github.com/gagliardetto/golang-go@v0.0.0-20201020153340-53909ea70814/cmd/compile/internal/ssa/gen/386.rules (about)

     1  // Copyright 2016 The Go Authors. All rights reserved.
     2  // Use of this source code is governed by a BSD-style
     3  // license that can be found in the LICENSE file.
     4  
     5  // Lowering arithmetic
     6  (Add(Ptr|32|16|8) x y) -> (ADDL  x y)
     7  (Add(32|64)F x y) -> (ADDS(S|D) x y)
     8  (Add32carry x y) -> (ADDLcarry x y)
     9  (Add32withcarry x y c) -> (ADCL x y c)
    10  
    11  (Sub(Ptr|32|16|8) x y) -> (SUBL  x y)
    12  (Sub(32|64)F x y) -> (SUBS(S|D) x y)
    13  (Sub32carry x y) -> (SUBLcarry x y)
    14  (Sub32withcarry x y c) -> (SBBL x y c)
    15  
    16  (Mul(32|16|8)  x y) -> (MULL  x y)
    17  (Mul(32|64)F x y) -> (MULS(S|D) x y)
    18  (Mul32uhilo x y) -> (MULLQU x y)
    19  
    20  (Select0 (Mul32uover x y)) -> (Select0 <typ.UInt32> (MULLU x y))
    21  (Select1 (Mul32uover x y)) -> (SETO (Select1 <types.TypeFlags> (MULLU x y)))
    22  
    23  (Avg32u x y) -> (AVGLU x y)
    24  
    25  (Div32F x y) -> (DIVSS x y)
    26  (Div64F x y) -> (DIVSD x y)
    27  
    28  (Div32 [a] x y) -> (DIVL [a] x y)
    29  (Div32u x y) -> (DIVLU x y)
    30  (Div16 [a] x y) -> (DIVW [a] x y)
    31  (Div16u x y) -> (DIVWU x y)
    32  (Div8   x y) -> (DIVW  (SignExt8to16 x) (SignExt8to16 y))
    33  (Div8u  x y) -> (DIVWU (ZeroExt8to16 x) (ZeroExt8to16 y))
    34  
    35  (Hmul32  x y) -> (HMULL  x y)
    36  (Hmul32u x y) -> (HMULLU x y)
    37  
    38  (Mod32 [a] x y) -> (MODL [a] x y)
    39  (Mod32u x y) -> (MODLU x y)
    40  (Mod16 [a] x y) -> (MODW [a] x y)
    41  (Mod16u x y) -> (MODWU x y)
    42  (Mod8   x y) -> (MODW  (SignExt8to16 x) (SignExt8to16 y))
    43  (Mod8u  x y) -> (MODWU (ZeroExt8to16 x) (ZeroExt8to16 y))
    44  
    45  (And(32|16|8) x y) -> (ANDL x y)
    46  (Or(32|16|8) x y) -> (ORL x y)
    47  (Xor(32|16|8) x y) -> (XORL x y)
    48  
    49  (Neg(32|16|8)  x) -> (NEGL x)
    50  (Neg32F x) && !config.use387 -> (PXOR x (MOVSSconst <typ.Float32> [auxFrom32F(float32(math.Copysign(0, -1)))]))
    51  (Neg64F x) && !config.use387 -> (PXOR x (MOVSDconst <typ.Float64> [auxFrom64F(math.Copysign(0, -1))]))
    52  (Neg32F x) && config.use387 -> (FCHS x)
    53  (Neg64F x) && config.use387 -> (FCHS x)
    54  
    55  (Com(32|16|8) x) -> (NOTL x)
    56  
    57  // Lowering boolean ops
    58  (AndB x y) -> (ANDL x y)
    59  (OrB x y) -> (ORL x y)
    60  (Not x) -> (XORLconst [1] x)
    61  
    62  // Lowering pointer arithmetic
    63  (OffPtr [off] ptr) -> (ADDLconst [off] ptr)
    64  
    65  (Bswap32 x) -> (BSWAPL x)
    66  
    67  (Sqrt x) -> (SQRTSD x)
    68  
    69  (Ctz16 x) -> (BSFL (ORLconst <typ.UInt32> [0x10000] x))
    70  (Ctz16NonZero x) -> (BSFL x)
    71  
    72  // Lowering extension
    73  (SignExt8to16  x) -> (MOVBLSX x)
    74  (SignExt8to32  x) -> (MOVBLSX x)
    75  (SignExt16to32 x) -> (MOVWLSX x)
    76  
    77  (ZeroExt8to16  x) -> (MOVBLZX x)
    78  (ZeroExt8to32  x) -> (MOVBLZX x)
    79  (ZeroExt16to32 x) -> (MOVWLZX x)
    80  
    81  (Signmask x) -> (SARLconst x [31])
    82  (Zeromask <t> x) -> (XORLconst [-1] (SBBLcarrymask <t> (CMPLconst x [1])))
    83  (Slicemask <t> x) -> (SARLconst (NEGL <t> x) [31])
    84  
    85  // Lowering truncation
    86  // Because we ignore high parts of registers, truncates are just copies.
    87  (Trunc16to8  x) -> x
    88  (Trunc32to8  x) -> x
    89  (Trunc32to16 x) -> x
    90  
    91  // Lowering float <-> int
    92  (Cvt32to32F x) -> (CVTSL2SS x)
    93  (Cvt32to64F x) -> (CVTSL2SD x)
    94  
    95  (Cvt32Fto32 x) -> (CVTTSS2SL x)
    96  (Cvt64Fto32 x) -> (CVTTSD2SL x)
    97  
    98  (Cvt32Fto64F x) -> (CVTSS2SD x)
    99  (Cvt64Fto32F x) -> (CVTSD2SS x)
   100  
   101  (Round32F x) -> x
   102  (Round64F x) -> x
   103  
   104  // Lowering shifts
   105  // Unsigned shifts need to return 0 if shift amount is >= width of shifted value.
   106  //   result = (arg << shift) & (shift >= argbits ? 0 : 0xffffffffffffffff)
   107  (Lsh32x32 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPLconst y [32])))
   108  (Lsh32x16 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPWconst y [32])))
   109  (Lsh32x8  <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPBconst y [32])))
   110  
   111  (Lsh16x32 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPLconst y [32])))
   112  (Lsh16x16 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPWconst y [32])))
   113  (Lsh16x8  <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPBconst y [32])))
   114  
   115  (Lsh8x32 <t> x y)  -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPLconst y [32])))
   116  (Lsh8x16 <t> x y)  -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPWconst y [32])))
   117  (Lsh8x8  <t> x y)  -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPBconst y [32])))
   118  
   119  (Rsh32Ux32 <t> x y) -> (ANDL (SHRL <t> x y) (SBBLcarrymask <t> (CMPLconst y [32])))
   120  (Rsh32Ux16 <t> x y) -> (ANDL (SHRL <t> x y) (SBBLcarrymask <t> (CMPWconst y [32])))
   121  (Rsh32Ux8  <t> x y) -> (ANDL (SHRL <t> x y) (SBBLcarrymask <t> (CMPBconst y [32])))
   122  
   123  (Rsh16Ux32 <t> x y) -> (ANDL (SHRW <t> x y) (SBBLcarrymask <t> (CMPLconst y [16])))
   124  (Rsh16Ux16 <t> x y) -> (ANDL (SHRW <t> x y) (SBBLcarrymask <t> (CMPWconst y [16])))
   125  (Rsh16Ux8  <t> x y) -> (ANDL (SHRW <t> x y) (SBBLcarrymask <t> (CMPBconst y [16])))
   126  
   127  (Rsh8Ux32 <t> x y)  -> (ANDL (SHRB <t> x y) (SBBLcarrymask <t> (CMPLconst y [8])))
   128  (Rsh8Ux16 <t> x y)  -> (ANDL (SHRB <t> x y) (SBBLcarrymask <t> (CMPWconst y [8])))
   129  (Rsh8Ux8  <t> x y)  -> (ANDL (SHRB <t> x y) (SBBLcarrymask <t> (CMPBconst y [8])))
   130  
   131  // Signed right shift needs to return 0/-1 if shift amount is >= width of shifted value.
   132  // We implement this by setting the shift value to -1 (all ones) if the shift value is >= width.
   133  
   134  (Rsh32x32 <t> x y) -> (SARL <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPLconst y [32])))))
   135  (Rsh32x16 <t> x y) -> (SARL <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPWconst y [32])))))
   136  (Rsh32x8  <t> x y) -> (SARL <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPBconst y [32])))))
   137  
   138  (Rsh16x32 <t> x y) -> (SARW <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPLconst y [16])))))
   139  (Rsh16x16 <t> x y) -> (SARW <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPWconst y [16])))))
   140  (Rsh16x8  <t> x y) -> (SARW <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPBconst y [16])))))
   141  
   142  (Rsh8x32 <t> x y)  -> (SARB <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPLconst y [8])))))
   143  (Rsh8x16 <t> x y)  -> (SARB <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPWconst y [8])))))
   144  (Rsh8x8  <t> x y)  -> (SARB <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPBconst y [8])))))
   145  
   146  // constant shifts
   147  // generic opt rewrites all constant shifts to shift by Const64
   148  (Lsh32x64 x (Const64 [c])) && uint64(c) < 32 -> (SHLLconst x [c])
   149  (Rsh32x64 x (Const64 [c])) && uint64(c) < 32 -> (SARLconst x [c])
   150  (Rsh32Ux64 x (Const64 [c])) && uint64(c) < 32 -> (SHRLconst x [c])
   151  (Lsh16x64 x (Const64 [c])) && uint64(c) < 16 -> (SHLLconst x [c])
   152  (Rsh16x64 x (Const64 [c])) && uint64(c) < 16 -> (SARWconst x [c])
   153  (Rsh16Ux64 x (Const64 [c])) && uint64(c) < 16 -> (SHRWconst x [c])
   154  (Lsh8x64 x (Const64 [c])) && uint64(c) < 8 -> (SHLLconst x [c])
   155  (Rsh8x64 x (Const64 [c])) && uint64(c) < 8 -> (SARBconst x [c])
   156  (Rsh8Ux64 x (Const64 [c])) && uint64(c) < 8 -> (SHRBconst x [c])
   157  
   158  // large constant shifts
   159  (Lsh32x64 _ (Const64 [c])) && uint64(c) >= 32 -> (Const32 [0])
   160  (Rsh32Ux64 _ (Const64 [c])) && uint64(c) >= 32 -> (Const32 [0])
   161  (Lsh16x64 _ (Const64 [c])) && uint64(c) >= 16 -> (Const16 [0])
   162  (Rsh16Ux64 _ (Const64 [c])) && uint64(c) >= 16 -> (Const16 [0])
   163  (Lsh8x64 _ (Const64 [c])) && uint64(c) >= 8 -> (Const8 [0])
   164  (Rsh8Ux64 _ (Const64 [c])) && uint64(c) >= 8 -> (Const8 [0])
   165  
   166  // large constant signed right shift, we leave the sign bit
   167  (Rsh32x64 x (Const64 [c])) && uint64(c) >= 32 -> (SARLconst x [31])
   168  (Rsh16x64 x (Const64 [c])) && uint64(c) >= 16 -> (SARWconst x [15])
   169  (Rsh8x64 x (Const64 [c])) && uint64(c) >= 8 -> (SARBconst x [7])
   170  
   171  // constant rotates
   172  (RotateLeft32 x (MOVLconst [c])) -> (ROLLconst [c&31] x)
   173  (RotateLeft16 x (MOVLconst [c])) -> (ROLWconst [c&15] x)
   174  (RotateLeft8 x (MOVLconst [c]))  -> (ROLBconst [c&7] x)
   175  
   176  // Lowering comparisons
   177  (Less32  x y) -> (SETL (CMPL x y))
   178  (Less16  x y) -> (SETL (CMPW x y))
   179  (Less8   x y) -> (SETL (CMPB x y))
   180  (Less32U x y) -> (SETB (CMPL x y))
   181  (Less16U x y) -> (SETB (CMPW x y))
   182  (Less8U  x y) -> (SETB (CMPB x y))
   183  // Use SETGF with reversed operands to dodge NaN case
   184  (Less64F x y) -> (SETGF (UCOMISD y x))
   185  (Less32F x y) -> (SETGF (UCOMISS y x))
   186  
   187  (Leq32  x y) -> (SETLE (CMPL x y))
   188  (Leq16  x y) -> (SETLE (CMPW x y))
   189  (Leq8   x y) -> (SETLE (CMPB x y))
   190  (Leq32U x y) -> (SETBE (CMPL x y))
   191  (Leq16U x y) -> (SETBE (CMPW x y))
   192  (Leq8U  x y) -> (SETBE (CMPB x y))
   193  // Use SETGEF with reversed operands to dodge NaN case
   194  (Leq64F x y) -> (SETGEF (UCOMISD y x))
   195  (Leq32F x y) -> (SETGEF (UCOMISS y x))
   196  
   197  (Greater32  x y) -> (SETG (CMPL x y))
   198  (Greater16  x y) -> (SETG (CMPW x y))
   199  (Greater8   x y) -> (SETG (CMPB x y))
   200  (Greater32U x y) -> (SETA (CMPL x y))
   201  (Greater16U x y) -> (SETA (CMPW x y))
   202  (Greater8U  x y) -> (SETA (CMPB x y))
   203  // Note Go assembler gets UCOMISx operand order wrong, but it is right here
   204  // Bug is accommodated at generation of assembly language.
   205  (Greater64F x y) -> (SETGF (UCOMISD x y))
   206  (Greater32F x y) -> (SETGF (UCOMISS x y))
   207  
   208  (Geq32  x y) -> (SETGE (CMPL x y))
   209  (Geq16  x y) -> (SETGE (CMPW x y))
   210  (Geq8   x y) -> (SETGE (CMPB x y))
   211  (Geq32U x y) -> (SETAE (CMPL x y))
   212  (Geq16U x y) -> (SETAE (CMPW x y))
   213  (Geq8U  x y) -> (SETAE (CMPB x y))
   214  // Note Go assembler gets UCOMISx operand order wrong, but it is right here
   215  // Bug is accommodated at generation of assembly language.
   216  (Geq64F x y) -> (SETGEF (UCOMISD x y))
   217  (Geq32F x y) -> (SETGEF (UCOMISS x y))
   218  
   219  (Eq32  x y) -> (SETEQ (CMPL x y))
   220  (Eq16  x y) -> (SETEQ (CMPW x y))
   221  (Eq8   x y) -> (SETEQ (CMPB x y))
   222  (EqB   x y) -> (SETEQ (CMPB x y))
   223  (EqPtr x y) -> (SETEQ (CMPL x y))
   224  (Eq64F x y) -> (SETEQF (UCOMISD x y))
   225  (Eq32F x y) -> (SETEQF (UCOMISS x y))
   226  
   227  (Neq32  x y) -> (SETNE (CMPL x y))
   228  (Neq16  x y) -> (SETNE (CMPW x y))
   229  (Neq8   x y) -> (SETNE (CMPB x y))
   230  (NeqB   x y) -> (SETNE (CMPB x y))
   231  (NeqPtr x y) -> (SETNE (CMPL x y))
   232  (Neq64F x y) -> (SETNEF (UCOMISD x y))
   233  (Neq32F x y) -> (SETNEF (UCOMISS x y))
   234  
   235  // Lowering loads
   236  (Load <t> ptr mem) && (is32BitInt(t) || isPtr(t)) -> (MOVLload ptr mem)
   237  (Load <t> ptr mem) && is16BitInt(t) -> (MOVWload ptr mem)
   238  (Load <t> ptr mem) && (t.IsBoolean() || is8BitInt(t)) -> (MOVBload ptr mem)
   239  (Load <t> ptr mem) && is32BitFloat(t) -> (MOVSSload ptr mem)
   240  (Load <t> ptr mem) && is64BitFloat(t) -> (MOVSDload ptr mem)
   241  
   242  // Lowering stores
   243  // These more-specific FP versions of Store pattern should come first.
   244  (Store {t} ptr val mem) && t.(*types.Type).Size() == 8 && is64BitFloat(val.Type) -> (MOVSDstore ptr val mem)
   245  (Store {t} ptr val mem) && t.(*types.Type).Size() == 4 && is32BitFloat(val.Type) -> (MOVSSstore ptr val mem)
   246  
   247  (Store {t} ptr val mem) && t.(*types.Type).Size() == 4 -> (MOVLstore ptr val mem)
   248  (Store {t} ptr val mem) && t.(*types.Type).Size() == 2 -> (MOVWstore ptr val mem)
   249  (Store {t} ptr val mem) && t.(*types.Type).Size() == 1 -> (MOVBstore ptr val mem)
   250  
   251  // Lowering moves
   252  (Move [0] _ _ mem) -> mem
   253  (Move [1] dst src mem) -> (MOVBstore dst (MOVBload src mem) mem)
   254  (Move [2] dst src mem) -> (MOVWstore dst (MOVWload src mem) mem)
   255  (Move [4] dst src mem) -> (MOVLstore dst (MOVLload src mem) mem)
   256  (Move [3] dst src mem) ->
   257  	(MOVBstore [2] dst (MOVBload [2] src mem)
   258  		(MOVWstore dst (MOVWload src mem) mem))
   259  (Move [5] dst src mem) ->
   260  	(MOVBstore [4] dst (MOVBload [4] src mem)
   261  		(MOVLstore dst (MOVLload src mem) mem))
   262  (Move [6] dst src mem) ->
   263  	(MOVWstore [4] dst (MOVWload [4] src mem)
   264  		(MOVLstore dst (MOVLload src mem) mem))
   265  (Move [7] dst src mem) ->
   266  	(MOVLstore [3] dst (MOVLload [3] src mem)
   267  		(MOVLstore dst (MOVLload src mem) mem))
   268  (Move [8] dst src mem) ->
   269  	(MOVLstore [4] dst (MOVLload [4] src mem)
   270  		(MOVLstore dst (MOVLload src mem) mem))
   271  
   272  // Adjust moves to be a multiple of 4 bytes.
   273  (Move [s] dst src mem)
   274  	&& s > 8 && s%4 != 0 ->
   275  	(Move [s-s%4]
   276  		(ADDLconst <dst.Type> dst [s%4])
   277  		(ADDLconst <src.Type> src [s%4])
   278  		(MOVLstore dst (MOVLload src mem) mem))
   279  
   280  // Medium copying uses a duff device.
   281  (Move [s] dst src mem)
   282  	&& s > 8 && s <= 4*128 && s%4 == 0
   283  	&& !config.noDuffDevice ->
   284  	(DUFFCOPY [10*(128-s/4)] dst src mem)
   285  // 10 and 128 are magic constants.  10 is the number of bytes to encode:
   286  //	MOVL	(SI), CX
   287  //	ADDL	$4, SI
   288  //	MOVL	CX, (DI)
   289  //	ADDL	$4, DI
   290  // and 128 is the number of such blocks. See src/runtime/duff_386.s:duffcopy.
   291  
   292  // Large copying uses REP MOVSL.
   293  (Move [s] dst src mem) && (s > 4*128 || config.noDuffDevice) && s%4 == 0 ->
   294  	(REPMOVSL dst src (MOVLconst [s/4]) mem)
   295  
   296  // Lowering Zero instructions
   297  (Zero [0] _ mem) -> mem
   298  (Zero [1] destptr mem) -> (MOVBstoreconst [0] destptr mem)
   299  (Zero [2] destptr mem) -> (MOVWstoreconst [0] destptr mem)
   300  (Zero [4] destptr mem) -> (MOVLstoreconst [0] destptr mem)
   301  
   302  (Zero [3] destptr mem) ->
   303  	(MOVBstoreconst [makeValAndOff(0,2)] destptr
   304  		(MOVWstoreconst [0] destptr mem))
   305  (Zero [5] destptr mem) ->
   306  	(MOVBstoreconst [makeValAndOff(0,4)] destptr
   307  		(MOVLstoreconst [0] destptr mem))
   308  (Zero [6] destptr mem) ->
   309  	(MOVWstoreconst [makeValAndOff(0,4)] destptr
   310  		(MOVLstoreconst [0] destptr mem))
   311  (Zero [7] destptr mem) ->
   312  	(MOVLstoreconst [makeValAndOff(0,3)] destptr
   313  		(MOVLstoreconst [0] destptr mem))
   314  
   315  // Strip off any fractional word zeroing.
   316  (Zero [s] destptr mem) && s%4 != 0 && s > 4 ->
   317  	(Zero [s-s%4] (ADDLconst destptr [s%4])
   318  		(MOVLstoreconst [0] destptr mem))
   319  
   320  // Zero small numbers of words directly.
   321  (Zero [8] destptr mem) ->
   322  	(MOVLstoreconst [makeValAndOff(0,4)] destptr
   323  		(MOVLstoreconst [0] destptr mem))
   324  (Zero [12] destptr mem) ->
   325  	(MOVLstoreconst [makeValAndOff(0,8)] destptr
   326  		(MOVLstoreconst [makeValAndOff(0,4)] destptr
   327  			(MOVLstoreconst [0] destptr mem)))
   328  (Zero [16] destptr mem) ->
   329  	(MOVLstoreconst [makeValAndOff(0,12)] destptr
   330  		(MOVLstoreconst [makeValAndOff(0,8)] destptr
   331  			(MOVLstoreconst [makeValAndOff(0,4)] destptr
   332  				(MOVLstoreconst [0] destptr mem))))
   333  
   334  // Medium zeroing uses a duff device.
   335  (Zero [s] destptr mem)
   336    && s > 16 && s <= 4*128 && s%4 == 0
   337    && !config.noDuffDevice ->
   338  	(DUFFZERO [1*(128-s/4)] destptr (MOVLconst [0]) mem)
   339  // 1 and 128 are magic constants.  1 is the number of bytes to encode STOSL.
   340  // 128 is the number of STOSL instructions in duffzero.
   341  // See src/runtime/duff_386.s:duffzero.
   342  
   343  // Large zeroing uses REP STOSQ.
   344  (Zero [s] destptr mem)
   345    && (s > 4*128 || (config.noDuffDevice && s > 16))
   346    && s%4 == 0 ->
   347  	(REPSTOSL destptr (MOVLconst [s/4]) (MOVLconst [0]) mem)
   348  
   349  // Lowering constants
   350  (Const(8|16|32)   [val]) -> (MOVLconst [val])
   351  (Const(32|64)F [val]) -> (MOVS(S|D)const [val])
   352  (ConstNil) -> (MOVLconst [0])
   353  (ConstBool [b]) -> (MOVLconst [b])
   354  
   355  // Lowering calls
   356  (StaticCall [argwid] {target} mem) -> (CALLstatic [argwid] {target} mem)
   357  (ClosureCall [argwid] entry closure mem) -> (CALLclosure [argwid] entry closure mem)
   358  (InterCall [argwid] entry mem) -> (CALLinter [argwid] entry mem)
   359  
   360  // Miscellaneous
   361  (IsNonNil p) -> (SETNE (TESTL p p))
   362  (IsInBounds idx len) -> (SETB (CMPL idx len))
   363  (IsSliceInBounds idx len) -> (SETBE (CMPL idx len))
   364  (NilCheck ptr mem) -> (LoweredNilCheck ptr mem)
   365  (GetG mem) -> (LoweredGetG mem)
   366  (GetClosurePtr) -> (LoweredGetClosurePtr)
   367  (GetCallerPC) -> (LoweredGetCallerPC)
   368  (GetCallerSP) -> (LoweredGetCallerSP)
   369  (Addr {sym} base) -> (LEAL {sym} base)
   370  (LocalAddr {sym} base _) -> (LEAL {sym} base)
   371  
   372  // block rewrites
   373  (If (SETL  cmp) yes no) -> (LT  cmp yes no)
   374  (If (SETLE cmp) yes no) -> (LE  cmp yes no)
   375  (If (SETG  cmp) yes no) -> (GT  cmp yes no)
   376  (If (SETGE cmp) yes no) -> (GE  cmp yes no)
   377  (If (SETEQ cmp) yes no) -> (EQ  cmp yes no)
   378  (If (SETNE cmp) yes no) -> (NE  cmp yes no)
   379  (If (SETB  cmp) yes no) -> (ULT cmp yes no)
   380  (If (SETBE cmp) yes no) -> (ULE cmp yes no)
   381  (If (SETA  cmp) yes no) -> (UGT cmp yes no)
   382  (If (SETAE cmp) yes no) -> (UGE cmp yes no)
   383  (If (SETO  cmp) yes no) -> (OS cmp yes no)
   384  
   385  // Special case for floating point - LF/LEF not generated
   386  (If (SETGF  cmp) yes no) -> (UGT  cmp yes no)
   387  (If (SETGEF cmp) yes no) -> (UGE  cmp yes no)
   388  (If (SETEQF cmp) yes no) -> (EQF  cmp yes no)
   389  (If (SETNEF cmp) yes no) -> (NEF  cmp yes no)
   390  
   391  (If cond yes no) -> (NE (TESTB cond cond) yes no)
   392  
   393  // Write barrier.
   394  (WB {fn} destptr srcptr mem) -> (LoweredWB {fn} destptr srcptr mem)
   395  
   396  (PanicBounds [kind] x y mem) && boundsABI(kind) == 0 -> (LoweredPanicBoundsA [kind] x y mem)
   397  (PanicBounds [kind] x y mem) && boundsABI(kind) == 1 -> (LoweredPanicBoundsB [kind] x y mem)
   398  (PanicBounds [kind] x y mem) && boundsABI(kind) == 2 -> (LoweredPanicBoundsC [kind] x y mem)
   399  
   400  (PanicExtend [kind] hi lo y mem) && boundsABI(kind) == 0 -> (LoweredPanicExtendA [kind] hi lo y mem)
   401  (PanicExtend [kind] hi lo y mem) && boundsABI(kind) == 1 -> (LoweredPanicExtendB [kind] hi lo y mem)
   402  (PanicExtend [kind] hi lo y mem) && boundsABI(kind) == 2 -> (LoweredPanicExtendC [kind] hi lo y mem)
   403  
   404  // ***************************
   405  // Above: lowering rules
   406  // Below: optimizations
   407  // ***************************
   408  // TODO: Should the optimizations be a separate pass?
   409  
   410  // Fold boolean tests into blocks
   411  (NE (TESTB (SETL  cmp) (SETL  cmp)) yes no) -> (LT  cmp yes no)
   412  (NE (TESTB (SETLE cmp) (SETLE cmp)) yes no) -> (LE  cmp yes no)
   413  (NE (TESTB (SETG  cmp) (SETG  cmp)) yes no) -> (GT  cmp yes no)
   414  (NE (TESTB (SETGE cmp) (SETGE cmp)) yes no) -> (GE  cmp yes no)
   415  (NE (TESTB (SETEQ cmp) (SETEQ cmp)) yes no) -> (EQ  cmp yes no)
   416  (NE (TESTB (SETNE cmp) (SETNE cmp)) yes no) -> (NE  cmp yes no)
   417  (NE (TESTB (SETB  cmp) (SETB  cmp)) yes no) -> (ULT cmp yes no)
   418  (NE (TESTB (SETBE cmp) (SETBE cmp)) yes no) -> (ULE cmp yes no)
   419  (NE (TESTB (SETA  cmp) (SETA  cmp)) yes no) -> (UGT cmp yes no)
   420  (NE (TESTB (SETAE cmp) (SETAE cmp)) yes no) -> (UGE cmp yes no)
   421  (NE (TESTB (SETO cmp) (SETO cmp)) yes no) -> (OS cmp yes no)
   422  
   423  // Special case for floating point - LF/LEF not generated
   424  (NE (TESTB (SETGF  cmp) (SETGF  cmp)) yes no) -> (UGT  cmp yes no)
   425  (NE (TESTB (SETGEF cmp) (SETGEF cmp)) yes no) -> (UGE  cmp yes no)
   426  (NE (TESTB (SETEQF cmp) (SETEQF cmp)) yes no) -> (EQF  cmp yes no)
   427  (NE (TESTB (SETNEF cmp) (SETNEF cmp)) yes no) -> (NEF  cmp yes no)
   428  
   429  // fold constants into instructions
   430  (ADDL x (MOVLconst [c])) -> (ADDLconst [c] x)
   431  (ADDLcarry x (MOVLconst [c])) -> (ADDLconstcarry [c] x)
   432  (ADCL x (MOVLconst [c]) f) -> (ADCLconst [c] x f)
   433  (ADCL (MOVLconst [c]) x f) -> (ADCLconst [c] x f)
   434  
   435  (SUBL x (MOVLconst [c])) -> (SUBLconst x [c])
   436  (SUBL (MOVLconst [c]) x) -> (NEGL (SUBLconst <v.Type> x [c]))
   437  (SUBLcarry x (MOVLconst [c])) -> (SUBLconstcarry [c] x)
   438  (SBBL x (MOVLconst [c]) f) -> (SBBLconst [c] x f)
   439  
   440  (MULL x (MOVLconst [c])) -> (MULLconst [c] x)
   441  
   442  (ANDL x (MOVLconst [c])) -> (ANDLconst [c] x)
   443  
   444  (ANDLconst [c] (ANDLconst [d] x)) -> (ANDLconst [c & d] x)
   445  
   446  (XORLconst [c] (XORLconst [d] x)) -> (XORLconst [c ^ d] x)
   447  
   448  (MULLconst [c] (MULLconst [d] x)) -> (MULLconst [int64(int32(c * d))] x)
   449  
   450  (ORL x (MOVLconst [c])) -> (ORLconst [c] x)
   451  
   452  (XORL x (MOVLconst [c])) -> (XORLconst [c] x)
   453  
   454  (SHLL x (MOVLconst [c])) -> (SHLLconst [c&31] x)
   455  (SHRL x (MOVLconst [c])) -> (SHRLconst [c&31] x)
   456  (SHRW x (MOVLconst [c])) && c&31 < 16 -> (SHRWconst [c&31] x)
   457  (SHRW _ (MOVLconst [c])) && c&31 >= 16 -> (MOVLconst [0])
   458  (SHRB x (MOVLconst [c])) && c&31 < 8 -> (SHRBconst [c&31] x)
   459  (SHRB _ (MOVLconst [c])) && c&31 >= 8 -> (MOVLconst [0])
   460  
   461  (SARL x (MOVLconst [c])) -> (SARLconst [c&31] x)
   462  (SARW x (MOVLconst [c])) -> (SARWconst [min(c&31,15)] x)
   463  (SARB x (MOVLconst [c])) -> (SARBconst [min(c&31,7)] x)
   464  
   465  (SARL x (ANDLconst [31] y)) -> (SARL x y)
   466  
   467  (SHLL x (ANDLconst [31] y)) -> (SHLL x y)
   468  
   469  (SHRL x (ANDLconst [31] y)) -> (SHRL x y)
   470  
   471  // Rotate instructions
   472  
   473  (ADDL (SHLLconst [c] x) (SHRLconst [d] x)) && d == 32-c -> (ROLLconst [c] x)
   474  ( ORL (SHLLconst [c] x) (SHRLconst [d] x)) && d == 32-c -> (ROLLconst [c] x)
   475  (XORL (SHLLconst [c] x) (SHRLconst [d] x)) && d == 32-c -> (ROLLconst [c] x)
   476  
   477  (ADDL <t> (SHLLconst x [c]) (SHRWconst x [d])) && c < 16 && d == 16-c && t.Size() == 2 -> (ROLWconst x [c])
   478  ( ORL <t> (SHLLconst x [c]) (SHRWconst x [d])) && c < 16 && d == 16-c && t.Size() == 2 -> (ROLWconst x [c])
   479  (XORL <t> (SHLLconst x [c]) (SHRWconst x [d])) && c < 16 && d == 16-c && t.Size() == 2 -> (ROLWconst x [c])
   480  
   481  (ADDL <t> (SHLLconst x [c]) (SHRBconst x [d])) && c < 8 && d == 8-c && t.Size() == 1 -> (ROLBconst x [c])
   482  ( ORL <t> (SHLLconst x [c]) (SHRBconst x [d])) && c < 8 && d == 8-c && t.Size() == 1 -> (ROLBconst x [c])
   483  (XORL <t> (SHLLconst x [c]) (SHRBconst x [d])) && c < 8 && d == 8-c && t.Size() == 1 -> (ROLBconst x [c])
   484  
   485  (ROLLconst [c] (ROLLconst [d] x)) -> (ROLLconst [(c+d)&31] x)
   486  (ROLWconst [c] (ROLWconst [d] x)) -> (ROLWconst [(c+d)&15] x)
   487  (ROLBconst [c] (ROLBconst [d] x)) -> (ROLBconst [(c+d)& 7] x)
   488  
   489  // Constant shift simplifications
   490  
   491  (SHLLconst x [0]) -> x
   492  (SHRLconst x [0]) -> x
   493  (SARLconst x [0]) -> x
   494  
   495  (SHRWconst x [0]) -> x
   496  (SARWconst x [0]) -> x
   497  
   498  (SHRBconst x [0]) -> x
   499  (SARBconst x [0]) -> x
   500  
   501  (ROLLconst [0] x) -> x
   502  (ROLWconst [0] x) -> x
   503  (ROLBconst [0] x) -> x
   504  
   505  // Note: the word and byte shifts keep the low 5 bits (not the low 4 or 3 bits)
   506  // because the x86 instructions are defined to use all 5 bits of the shift even
   507  // for the small shifts. I don't think we'll ever generate a weird shift (e.g.
   508  // (SHRW x (MOVLconst [24])), but just in case.
   509  
   510  (CMPL x (MOVLconst [c])) -> (CMPLconst x [c])
   511  (CMPL (MOVLconst [c]) x) -> (InvertFlags (CMPLconst x [c]))
   512  (CMPW x (MOVLconst [c])) -> (CMPWconst x [int64(int16(c))])
   513  (CMPW (MOVLconst [c]) x) -> (InvertFlags (CMPWconst x [int64(int16(c))]))
   514  (CMPB x (MOVLconst [c])) -> (CMPBconst x [int64(int8(c))])
   515  (CMPB (MOVLconst [c]) x) -> (InvertFlags (CMPBconst x [int64(int8(c))]))
   516  
   517  // strength reduction
   518  // Assumes that the following costs from https://gmplib.org/~tege/x86-timing.pdf:
   519  //    1 - addl, shll, leal, negl, subl
   520  //    3 - imull
   521  // This limits the rewrites to two instructions.
   522  // Note that negl always operates in-place,
   523  // which can require a register-register move
   524  // to preserve the original value,
   525  // so it must be used with care.
   526  (MULLconst [-9] x) -> (NEGL (LEAL8 <v.Type> x x))
   527  (MULLconst [-5] x) -> (NEGL (LEAL4 <v.Type> x x))
   528  (MULLconst [-3] x) -> (NEGL (LEAL2 <v.Type> x x))
   529  (MULLconst [-1] x) -> (NEGL x)
   530  (MULLconst [0] _) -> (MOVLconst [0])
   531  (MULLconst [1] x) -> x
   532  (MULLconst [3] x) -> (LEAL2 x x)
   533  (MULLconst [5] x) -> (LEAL4 x x)
   534  (MULLconst [7] x) -> (LEAL2 x (LEAL2 <v.Type> x x))
   535  (MULLconst [9] x) -> (LEAL8 x x)
   536  (MULLconst [11] x) -> (LEAL2 x (LEAL4 <v.Type> x x))
   537  (MULLconst [13] x) -> (LEAL4 x (LEAL2 <v.Type> x x))
   538  (MULLconst [19] x) -> (LEAL2 x (LEAL8 <v.Type> x x))
   539  (MULLconst [21] x) -> (LEAL4 x (LEAL4 <v.Type> x x))
   540  (MULLconst [25] x) -> (LEAL8 x (LEAL2 <v.Type> x x))
   541  (MULLconst [27] x) -> (LEAL8 (LEAL2 <v.Type> x x) (LEAL2 <v.Type> x x))
   542  (MULLconst [37] x) -> (LEAL4 x (LEAL8 <v.Type> x x))
   543  (MULLconst [41] x) -> (LEAL8 x (LEAL4 <v.Type> x x))
   544  (MULLconst [45] x) -> (LEAL8 (LEAL4 <v.Type> x x) (LEAL4 <v.Type> x x))
   545  (MULLconst [73] x) -> (LEAL8 x (LEAL8 <v.Type> x x))
   546  (MULLconst [81] x) -> (LEAL8 (LEAL8 <v.Type> x x) (LEAL8 <v.Type> x x))
   547  
   548  (MULLconst [c] x) && isPowerOfTwo(c+1) && c >= 15 -> (SUBL (SHLLconst <v.Type> [log2(c+1)] x) x)
   549  (MULLconst [c] x) && isPowerOfTwo(c-1) && c >= 17 -> (LEAL1 (SHLLconst <v.Type> [log2(c-1)] x) x)
   550  (MULLconst [c] x) && isPowerOfTwo(c-2) && c >= 34 -> (LEAL2 (SHLLconst <v.Type> [log2(c-2)] x) x)
   551  (MULLconst [c] x) && isPowerOfTwo(c-4) && c >= 68 -> (LEAL4 (SHLLconst <v.Type> [log2(c-4)] x) x)
   552  (MULLconst [c] x) && isPowerOfTwo(c-8) && c >= 136 -> (LEAL8 (SHLLconst <v.Type> [log2(c-8)] x) x)
   553  (MULLconst [c] x) && c%3 == 0 && isPowerOfTwo(c/3) -> (SHLLconst [log2(c/3)] (LEAL2 <v.Type> x x))
   554  (MULLconst [c] x) && c%5 == 0 && isPowerOfTwo(c/5) -> (SHLLconst [log2(c/5)] (LEAL4 <v.Type> x x))
   555  (MULLconst [c] x) && c%9 == 0 && isPowerOfTwo(c/9) -> (SHLLconst [log2(c/9)] (LEAL8 <v.Type> x x))
   556  
   557  // combine add/shift into LEAL
   558  (ADDL x (SHLLconst [3] y)) -> (LEAL8 x y)
   559  (ADDL x (SHLLconst [2] y)) -> (LEAL4 x y)
   560  (ADDL x (SHLLconst [1] y)) -> (LEAL2 x y)
   561  (ADDL x (ADDL y y)) -> (LEAL2 x y)
   562  (ADDL x (ADDL x y)) -> (LEAL2 y x)
   563  
   564  // combine ADDL/ADDLconst into LEAL1
   565  (ADDLconst [c] (ADDL x y)) -> (LEAL1 [c] x y)
   566  (ADDL (ADDLconst [c] x) y) -> (LEAL1 [c] x y)
   567  
   568  // fold ADDL into LEAL
   569  (ADDLconst [c] (LEAL [d] {s} x)) && is32Bit(c+d) -> (LEAL [c+d] {s} x)
   570  (LEAL [c] {s} (ADDLconst [d] x)) && is32Bit(c+d) -> (LEAL [c+d] {s} x)
   571  (LEAL [c] {s} (ADDL x y)) && x.Op != OpSB && y.Op != OpSB -> (LEAL1 [c] {s} x y)
   572  (ADDL x (LEAL [c] {s} y)) && x.Op != OpSB && y.Op != OpSB -> (LEAL1 [c] {s} x y)
   573  
   574  // fold ADDLconst into LEALx
   575  (ADDLconst [c] (LEAL1 [d] {s} x y)) && is32Bit(c+d) -> (LEAL1 [c+d] {s} x y)
   576  (ADDLconst [c] (LEAL2 [d] {s} x y)) && is32Bit(c+d) -> (LEAL2 [c+d] {s} x y)
   577  (ADDLconst [c] (LEAL4 [d] {s} x y)) && is32Bit(c+d) -> (LEAL4 [c+d] {s} x y)
   578  (ADDLconst [c] (LEAL8 [d] {s} x y)) && is32Bit(c+d) -> (LEAL8 [c+d] {s} x y)
   579  (LEAL1 [c] {s} (ADDLconst [d] x) y) && is32Bit(c+d)   && x.Op != OpSB -> (LEAL1 [c+d] {s} x y)
   580  (LEAL2 [c] {s} (ADDLconst [d] x) y) && is32Bit(c+d)   && x.Op != OpSB -> (LEAL2 [c+d] {s} x y)
   581  (LEAL2 [c] {s} x (ADDLconst [d] y)) && is32Bit(c+2*d) && y.Op != OpSB -> (LEAL2 [c+2*d] {s} x y)
   582  (LEAL4 [c] {s} (ADDLconst [d] x) y) && is32Bit(c+d)   && x.Op != OpSB -> (LEAL4 [c+d] {s} x y)
   583  (LEAL4 [c] {s} x (ADDLconst [d] y)) && is32Bit(c+4*d) && y.Op != OpSB -> (LEAL4 [c+4*d] {s} x y)
   584  (LEAL8 [c] {s} (ADDLconst [d] x) y) && is32Bit(c+d)   && x.Op != OpSB -> (LEAL8 [c+d] {s} x y)
   585  (LEAL8 [c] {s} x (ADDLconst [d] y)) && is32Bit(c+8*d) && y.Op != OpSB -> (LEAL8 [c+8*d] {s} x y)
   586  
   587  // fold shifts into LEALx
   588  (LEAL1 [c] {s} x (SHLLconst [1] y)) -> (LEAL2 [c] {s} x y)
   589  (LEAL1 [c] {s} x (SHLLconst [2] y)) -> (LEAL4 [c] {s} x y)
   590  (LEAL1 [c] {s} x (SHLLconst [3] y)) -> (LEAL8 [c] {s} x y)
   591  (LEAL2 [c] {s} x (SHLLconst [1] y)) -> (LEAL4 [c] {s} x y)
   592  (LEAL2 [c] {s} x (SHLLconst [2] y)) -> (LEAL8 [c] {s} x y)
   593  (LEAL4 [c] {s} x (SHLLconst [1] y)) -> (LEAL8 [c] {s} x y)
   594  
   595  // reverse ordering of compare instruction
   596  (SETL (InvertFlags x)) -> (SETG x)
   597  (SETG (InvertFlags x)) -> (SETL x)
   598  (SETB (InvertFlags x)) -> (SETA x)
   599  (SETA (InvertFlags x)) -> (SETB x)
   600  (SETLE (InvertFlags x)) -> (SETGE x)
   601  (SETGE (InvertFlags x)) -> (SETLE x)
   602  (SETBE (InvertFlags x)) -> (SETAE x)
   603  (SETAE (InvertFlags x)) -> (SETBE x)
   604  (SETEQ (InvertFlags x)) -> (SETEQ x)
   605  (SETNE (InvertFlags x)) -> (SETNE x)
   606  
   607  // sign extended loads
   608  // Note: The combined instruction must end up in the same block
   609  // as the original load. If not, we end up making a value with
   610  // memory type live in two different blocks, which can lead to
   611  // multiple memory values alive simultaneously.
   612  // Make sure we don't combine these ops if the load has another use.
   613  // This prevents a single load from being split into multiple loads
   614  // which then might return different values.  See test/atomicload.go.
   615  (MOVBLSX x:(MOVBload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) -> @x.Block (MOVBLSXload <v.Type> [off] {sym} ptr mem)
   616  (MOVBLZX x:(MOVBload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) -> @x.Block (MOVBload <v.Type> [off] {sym} ptr mem)
   617  (MOVWLSX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) -> @x.Block (MOVWLSXload <v.Type> [off] {sym} ptr mem)
   618  (MOVWLZX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) -> @x.Block (MOVWload <v.Type> [off] {sym} ptr mem)
   619  
   620  (MOVBLZX x:(MOVBloadidx1 [off] {sym} ptr idx mem)) && x.Uses == 1 && clobber(x) -> @x.Block (MOVBloadidx1 <v.Type> [off] {sym} ptr idx mem)
   621  (MOVWLZX x:(MOVWloadidx1 [off] {sym} ptr idx mem)) && x.Uses == 1 && clobber(x) -> @x.Block (MOVWloadidx1 <v.Type> [off] {sym} ptr idx mem)
   622  (MOVWLZX x:(MOVWloadidx2 [off] {sym} ptr idx mem)) && x.Uses == 1 && clobber(x) -> @x.Block (MOVWloadidx2 <v.Type> [off] {sym} ptr idx mem)
   623  
   624  // replace load from same location as preceding store with zero/sign extension (or copy in case of full width)
   625  (MOVBload [off] {sym} ptr (MOVBstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) -> (MOVBLZX x)
   626  (MOVWload [off] {sym} ptr (MOVWstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) -> (MOVWLZX x)
   627  (MOVLload [off] {sym} ptr (MOVLstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) -> x
   628  (MOVBLSXload [off] {sym} ptr (MOVBstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) -> (MOVBLSX x)
   629  (MOVWLSXload [off] {sym} ptr (MOVWstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) -> (MOVWLSX x)
   630  
   631  // Fold extensions and ANDs together.
   632  (MOVBLZX (ANDLconst [c] x)) -> (ANDLconst [c & 0xff] x)
   633  (MOVWLZX (ANDLconst [c] x)) -> (ANDLconst [c & 0xffff] x)
   634  (MOVBLSX (ANDLconst [c] x)) && c & 0x80 == 0 -> (ANDLconst [c & 0x7f] x)
   635  (MOVWLSX (ANDLconst [c] x)) && c & 0x8000 == 0 -> (ANDLconst [c & 0x7fff] x)
   636  
   637  // Don't extend before storing
   638  (MOVWstore [off] {sym} ptr (MOVWL(S|Z)X x) mem) -> (MOVWstore [off] {sym} ptr x mem)
   639  (MOVBstore [off] {sym} ptr (MOVBL(S|Z)X x) mem) -> (MOVBstore [off] {sym} ptr x mem)
   640  
   641  // fold constants into memory operations
   642  // Note that this is not always a good idea because if not all the uses of
   643  // the ADDQconst get eliminated, we still have to compute the ADDQconst and we now
   644  // have potentially two live values (ptr and (ADDQconst [off] ptr)) instead of one.
   645  // Nevertheless, let's do it!
   646  (MOV(L|W|B|SS|SD)load  [off1] {sym} (ADDLconst [off2] ptr) mem) && is32Bit(off1+off2) -> (MOV(L|W|B|SS|SD)load  [off1+off2] {sym} ptr mem)
   647  (MOV(L|W|B|SS|SD)store  [off1] {sym} (ADDLconst [off2] ptr) val mem) && is32Bit(off1+off2) -> (MOV(L|W|B|SS|SD)store  [off1+off2] {sym} ptr val mem)
   648  
   649  ((ADD|SUB|MUL|AND|OR|XOR)Lload [off1] {sym} val (ADDLconst [off2] base) mem) && is32Bit(off1+off2) ->
   650  	((ADD|SUB|MUL|AND|OR|XOR)Lload [off1+off2] {sym} val base mem)
   651  ((ADD|SUB|MUL|AND|OR|XOR)Lloadidx4 [off1] {sym} val (ADDLconst [off2] base) idx mem) && is32Bit(off1+off2) ->
   652  	((ADD|SUB|MUL|AND|OR|XOR)Lloadidx4 [off1+off2] {sym} val base idx mem)
   653  ((ADD|SUB|MUL|AND|OR|XOR)Lloadidx4 [off1] {sym} val base (ADDLconst [off2] idx) mem) && is32Bit(off1+off2*4) ->
   654  	((ADD|SUB|MUL|AND|OR|XOR)Lloadidx4 [off1+off2*4] {sym} val base idx mem)
   655  ((ADD|SUB|MUL|DIV)SSload [off1] {sym} val (ADDLconst [off2] base) mem) && is32Bit(off1+off2) ->
   656  	((ADD|SUB|MUL|DIV)SSload [off1+off2] {sym} val base mem)
   657  ((ADD|SUB|MUL|DIV)SDload [off1] {sym} val (ADDLconst [off2] base) mem) && is32Bit(off1+off2) ->
   658  	((ADD|SUB|MUL|DIV)SDload [off1+off2] {sym} val base mem)
   659  ((ADD|SUB|AND|OR|XOR)Lmodify [off1] {sym} (ADDLconst [off2] base) val mem) && is32Bit(off1+off2) ->
   660  	((ADD|SUB|AND|OR|XOR)Lmodify [off1+off2] {sym} base val mem)
   661  ((ADD|SUB|AND|OR|XOR)Lmodifyidx4 [off1] {sym} (ADDLconst [off2] base) idx val mem) && is32Bit(off1+off2) ->
   662  	((ADD|SUB|AND|OR|XOR)Lmodifyidx4 [off1+off2] {sym} base idx val mem)
   663  ((ADD|SUB|AND|OR|XOR)Lmodifyidx4 [off1] {sym} base (ADDLconst [off2] idx) val mem) && is32Bit(off1+off2*4) ->
   664  	((ADD|SUB|AND|OR|XOR)Lmodifyidx4 [off1+off2*4] {sym} base idx val mem)
   665  ((ADD|AND|OR|XOR)Lconstmodify [valoff1] {sym} (ADDLconst [off2] base) mem) && ValAndOff(valoff1).canAdd(off2) ->
   666  	((ADD|AND|OR|XOR)Lconstmodify [ValAndOff(valoff1).add(off2)] {sym} base mem)
   667  ((ADD|AND|OR|XOR)Lconstmodifyidx4 [valoff1] {sym} (ADDLconst [off2] base) idx mem) && ValAndOff(valoff1).canAdd(off2) ->
   668  	((ADD|AND|OR|XOR)Lconstmodifyidx4 [ValAndOff(valoff1).add(off2)] {sym} base idx mem)
   669  ((ADD|AND|OR|XOR)Lconstmodifyidx4 [valoff1] {sym} base (ADDLconst [off2] idx) mem) && ValAndOff(valoff1).canAdd(off2*4) ->
   670  	((ADD|AND|OR|XOR)Lconstmodifyidx4 [ValAndOff(valoff1).add(off2*4)] {sym} base idx mem)
   671  
   672  // Fold constants into stores.
   673  (MOVLstore [off] {sym} ptr (MOVLconst [c]) mem) && validOff(off) ->
   674  	(MOVLstoreconst [makeValAndOff(int64(int32(c)),off)] {sym} ptr mem)
   675  (MOVWstore [off] {sym} ptr (MOVLconst [c]) mem) && validOff(off) ->
   676  	(MOVWstoreconst [makeValAndOff(int64(int16(c)),off)] {sym} ptr mem)
   677  (MOVBstore [off] {sym} ptr (MOVLconst [c]) mem) && validOff(off) ->
   678  	(MOVBstoreconst [makeValAndOff(int64(int8(c)),off)] {sym} ptr mem)
   679  
   680  // Fold address offsets into constant stores.
   681  (MOV(L|W|B)storeconst [sc] {s} (ADDLconst [off] ptr) mem) && ValAndOff(sc).canAdd(off) ->
   682  	(MOV(L|W|B)storeconst [ValAndOff(sc).add(off)] {s} ptr mem)
   683  
   684  // We need to fold LEAQ into the MOVx ops so that the live variable analysis knows
   685  // what variables are being read/written by the ops.
   686  // Note: we turn off this merging for operations on globals when building
   687  // position-independent code (when Flag_shared is set).
   688  // PIC needs a spare register to load the PC into.  Having the LEAL be
   689  // a separate instruction gives us that register.  Having the LEAL be
   690  // a separate instruction also allows it to be CSEd (which is good because
   691  // it compiles to a thunk call).
   692  (MOV(L|W|B|SS|SD|BLSX|WLSX)load  [off1] {sym1} (LEAL [off2] {sym2} base) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2)
   693    && (base.Op != OpSB || !config.ctxt.Flag_shared) ->
   694          (MOV(L|W|B|SS|SD|BLSX|WLSX)load  [off1+off2] {mergeSym(sym1,sym2)} base mem)
   695  
   696  (MOV(L|W|B|SS|SD)store  [off1] {sym1} (LEAL [off2] {sym2} base) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2)
   697    && (base.Op != OpSB || !config.ctxt.Flag_shared) ->
   698  	(MOV(L|W|B|SS|SD)store  [off1+off2] {mergeSym(sym1,sym2)} base val mem)
   699  
   700  (MOV(L|W|B)storeconst [sc] {sym1} (LEAL [off] {sym2} ptr) mem) && canMergeSym(sym1, sym2) && ValAndOff(sc).canAdd(off)
   701    && (ptr.Op != OpSB || !config.ctxt.Flag_shared) ->
   702  	(MOV(L|W|B)storeconst [ValAndOff(sc).add(off)] {mergeSym(sym1, sym2)} ptr mem)
   703  
   704  // generating indexed loads and stores
   705  (MOV(B|W|L|SS|SD)load [off1] {sym1} (LEAL1 [off2] {sym2} ptr idx) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) ->
   706  	(MOV(B|W|L|SS|SD)loadidx1 [off1+off2] {mergeSym(sym1,sym2)} ptr idx mem)
   707  (MOVWload [off1] {sym1} (LEAL2 [off2] {sym2} ptr idx) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) ->
   708  	(MOVWloadidx2 [off1+off2] {mergeSym(sym1,sym2)} ptr idx mem)
   709  (MOV(L|SS)load [off1] {sym1} (LEAL4 [off2] {sym2} ptr idx) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) ->
   710  	(MOV(L|SS)loadidx4 [off1+off2] {mergeSym(sym1,sym2)} ptr idx mem)
   711  (MOVSDload [off1] {sym1} (LEAL8 [off2] {sym2} ptr idx) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) ->
   712  	(MOVSDloadidx8 [off1+off2] {mergeSym(sym1,sym2)} ptr idx mem)
   713  
   714  (MOV(B|W|L|SS|SD)store [off1] {sym1} (LEAL1 [off2] {sym2} ptr idx) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) ->
   715  	(MOV(B|W|L|SS|SD)storeidx1 [off1+off2] {mergeSym(sym1,sym2)} ptr idx val mem)
   716  (MOVWstore [off1] {sym1} (LEAL2 [off2] {sym2} ptr idx) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) ->
   717  	(MOVWstoreidx2 [off1+off2] {mergeSym(sym1,sym2)} ptr idx val mem)
   718  (MOV(L|SS)store [off1] {sym1} (LEAL4 [off2] {sym2} ptr idx) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) ->
   719  	(MOV(L|SS)storeidx4 [off1+off2] {mergeSym(sym1,sym2)} ptr idx val mem)
   720  (MOVSDstore [off1] {sym1} (LEAL8 [off2] {sym2} ptr idx) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) ->
   721  	(MOVSDstoreidx8 [off1+off2] {mergeSym(sym1,sym2)} ptr idx val mem)
   722  
   723  ((ADD|SUB|MUL|AND|OR|XOR)Lload [off1] {sym1} val (LEAL [off2] {sym2} base) mem)
   724  	&& is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) ->
   725  	((ADD|SUB|MUL|AND|OR|XOR)Lload [off1+off2] {mergeSym(sym1,sym2)} val base mem)
   726  ((ADD|SUB|MUL|AND|OR|XOR)Lloadidx4 [off1] {sym1} val (LEAL [off2] {sym2} base) idx mem)
   727  	&& is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) ->
   728  	((ADD|SUB|MUL|AND|OR|XOR)Lloadidx4 [off1+off2] {mergeSym(sym1,sym2)} val base idx mem)
   729  ((ADD|SUB|MUL|DIV)SSload [off1] {sym1} val (LEAL [off2] {sym2} base) mem)
   730  	&& is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) ->
   731  	((ADD|SUB|MUL|DIV)SSload [off1+off2] {mergeSym(sym1,sym2)} val base mem)
   732  ((ADD|SUB|MUL|DIV)SDload [off1] {sym1} val (LEAL [off2] {sym2} base) mem)
   733  	&& is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) ->
   734  	((ADD|SUB|MUL|DIV)SDload [off1+off2] {mergeSym(sym1,sym2)} val base mem)
   735  ((ADD|SUB|AND|OR|XOR)Lmodify [off1] {sym1} (LEAL [off2] {sym2} base) val mem)
   736  	&& is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) ->
   737  	((ADD|SUB|AND|OR|XOR)Lmodify [off1+off2] {mergeSym(sym1,sym2)} base val mem)
   738  ((ADD|SUB|AND|OR|XOR)Lmodifyidx4 [off1] {sym1} (LEAL [off2] {sym2} base) idx val mem)
   739  	&& is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) ->
   740  	((ADD|SUB|AND|OR|XOR)Lmodifyidx4 [off1+off2] {mergeSym(sym1,sym2)} base idx val mem)
   741  ((ADD|AND|OR|XOR)Lconstmodify [valoff1] {sym1} (LEAL [off2] {sym2} base) mem)
   742  	&& ValAndOff(valoff1).canAdd(off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) ->
   743  	((ADD|AND|OR|XOR)Lconstmodify [ValAndOff(valoff1).add(off2)] {mergeSym(sym1,sym2)} base mem)
   744  ((ADD|AND|OR|XOR)Lconstmodifyidx4 [valoff1] {sym1} (LEAL [off2] {sym2} base) idx mem)
   745  	&& ValAndOff(valoff1).canAdd(off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) ->
   746  	((ADD|AND|OR|XOR)Lconstmodifyidx4 [ValAndOff(valoff1).add(off2)] {mergeSym(sym1,sym2)} base idx mem)
   747  
   748  (MOV(B|W|L|SS|SD)load [off] {sym} (ADDL ptr idx) mem) && ptr.Op != OpSB -> (MOV(B|W|L|SS|SD)loadidx1 [off] {sym} ptr idx mem)
   749  (MOV(B|W|L|SS|SD)store [off] {sym} (ADDL ptr idx) val mem) && ptr.Op != OpSB -> (MOV(B|W|L|SS|SD)storeidx1 [off] {sym} ptr idx val mem)
   750  
   751  (MOV(B|W|L)storeconst [x] {sym1} (LEAL1 [off] {sym2} ptr idx) mem) && canMergeSym(sym1, sym2) ->
   752  	(MOV(B|W|L)storeconstidx1 [ValAndOff(x).add(off)] {mergeSym(sym1,sym2)} ptr idx mem)
   753  (MOVWstoreconst [x] {sym1} (LEAL2 [off] {sym2} ptr idx) mem) && canMergeSym(sym1, sym2) ->
   754  	(MOVWstoreconstidx2 [ValAndOff(x).add(off)] {mergeSym(sym1,sym2)} ptr idx mem)
   755  (MOVLstoreconst [x] {sym1} (LEAL4 [off] {sym2} ptr idx) mem) && canMergeSym(sym1, sym2) ->
   756  	(MOVLstoreconstidx4 [ValAndOff(x).add(off)] {mergeSym(sym1,sym2)} ptr idx mem)
   757  
   758  (MOV(B|W|L)storeconst [x] {sym} (ADDL ptr idx) mem) -> (MOV(B|W|L)storeconstidx1 [x] {sym} ptr idx mem)
   759  
   760  // combine SHLL into indexed loads and stores
   761  (MOVWloadidx1 [c] {sym} ptr (SHLLconst [1] idx) mem) -> (MOVWloadidx2 [c] {sym} ptr idx mem)
   762  (MOVLloadidx1 [c] {sym} ptr (SHLLconst [2] idx) mem) -> (MOVLloadidx4 [c] {sym} ptr idx mem)
   763  (MOVWstoreidx1 [c] {sym} ptr (SHLLconst [1] idx) val mem) -> (MOVWstoreidx2 [c] {sym} ptr idx val mem)
   764  (MOVLstoreidx1 [c] {sym} ptr (SHLLconst [2] idx) val mem) -> (MOVLstoreidx4 [c] {sym} ptr idx val mem)
   765  (MOVWstoreconstidx1 [c] {sym} ptr (SHLLconst [1] idx) mem) -> (MOVWstoreconstidx2 [c] {sym} ptr idx mem)
   766  (MOVLstoreconstidx1 [c] {sym} ptr (SHLLconst [2] idx) mem) -> (MOVLstoreconstidx4 [c] {sym} ptr idx mem)
   767  
   768  // combine ADDL into indexed loads and stores
   769  (MOV(B|W|L|SS|SD)loadidx1 [c] {sym} (ADDLconst [d] ptr) idx mem) -> (MOV(B|W|L|SS|SD)loadidx1 [int64(int32(c+d))] {sym} ptr idx mem)
   770  (MOVWloadidx2 [c] {sym} (ADDLconst [d] ptr) idx mem) -> (MOVWloadidx2 [int64(int32(c+d))] {sym} ptr idx mem)
   771  (MOV(L|SS)loadidx4 [c] {sym} (ADDLconst [d] ptr) idx mem) -> (MOV(L|SS)loadidx4 [int64(int32(c+d))] {sym} ptr idx mem)
   772  (MOVSDloadidx8 [c] {sym} (ADDLconst [d] ptr) idx mem) -> (MOVSDloadidx8 [int64(int32(c+d))] {sym} ptr idx mem)
   773  
   774  (MOV(B|W|L|SS|SD)storeidx1 [c] {sym} (ADDLconst [d] ptr) idx val mem) -> (MOV(B|W|L|SS|SD)storeidx1 [int64(int32(c+d))] {sym} ptr idx val mem)
   775  (MOVWstoreidx2 [c] {sym} (ADDLconst [d] ptr) idx val mem) -> (MOVWstoreidx2 [int64(int32(c+d))] {sym} ptr idx val mem)
   776  (MOV(L|SS)storeidx4 [c] {sym} (ADDLconst [d] ptr) idx val mem) -> (MOV(L|SS)storeidx4 [int64(int32(c+d))] {sym} ptr idx val mem)
   777  (MOVSDstoreidx8 [c] {sym} (ADDLconst [d] ptr) idx val mem) -> (MOVSDstoreidx8 [int64(int32(c+d))] {sym} ptr idx val mem)
   778  
   779  (MOV(B|W|L|SS|SD)loadidx1 [c] {sym} ptr (ADDLconst [d] idx) mem) -> (MOV(B|W|L|SS|SD)loadidx1 [int64(int32(c+d))] {sym} ptr idx mem)
   780  (MOVWloadidx2 [c] {sym} ptr (ADDLconst [d] idx) mem) -> (MOVWloadidx2 [int64(int32(c+2*d))] {sym} ptr idx mem)
   781  (MOV(L|SS)loadidx4 [c] {sym} ptr (ADDLconst [d] idx) mem) -> (MOV(L|SS)loadidx4 [int64(int32(c+4*d))] {sym} ptr idx mem)
   782  (MOVSDloadidx8 [c] {sym} ptr (ADDLconst [d] idx) mem) -> (MOVSDloadidx8 [int64(int32(c+8*d))] {sym} ptr idx mem)
   783  
   784  (MOV(B|W|L|SS|SD)storeidx1 [c] {sym} ptr (ADDLconst [d] idx) val mem) -> (MOV(B|W|L|SS|SD)storeidx1  [int64(int32(c+d))]   {sym} ptr idx val mem)
   785  (MOVWstoreidx2 [c] {sym} ptr (ADDLconst [d] idx) val mem) -> (MOVWstoreidx2  [int64(int32(c+2*d))] {sym} ptr idx val mem)
   786  (MOV(L|SS)storeidx4 [c] {sym} ptr (ADDLconst [d] idx) val mem) -> (MOV(L|SS)storeidx4 [int64(int32(c+4*d))] {sym} ptr idx val mem)
   787  (MOVSDstoreidx8 [c] {sym} ptr (ADDLconst [d] idx) val mem) -> (MOVSDstoreidx8 [int64(int32(c+8*d))] {sym} ptr idx val mem)
   788  
   789  // Merge load/store to op
   790  ((ADD|AND|OR|XOR|SUB|MUL)L x l:(MOVLload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) -> ((ADD|AND|OR|XOR|SUB|MUL)Lload x [off] {sym} ptr mem)
   791  ((ADD|AND|OR|XOR|SUB|MUL)L x l:(MOVLloadidx4 [off] {sym} ptr idx mem)) && canMergeLoadClobber(v, l, x) && clobber(l) ->
   792  	((ADD|AND|OR|XOR|SUB|MUL)Lloadidx4 x [off] {sym} ptr idx mem)
   793  ((ADD|SUB|MUL|AND|OR|XOR)Lload [off1] {sym1} val (LEAL4 [off2] {sym2} ptr idx) mem)
   794  	&& is32Bit(off1+off2) && canMergeSym(sym1, sym2) ->
   795  	((ADD|SUB|MUL|AND|OR|XOR)Lloadidx4 [off1+off2] {mergeSym(sym1,sym2)} val ptr idx mem)
   796  ((ADD|SUB|MUL|DIV)SD x l:(MOVSDload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && !config.use387 && clobber(l) -> ((ADD|SUB|MUL|DIV)SDload x [off] {sym} ptr mem)
   797  ((ADD|SUB|MUL|DIV)SS x l:(MOVSSload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && !config.use387 && clobber(l) -> ((ADD|SUB|MUL|DIV)SSload x [off] {sym} ptr mem)
   798  (MOVLstore {sym} [off] ptr y:((ADD|AND|OR|XOR)Lload x [off] {sym} ptr mem) mem) && y.Uses==1 && clobber(y) -> ((ADD|AND|OR|XOR)Lmodify [off] {sym} ptr x mem)
   799  (MOVLstore {sym} [off] ptr y:((ADD|SUB|AND|OR|XOR)L l:(MOVLload [off] {sym} ptr mem) x) mem) && y.Uses==1 && l.Uses==1 && clobber(y) && clobber(l) ->
   800  	((ADD|SUB|AND|OR|XOR)Lmodify [off] {sym} ptr x mem)
   801  (MOVLstoreidx4 {sym} [off] ptr idx y:((ADD|AND|OR|XOR)Lloadidx4 x [off] {sym} ptr idx mem) mem) && y.Uses==1 && clobber(y) ->
   802  	((ADD|AND|OR|XOR)Lmodifyidx4 [off] {sym} ptr idx x mem)
   803  (MOVLstoreidx4 {sym} [off] ptr idx y:((ADD|SUB|AND|OR|XOR)L l:(MOVLloadidx4 [off] {sym} ptr idx mem) x) mem) && y.Uses==1 && l.Uses==1 && clobber(y) && clobber(l) ->
   804  	((ADD|SUB|AND|OR|XOR)Lmodifyidx4 [off] {sym} ptr idx x mem)
   805  (MOVLstore {sym} [off] ptr y:((ADD|AND|OR|XOR)Lconst [c] l:(MOVLload [off] {sym} ptr mem)) mem)
   806  	&& y.Uses==1 && l.Uses==1 && clobber(y) && clobber(l) && validValAndOff(c,off) ->
   807  	((ADD|AND|OR|XOR)Lconstmodify [makeValAndOff(c,off)] {sym} ptr mem)
   808  (MOVLstoreidx4 {sym} [off] ptr idx y:((ADD|AND|OR|XOR)Lconst [c] l:(MOVLloadidx4 [off] {sym} ptr idx mem)) mem)
   809  	&& y.Uses==1 && l.Uses==1 && clobber(y) && clobber(l) && validValAndOff(c,off) ->
   810  	((ADD|AND|OR|XOR)Lconstmodifyidx4 [makeValAndOff(c,off)] {sym} ptr idx mem)
   811  ((ADD|AND|OR|XOR)Lmodifyidx4 [off] {sym} ptr idx (MOVLconst [c]) mem) && validValAndOff(c,off) ->
   812  	((ADD|AND|OR|XOR)Lconstmodifyidx4 [makeValAndOff(c,off)] {sym} ptr idx mem)
   813  (SUBLmodifyidx4 [off] {sym} ptr idx (MOVLconst [c]) mem) && validValAndOff(-c,off) ->
   814  	(ADDLconstmodifyidx4 [makeValAndOff(-c,off)] {sym} ptr idx mem)
   815  
   816  (MOV(B|W|L)storeconstidx1 [x] {sym} (ADDLconst [c] ptr) idx mem) ->
   817  	(MOV(B|W|L)storeconstidx1 [ValAndOff(x).add(c)] {sym} ptr idx mem)
   818  (MOVWstoreconstidx2 [x] {sym} (ADDLconst [c] ptr) idx mem) ->
   819  	(MOVWstoreconstidx2 [ValAndOff(x).add(c)] {sym} ptr idx mem)
   820  (MOVLstoreconstidx4 [x] {sym} (ADDLconst [c] ptr) idx mem) ->
   821  	(MOVLstoreconstidx4 [ValAndOff(x).add(c)] {sym} ptr idx mem)
   822  
   823  (MOV(B|W|L)storeconstidx1 [x] {sym} ptr (ADDLconst [c] idx) mem) ->
   824  	(MOV(B|W|L)storeconstidx1 [ValAndOff(x).add(c)] {sym} ptr idx mem)
   825  (MOVWstoreconstidx2 [x] {sym} ptr (ADDLconst [c] idx) mem) ->
   826  	(MOVWstoreconstidx2 [ValAndOff(x).add(2*c)] {sym} ptr idx mem)
   827  (MOVLstoreconstidx4 [x] {sym} ptr (ADDLconst [c] idx) mem) ->
   828  	(MOVLstoreconstidx4 [ValAndOff(x).add(4*c)] {sym} ptr idx mem)
   829  
   830  // fold LEALs together
   831  (LEAL [off1] {sym1} (LEAL [off2] {sym2} x)) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) ->
   832        (LEAL [off1+off2] {mergeSym(sym1,sym2)} x)
   833  
   834  // LEAL into LEAL1
   835  (LEAL1 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && x.Op != OpSB ->
   836         (LEAL1 [off1+off2] {mergeSym(sym1,sym2)} x y)
   837  
   838  // LEAL1 into LEAL
   839  (LEAL [off1] {sym1} (LEAL1 [off2] {sym2} x y)) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) ->
   840         (LEAL1 [off1+off2] {mergeSym(sym1,sym2)} x y)
   841  
   842  // LEAL into LEAL[248]
   843  (LEAL2 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && x.Op != OpSB ->
   844         (LEAL2 [off1+off2] {mergeSym(sym1,sym2)} x y)
   845  (LEAL4 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && x.Op != OpSB ->
   846         (LEAL4 [off1+off2] {mergeSym(sym1,sym2)} x y)
   847  (LEAL8 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && x.Op != OpSB ->
   848         (LEAL8 [off1+off2] {mergeSym(sym1,sym2)} x y)
   849  
   850  // LEAL[248] into LEAL
   851  (LEAL [off1] {sym1} (LEAL2 [off2] {sym2} x y)) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) ->
   852        (LEAL2 [off1+off2] {mergeSym(sym1,sym2)} x y)
   853  (LEAL [off1] {sym1} (LEAL4 [off2] {sym2} x y)) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) ->
   854        (LEAL4 [off1+off2] {mergeSym(sym1,sym2)} x y)
   855  (LEAL [off1] {sym1} (LEAL8 [off2] {sym2} x y)) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) ->
   856        (LEAL8 [off1+off2] {mergeSym(sym1,sym2)} x y)
   857  
   858  // Absorb InvertFlags into branches.
   859  (LT (InvertFlags cmp) yes no) -> (GT cmp yes no)
   860  (GT (InvertFlags cmp) yes no) -> (LT cmp yes no)
   861  (LE (InvertFlags cmp) yes no) -> (GE cmp yes no)
   862  (GE (InvertFlags cmp) yes no) -> (LE cmp yes no)
   863  (ULT (InvertFlags cmp) yes no) -> (UGT cmp yes no)
   864  (UGT (InvertFlags cmp) yes no) -> (ULT cmp yes no)
   865  (ULE (InvertFlags cmp) yes no) -> (UGE cmp yes no)
   866  (UGE (InvertFlags cmp) yes no) -> (ULE cmp yes no)
   867  (EQ (InvertFlags cmp) yes no) -> (EQ cmp yes no)
   868  (NE (InvertFlags cmp) yes no) -> (NE cmp yes no)
   869  
   870  // Constant comparisons.
   871  (CMPLconst (MOVLconst [x]) [y]) && int32(x)==int32(y) -> (FlagEQ)
   872  (CMPLconst (MOVLconst [x]) [y]) && int32(x)<int32(y) && uint32(x)<uint32(y) -> (FlagLT_ULT)
   873  (CMPLconst (MOVLconst [x]) [y]) && int32(x)<int32(y) && uint32(x)>uint32(y) -> (FlagLT_UGT)
   874  (CMPLconst (MOVLconst [x]) [y]) && int32(x)>int32(y) && uint32(x)<uint32(y) -> (FlagGT_ULT)
   875  (CMPLconst (MOVLconst [x]) [y]) && int32(x)>int32(y) && uint32(x)>uint32(y) -> (FlagGT_UGT)
   876  (CMPWconst (MOVLconst [x]) [y]) && int16(x)==int16(y) -> (FlagEQ)
   877  (CMPWconst (MOVLconst [x]) [y]) && int16(x)<int16(y) && uint16(x)<uint16(y) -> (FlagLT_ULT)
   878  (CMPWconst (MOVLconst [x]) [y]) && int16(x)<int16(y) && uint16(x)>uint16(y) -> (FlagLT_UGT)
   879  (CMPWconst (MOVLconst [x]) [y]) && int16(x)>int16(y) && uint16(x)<uint16(y) -> (FlagGT_ULT)
   880  (CMPWconst (MOVLconst [x]) [y]) && int16(x)>int16(y) && uint16(x)>uint16(y) -> (FlagGT_UGT)
   881  (CMPBconst (MOVLconst [x]) [y]) && int8(x)==int8(y) -> (FlagEQ)
   882  (CMPBconst (MOVLconst [x]) [y]) && int8(x)<int8(y) && uint8(x)<uint8(y) -> (FlagLT_ULT)
   883  (CMPBconst (MOVLconst [x]) [y]) && int8(x)<int8(y) && uint8(x)>uint8(y) -> (FlagLT_UGT)
   884  (CMPBconst (MOVLconst [x]) [y]) && int8(x)>int8(y) && uint8(x)<uint8(y) -> (FlagGT_ULT)
   885  (CMPBconst (MOVLconst [x]) [y]) && int8(x)>int8(y) && uint8(x)>uint8(y) -> (FlagGT_UGT)
   886  
   887  // Other known comparisons.
   888  (CMPLconst (SHRLconst _ [c]) [n]) && 0 <= n && 0 < c && c <= 32 && (1<<uint64(32-c)) <= uint64(n) -> (FlagLT_ULT)
   889  (CMPLconst (ANDLconst _ [m]) [n]) && 0 <= int32(m) && int32(m) < int32(n) -> (FlagLT_ULT)
   890  (CMPWconst (ANDLconst _ [m]) [n]) && 0 <= int16(m) && int16(m) < int16(n) -> (FlagLT_ULT)
   891  (CMPBconst (ANDLconst _ [m]) [n]) && 0 <= int8(m) && int8(m) < int8(n) -> (FlagLT_ULT)
   892  // TODO: DIVxU also.
   893  
   894  // Absorb flag constants into SBB ops.
   895  (SBBLcarrymask (FlagEQ)) -> (MOVLconst [0])
   896  (SBBLcarrymask (FlagLT_ULT)) -> (MOVLconst [-1])
   897  (SBBLcarrymask (FlagLT_UGT)) -> (MOVLconst [0])
   898  (SBBLcarrymask (FlagGT_ULT)) -> (MOVLconst [-1])
   899  (SBBLcarrymask (FlagGT_UGT)) -> (MOVLconst [0])
   900  
   901  // Absorb flag constants into branches.
   902  (EQ (FlagEQ) yes no) -> (First yes no)
   903  (EQ (FlagLT_ULT) yes no) -> (First no yes)
   904  (EQ (FlagLT_UGT) yes no) -> (First no yes)
   905  (EQ (FlagGT_ULT) yes no) -> (First no yes)
   906  (EQ (FlagGT_UGT) yes no) -> (First no yes)
   907  
   908  (NE (FlagEQ) yes no) -> (First no yes)
   909  (NE (FlagLT_ULT) yes no) -> (First yes no)
   910  (NE (FlagLT_UGT) yes no) -> (First yes no)
   911  (NE (FlagGT_ULT) yes no) -> (First yes no)
   912  (NE (FlagGT_UGT) yes no) -> (First yes no)
   913  
   914  (LT (FlagEQ) yes no) -> (First no yes)
   915  (LT (FlagLT_ULT) yes no) -> (First yes no)
   916  (LT (FlagLT_UGT) yes no) -> (First yes no)
   917  (LT (FlagGT_ULT) yes no) -> (First no yes)
   918  (LT (FlagGT_UGT) yes no) -> (First no yes)
   919  
   920  (LE (FlagEQ) yes no) -> (First yes no)
   921  (LE (FlagLT_ULT) yes no) -> (First yes no)
   922  (LE (FlagLT_UGT) yes no) -> (First yes no)
   923  (LE (FlagGT_ULT) yes no) -> (First no yes)
   924  (LE (FlagGT_UGT) yes no) -> (First no yes)
   925  
   926  (GT (FlagEQ) yes no) -> (First no yes)
   927  (GT (FlagLT_ULT) yes no) -> (First no yes)
   928  (GT (FlagLT_UGT) yes no) -> (First no yes)
   929  (GT (FlagGT_ULT) yes no) -> (First yes no)
   930  (GT (FlagGT_UGT) yes no) -> (First yes no)
   931  
   932  (GE (FlagEQ) yes no) -> (First yes no)
   933  (GE (FlagLT_ULT) yes no) -> (First no yes)
   934  (GE (FlagLT_UGT) yes no) -> (First no yes)
   935  (GE (FlagGT_ULT) yes no) -> (First yes no)
   936  (GE (FlagGT_UGT) yes no) -> (First yes no)
   937  
   938  (ULT (FlagEQ) yes no) -> (First no yes)
   939  (ULT (FlagLT_ULT) yes no) -> (First yes no)
   940  (ULT (FlagLT_UGT) yes no) -> (First no yes)
   941  (ULT (FlagGT_ULT) yes no) -> (First yes no)
   942  (ULT (FlagGT_UGT) yes no) -> (First no yes)
   943  
   944  (ULE (FlagEQ) yes no) -> (First yes no)
   945  (ULE (FlagLT_ULT) yes no) -> (First yes no)
   946  (ULE (FlagLT_UGT) yes no) -> (First no yes)
   947  (ULE (FlagGT_ULT) yes no) -> (First yes no)
   948  (ULE (FlagGT_UGT) yes no) -> (First no yes)
   949  
   950  (UGT (FlagEQ) yes no) -> (First no yes)
   951  (UGT (FlagLT_ULT) yes no) -> (First no yes)
   952  (UGT (FlagLT_UGT) yes no) -> (First yes no)
   953  (UGT (FlagGT_ULT) yes no) -> (First no yes)
   954  (UGT (FlagGT_UGT) yes no) -> (First yes no)
   955  
   956  (UGE (FlagEQ) yes no) -> (First yes no)
   957  (UGE (FlagLT_ULT) yes no) -> (First no yes)
   958  (UGE (FlagLT_UGT) yes no) -> (First yes no)
   959  (UGE (FlagGT_ULT) yes no) -> (First no yes)
   960  (UGE (FlagGT_UGT) yes no) -> (First yes no)
   961  
   962  // Absorb flag constants into SETxx ops.
   963  (SETEQ (FlagEQ)) -> (MOVLconst [1])
   964  (SETEQ (FlagLT_ULT)) -> (MOVLconst [0])
   965  (SETEQ (FlagLT_UGT)) -> (MOVLconst [0])
   966  (SETEQ (FlagGT_ULT)) -> (MOVLconst [0])
   967  (SETEQ (FlagGT_UGT)) -> (MOVLconst [0])
   968  
   969  (SETNE (FlagEQ)) -> (MOVLconst [0])
   970  (SETNE (FlagLT_ULT)) -> (MOVLconst [1])
   971  (SETNE (FlagLT_UGT)) -> (MOVLconst [1])
   972  (SETNE (FlagGT_ULT)) -> (MOVLconst [1])
   973  (SETNE (FlagGT_UGT)) -> (MOVLconst [1])
   974  
   975  (SETL (FlagEQ)) -> (MOVLconst [0])
   976  (SETL (FlagLT_ULT)) -> (MOVLconst [1])
   977  (SETL (FlagLT_UGT)) -> (MOVLconst [1])
   978  (SETL (FlagGT_ULT)) -> (MOVLconst [0])
   979  (SETL (FlagGT_UGT)) -> (MOVLconst [0])
   980  
   981  (SETLE (FlagEQ)) -> (MOVLconst [1])
   982  (SETLE (FlagLT_ULT)) -> (MOVLconst [1])
   983  (SETLE (FlagLT_UGT)) -> (MOVLconst [1])
   984  (SETLE (FlagGT_ULT)) -> (MOVLconst [0])
   985  (SETLE (FlagGT_UGT)) -> (MOVLconst [0])
   986  
   987  (SETG (FlagEQ)) -> (MOVLconst [0])
   988  (SETG (FlagLT_ULT)) -> (MOVLconst [0])
   989  (SETG (FlagLT_UGT)) -> (MOVLconst [0])
   990  (SETG (FlagGT_ULT)) -> (MOVLconst [1])
   991  (SETG (FlagGT_UGT)) -> (MOVLconst [1])
   992  
   993  (SETGE (FlagEQ)) -> (MOVLconst [1])
   994  (SETGE (FlagLT_ULT)) -> (MOVLconst [0])
   995  (SETGE (FlagLT_UGT)) -> (MOVLconst [0])
   996  (SETGE (FlagGT_ULT)) -> (MOVLconst [1])
   997  (SETGE (FlagGT_UGT)) -> (MOVLconst [1])
   998  
   999  (SETB (FlagEQ)) -> (MOVLconst [0])
  1000  (SETB (FlagLT_ULT)) -> (MOVLconst [1])
  1001  (SETB (FlagLT_UGT)) -> (MOVLconst [0])
  1002  (SETB (FlagGT_ULT)) -> (MOVLconst [1])
  1003  (SETB (FlagGT_UGT)) -> (MOVLconst [0])
  1004  
  1005  (SETBE (FlagEQ)) -> (MOVLconst [1])
  1006  (SETBE (FlagLT_ULT)) -> (MOVLconst [1])
  1007  (SETBE (FlagLT_UGT)) -> (MOVLconst [0])
  1008  (SETBE (FlagGT_ULT)) -> (MOVLconst [1])
  1009  (SETBE (FlagGT_UGT)) -> (MOVLconst [0])
  1010  
  1011  (SETA (FlagEQ)) -> (MOVLconst [0])
  1012  (SETA (FlagLT_ULT)) -> (MOVLconst [0])
  1013  (SETA (FlagLT_UGT)) -> (MOVLconst [1])
  1014  (SETA (FlagGT_ULT)) -> (MOVLconst [0])
  1015  (SETA (FlagGT_UGT)) -> (MOVLconst [1])
  1016  
  1017  (SETAE (FlagEQ)) -> (MOVLconst [1])
  1018  (SETAE (FlagLT_ULT)) -> (MOVLconst [0])
  1019  (SETAE (FlagLT_UGT)) -> (MOVLconst [1])
  1020  (SETAE (FlagGT_ULT)) -> (MOVLconst [0])
  1021  (SETAE (FlagGT_UGT)) -> (MOVLconst [1])
  1022  
  1023  // Remove redundant *const ops
  1024  (ADDLconst [c] x) && int32(c)==0 -> x
  1025  (SUBLconst [c] x) && int32(c) == 0 -> x
  1026  (ANDLconst [c] _) && int32(c)==0  -> (MOVLconst [0])
  1027  (ANDLconst [c] x) && int32(c)==-1 -> x
  1028  (ORLconst [c] x) && int32(c)==0   -> x
  1029  (ORLconst [c] _) && int32(c)==-1  -> (MOVLconst [-1])
  1030  (XORLconst [c] x) && int32(c)==0   -> x
  1031  // TODO: since we got rid of the W/B versions, we might miss
  1032  // things like (ANDLconst [0x100] x) which were formerly
  1033  // (ANDBconst [0] x).  Probably doesn't happen very often.
  1034  // If we cared, we might do:
  1035  //  (ANDLconst <t> [c] x) && t.Size()==1 && int8(x)==0 -> (MOVLconst [0])
  1036  
  1037  // Convert constant subtracts to constant adds
  1038  (SUBLconst [c] x) -> (ADDLconst [int64(int32(-c))] x)
  1039  
  1040  // generic constant folding
  1041  // TODO: more of this
  1042  (ADDLconst [c] (MOVLconst [d])) -> (MOVLconst [int64(int32(c+d))])
  1043  (ADDLconst [c] (ADDLconst [d] x)) -> (ADDLconst [int64(int32(c+d))] x)
  1044  (SARLconst [c] (MOVLconst [d])) -> (MOVLconst [d>>uint64(c)])
  1045  (SARWconst [c] (MOVLconst [d])) -> (MOVLconst [d>>uint64(c)])
  1046  (SARBconst [c] (MOVLconst [d])) -> (MOVLconst [d>>uint64(c)])
  1047  (NEGL (MOVLconst [c])) -> (MOVLconst [int64(int32(-c))])
  1048  (MULLconst [c] (MOVLconst [d])) -> (MOVLconst [int64(int32(c*d))])
  1049  (ANDLconst [c] (MOVLconst [d])) -> (MOVLconst [c&d])
  1050  (ORLconst [c] (MOVLconst [d])) -> (MOVLconst [c|d])
  1051  (XORLconst [c] (MOVLconst [d])) -> (MOVLconst [c^d])
  1052  (NOTL (MOVLconst [c])) -> (MOVLconst [^c])
  1053  
  1054  // generic simplifications
  1055  // TODO: more of this
  1056  (ADDL x (NEGL y)) -> (SUBL x y)
  1057  (SUBL x x) -> (MOVLconst [0])
  1058  (ANDL x x) -> x
  1059  (ORL x x) -> x
  1060  (XORL x x) -> (MOVLconst [0])
  1061  
  1062  // checking AND against 0.
  1063  (CMP(L|W|B)const l:(ANDL x y) [0]) && l.Uses==1 -> (TEST(L|W|B) x y)
  1064  (CMPLconst l:(ANDLconst [c] x) [0]) && l.Uses==1 -> (TESTLconst [c] x)
  1065  (CMPWconst l:(ANDLconst [c] x) [0]) && l.Uses==1 -> (TESTWconst [int64(int16(c))] x)
  1066  (CMPBconst l:(ANDLconst [c] x) [0]) && l.Uses==1 -> (TESTBconst [int64(int8(c))] x)
  1067  
  1068  // TEST %reg,%reg is shorter than CMP
  1069  (CMP(L|W|B)const x [0]) -> (TEST(L|W|B) x x)
  1070  
  1071  // Combining byte loads into larger (unaligned) loads.
  1072  // There are many ways these combinations could occur.  This is
  1073  // designed to match the way encoding/binary.LittleEndian does it.
  1074  (ORL                  x0:(MOVBload [i0] {s} p mem)
  1075      s0:(SHLLconst [8] x1:(MOVBload [i1] {s} p mem)))
  1076    && i1 == i0+1
  1077    && x0.Uses == 1
  1078    && x1.Uses == 1
  1079    && s0.Uses == 1
  1080    && mergePoint(b,x0,x1) != nil
  1081    && clobber(x0)
  1082    && clobber(x1)
  1083    && clobber(s0)
  1084    -> @mergePoint(b,x0,x1) (MOVWload [i0] {s} p mem)
  1085  
  1086  (ORL o0:(ORL
  1087                         x0:(MOVWload [i0] {s} p mem)
  1088      s0:(SHLLconst [16] x1:(MOVBload [i2] {s} p mem)))
  1089      s1:(SHLLconst [24] x2:(MOVBload [i3] {s} p mem)))
  1090    && i2 == i0+2
  1091    && i3 == i0+3
  1092    && x0.Uses == 1
  1093    && x1.Uses == 1
  1094    && x2.Uses == 1
  1095    && s0.Uses == 1
  1096    && s1.Uses == 1
  1097    && o0.Uses == 1
  1098    && mergePoint(b,x0,x1,x2) != nil
  1099    && clobber(x0)
  1100    && clobber(x1)
  1101    && clobber(x2)
  1102    && clobber(s0)
  1103    && clobber(s1)
  1104    && clobber(o0)
  1105    -> @mergePoint(b,x0,x1,x2) (MOVLload [i0] {s} p mem)
  1106  
  1107  (ORL                  x0:(MOVBloadidx1 [i0] {s} p idx mem)
  1108      s0:(SHLLconst [8] x1:(MOVBloadidx1 [i1] {s} p idx mem)))
  1109    && i1==i0+1
  1110    && x0.Uses == 1
  1111    && x1.Uses == 1
  1112    && s0.Uses == 1
  1113    && mergePoint(b,x0,x1) != nil
  1114    && clobber(x0)
  1115    && clobber(x1)
  1116    && clobber(s0)
  1117    -> @mergePoint(b,x0,x1) (MOVWloadidx1 <v.Type> [i0] {s} p idx mem)
  1118  
  1119  (ORL o0:(ORL
  1120                         x0:(MOVWloadidx1 [i0] {s} p idx mem)
  1121      s0:(SHLLconst [16] x1:(MOVBloadidx1 [i2] {s} p idx mem)))
  1122      s1:(SHLLconst [24] x2:(MOVBloadidx1 [i3] {s} p idx mem)))
  1123    && i2 == i0+2
  1124    && i3 == i0+3
  1125    && x0.Uses == 1
  1126    && x1.Uses == 1
  1127    && x2.Uses == 1
  1128    && s0.Uses == 1
  1129    && s1.Uses == 1
  1130    && o0.Uses == 1
  1131    && mergePoint(b,x0,x1,x2) != nil
  1132    && clobber(x0)
  1133    && clobber(x1)
  1134    && clobber(x2)
  1135    && clobber(s0)
  1136    && clobber(s1)
  1137    && clobber(o0)
  1138    -> @mergePoint(b,x0,x1,x2) (MOVLloadidx1 <v.Type> [i0] {s} p idx mem)
  1139  
  1140  // Combine constant stores into larger (unaligned) stores.
  1141  (MOVBstoreconst [c] {s} p x:(MOVBstoreconst [a] {s} p mem))
  1142    && x.Uses == 1
  1143    && ValAndOff(a).Off() + 1 == ValAndOff(c).Off()
  1144    && clobber(x)
  1145    -> (MOVWstoreconst [makeValAndOff(ValAndOff(a).Val()&0xff | ValAndOff(c).Val()<<8, ValAndOff(a).Off())] {s} p mem)
  1146  (MOVBstoreconst [a] {s} p x:(MOVBstoreconst [c] {s} p mem))
  1147    && x.Uses == 1
  1148    && ValAndOff(a).Off() + 1 == ValAndOff(c).Off()
  1149    && clobber(x)
  1150    -> (MOVWstoreconst [makeValAndOff(ValAndOff(a).Val()&0xff | ValAndOff(c).Val()<<8, ValAndOff(a).Off())] {s} p mem)
  1151  (MOVWstoreconst [c] {s} p x:(MOVWstoreconst [a] {s} p mem))
  1152    && x.Uses == 1
  1153    && ValAndOff(a).Off() + 2 == ValAndOff(c).Off()
  1154    && clobber(x)
  1155    -> (MOVLstoreconst [makeValAndOff(ValAndOff(a).Val()&0xffff | ValAndOff(c).Val()<<16, ValAndOff(a).Off())] {s} p mem)
  1156  (MOVWstoreconst [a] {s} p x:(MOVWstoreconst [c] {s} p mem))
  1157    && x.Uses == 1
  1158    && ValAndOff(a).Off() + 2 == ValAndOff(c).Off()
  1159    && clobber(x)
  1160    -> (MOVLstoreconst [makeValAndOff(ValAndOff(a).Val()&0xffff | ValAndOff(c).Val()<<16, ValAndOff(a).Off())] {s} p mem)
  1161  
  1162  (MOVBstoreconstidx1 [c] {s} p i x:(MOVBstoreconstidx1 [a] {s} p i mem))
  1163    && x.Uses == 1
  1164    && ValAndOff(a).Off() + 1 == ValAndOff(c).Off()
  1165    && clobber(x)
  1166    -> (MOVWstoreconstidx1 [makeValAndOff(ValAndOff(a).Val()&0xff | ValAndOff(c).Val()<<8, ValAndOff(a).Off())] {s} p i mem)
  1167  (MOVWstoreconstidx1 [c] {s} p i x:(MOVWstoreconstidx1 [a] {s} p i mem))
  1168    && x.Uses == 1
  1169    && ValAndOff(a).Off() + 2 == ValAndOff(c).Off()
  1170    && clobber(x)
  1171    -> (MOVLstoreconstidx1 [makeValAndOff(ValAndOff(a).Val()&0xffff | ValAndOff(c).Val()<<16, ValAndOff(a).Off())] {s} p i mem)
  1172  
  1173  (MOVWstoreconstidx2 [c] {s} p i x:(MOVWstoreconstidx2 [a] {s} p i mem))
  1174    && x.Uses == 1
  1175    && ValAndOff(a).Off() + 2 == ValAndOff(c).Off()
  1176    && clobber(x)
  1177    -> (MOVLstoreconstidx1 [makeValAndOff(ValAndOff(a).Val()&0xffff | ValAndOff(c).Val()<<16, ValAndOff(a).Off())] {s} p (SHLLconst <i.Type> [1] i) mem)
  1178  
  1179  // Combine stores into larger (unaligned) stores.
  1180  (MOVBstore [i] {s} p (SHR(W|L)const [8] w) x:(MOVBstore [i-1] {s} p w mem))
  1181    && x.Uses == 1
  1182    && clobber(x)
  1183    -> (MOVWstore [i-1] {s} p w mem)
  1184  (MOVBstore [i] {s} p w x:(MOVBstore {s} [i+1] p (SHR(W|L)const [8] w) mem))
  1185    && x.Uses == 1
  1186    && clobber(x)
  1187    -> (MOVWstore [i] {s} p w mem)
  1188  (MOVBstore [i] {s} p (SHRLconst [j] w) x:(MOVBstore [i-1] {s} p w0:(SHRLconst [j-8] w) mem))
  1189    && x.Uses == 1
  1190    && clobber(x)
  1191    -> (MOVWstore [i-1] {s} p w0 mem)
  1192  (MOVWstore [i] {s} p (SHRLconst [16] w) x:(MOVWstore [i-2] {s} p w mem))
  1193    && x.Uses == 1
  1194    && clobber(x)
  1195    -> (MOVLstore [i-2] {s} p w mem)
  1196  (MOVWstore [i] {s} p (SHRLconst [j] w) x:(MOVWstore [i-2] {s} p w0:(SHRLconst [j-16] w) mem))
  1197    && x.Uses == 1
  1198    && clobber(x)
  1199    -> (MOVLstore [i-2] {s} p w0 mem)
  1200  
  1201  (MOVBstoreidx1 [i] {s} p idx (SHR(L|W)const [8] w) x:(MOVBstoreidx1 [i-1] {s} p idx w mem))
  1202    && x.Uses == 1
  1203    && clobber(x)
  1204    -> (MOVWstoreidx1 [i-1] {s} p idx w mem)
  1205  (MOVBstoreidx1 [i] {s} p idx w x:(MOVBstoreidx1 [i+1] {s} p idx (SHR(L|W)const [8] w) mem))
  1206    && x.Uses == 1
  1207    && clobber(x)
  1208    -> (MOVWstoreidx1 [i] {s} p idx w mem)
  1209  (MOVBstoreidx1 [i] {s} p idx (SHRLconst [j] w) x:(MOVBstoreidx1 [i-1] {s} p idx w0:(SHRLconst [j-8] w) mem))
  1210    && x.Uses == 1
  1211    && clobber(x)
  1212    -> (MOVWstoreidx1 [i-1] {s} p idx w0 mem)
  1213  (MOVWstoreidx1 [i] {s} p idx (SHRLconst [16] w) x:(MOVWstoreidx1 [i-2] {s} p idx w mem))
  1214    && x.Uses == 1
  1215    && clobber(x)
  1216    -> (MOVLstoreidx1 [i-2] {s} p idx w mem)
  1217  (MOVWstoreidx1 [i] {s} p idx (SHRLconst [j] w) x:(MOVWstoreidx1 [i-2] {s} p idx w0:(SHRLconst [j-16] w) mem))
  1218    && x.Uses == 1
  1219    && clobber(x)
  1220    -> (MOVLstoreidx1 [i-2] {s} p idx w0 mem)
  1221  
  1222  (MOVWstoreidx2 [i] {s} p idx (SHRLconst [16] w) x:(MOVWstoreidx2 [i-2] {s} p idx w mem))
  1223    && x.Uses == 1
  1224    && clobber(x)
  1225    -> (MOVLstoreidx1 [i-2] {s} p (SHLLconst <idx.Type> [1] idx) w mem)
  1226  (MOVWstoreidx2 [i] {s} p idx (SHRLconst [j] w) x:(MOVWstoreidx2 [i-2] {s} p idx w0:(SHRLconst [j-16] w) mem))
  1227    && x.Uses == 1
  1228    && clobber(x)
  1229    -> (MOVLstoreidx1 [i-2] {s} p (SHLLconst <idx.Type> [1] idx) w0 mem)
  1230  
  1231  // For PIC, break floating-point constant loading into two instructions so we have
  1232  // a register to use for holding the address of the constant pool entry.
  1233  (MOVSSconst [c]) && config.ctxt.Flag_shared -> (MOVSSconst2 (MOVSSconst1 [c]))
  1234  (MOVSDconst [c]) && config.ctxt.Flag_shared -> (MOVSDconst2 (MOVSDconst1 [c]))
  1235  
  1236  (CMP(L|W|B) l:(MOV(L|W|B)load {sym} [off] ptr mem) x) && canMergeLoad(v, l) && clobber(l) -> (CMP(L|W|B)load {sym} [off] ptr x mem)
  1237  (CMP(L|W|B) x l:(MOV(L|W|B)load {sym} [off] ptr mem)) && canMergeLoad(v, l) && clobber(l) -> (InvertFlags (CMP(L|W|B)load {sym} [off] ptr x mem))
  1238  
  1239  (CMP(L|W|B)const l:(MOV(L|W|B)load {sym} [off] ptr mem) [c])
  1240  	&& l.Uses == 1
  1241  	&& validValAndOff(c, off)
  1242  	&& clobber(l) ->
  1243    @l.Block (CMP(L|W|B)constload {sym} [makeValAndOff(c,off)] ptr mem)
  1244  
  1245  (CMPLload {sym} [off] ptr (MOVLconst [c]) mem) && validValAndOff(int64(int32(c)),off) -> (CMPLconstload {sym} [makeValAndOff(int64(int32(c)),off)] ptr mem)
  1246  (CMPWload {sym} [off] ptr (MOVLconst [c]) mem) && validValAndOff(int64(int16(c)),off) -> (CMPWconstload {sym} [makeValAndOff(int64(int16(c)),off)] ptr mem)
  1247  (CMPBload {sym} [off] ptr (MOVLconst [c]) mem) && validValAndOff(int64(int8(c)),off) -> (CMPBconstload {sym} [makeValAndOff(int64(int8(c)),off)] ptr mem)
  1248  
  1249  (MOVBload [off] {sym} (SB) _) && symIsRO(sym) -> (MOVLconst [int64(read8(sym, off))])
  1250  (MOVWload [off] {sym} (SB) _) && symIsRO(sym) -> (MOVLconst [int64(read16(sym, off, config.BigEndian))])
  1251  (MOVLload [off] {sym} (SB) _) && symIsRO(sym) -> (MOVLconst [int64(int32(read32(sym, off, config.BigEndian)))])