github.com/gagliardetto/golang-go@v0.0.0-20201020153340-53909ea70814/cmd/compile/internal/ssa/check.go (about) 1 // Copyright 2015 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package ssa 6 7 import ( 8 "math" 9 "math/bits" 10 ) 11 12 // checkFunc checks invariants of f. 13 func checkFunc(f *Func) { 14 blockMark := make([]bool, f.NumBlocks()) 15 valueMark := make([]bool, f.NumValues()) 16 17 for _, b := range f.Blocks { 18 if blockMark[b.ID] { 19 f.Fatalf("block %s appears twice in %s!", b, f.Name) 20 } 21 blockMark[b.ID] = true 22 if b.Func != f { 23 f.Fatalf("%s.Func=%s, want %s", b, b.Func.Name, f.Name) 24 } 25 26 for i, e := range b.Preds { 27 if se := e.b.Succs[e.i]; se.b != b || se.i != i { 28 f.Fatalf("block pred/succ not crosslinked correctly %d:%s %d:%s", i, b, se.i, se.b) 29 } 30 } 31 for i, e := range b.Succs { 32 if pe := e.b.Preds[e.i]; pe.b != b || pe.i != i { 33 f.Fatalf("block succ/pred not crosslinked correctly %d:%s %d:%s", i, b, pe.i, pe.b) 34 } 35 } 36 37 switch b.Kind { 38 case BlockExit: 39 if len(b.Succs) != 0 { 40 f.Fatalf("exit block %s has successors", b) 41 } 42 if b.NumControls() != 1 { 43 f.Fatalf("exit block %s has no control value", b) 44 } 45 if !b.Controls[0].Type.IsMemory() { 46 f.Fatalf("exit block %s has non-memory control value %s", b, b.Controls[0].LongString()) 47 } 48 case BlockRet: 49 if len(b.Succs) != 0 { 50 f.Fatalf("ret block %s has successors", b) 51 } 52 if b.NumControls() != 1 { 53 f.Fatalf("ret block %s has nil control", b) 54 } 55 if !b.Controls[0].Type.IsMemory() { 56 f.Fatalf("ret block %s has non-memory control value %s", b, b.Controls[0].LongString()) 57 } 58 case BlockRetJmp: 59 if len(b.Succs) != 0 { 60 f.Fatalf("retjmp block %s len(Succs)==%d, want 0", b, len(b.Succs)) 61 } 62 if b.NumControls() != 1 { 63 f.Fatalf("retjmp block %s has nil control", b) 64 } 65 if !b.Controls[0].Type.IsMemory() { 66 f.Fatalf("retjmp block %s has non-memory control value %s", b, b.Controls[0].LongString()) 67 } 68 if b.Aux == nil { 69 f.Fatalf("retjmp block %s has nil Aux field", b) 70 } 71 case BlockPlain: 72 if len(b.Succs) != 1 { 73 f.Fatalf("plain block %s len(Succs)==%d, want 1", b, len(b.Succs)) 74 } 75 if b.NumControls() != 0 { 76 f.Fatalf("plain block %s has non-nil control %s", b, b.Controls[0].LongString()) 77 } 78 case BlockIf: 79 if len(b.Succs) != 2 { 80 f.Fatalf("if block %s len(Succs)==%d, want 2", b, len(b.Succs)) 81 } 82 if b.NumControls() != 1 { 83 f.Fatalf("if block %s has no control value", b) 84 } 85 if !b.Controls[0].Type.IsBoolean() { 86 f.Fatalf("if block %s has non-bool control value %s", b, b.Controls[0].LongString()) 87 } 88 case BlockDefer: 89 if len(b.Succs) != 2 { 90 f.Fatalf("defer block %s len(Succs)==%d, want 2", b, len(b.Succs)) 91 } 92 if b.NumControls() != 1 { 93 f.Fatalf("defer block %s has no control value", b) 94 } 95 if !b.Controls[0].Type.IsMemory() { 96 f.Fatalf("defer block %s has non-memory control value %s", b, b.Controls[0].LongString()) 97 } 98 case BlockFirst: 99 if len(b.Succs) != 2 { 100 f.Fatalf("plain/dead block %s len(Succs)==%d, want 2", b, len(b.Succs)) 101 } 102 if b.NumControls() != 0 { 103 f.Fatalf("plain/dead block %s has a control value", b) 104 } 105 } 106 if len(b.Succs) != 2 && b.Likely != BranchUnknown { 107 f.Fatalf("likeliness prediction %d for block %s with %d successors", b.Likely, b, len(b.Succs)) 108 } 109 110 for _, v := range b.Values { 111 // Check to make sure argument count makes sense (argLen of -1 indicates 112 // variable length args) 113 nArgs := opcodeTable[v.Op].argLen 114 if nArgs != -1 && int32(len(v.Args)) != nArgs { 115 f.Fatalf("value %s has %d args, expected %d", v.LongString(), 116 len(v.Args), nArgs) 117 } 118 119 // Check to make sure aux values make sense. 120 canHaveAux := false 121 canHaveAuxInt := false 122 switch opcodeTable[v.Op].auxType { 123 case auxNone: 124 case auxBool: 125 if v.AuxInt < 0 || v.AuxInt > 1 { 126 f.Fatalf("bad bool AuxInt value for %v", v) 127 } 128 canHaveAuxInt = true 129 case auxInt8: 130 if v.AuxInt != int64(int8(v.AuxInt)) { 131 f.Fatalf("bad int8 AuxInt value for %v", v) 132 } 133 canHaveAuxInt = true 134 case auxInt16: 135 if v.AuxInt != int64(int16(v.AuxInt)) { 136 f.Fatalf("bad int16 AuxInt value for %v", v) 137 } 138 canHaveAuxInt = true 139 case auxInt32: 140 if v.AuxInt != int64(int32(v.AuxInt)) { 141 f.Fatalf("bad int32 AuxInt value for %v", v) 142 } 143 canHaveAuxInt = true 144 case auxInt64, auxFloat64: 145 canHaveAuxInt = true 146 case auxInt128: 147 // AuxInt must be zero, so leave canHaveAuxInt set to false. 148 case auxFloat32: 149 canHaveAuxInt = true 150 if !isExactFloat32(v.AuxFloat()) { 151 f.Fatalf("value %v has an AuxInt value that is not an exact float32", v) 152 } 153 case auxString, auxSym, auxTyp, auxArchSpecific: 154 canHaveAux = true 155 case auxSymOff, auxSymValAndOff, auxTypSize: 156 canHaveAuxInt = true 157 canHaveAux = true 158 case auxCCop: 159 if _, ok := v.Aux.(Op); !ok { 160 f.Fatalf("bad type %T for CCop in %v", v.Aux, v) 161 } 162 canHaveAux = true 163 default: 164 f.Fatalf("unknown aux type for %s", v.Op) 165 } 166 if !canHaveAux && v.Aux != nil { 167 f.Fatalf("value %s has an Aux value %v but shouldn't", v.LongString(), v.Aux) 168 } 169 if !canHaveAuxInt && v.AuxInt != 0 { 170 f.Fatalf("value %s has an AuxInt value %d but shouldn't", v.LongString(), v.AuxInt) 171 } 172 173 for i, arg := range v.Args { 174 if arg == nil { 175 f.Fatalf("value %s has nil arg", v.LongString()) 176 } 177 if v.Op != OpPhi { 178 // For non-Phi ops, memory args must be last, if present 179 if arg.Type.IsMemory() && i != len(v.Args)-1 { 180 f.Fatalf("value %s has non-final memory arg (%d < %d)", v.LongString(), i, len(v.Args)-1) 181 } 182 } 183 } 184 185 if valueMark[v.ID] { 186 f.Fatalf("value %s appears twice!", v.LongString()) 187 } 188 valueMark[v.ID] = true 189 190 if v.Block != b { 191 f.Fatalf("%s.block != %s", v, b) 192 } 193 if v.Op == OpPhi && len(v.Args) != len(b.Preds) { 194 f.Fatalf("phi length %s does not match pred length %d for block %s", v.LongString(), len(b.Preds), b) 195 } 196 197 if v.Op == OpAddr { 198 if len(v.Args) == 0 { 199 f.Fatalf("no args for OpAddr %s", v.LongString()) 200 } 201 if v.Args[0].Op != OpSB { 202 f.Fatalf("bad arg to OpAddr %v", v) 203 } 204 } 205 206 if v.Op == OpLocalAddr { 207 if len(v.Args) != 2 { 208 f.Fatalf("wrong # of args for OpLocalAddr %s", v.LongString()) 209 } 210 if v.Args[0].Op != OpSP { 211 f.Fatalf("bad arg 0 to OpLocalAddr %v", v) 212 } 213 if !v.Args[1].Type.IsMemory() { 214 f.Fatalf("bad arg 1 to OpLocalAddr %v", v) 215 } 216 } 217 218 if f.RegAlloc != nil && f.Config.SoftFloat && v.Type.IsFloat() { 219 f.Fatalf("unexpected floating-point type %v", v.LongString()) 220 } 221 222 // Check types. 223 // TODO: more type checks? 224 switch c := f.Config; v.Op { 225 case OpSP, OpSB: 226 if v.Type != c.Types.Uintptr { 227 f.Fatalf("bad %s type: want uintptr, have %s", 228 v.Op, v.Type.String()) 229 } 230 } 231 232 // TODO: check for cycles in values 233 } 234 } 235 236 // Check to make sure all Blocks referenced are in the function. 237 if !blockMark[f.Entry.ID] { 238 f.Fatalf("entry block %v is missing", f.Entry) 239 } 240 for _, b := range f.Blocks { 241 for _, c := range b.Preds { 242 if !blockMark[c.b.ID] { 243 f.Fatalf("predecessor block %v for %v is missing", c, b) 244 } 245 } 246 for _, c := range b.Succs { 247 if !blockMark[c.b.ID] { 248 f.Fatalf("successor block %v for %v is missing", c, b) 249 } 250 } 251 } 252 253 if len(f.Entry.Preds) > 0 { 254 f.Fatalf("entry block %s of %s has predecessor(s) %v", f.Entry, f.Name, f.Entry.Preds) 255 } 256 257 // Check to make sure all Values referenced are in the function. 258 for _, b := range f.Blocks { 259 for _, v := range b.Values { 260 for i, a := range v.Args { 261 if !valueMark[a.ID] { 262 f.Fatalf("%v, arg %d of %s, is missing", a, i, v.LongString()) 263 } 264 } 265 } 266 for _, c := range b.ControlValues() { 267 if !valueMark[c.ID] { 268 f.Fatalf("control value for %s is missing: %v", b, c) 269 } 270 } 271 } 272 for b := f.freeBlocks; b != nil; b = b.succstorage[0].b { 273 if blockMark[b.ID] { 274 f.Fatalf("used block b%d in free list", b.ID) 275 } 276 } 277 for v := f.freeValues; v != nil; v = v.argstorage[0] { 278 if valueMark[v.ID] { 279 f.Fatalf("used value v%d in free list", v.ID) 280 } 281 } 282 283 // Check to make sure all args dominate uses. 284 if f.RegAlloc == nil { 285 // Note: regalloc introduces non-dominating args. 286 // See TODO in regalloc.go. 287 sdom := f.Sdom() 288 for _, b := range f.Blocks { 289 for _, v := range b.Values { 290 for i, arg := range v.Args { 291 x := arg.Block 292 y := b 293 if v.Op == OpPhi { 294 y = b.Preds[i].b 295 } 296 if !domCheck(f, sdom, x, y) { 297 f.Fatalf("arg %d of value %s does not dominate, arg=%s", i, v.LongString(), arg.LongString()) 298 } 299 } 300 } 301 for _, c := range b.ControlValues() { 302 if !domCheck(f, sdom, c.Block, b) { 303 f.Fatalf("control value %s for %s doesn't dominate", c, b) 304 } 305 } 306 } 307 } 308 309 // Check loop construction 310 if f.RegAlloc == nil && f.pass != nil { // non-nil pass allows better-targeted debug printing 311 ln := f.loopnest() 312 if !ln.hasIrreducible { 313 po := f.postorder() // use po to avoid unreachable blocks. 314 for _, b := range po { 315 for _, s := range b.Succs { 316 bb := s.Block() 317 if ln.b2l[b.ID] == nil && ln.b2l[bb.ID] != nil && bb != ln.b2l[bb.ID].header { 318 f.Fatalf("block %s not in loop branches to non-header block %s in loop", b.String(), bb.String()) 319 } 320 if ln.b2l[b.ID] != nil && ln.b2l[bb.ID] != nil && bb != ln.b2l[bb.ID].header && !ln.b2l[b.ID].isWithinOrEq(ln.b2l[bb.ID]) { 321 f.Fatalf("block %s in loop branches to non-header block %s in non-containing loop", b.String(), bb.String()) 322 } 323 } 324 } 325 } 326 } 327 328 // Check use counts 329 uses := make([]int32, f.NumValues()) 330 for _, b := range f.Blocks { 331 for _, v := range b.Values { 332 for _, a := range v.Args { 333 uses[a.ID]++ 334 } 335 } 336 for _, c := range b.ControlValues() { 337 uses[c.ID]++ 338 } 339 } 340 for _, b := range f.Blocks { 341 for _, v := range b.Values { 342 if v.Uses != uses[v.ID] { 343 f.Fatalf("%s has %d uses, but has Uses=%d", v, uses[v.ID], v.Uses) 344 } 345 } 346 } 347 348 memCheck(f) 349 } 350 351 func memCheck(f *Func) { 352 // Check that if a tuple has a memory type, it is second. 353 for _, b := range f.Blocks { 354 for _, v := range b.Values { 355 if v.Type.IsTuple() && v.Type.FieldType(0).IsMemory() { 356 f.Fatalf("memory is first in a tuple: %s\n", v.LongString()) 357 } 358 } 359 } 360 361 // Single live memory checks. 362 // These checks only work if there are no memory copies. 363 // (Memory copies introduce ambiguity about which mem value is really live. 364 // probably fixable, but it's easier to avoid the problem.) 365 // For the same reason, disable this check if some memory ops are unused. 366 for _, b := range f.Blocks { 367 for _, v := range b.Values { 368 if (v.Op == OpCopy || v.Uses == 0) && v.Type.IsMemory() { 369 return 370 } 371 } 372 if b != f.Entry && len(b.Preds) == 0 { 373 return 374 } 375 } 376 377 // Compute live memory at the end of each block. 378 lastmem := make([]*Value, f.NumBlocks()) 379 ss := newSparseSet(f.NumValues()) 380 for _, b := range f.Blocks { 381 // Mark overwritten memory values. Those are args of other 382 // ops that generate memory values. 383 ss.clear() 384 for _, v := range b.Values { 385 if v.Op == OpPhi || !v.Type.IsMemory() { 386 continue 387 } 388 if m := v.MemoryArg(); m != nil { 389 ss.add(m.ID) 390 } 391 } 392 // There should be at most one remaining unoverwritten memory value. 393 for _, v := range b.Values { 394 if !v.Type.IsMemory() { 395 continue 396 } 397 if ss.contains(v.ID) { 398 continue 399 } 400 if lastmem[b.ID] != nil { 401 f.Fatalf("two live memory values in %s: %s and %s", b, lastmem[b.ID], v) 402 } 403 lastmem[b.ID] = v 404 } 405 // If there is no remaining memory value, that means there was no memory update. 406 // Take any memory arg. 407 if lastmem[b.ID] == nil { 408 for _, v := range b.Values { 409 if v.Op == OpPhi { 410 continue 411 } 412 m := v.MemoryArg() 413 if m == nil { 414 continue 415 } 416 if lastmem[b.ID] != nil && lastmem[b.ID] != m { 417 f.Fatalf("two live memory values in %s: %s and %s", b, lastmem[b.ID], m) 418 } 419 lastmem[b.ID] = m 420 } 421 } 422 } 423 // Propagate last live memory through storeless blocks. 424 for { 425 changed := false 426 for _, b := range f.Blocks { 427 if lastmem[b.ID] != nil { 428 continue 429 } 430 for _, e := range b.Preds { 431 p := e.b 432 if lastmem[p.ID] != nil { 433 lastmem[b.ID] = lastmem[p.ID] 434 changed = true 435 break 436 } 437 } 438 } 439 if !changed { 440 break 441 } 442 } 443 // Check merge points. 444 for _, b := range f.Blocks { 445 for _, v := range b.Values { 446 if v.Op == OpPhi && v.Type.IsMemory() { 447 for i, a := range v.Args { 448 if a != lastmem[b.Preds[i].b.ID] { 449 f.Fatalf("inconsistent memory phi %s %d %s %s", v.LongString(), i, a, lastmem[b.Preds[i].b.ID]) 450 } 451 } 452 } 453 } 454 } 455 456 // Check that only one memory is live at any point. 457 if f.scheduled { 458 for _, b := range f.Blocks { 459 var mem *Value // the current live memory in the block 460 for _, v := range b.Values { 461 if v.Op == OpPhi { 462 if v.Type.IsMemory() { 463 mem = v 464 } 465 continue 466 } 467 if mem == nil && len(b.Preds) > 0 { 468 // If no mem phi, take mem of any predecessor. 469 mem = lastmem[b.Preds[0].b.ID] 470 } 471 for _, a := range v.Args { 472 if a.Type.IsMemory() && a != mem { 473 f.Fatalf("two live mems @ %s: %s and %s", v, mem, a) 474 } 475 } 476 if v.Type.IsMemory() { 477 mem = v 478 } 479 } 480 } 481 } 482 483 // Check that after scheduling, phis are always first in the block. 484 if f.scheduled { 485 for _, b := range f.Blocks { 486 seenNonPhi := false 487 for _, v := range b.Values { 488 switch v.Op { 489 case OpPhi: 490 if seenNonPhi { 491 f.Fatalf("phi after non-phi @ %s: %s", b, v) 492 } 493 default: 494 seenNonPhi = true 495 } 496 } 497 } 498 } 499 } 500 501 // domCheck reports whether x dominates y (including x==y). 502 func domCheck(f *Func, sdom SparseTree, x, y *Block) bool { 503 if !sdom.IsAncestorEq(f.Entry, y) { 504 // unreachable - ignore 505 return true 506 } 507 return sdom.IsAncestorEq(x, y) 508 } 509 510 // isExactFloat32 reports whether x can be exactly represented as a float32. 511 func isExactFloat32(x float64) bool { 512 // Check the mantissa is in range. 513 if bits.TrailingZeros64(math.Float64bits(x)) < 52-23 { 514 return false 515 } 516 // Check the exponent is in range. The mantissa check above is sufficient for NaN values. 517 return math.IsNaN(x) || x == float64(float32(x)) 518 }