratchFpMem.Sym.Linksym() 6514 a.Reg = int16(thearch.REGSP) 6515 a.Offset = s.ScratchFpMem.Xoffset 6516 } 6517 6518 // Call returns a new CALL instruction for the SSA value v. 6519 // It uses PrepareCall to prepare the call. 6520 func (s *SSAGenState) Call(v *ssa.Value) *obj.Prog { 6521 pPosIsStmt := s.pp.pos.IsStmt() // The statement-ness fo the call comes from ssaGenState 6522 s.PrepareCall(v) 6523 6524 p := s.Prog(obj.ACALL) 6525 if pPosIsStmt == src.PosIsStmt { 6526 p.Pos = v.Pos.WithIsStmt() 6527 } else { 6528 p.Pos = v.Pos.WithNotStmt() 6529 } 6530 if sym, ok := v.Aux.(*obj.LSym); ok { 6531 p.To.Type = obj.TYPE_MEM 6532 p.To.Name = obj.NAME_EXTERN 6533 p.To.Sym = sym 6534 } else { 6535 // TODO(mdempsky): Can these differences be eliminated? 6536 switch thearch.LinkArch.Family { 6537 case sys.AMD64, sys.I386, sys.PPC64, sys.RISCV64, sys.S390X, sys.Wasm: 6538 p.To.Type = obj.TYPE_REG 6539 case sys.ARM, sys.ARM64, sys.MIPS, sys.MIPS64: 6540 p.To.Type = obj.TYPE_MEM 6541 default: 6542 Fatalf("unknown indirect call family") 6543 } 6544 p.To.Reg = v.Args[0].Reg() 6545 } 6546 return p 6547 } 6548 6549 // PrepareCall prepares to emit a CALL instruction for v and does call-related bookkeeping. 6550 // It must be called immediately before emitting the actual CALL instruction, 6551 // since it emits PCDATA for the stack map at the call (calls are safe points). 6552 func (s *SSAGenState) PrepareCall(v *ssa.Value) { 6553 idx := s.livenessMap.Get(v) 6554 if !idx.Valid() { 6555 // typedmemclr and typedmemmove are write barriers and 6556 // deeply non-preemptible. They are unsafe points and 6557 // hence should not have liveness maps. 6558 if sym, _ := v.Aux.(*obj.LSym); !(sym == typedmemclr || sym == typedmemmove) { 6559 Fatalf("missing stack map index for %v", v.LongString()) 6560 } 6561 } 6562 6563 if sym, _ := v.Aux.(*obj.LSym); sym == Deferreturn { 6564 // Deferred calls will appear to be returning to 6565 // the CALL deferreturn(SB) that we are about to emit. 6566 // However, the stack trace code will show the line 6567 // of the instruction byte before the return PC. 6568 // To avoid that being an unrelated instruction, 6569 // insert an actual hardware NOP that will have the right line number. 6570 // This is different from obj.ANOP, which is a virtual no-op 6571 // that doesn't make it into the instruction stream. 6572 thearch.Ginsnopdefer(s.pp) 6573 } 6574 6575 if sym, ok := v.Aux.(*obj.LSym); ok { 6576 // Record call graph information for nowritebarrierrec 6577 // analysis. 6578 if nowritebarrierrecCheck != nil { 6579 nowritebarrierrecCheck.recordCall(s.pp.curfn, sym, v.Pos) 6580 } 6581 } 6582 6583 if s.maxarg < v.AuxInt { 6584 s.maxarg = v.AuxInt 6585 } 6586 } 6587 6588 // UseArgs records the fact that an instruction needs a certain amount of 6589 // callee args space for its use. 6590 func (s *SSAGenState) UseArgs(n int64) { 6591 if s.maxarg < n { 6592 s.maxarg = n 6593 } 6594 } 6595 6596 // fieldIdx finds the index of the field referred to by the ODOT node n. 6597 func fieldIdx(n *Node) int { 6598 t := n.Left.Type 6599 f := n.Sym 6600 if !t.IsStruct() { 6601 panic("ODOT's LHS is not a struct") 6602 } 6603 6604 var i int 6605 for _, t1 := range t.Fields().Slice() { 6606 if t1.Sym != f { 6607 i++ 6608 continue 6609 } 6610 if t1.Offset != n.Xoffset { 6611 panic("field offset doesn't match") 6612 } 6613 return i 6614 } 6615 panic(fmt.Sprintf("can't find field in expr %v\n", n)) 6616 6617 // TODO: keep the result of this function somewhere in the ODOT Node 6618 // so we don't have to recompute it each time we need it. 6619 } 6620 6621 // ssafn holds frontend information about a function that the backend is processing. 6622 // It also exports a bunch of compiler services for the ssa backend. 6623 type ssafn struct { 6624 curfn *Node 6625 strings map[string]interface{} // map from constant string to data symbols 6626 scratchFpMem *Node // temp for floating point register / memory moves on some architectures 6627 stksize int64 // stack size for current frame 6628 stkptrsize int64 // prefix of stack containing pointers 6629 log bool // print ssa debug to the stdout 6630 } 6631 6632 // StringData returns a symbol (a *types.Sym wrapped in an interface) which 6633 // is the data component of a global string constant containing s. 6634 func (e *ssafn) StringData(s string) interface{} { 6635 if aux, ok := e.strings[s]; ok { 6636 return aux 6637 } 6638 if e.strings == nil { 6639 e.strings = make(map[string]interface{}) 6640 } 6641 data := stringsym(e.curfn.Pos, s) 6642 e.strings[s] = data 6643 return data 6644 } 6645 6646 func (e *ssafn) Auto(pos src.XPos, t *types.Type) ssa.GCNode { 6647 n := tempAt(pos, e.curfn, t) // Note: adds new auto to e.curfn.Func.Dcl list 6648 return n 6649 } 6650 6651 func (e *ssafn) SplitString(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 6652 n := name.N.(*Node) 6653 ptrType := types.NewPtr(types.Types[TUINT8]) 6654 lenType := types.Types[TINT] 6655 if n.Class() == PAUTO && !n.Name.Addrtaken() { 6656 // Split this string up into two separate variables. 6657 p := e.splitSlot(&name, ".ptr", 0, ptrType) 6658 l := e.splitSlot(&name, ".len", ptrType.Size(), lenType) 6659 return p, l 6660 } 6661 // Return the two parts of the larger variable. 6662 return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)} 6663 } 6664 6665 func (e *ssafn) SplitInterface(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 6666 n := name.N.(*Node) 6667 u := types.Types[TUINTPTR] 6668 t := types.NewPtr(types.Types[TUINT8]) 6669 if n.Class() == PAUTO && !n.Name.Addrtaken() { 6670 // Split this interface up into two separate variables. 6671 f := ".itab" 6672 if n.Type.IsEmptyInterface() { 6673 f = ".type" 6674 } 6675 c := e.splitSlot(&name, f, 0, u) // see comment in plive.go:onebitwalktype1. 6676 d := e.splitSlot(&name, ".data", u.Size(), t) 6677 return c, d 6678 } 6679 // Return the two parts of the larger variable. 6680 return ssa.LocalSlot{N: n, Type: u, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + int64(Widthptr)} 6681 } 6682 6683 func (e *ssafn) SplitSlice(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot, ssa.LocalSlot) { 6684 n := name.N.(*Node) 6685 ptrType := types.NewPtr(name.Type.Elem()) 6686 lenType := types.Types[TINT] 6687 if n.Class() == PAUTO && !n.Name.Addrtaken() { 6688 // Split this slice up into three separate variables. 6689 p := e.splitSlot(&name, ".ptr", 0, ptrType) 6690 l := e.splitSlot(&name, ".len", ptrType.Size(), lenType) 6691 c := e.splitSlot(&name, ".cap", ptrType.Size()+lenType.Size(), lenType) 6692 return p, l, c 6693 } 6694 // Return the three parts of the larger variable. 6695 return ssa.LocalSlot{N: n, Type: ptrType, Off: name.Off}, 6696 ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(Widthptr)}, 6697 ssa.LocalSlot{N: n, Type: lenType, Off: name.Off + int64(2*Widthptr)} 6698 } 6699 6700 func (e *ssafn) SplitComplex(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 6701 n := name.N.(*Node) 6702 s := name.Type.Size() / 2 6703 var t *types.Type 6704 if s == 8 { 6705 t = types.Types[TFLOAT64] 6706 } else { 6707 t = types.Types[TFLOAT32] 6708 } 6709 if n.Class() == PAUTO && !n.Name.Addrtaken() { 6710 // Split this complex up into two separate variables. 6711 r := e.splitSlot(&name, ".real", 0, t) 6712 i := e.splitSlot(&name, ".imag", t.Size(), t) 6713 return r, i 6714 } 6715 // Return the two parts of the larger variable. 6716 return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: t, Off: name.Off + s} 6717 } 6718 6719 func (e *ssafn) SplitInt64(name ssa.LocalSlot) (ssa.LocalSlot, ssa.LocalSlot) { 6720 n := name.N.(*Node) 6721 var t *types.Type 6722 if name.Type.IsSigned() { 6723 t = types.Types[TINT32] 6724 } else { 6725 t = types.Types[TUINT32] 6726 } 6727 if n.Class() == PAUTO && !n.Name.Addrtaken() { 6728 // Split this int64 up into two separate variables. 6729 if thearch.LinkArch.ByteOrder == binary.BigEndian { 6730 return e.splitSlot(&name, ".hi", 0, t), e.splitSlot(&name, ".lo", t.Size(), types.Types[TUINT32]) 6731 } 6732 return e.splitSlot(&name, ".hi", t.Size(), t), e.splitSlot(&name, ".lo", 0, types.Types[TUINT32]) 6733 } 6734 // Return the two parts of the larger variable. 6735 if thearch.LinkArch.ByteOrder == binary.BigEndian { 6736 return ssa.LocalSlot{N: n, Type: t, Off: name.Off}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off + 4} 6737 } 6738 return ssa.LocalSlot{N: n, Type: t, Off: name.Off + 4}, ssa.LocalSlot{N: n, Type: types.Types[TUINT32], Off: name.Off} 6739 } 6740 6741 func (e *ssafn) SplitStruct(name ssa.LocalSlot, i int) ssa.LocalSlot { 6742 n := name.N.(*Node) 6743 st := name.Type 6744 ft := st.FieldType(i) 6745 var offset int64 6746 for f := 0; f < i; f++ { 6747 offset += st.FieldType(f).Size() 6748 } 6749 if n.Class() == PAUTO && !n.Name.Addrtaken() { 6750 // Note: the _ field may appear several times. But 6751 // have no fear, identically-named but distinct Autos are 6752 // ok, albeit maybe confusing for a debugger. 6753 return e.splitSlot(&name, "."+st.FieldName(i), offset, ft) 6754 } 6755 return ssa.LocalSlot{N: n, Type: ft, Off: name.Off + st.FieldOff(i)} 6756 } 6757 6758 func (e *ssafn) SplitArray(name ssa.LocalSlot) ssa.LocalSlot { 6759 n := name.N.(*Node) 6760 at := name.Type 6761 if at.NumElem() != 1 { 6762 e.Fatalf(n.Pos, "bad array size") 6763 } 6764 et := at.Elem() 6765 if n.Class() == PAUTO && !n.Name.Addrtaken() { 6766 return e.splitSlot(&name, "[0]", 0, et) 6767 } 6768 return ssa.LocalSlot{N: n, Type: et, Off: name.Off} 6769 } 6770 6771 func (e *ssafn) DerefItab(it *obj.LSym, offset int64) *obj.LSym { 6772 return itabsym(it, offset) 6773 } 6774 6775 // splitSlot returns a slot representing the data of parent starting at offset. 6776 func (e *ssafn) splitSlot(parent *ssa.LocalSlot, suffix string, offset int64, t *types.Type) ssa.LocalSlot { 6777 s := &types.Sym{Name: parent.N.(*Node).Sym.Name + suffix, Pkg: localpkg} 6778 6779 n := &Node{ 6780 Name: new(Name), 6781 Op: ONAME, 6782 Pos: parent.N.(*Node).Pos, 6783 } 6784 n.Orig = n 6785 6786 s.Def = asTypesNode(n) 6787 asNode(s.Def).Name.SetUsed(true) 6788 n.Sym = s 6789 n.Type = t 6790 n.SetClass(PAUTO) 6791 n.Esc = EscNever 6792 n.Name.Curfn = e.curfn 6793 e.curfn.Func.Dcl = append(e.curfn.Func.Dcl, n) 6794 dowidth(t) 6795 return ssa.LocalSlot{N: n, Type: t, Off: 0, SplitOf: parent, SplitOffset: offset} 6796 } 6797 6798 func (e *ssafn) CanSSA(t *types.Type) bool { 6799 return canSSAType(t) 6800 } 6801 6802 func (e *ssafn) Line(pos src.XPos) string { 6803 return linestr(pos) 6804 } 6805 6806 // Log logs a message from the compiler. 6807 func (e *ssafn) Logf(msg string, args ...interface{}) { 6808 if e.log { 6809 fmt.Printf(msg, args...) 6810 } 6811 } 6812 6813 func (e *ssafn) Log() bool { 6814 return e.log 6815 } 6816 6817 // Fatal reports a compiler error and exits. 6818 func (e *ssafn) Fatalf(pos src.XPos, msg string, args ...interface{}) { 6819 lineno = pos 6820 nargs := append([]interface{}{e.curfn.funcname()}, args...) 6821 Fatalf("'%s': "+msg, nargs...) 6822 } 6823 6824 // Warnl reports a "warning", which is usually flag-triggered 6825 // logging output for the benefit of tests. 6826 func (e *ssafn) Warnl(pos src.XPos, fmt_ string, args ...interface{}) { 6827 Warnl(pos, fmt_, args...) 6828 } 6829 6830 func (e *ssafn) Debug_checknil() bool { 6831 return Debug_checknil != 0 6832 } 6833 6834 func (e *ssafn) UseWriteBarrier() bool { 6835 return use_writebarrier 6836 } 6837 6838 func (e *ssafn) Syslook(name string) *obj.LSym { 6839 switch name { 6840 case "goschedguarded": 6841 return goschedguarded 6842 case "writeBarrier": 6843 return writeBarrier 6844 case "gcWriteBarrier": 6845 return gcWriteBarrier 6846 case "typedmemmove": 6847 return typedmemmove 6848 case "typedmemclr": 6849 return typedmemclr 6850 } 6851 e.Fatalf(src.NoXPos, "unknown Syslook func %v", name) 6852 return nil 6853 } 6854 6855 func (e *ssafn) SetWBPos(pos src.XPos) { 6856 e.curfn.Func.setWBPos(pos) 6857 } 6858 6859 func (n *Node) Typ() *types.Type { 6860 return n.Type 6861 } 6862 func (n *Node) StorageClass() ssa.StorageClass { 6863 switch n.Class() { 6864 case PPARAM: 6865 return ssa.ClassParam 6866 case PPARAMOUT: 6867 return ssa.ClassParamOut 6868 case PAUTO: 6869 return ssa.ClassAuto 6870 default: 6871 Fatalf("untranslatable storage class for %v: %s", n, n.Class()) 6872 return 0 6873 } 6874 } 6875 6876 func clobberBase(n *Node) *Node { 6877 if n.Op == ODOT && n.Left.Type.NumFields() == 1 { 6878 return clobberBase(n.Left) 6879 } 6880 if n.Op == OINDEX && n.Left.Type.IsArray() && n.Left.Type.NumElem() == 1 { 6881 return clobberBase(n.Left) 6882 } 6883 return n 6884 }