github.com/gagliardetto/golang-go@v0.0.0-20201020153340-53909ea70814/cmd/compile/internal/gc/syntax.go (about) 1 // Copyright 2009 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // “Abstract” syntax representation. 6 7 package gc 8 9 import ( 10 "github.com/gagliardetto/golang-go/cmd/compile/internal/ssa" 11 "github.com/gagliardetto/golang-go/cmd/compile/internal/syntax" 12 "github.com/gagliardetto/golang-go/cmd/compile/internal/types" 13 "github.com/gagliardetto/golang-go/cmd/internal/obj" 14 "github.com/gagliardetto/golang-go/cmd/internal/src" 15 "sort" 16 ) 17 18 // A Node is a single node in the syntax tree. 19 // Actually the syntax tree is a syntax DAG, because there is only one 20 // node with Op=ONAME for a given instance of a variable x. 21 // The same is true for Op=OTYPE and Op=OLITERAL. See Node.mayBeShared. 22 type Node struct { 23 // Tree structure. 24 // Generic recursive walks should follow these fields. 25 Left *Node 26 Right *Node 27 Ninit Nodes 28 Nbody Nodes 29 List Nodes 30 Rlist Nodes 31 32 // most nodes 33 Type *types.Type 34 Orig *Node // original form, for printing, and tracking copies of ONAMEs 35 36 // func 37 Func *Func 38 39 // ONAME, OTYPE, OPACK, OLABEL, some OLITERAL 40 Name *Name 41 42 Sym *types.Sym // various 43 E interface{} // Opt or Val, see methods below 44 45 // Various. Usually an offset into a struct. For example: 46 // - ONAME nodes that refer to local variables use it to identify their stack frame position. 47 // - ODOT, ODOTPTR, and ORESULT use it to indicate offset relative to their base address. 48 // - OSTRUCTKEY uses it to store the named field's offset. 49 // - Named OLITERALs use it to store their ambient iota value. 50 // - OINLMARK stores an index into the inlTree data structure. 51 // - OCLOSURE uses it to store ambient iota value, if any. 52 // Possibly still more uses. If you find any, document them. 53 Xoffset int64 54 55 Pos src.XPos 56 57 flags bitset32 58 59 Esc uint16 // EscXXX 60 61 Op Op 62 aux uint8 63 } 64 65 func (n *Node) ResetAux() { 66 n.aux = 0 67 } 68 69 func (n *Node) SubOp() Op { 70 switch n.Op { 71 case OASOP, ONAME: 72 default: 73 Fatalf("unexpected op: %v", n.Op) 74 } 75 return Op(n.aux) 76 } 77 78 func (n *Node) SetSubOp(op Op) { 79 switch n.Op { 80 case OASOP, ONAME: 81 default: 82 Fatalf("unexpected op: %v", n.Op) 83 } 84 n.aux = uint8(op) 85 } 86 87 func (n *Node) IndexMapLValue() bool { 88 if n.Op != OINDEXMAP { 89 Fatalf("unexpected op: %v", n.Op) 90 } 91 return n.aux != 0 92 } 93 94 func (n *Node) SetIndexMapLValue(b bool) { 95 if n.Op != OINDEXMAP { 96 Fatalf("unexpected op: %v", n.Op) 97 } 98 if b { 99 n.aux = 1 100 } else { 101 n.aux = 0 102 } 103 } 104 105 func (n *Node) TChanDir() types.ChanDir { 106 if n.Op != OTCHAN { 107 Fatalf("unexpected op: %v", n.Op) 108 } 109 return types.ChanDir(n.aux) 110 } 111 112 func (n *Node) SetTChanDir(dir types.ChanDir) { 113 if n.Op != OTCHAN { 114 Fatalf("unexpected op: %v", n.Op) 115 } 116 n.aux = uint8(dir) 117 } 118 119 func (n *Node) IsSynthetic() bool { 120 name := n.Sym.Name 121 return name[0] == '.' || name[0] == '~' 122 } 123 124 // IsAutoTmp indicates if n was created by the compiler as a temporary, 125 // based on the setting of the .AutoTemp flag in n's Name. 126 func (n *Node) IsAutoTmp() bool { 127 if n == nil || n.Op != ONAME { 128 return false 129 } 130 return n.Name.AutoTemp() 131 } 132 133 const ( 134 nodeClass, _ = iota, 1 << iota // PPARAM, PAUTO, PEXTERN, etc; three bits; first in the list because frequently accessed 135 _, _ // second nodeClass bit 136 _, _ // third nodeClass bit 137 nodeWalkdef, _ // tracks state during typecheckdef; 2 == loop detected; two bits 138 _, _ // second nodeWalkdef bit 139 nodeTypecheck, _ // tracks state during typechecking; 2 == loop detected; two bits 140 _, _ // second nodeTypecheck bit 141 nodeInitorder, _ // tracks state during init1; two bits 142 _, _ // second nodeInitorder bit 143 _, nodeHasBreak 144 _, nodeNoInline // used internally by inliner to indicate that a function call should not be inlined; set for OCALLFUNC and OCALLMETH only 145 _, nodeImplicit 146 _, nodeIsDDD // is the argument variadic 147 _, nodeDiag // already printed error about this 148 _, nodeColas // OAS resulting from := 149 _, nodeNonNil // guaranteed to be non-nil 150 _, nodeTransient // storage can be reused immediately after this statement 151 _, nodeBounded // bounds check unnecessary 152 _, nodeHasCall // expression contains a function call 153 _, nodeLikely // if statement condition likely 154 _, nodeHasVal // node.E contains a Val 155 _, nodeHasOpt // node.E contains an Opt 156 _, nodeEmbedded // ODCLFIELD embedded type 157 ) 158 159 func (n *Node) Class() Class { return Class(n.flags.get3(nodeClass)) } 160 func (n *Node) Walkdef() uint8 { return n.flags.get2(nodeWalkdef) } 161 func (n *Node) Typecheck() uint8 { return n.flags.get2(nodeTypecheck) } 162 func (n *Node) Initorder() uint8 { return n.flags.get2(nodeInitorder) } 163 164 func (n *Node) HasBreak() bool { return n.flags&nodeHasBreak != 0 } 165 func (n *Node) NoInline() bool { return n.flags&nodeNoInline != 0 } 166 func (n *Node) Implicit() bool { return n.flags&nodeImplicit != 0 } 167 func (n *Node) IsDDD() bool { return n.flags&nodeIsDDD != 0 } 168 func (n *Node) Diag() bool { return n.flags&nodeDiag != 0 } 169 func (n *Node) Colas() bool { return n.flags&nodeColas != 0 } 170 func (n *Node) NonNil() bool { return n.flags&nodeNonNil != 0 } 171 func (n *Node) Transient() bool { return n.flags&nodeTransient != 0 } 172 func (n *Node) Bounded() bool { return n.flags&nodeBounded != 0 } 173 func (n *Node) HasCall() bool { return n.flags&nodeHasCall != 0 } 174 func (n *Node) Likely() bool { return n.flags&nodeLikely != 0 } 175 func (n *Node) HasVal() bool { return n.flags&nodeHasVal != 0 } 176 func (n *Node) HasOpt() bool { return n.flags&nodeHasOpt != 0 } 177 func (n *Node) Embedded() bool { return n.flags&nodeEmbedded != 0 } 178 179 func (n *Node) SetClass(b Class) { n.flags.set3(nodeClass, uint8(b)) } 180 func (n *Node) SetWalkdef(b uint8) { n.flags.set2(nodeWalkdef, b) } 181 func (n *Node) SetTypecheck(b uint8) { n.flags.set2(nodeTypecheck, b) } 182 func (n *Node) SetInitorder(b uint8) { n.flags.set2(nodeInitorder, b) } 183 184 func (n *Node) SetHasBreak(b bool) { n.flags.set(nodeHasBreak, b) } 185 func (n *Node) SetNoInline(b bool) { n.flags.set(nodeNoInline, b) } 186 func (n *Node) SetImplicit(b bool) { n.flags.set(nodeImplicit, b) } 187 func (n *Node) SetIsDDD(b bool) { n.flags.set(nodeIsDDD, b) } 188 func (n *Node) SetDiag(b bool) { n.flags.set(nodeDiag, b) } 189 func (n *Node) SetColas(b bool) { n.flags.set(nodeColas, b) } 190 func (n *Node) SetNonNil(b bool) { n.flags.set(nodeNonNil, b) } 191 func (n *Node) SetTransient(b bool) { n.flags.set(nodeTransient, b) } 192 func (n *Node) SetBounded(b bool) { n.flags.set(nodeBounded, b) } 193 func (n *Node) SetHasCall(b bool) { n.flags.set(nodeHasCall, b) } 194 func (n *Node) SetLikely(b bool) { n.flags.set(nodeLikely, b) } 195 func (n *Node) SetHasVal(b bool) { n.flags.set(nodeHasVal, b) } 196 func (n *Node) SetHasOpt(b bool) { n.flags.set(nodeHasOpt, b) } 197 func (n *Node) SetEmbedded(b bool) { n.flags.set(nodeEmbedded, b) } 198 199 // Val returns the Val for the node. 200 func (n *Node) Val() Val { 201 if !n.HasVal() { 202 return Val{} 203 } 204 return Val{n.E} 205 } 206 207 // SetVal sets the Val for the node, which must not have been used with SetOpt. 208 func (n *Node) SetVal(v Val) { 209 if n.HasOpt() { 210 Debug['h'] = 1 211 Dump("have Opt", n) 212 Fatalf("have Opt") 213 } 214 n.SetHasVal(true) 215 n.E = v.U 216 } 217 218 // Opt returns the optimizer data for the node. 219 func (n *Node) Opt() interface{} { 220 if !n.HasOpt() { 221 return nil 222 } 223 return n.E 224 } 225 226 // SetOpt sets the optimizer data for the node, which must not have been used with SetVal. 227 // SetOpt(nil) is ignored for Vals to simplify call sites that are clearing Opts. 228 func (n *Node) SetOpt(x interface{}) { 229 if x == nil && n.HasVal() { 230 return 231 } 232 if n.HasVal() { 233 Debug['h'] = 1 234 Dump("have Val", n) 235 Fatalf("have Val") 236 } 237 n.SetHasOpt(true) 238 n.E = x 239 } 240 241 func (n *Node) Iota() int64 { 242 return n.Xoffset 243 } 244 245 func (n *Node) SetIota(x int64) { 246 n.Xoffset = x 247 } 248 249 // mayBeShared reports whether n may occur in multiple places in the AST. 250 // Extra care must be taken when mutating such a node. 251 func (n *Node) mayBeShared() bool { 252 switch n.Op { 253 case ONAME, OLITERAL, OTYPE: 254 return true 255 } 256 return false 257 } 258 259 // isMethodExpression reports whether n represents a method expression T.M. 260 func (n *Node) isMethodExpression() bool { 261 return n.Op == ONAME && n.Left != nil && n.Left.Op == OTYPE && n.Right != nil && n.Right.Op == ONAME 262 } 263 264 // funcname returns the name (without the package) of the function n. 265 func (n *Node) funcname() string { 266 if n == nil || n.Func == nil || n.Func.Nname == nil { 267 return "<nil>" 268 } 269 return n.Func.Nname.Sym.Name 270 } 271 272 // pkgFuncName returns the name of the function referenced by n, with package prepended. 273 // This differs from the compiler's internal convention where local functions lack a package 274 // because the ultimate consumer of this is a human looking at an IDE; package is only empty 275 // if the compilation package is actually the empty string. 276 func (n *Node) pkgFuncName() string { 277 var s *types.Sym 278 if n == nil { 279 return "<nil>" 280 } 281 if n.Op == ONAME { 282 s = n.Sym 283 } else { 284 if n.Func == nil || n.Func.Nname == nil { 285 return "<nil>" 286 } 287 s = n.Func.Nname.Sym 288 } 289 pkg := s.Pkg 290 291 p := myimportpath 292 if pkg != nil && pkg.Path != "" { 293 p = pkg.Path 294 } 295 if p == "" { 296 return s.Name 297 } 298 return p + "." + s.Name 299 } 300 301 // Name holds Node fields used only by named nodes (ONAME, OTYPE, OPACK, OLABEL, some OLITERAL). 302 type Name struct { 303 Pack *Node // real package for import . names 304 Pkg *types.Pkg // pkg for OPACK nodes 305 Defn *Node // initializing assignment 306 Curfn *Node // function for local variables 307 Param *Param // additional fields for ONAME, OTYPE 308 Decldepth int32 // declaration loop depth, increased for every loop or label 309 Vargen int32 // unique name for ONAME within a function. Function outputs are numbered starting at one. 310 flags bitset16 311 } 312 313 const ( 314 nameCaptured = 1 << iota // is the variable captured by a closure 315 nameReadonly 316 nameByval // is the variable captured by value or by reference 317 nameNeedzero // if it contains pointers, needs to be zeroed on function entry 318 nameKeepalive // mark value live across unknown assembly call 319 nameAutoTemp // is the variable a temporary (implies no dwarf info. reset if escapes to heap) 320 nameUsed // for variable declared and not used error 321 nameIsClosureVar // PAUTOHEAP closure pseudo-variable; original at n.Name.Defn 322 nameIsOutputParamHeapAddr // pointer to a result parameter's heap copy 323 nameAssigned // is the variable ever assigned to 324 nameAddrtaken // address taken, even if not moved to heap 325 nameInlFormal // PAUTO created by inliner, derived from callee formal 326 nameInlLocal // PAUTO created by inliner, derived from callee local 327 nameOpenDeferSlot // if temporary var storing info for open-coded defers 328 nameLibfuzzerExtraCounter // if PEXTERN should be assigned to __libfuzzer_extra_counters section 329 ) 330 331 func (n *Name) Captured() bool { return n.flags&nameCaptured != 0 } 332 func (n *Name) Readonly() bool { return n.flags&nameReadonly != 0 } 333 func (n *Name) Byval() bool { return n.flags&nameByval != 0 } 334 func (n *Name) Needzero() bool { return n.flags&nameNeedzero != 0 } 335 func (n *Name) Keepalive() bool { return n.flags&nameKeepalive != 0 } 336 func (n *Name) AutoTemp() bool { return n.flags&nameAutoTemp != 0 } 337 func (n *Name) Used() bool { return n.flags&nameUsed != 0 } 338 func (n *Name) IsClosureVar() bool { return n.flags&nameIsClosureVar != 0 } 339 func (n *Name) IsOutputParamHeapAddr() bool { return n.flags&nameIsOutputParamHeapAddr != 0 } 340 func (n *Name) Assigned() bool { return n.flags&nameAssigned != 0 } 341 func (n *Name) Addrtaken() bool { return n.flags&nameAddrtaken != 0 } 342 func (n *Name) InlFormal() bool { return n.flags&nameInlFormal != 0 } 343 func (n *Name) InlLocal() bool { return n.flags&nameInlLocal != 0 } 344 func (n *Name) OpenDeferSlot() bool { return n.flags&nameOpenDeferSlot != 0 } 345 func (n *Name) LibfuzzerExtraCounter() bool { return n.flags&nameLibfuzzerExtraCounter != 0 } 346 347 func (n *Name) SetCaptured(b bool) { n.flags.set(nameCaptured, b) } 348 func (n *Name) SetReadonly(b bool) { n.flags.set(nameReadonly, b) } 349 func (n *Name) SetByval(b bool) { n.flags.set(nameByval, b) } 350 func (n *Name) SetNeedzero(b bool) { n.flags.set(nameNeedzero, b) } 351 func (n *Name) SetKeepalive(b bool) { n.flags.set(nameKeepalive, b) } 352 func (n *Name) SetAutoTemp(b bool) { n.flags.set(nameAutoTemp, b) } 353 func (n *Name) SetUsed(b bool) { n.flags.set(nameUsed, b) } 354 func (n *Name) SetIsClosureVar(b bool) { n.flags.set(nameIsClosureVar, b) } 355 func (n *Name) SetIsOutputParamHeapAddr(b bool) { n.flags.set(nameIsOutputParamHeapAddr, b) } 356 func (n *Name) SetAssigned(b bool) { n.flags.set(nameAssigned, b) } 357 func (n *Name) SetAddrtaken(b bool) { n.flags.set(nameAddrtaken, b) } 358 func (n *Name) SetInlFormal(b bool) { n.flags.set(nameInlFormal, b) } 359 func (n *Name) SetInlLocal(b bool) { n.flags.set(nameInlLocal, b) } 360 func (n *Name) SetOpenDeferSlot(b bool) { n.flags.set(nameOpenDeferSlot, b) } 361 func (n *Name) SetLibfuzzerExtraCounter(b bool) { n.flags.set(nameLibfuzzerExtraCounter, b) } 362 363 type Param struct { 364 Ntype *Node 365 Heapaddr *Node // temp holding heap address of param 366 367 // ONAME PAUTOHEAP 368 Stackcopy *Node // the PPARAM/PPARAMOUT on-stack slot (moved func params only) 369 370 // ONAME closure linkage 371 // Consider: 372 // 373 // func f() { 374 // x := 1 // x1 375 // func() { 376 // use(x) // x2 377 // func() { 378 // use(x) // x3 379 // --- parser is here --- 380 // }() 381 // }() 382 // } 383 // 384 // There is an original declaration of x and then a chain of mentions of x 385 // leading into the current function. Each time x is mentioned in a new closure, 386 // we create a variable representing x for use in that specific closure, 387 // since the way you get to x is different in each closure. 388 // 389 // Let's number the specific variables as shown in the code: 390 // x1 is the original x, x2 is when mentioned in the closure, 391 // and x3 is when mentioned in the closure in the closure. 392 // 393 // We keep these linked (assume N > 1): 394 // 395 // - x1.Defn = original declaration statement for x (like most variables) 396 // - x1.Innermost = current innermost closure x (in this case x3), or nil for none 397 // - x1.IsClosureVar() = false 398 // 399 // - xN.Defn = x1, N > 1 400 // - xN.IsClosureVar() = true, N > 1 401 // - x2.Outer = nil 402 // - xN.Outer = x(N-1), N > 2 403 // 404 // 405 // When we look up x in the symbol table, we always get x1. 406 // Then we can use x1.Innermost (if not nil) to get the x 407 // for the innermost known closure function, 408 // but the first reference in a closure will find either no x1.Innermost 409 // or an x1.Innermost with .Funcdepth < Funcdepth. 410 // In that case, a new xN must be created, linked in with: 411 // 412 // xN.Defn = x1 413 // xN.Outer = x1.Innermost 414 // x1.Innermost = xN 415 // 416 // When we finish the function, we'll process its closure variables 417 // and find xN and pop it off the list using: 418 // 419 // x1 := xN.Defn 420 // x1.Innermost = xN.Outer 421 // 422 // We leave xN.Innermost set so that we can still get to the original 423 // variable quickly. Not shown here, but once we're 424 // done parsing a function and no longer need xN.Outer for the 425 // lexical x reference links as described above, closurebody 426 // recomputes xN.Outer as the semantic x reference link tree, 427 // even filling in x in intermediate closures that might not 428 // have mentioned it along the way to inner closures that did. 429 // See closurebody for details. 430 // 431 // During the eventual compilation, then, for closure variables we have: 432 // 433 // xN.Defn = original variable 434 // xN.Outer = variable captured in next outward scope 435 // to make closure where xN appears 436 // 437 // Because of the sharding of pieces of the node, x.Defn means x.Name.Defn 438 // and x.Innermost/Outer means x.Name.Param.Innermost/Outer. 439 Innermost *Node 440 Outer *Node 441 442 // OTYPE 443 // 444 // TODO: Should Func pragmas also be stored on the Name? 445 Pragma syntax.Pragma 446 Alias bool // node is alias for Ntype (only used when type-checking ODCLTYPE) 447 } 448 449 // Functions 450 // 451 // A simple function declaration is represented as an ODCLFUNC node f 452 // and an ONAME node n. They're linked to one another through 453 // f.Func.Nname == n and n.Name.Defn == f. When functions are 454 // referenced by name in an expression, the function's ONAME node is 455 // used directly. 456 // 457 // Function names have n.Class() == PFUNC. This distinguishes them 458 // from variables of function type. 459 // 460 // Confusingly, n.Func and f.Func both exist, but commonly point to 461 // different Funcs. (Exception: an OCALLPART's Func does point to its 462 // ODCLFUNC's Func.) 463 // 464 // A method declaration is represented like functions, except n.Sym 465 // will be the qualified method name (e.g., "T.m") and 466 // f.Func.Shortname is the bare method name (e.g., "m"). 467 // 468 // Method expressions are represented as ONAME/PFUNC nodes like 469 // function names, but their Left and Right fields still point to the 470 // type and method, respectively. They can be distinguished from 471 // normal functions with isMethodExpression. Also, unlike function 472 // name nodes, method expression nodes exist for each method 473 // expression. The declaration ONAME can be accessed with 474 // x.Type.Nname(), where x is the method expression ONAME node. 475 // 476 // Method values are represented by ODOTMETH/ODOTINTER when called 477 // immediately, and OCALLPART otherwise. They are like method 478 // expressions, except that for ODOTMETH/ODOTINTER the method name is 479 // stored in Sym instead of Right. 480 // 481 // Closures are represented by OCLOSURE node c. They link back and 482 // forth with the ODCLFUNC via Func.Closure; that is, c.Func.Closure 483 // == f and f.Func.Closure == c. 484 // 485 // Function bodies are stored in f.Nbody, and inline function bodies 486 // are stored in n.Func.Inl. Pragmas are stored in f.Func.Pragma. 487 // 488 // Imported functions skip the ODCLFUNC, so n.Name.Defn is nil. They 489 // also use Dcl instead of Inldcl. 490 491 // Func holds Node fields used only with function-like nodes. 492 type Func struct { 493 Shortname *types.Sym 494 Enter Nodes // for example, allocate and initialize memory for escaping parameters 495 Exit Nodes 496 Cvars Nodes // closure params 497 Dcl []*Node // autodcl for this func/closure 498 499 // Parents records the parent scope of each scope within a 500 // function. The root scope (0) has no parent, so the i'th 501 // scope's parent is stored at Parents[i-1]. 502 Parents []ScopeID 503 504 // Marks records scope boundary changes. 505 Marks []Mark 506 507 // Closgen tracks how many closures have been generated within 508 // this function. Used by closurename for creating unique 509 // function names. 510 Closgen int 511 512 FieldTrack map[*types.Sym]struct{} 513 DebugInfo *ssa.FuncDebug 514 Ntype *Node // signature 515 Top int // top context (ctxCallee, etc) 516 Closure *Node // OCLOSURE <-> ODCLFUNC 517 Nname *Node 518 lsym *obj.LSym 519 520 Inl *Inline 521 522 Label int32 // largest auto-generated label in this function 523 524 Endlineno src.XPos 525 WBPos src.XPos // position of first write barrier; see SetWBPos 526 527 Pragma syntax.Pragma // go:xxx function annotations 528 529 flags bitset16 530 numDefers int // number of defer calls in the function 531 numReturns int // number of explicit returns in the function 532 533 // nwbrCalls records the LSyms of functions called by this 534 // function for go:nowritebarrierrec analysis. Only filled in 535 // if nowritebarrierrecCheck != nil. 536 nwbrCalls *[]nowritebarrierrecCallSym 537 } 538 539 // An Inline holds fields used for function bodies that can be inlined. 540 type Inline struct { 541 Cost int32 // heuristic cost of inlining this function 542 543 // Copies of Func.Dcl and Nbody for use during inlining. 544 Dcl []*Node 545 Body []*Node 546 } 547 548 // A Mark represents a scope boundary. 549 type Mark struct { 550 // Pos is the position of the token that marks the scope 551 // change. 552 Pos src.XPos 553 554 // Scope identifies the innermost scope to the right of Pos. 555 Scope ScopeID 556 } 557 558 // A ScopeID represents a lexical scope within a function. 559 type ScopeID int32 560 561 const ( 562 funcDupok = 1 << iota // duplicate definitions ok 563 funcWrapper // is method wrapper 564 funcNeedctxt // function uses context register (has closure variables) 565 funcReflectMethod // function calls reflect.Type.Method or MethodByName 566 funcIsHiddenClosure 567 funcHasDefer // contains a defer statement 568 funcNilCheckDisabled // disable nil checks when compiling this function 569 funcInlinabilityChecked // inliner has already determined whether the function is inlinable 570 funcExportInline // include inline body in export data 571 funcInstrumentBody // add race/msan instrumentation during SSA construction 572 funcOpenCodedDeferDisallowed // can't do open-coded defers 573 ) 574 575 func (f *Func) Dupok() bool { return f.flags&funcDupok != 0 } 576 func (f *Func) Wrapper() bool { return f.flags&funcWrapper != 0 } 577 func (f *Func) Needctxt() bool { return f.flags&funcNeedctxt != 0 } 578 func (f *Func) ReflectMethod() bool { return f.flags&funcReflectMethod != 0 } 579 func (f *Func) IsHiddenClosure() bool { return f.flags&funcIsHiddenClosure != 0 } 580 func (f *Func) HasDefer() bool { return f.flags&funcHasDefer != 0 } 581 func (f *Func) NilCheckDisabled() bool { return f.flags&funcNilCheckDisabled != 0 } 582 func (f *Func) InlinabilityChecked() bool { return f.flags&funcInlinabilityChecked != 0 } 583 func (f *Func) ExportInline() bool { return f.flags&funcExportInline != 0 } 584 func (f *Func) InstrumentBody() bool { return f.flags&funcInstrumentBody != 0 } 585 func (f *Func) OpenCodedDeferDisallowed() bool { return f.flags&funcOpenCodedDeferDisallowed != 0 } 586 587 func (f *Func) SetDupok(b bool) { f.flags.set(funcDupok, b) } 588 func (f *Func) SetWrapper(b bool) { f.flags.set(funcWrapper, b) } 589 func (f *Func) SetNeedctxt(b bool) { f.flags.set(funcNeedctxt, b) } 590 func (f *Func) SetReflectMethod(b bool) { f.flags.set(funcReflectMethod, b) } 591 func (f *Func) SetIsHiddenClosure(b bool) { f.flags.set(funcIsHiddenClosure, b) } 592 func (f *Func) SetHasDefer(b bool) { f.flags.set(funcHasDefer, b) } 593 func (f *Func) SetNilCheckDisabled(b bool) { f.flags.set(funcNilCheckDisabled, b) } 594 func (f *Func) SetInlinabilityChecked(b bool) { f.flags.set(funcInlinabilityChecked, b) } 595 func (f *Func) SetExportInline(b bool) { f.flags.set(funcExportInline, b) } 596 func (f *Func) SetInstrumentBody(b bool) { f.flags.set(funcInstrumentBody, b) } 597 func (f *Func) SetOpenCodedDeferDisallowed(b bool) { f.flags.set(funcOpenCodedDeferDisallowed, b) } 598 599 func (f *Func) setWBPos(pos src.XPos) { 600 if Debug_wb != 0 { 601 Warnl(pos, "write barrier") 602 } 603 if !f.WBPos.IsKnown() { 604 f.WBPos = pos 605 } 606 } 607 608 //go:generate stringer -type=Op -trimprefix=O 609 610 type Op uint8 611 612 // Node ops. 613 const ( 614 OXXX Op = iota 615 616 // names 617 ONAME // var or func name 618 ONONAME // unnamed arg or return value: f(int, string) (int, error) { etc } 619 OTYPE // type name 620 OPACK // import 621 OLITERAL // literal 622 623 // expressions 624 OADD // Left + Right 625 OSUB // Left - Right 626 OOR // Left | Right 627 OXOR // Left ^ Right 628 OADDSTR // +{List} (string addition, list elements are strings) 629 OADDR // &Left 630 OANDAND // Left && Right 631 OAPPEND // append(List); after walk, Left may contain elem type descriptor 632 OBYTES2STR // Type(Left) (Type is string, Left is a []byte) 633 OBYTES2STRTMP // Type(Left) (Type is string, Left is a []byte, ephemeral) 634 ORUNES2STR // Type(Left) (Type is string, Left is a []rune) 635 OSTR2BYTES // Type(Left) (Type is []byte, Left is a string) 636 OSTR2BYTESTMP // Type(Left) (Type is []byte, Left is a string, ephemeral) 637 OSTR2RUNES // Type(Left) (Type is []rune, Left is a string) 638 OAS // Left = Right or (if Colas=true) Left := Right 639 OAS2 // List = Rlist (x, y, z = a, b, c) 640 OAS2DOTTYPE // List = Right (x, ok = I.(int)) 641 OAS2FUNC // List = Right (x, y = f()) 642 OAS2MAPR // List = Right (x, ok = m["foo"]) 643 OAS2RECV // List = Right (x, ok = <-c) 644 OASOP // Left Etype= Right (x += y) 645 OCALL // Left(List) (function call, method call or type conversion) 646 647 // OCALLFUNC, OCALLMETH, and OCALLINTER have the same structure. 648 // Prior to walk, they are: Left(List), where List is all regular arguments. 649 // If present, Right is an ODDDARG that holds the 650 // generated slice used in a call to a variadic function. 651 // After walk, List is a series of assignments to temporaries, 652 // and Rlist is an updated set of arguments, including any ODDDARG slice. 653 // TODO(josharian/khr): Use Ninit instead of List for the assignments to temporaries. See CL 114797. 654 OCALLFUNC // Left(List/Rlist) (function call f(args)) 655 OCALLMETH // Left(List/Rlist) (direct method call x.Method(args)) 656 OCALLINTER // Left(List/Rlist) (interface method call x.Method(args)) 657 OCALLPART // Left.Right (method expression x.Method, not called) 658 OCAP // cap(Left) 659 OCLOSE // close(Left) 660 OCLOSURE // func Type { Body } (func literal) 661 OCOMPLIT // Right{List} (composite literal, not yet lowered to specific form) 662 OMAPLIT // Type{List} (composite literal, Type is map) 663 OSTRUCTLIT // Type{List} (composite literal, Type is struct) 664 OARRAYLIT // Type{List} (composite literal, Type is array) 665 OSLICELIT // Type{List} (composite literal, Type is slice) Right.Int64() = slice length. 666 OPTRLIT // &Left (left is composite literal) 667 OCONV // Type(Left) (type conversion) 668 OCONVIFACE // Type(Left) (type conversion, to interface) 669 OCONVNOP // Type(Left) (type conversion, no effect) 670 OCOPY // copy(Left, Right) 671 ODCL // var Left (declares Left of type Left.Type) 672 673 // Used during parsing but don't last. 674 ODCLFUNC // func f() or func (r) f() 675 ODCLFIELD // struct field, interface field, or func/method argument/return value. 676 ODCLCONST // const pi = 3.14 677 ODCLTYPE // type Int int or type Int = int 678 679 ODELETE // delete(Left, Right) 680 ODOT // Left.Sym (Left is of struct type) 681 ODOTPTR // Left.Sym (Left is of pointer to struct type) 682 ODOTMETH // Left.Sym (Left is non-interface, Right is method name) 683 ODOTINTER // Left.Sym (Left is interface, Right is method name) 684 OXDOT // Left.Sym (before rewrite to one of the preceding) 685 ODOTTYPE // Left.Right or Left.Type (.Right during parsing, .Type once resolved); after walk, .Right contains address of interface type descriptor and .Right.Right contains address of concrete type descriptor 686 ODOTTYPE2 // Left.Right or Left.Type (.Right during parsing, .Type once resolved; on rhs of OAS2DOTTYPE); after walk, .Right contains address of interface type descriptor 687 OEQ // Left == Right 688 ONE // Left != Right 689 OLT // Left < Right 690 OLE // Left <= Right 691 OGE // Left >= Right 692 OGT // Left > Right 693 ODEREF // *Left 694 OINDEX // Left[Right] (index of array or slice) 695 OINDEXMAP // Left[Right] (index of map) 696 OKEY // Left:Right (key:value in struct/array/map literal) 697 OSTRUCTKEY // Sym:Left (key:value in struct literal, after type checking) 698 OLEN // len(Left) 699 OMAKE // make(List) (before type checking converts to one of the following) 700 OMAKECHAN // make(Type, Left) (type is chan) 701 OMAKEMAP // make(Type, Left) (type is map) 702 OMAKESLICE // make(Type, Left, Right) (type is slice) 703 OMUL // Left * Right 704 ODIV // Left / Right 705 OMOD // Left % Right 706 OLSH // Left << Right 707 ORSH // Left >> Right 708 OAND // Left & Right 709 OANDNOT // Left &^ Right 710 ONEW // new(Left); corresponds to calls to new in source code 711 ONEWOBJ // runtime.newobject(n.Type); introduced by walk; Left is type descriptor 712 ONOT // !Left 713 OBITNOT // ^Left 714 OPLUS // +Left 715 ONEG // -Left 716 OOROR // Left || Right 717 OPANIC // panic(Left) 718 OPRINT // print(List) 719 OPRINTN // println(List) 720 OPAREN // (Left) 721 OSEND // Left <- Right 722 OSLICE // Left[List[0] : List[1]] (Left is untypechecked or slice) 723 OSLICEARR // Left[List[0] : List[1]] (Left is array) 724 OSLICESTR // Left[List[0] : List[1]] (Left is string) 725 OSLICE3 // Left[List[0] : List[1] : List[2]] (Left is untypedchecked or slice) 726 OSLICE3ARR // Left[List[0] : List[1] : List[2]] (Left is array) 727 OSLICEHEADER // sliceheader{Left, List[0], List[1]} (Left is unsafe.Pointer, List[0] is length, List[1] is capacity) 728 ORECOVER // recover() 729 ORECV // <-Left 730 ORUNESTR // Type(Left) (Type is string, Left is rune) 731 OSELRECV // Left = <-Right.Left: (appears as .Left of OCASE; Right.Op == ORECV) 732 OSELRECV2 // List = <-Right.Left: (appears as .Left of OCASE; count(List) == 2, Right.Op == ORECV) 733 OIOTA // iota 734 OREAL // real(Left) 735 OIMAG // imag(Left) 736 OCOMPLEX // complex(Left, Right) or complex(List[0]) where List[0] is a 2-result function call 737 OALIGNOF // unsafe.Alignof(Left) 738 OOFFSETOF // unsafe.Offsetof(Left) 739 OSIZEOF // unsafe.Sizeof(Left) 740 741 // statements 742 OBLOCK // { List } (block of code) 743 OBREAK // break [Sym] 744 OCASE // case List: Nbody (List==nil means default) 745 OCONTINUE // continue [Sym] 746 ODEFER // defer Left (Left must be call) 747 OEMPTY // no-op (empty statement) 748 OFALL // fallthrough 749 OFOR // for Ninit; Left; Right { Nbody } 750 // OFORUNTIL is like OFOR, but the test (Left) is applied after the body: 751 // Ninit 752 // top: { Nbody } // Execute the body at least once 753 // cont: Right 754 // if Left { // And then test the loop condition 755 // List // Before looping to top, execute List 756 // goto top 757 // } 758 // OFORUNTIL is created by walk. There's no way to write this in Go code. 759 OFORUNTIL 760 OGOTO // goto Sym 761 OIF // if Ninit; Left { Nbody } else { Rlist } 762 OLABEL // Sym: 763 OGO // go Left (Left must be call) 764 ORANGE // for List = range Right { Nbody } 765 ORETURN // return List 766 OSELECT // select { List } (List is list of OCASE) 767 OSWITCH // switch Ninit; Left { List } (List is a list of OCASE) 768 OTYPESW // Left = Right.(type) (appears as .Left of OSWITCH) 769 770 // types 771 OTCHAN // chan int 772 OTMAP // map[string]int 773 OTSTRUCT // struct{} 774 OTINTER // interface{} 775 OTFUNC // func() 776 OTARRAY // []int, [8]int, [N]int or [...]int 777 778 // misc 779 ODDD // func f(args ...int) or f(l...) or var a = [...]int{0, 1, 2}. 780 ODDDARG // func f(args ...int), introduced by escape analysis. 781 OINLCALL // intermediary representation of an inlined call. 782 OEFACE // itable and data words of an empty-interface value. 783 OITAB // itable word of an interface value. 784 OIDATA // data word of an interface value in Left 785 OSPTR // base pointer of a slice or string. 786 OCLOSUREVAR // variable reference at beginning of closure function 787 OCFUNC // reference to c function pointer (not go func value) 788 OCHECKNIL // emit code to ensure pointer/interface not nil 789 OVARDEF // variable is about to be fully initialized 790 OVARKILL // variable is dead 791 OVARLIVE // variable is alive 792 ORESULT // result of a function call; Xoffset is stack offset 793 OINLMARK // start of an inlined body, with file/line of caller. Xoffset is an index into the inline tree. 794 795 // arch-specific opcodes 796 ORETJMP // return to other function 797 OGETG // runtime.getg() (read g pointer) 798 799 OEND 800 ) 801 802 // Nodes is a pointer to a slice of *Node. 803 // For fields that are not used in most nodes, this is used instead of 804 // a slice to save space. 805 type Nodes struct{ slice *[]*Node } 806 807 // asNodes returns a slice of *Node as a Nodes value. 808 func asNodes(s []*Node) Nodes { 809 return Nodes{&s} 810 } 811 812 // Slice returns the entries in Nodes as a slice. 813 // Changes to the slice entries (as in s[i] = n) will be reflected in 814 // the Nodes. 815 func (n Nodes) Slice() []*Node { 816 if n.slice == nil { 817 return nil 818 } 819 return *n.slice 820 } 821 822 // Len returns the number of entries in Nodes. 823 func (n Nodes) Len() int { 824 if n.slice == nil { 825 return 0 826 } 827 return len(*n.slice) 828 } 829 830 // Index returns the i'th element of Nodes. 831 // It panics if n does not have at least i+1 elements. 832 func (n Nodes) Index(i int) *Node { 833 return (*n.slice)[i] 834 } 835 836 // First returns the first element of Nodes (same as n.Index(0)). 837 // It panics if n has no elements. 838 func (n Nodes) First() *Node { 839 return (*n.slice)[0] 840 } 841 842 // Second returns the second element of Nodes (same as n.Index(1)). 843 // It panics if n has fewer than two elements. 844 func (n Nodes) Second() *Node { 845 return (*n.slice)[1] 846 } 847 848 // Set sets n to a slice. 849 // This takes ownership of the slice. 850 func (n *Nodes) Set(s []*Node) { 851 if len(s) == 0 { 852 n.slice = nil 853 } else { 854 // Copy s and take address of t rather than s to avoid 855 // allocation in the case where len(s) == 0 (which is 856 // over 3x more common, dynamically, for make.bash). 857 t := s 858 n.slice = &t 859 } 860 } 861 862 // Set1 sets n to a slice containing a single node. 863 func (n *Nodes) Set1(n1 *Node) { 864 n.slice = &[]*Node{n1} 865 } 866 867 // Set2 sets n to a slice containing two nodes. 868 func (n *Nodes) Set2(n1, n2 *Node) { 869 n.slice = &[]*Node{n1, n2} 870 } 871 872 // Set3 sets n to a slice containing three nodes. 873 func (n *Nodes) Set3(n1, n2, n3 *Node) { 874 n.slice = &[]*Node{n1, n2, n3} 875 } 876 877 // MoveNodes sets n to the contents of n2, then clears n2. 878 func (n *Nodes) MoveNodes(n2 *Nodes) { 879 n.slice = n2.slice 880 n2.slice = nil 881 } 882 883 // SetIndex sets the i'th element of Nodes to node. 884 // It panics if n does not have at least i+1 elements. 885 func (n Nodes) SetIndex(i int, node *Node) { 886 (*n.slice)[i] = node 887 } 888 889 // SetFirst sets the first element of Nodes to node. 890 // It panics if n does not have at least one elements. 891 func (n Nodes) SetFirst(node *Node) { 892 (*n.slice)[0] = node 893 } 894 895 // SetSecond sets the second element of Nodes to node. 896 // It panics if n does not have at least two elements. 897 func (n Nodes) SetSecond(node *Node) { 898 (*n.slice)[1] = node 899 } 900 901 // Addr returns the address of the i'th element of Nodes. 902 // It panics if n does not have at least i+1 elements. 903 func (n Nodes) Addr(i int) **Node { 904 return &(*n.slice)[i] 905 } 906 907 // Append appends entries to Nodes. 908 func (n *Nodes) Append(a ...*Node) { 909 if len(a) == 0 { 910 return 911 } 912 if n.slice == nil { 913 s := make([]*Node, len(a)) 914 copy(s, a) 915 n.slice = &s 916 return 917 } 918 *n.slice = append(*n.slice, a...) 919 } 920 921 // Prepend prepends entries to Nodes. 922 // If a slice is passed in, this will take ownership of it. 923 func (n *Nodes) Prepend(a ...*Node) { 924 if len(a) == 0 { 925 return 926 } 927 if n.slice == nil { 928 n.slice = &a 929 } else { 930 *n.slice = append(a, *n.slice...) 931 } 932 } 933 934 // AppendNodes appends the contents of *n2 to n, then clears n2. 935 func (n *Nodes) AppendNodes(n2 *Nodes) { 936 switch { 937 case n2.slice == nil: 938 case n.slice == nil: 939 n.slice = n2.slice 940 default: 941 *n.slice = append(*n.slice, *n2.slice...) 942 } 943 n2.slice = nil 944 } 945 946 // inspect invokes f on each node in an AST in depth-first order. 947 // If f(n) returns false, inspect skips visiting n's children. 948 func inspect(n *Node, f func(*Node) bool) { 949 if n == nil || !f(n) { 950 return 951 } 952 inspectList(n.Ninit, f) 953 inspect(n.Left, f) 954 inspect(n.Right, f) 955 inspectList(n.List, f) 956 inspectList(n.Nbody, f) 957 inspectList(n.Rlist, f) 958 } 959 960 func inspectList(l Nodes, f func(*Node) bool) { 961 for _, n := range l.Slice() { 962 inspect(n, f) 963 } 964 } 965 966 // nodeQueue is a FIFO queue of *Node. The zero value of nodeQueue is 967 // a ready-to-use empty queue. 968 type nodeQueue struct { 969 ring []*Node 970 head, tail int 971 } 972 973 // empty reports whether q contains no Nodes. 974 func (q *nodeQueue) empty() bool { 975 return q.head == q.tail 976 } 977 978 // pushRight appends n to the right of the queue. 979 func (q *nodeQueue) pushRight(n *Node) { 980 if len(q.ring) == 0 { 981 q.ring = make([]*Node, 16) 982 } else if q.head+len(q.ring) == q.tail { 983 // Grow the ring. 984 nring := make([]*Node, len(q.ring)*2) 985 // Copy the old elements. 986 part := q.ring[q.head%len(q.ring):] 987 if q.tail-q.head <= len(part) { 988 part = part[:q.tail-q.head] 989 copy(nring, part) 990 } else { 991 pos := copy(nring, part) 992 copy(nring[pos:], q.ring[:q.tail%len(q.ring)]) 993 } 994 q.ring, q.head, q.tail = nring, 0, q.tail-q.head 995 } 996 997 q.ring[q.tail%len(q.ring)] = n 998 q.tail++ 999 } 1000 1001 // popLeft pops a node from the left of the queue. It panics if q is 1002 // empty. 1003 func (q *nodeQueue) popLeft() *Node { 1004 if q.empty() { 1005 panic("dequeue empty") 1006 } 1007 n := q.ring[q.head%len(q.ring)] 1008 q.head++ 1009 return n 1010 } 1011 1012 // NodeSet is a set of Nodes. 1013 type NodeSet map[*Node]struct{} 1014 1015 // Has reports whether s contains n. 1016 func (s NodeSet) Has(n *Node) bool { 1017 _, isPresent := s[n] 1018 return isPresent 1019 } 1020 1021 // Add adds n to s. 1022 func (s *NodeSet) Add(n *Node) { 1023 if *s == nil { 1024 *s = make(map[*Node]struct{}) 1025 } 1026 (*s)[n] = struct{}{} 1027 } 1028 1029 // Sorted returns s sorted according to less. 1030 func (s NodeSet) Sorted(less func(*Node, *Node) bool) []*Node { 1031 var res []*Node 1032 for n := range s { 1033 res = append(res, n) 1034 } 1035 sort.Slice(res, func(i, j int) bool { return less(res[i], res[j]) }) 1036 return res 1037 }