github.com/gagliardetto/golang-go@v0.0.0-20201020153340-53909ea70814/cmd/compile/internal/ssa/gen/386.rules (about) 1 // Copyright 2016 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 // Lowering arithmetic 6 (Add(Ptr|32|16|8) x y) -> (ADDL x y) 7 (Add(32|64)F x y) -> (ADDS(S|D) x y) 8 (Add32carry x y) -> (ADDLcarry x y) 9 (Add32withcarry x y c) -> (ADCL x y c) 10 11 (Sub(Ptr|32|16|8) x y) -> (SUBL x y) 12 (Sub(32|64)F x y) -> (SUBS(S|D) x y) 13 (Sub32carry x y) -> (SUBLcarry x y) 14 (Sub32withcarry x y c) -> (SBBL x y c) 15 16 (Mul(32|16|8) x y) -> (MULL x y) 17 (Mul(32|64)F x y) -> (MULS(S|D) x y) 18 (Mul32uhilo x y) -> (MULLQU x y) 19 20 (Select0 (Mul32uover x y)) -> (Select0 <typ.UInt32> (MULLU x y)) 21 (Select1 (Mul32uover x y)) -> (SETO (Select1 <types.TypeFlags> (MULLU x y))) 22 23 (Avg32u x y) -> (AVGLU x y) 24 25 (Div32F x y) -> (DIVSS x y) 26 (Div64F x y) -> (DIVSD x y) 27 28 (Div32 [a] x y) -> (DIVL [a] x y) 29 (Div32u x y) -> (DIVLU x y) 30 (Div16 [a] x y) -> (DIVW [a] x y) 31 (Div16u x y) -> (DIVWU x y) 32 (Div8 x y) -> (DIVW (SignExt8to16 x) (SignExt8to16 y)) 33 (Div8u x y) -> (DIVWU (ZeroExt8to16 x) (ZeroExt8to16 y)) 34 35 (Hmul32 x y) -> (HMULL x y) 36 (Hmul32u x y) -> (HMULLU x y) 37 38 (Mod32 [a] x y) -> (MODL [a] x y) 39 (Mod32u x y) -> (MODLU x y) 40 (Mod16 [a] x y) -> (MODW [a] x y) 41 (Mod16u x y) -> (MODWU x y) 42 (Mod8 x y) -> (MODW (SignExt8to16 x) (SignExt8to16 y)) 43 (Mod8u x y) -> (MODWU (ZeroExt8to16 x) (ZeroExt8to16 y)) 44 45 (And(32|16|8) x y) -> (ANDL x y) 46 (Or(32|16|8) x y) -> (ORL x y) 47 (Xor(32|16|8) x y) -> (XORL x y) 48 49 (Neg(32|16|8) x) -> (NEGL x) 50 (Neg32F x) && !config.use387 -> (PXOR x (MOVSSconst <typ.Float32> [auxFrom32F(float32(math.Copysign(0, -1)))])) 51 (Neg64F x) && !config.use387 -> (PXOR x (MOVSDconst <typ.Float64> [auxFrom64F(math.Copysign(0, -1))])) 52 (Neg32F x) && config.use387 -> (FCHS x) 53 (Neg64F x) && config.use387 -> (FCHS x) 54 55 (Com(32|16|8) x) -> (NOTL x) 56 57 // Lowering boolean ops 58 (AndB x y) -> (ANDL x y) 59 (OrB x y) -> (ORL x y) 60 (Not x) -> (XORLconst [1] x) 61 62 // Lowering pointer arithmetic 63 (OffPtr [off] ptr) -> (ADDLconst [off] ptr) 64 65 (Bswap32 x) -> (BSWAPL x) 66 67 (Sqrt x) -> (SQRTSD x) 68 69 (Ctz16 x) -> (BSFL (ORLconst <typ.UInt32> [0x10000] x)) 70 (Ctz16NonZero x) -> (BSFL x) 71 72 // Lowering extension 73 (SignExt8to16 x) -> (MOVBLSX x) 74 (SignExt8to32 x) -> (MOVBLSX x) 75 (SignExt16to32 x) -> (MOVWLSX x) 76 77 (ZeroExt8to16 x) -> (MOVBLZX x) 78 (ZeroExt8to32 x) -> (MOVBLZX x) 79 (ZeroExt16to32 x) -> (MOVWLZX x) 80 81 (Signmask x) -> (SARLconst x [31]) 82 (Zeromask <t> x) -> (XORLconst [-1] (SBBLcarrymask <t> (CMPLconst x [1]))) 83 (Slicemask <t> x) -> (SARLconst (NEGL <t> x) [31]) 84 85 // Lowering truncation 86 // Because we ignore high parts of registers, truncates are just copies. 87 (Trunc16to8 x) -> x 88 (Trunc32to8 x) -> x 89 (Trunc32to16 x) -> x 90 91 // Lowering float <-> int 92 (Cvt32to32F x) -> (CVTSL2SS x) 93 (Cvt32to64F x) -> (CVTSL2SD x) 94 95 (Cvt32Fto32 x) -> (CVTTSS2SL x) 96 (Cvt64Fto32 x) -> (CVTTSD2SL x) 97 98 (Cvt32Fto64F x) -> (CVTSS2SD x) 99 (Cvt64Fto32F x) -> (CVTSD2SS x) 100 101 (Round32F x) -> x 102 (Round64F x) -> x 103 104 // Lowering shifts 105 // Unsigned shifts need to return 0 if shift amount is >= width of shifted value. 106 // result = (arg << shift) & (shift >= argbits ? 0 : 0xffffffffffffffff) 107 (Lsh32x32 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPLconst y [32]))) 108 (Lsh32x16 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPWconst y [32]))) 109 (Lsh32x8 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPBconst y [32]))) 110 111 (Lsh16x32 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPLconst y [32]))) 112 (Lsh16x16 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPWconst y [32]))) 113 (Lsh16x8 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPBconst y [32]))) 114 115 (Lsh8x32 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPLconst y [32]))) 116 (Lsh8x16 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPWconst y [32]))) 117 (Lsh8x8 <t> x y) -> (ANDL (SHLL <t> x y) (SBBLcarrymask <t> (CMPBconst y [32]))) 118 119 (Rsh32Ux32 <t> x y) -> (ANDL (SHRL <t> x y) (SBBLcarrymask <t> (CMPLconst y [32]))) 120 (Rsh32Ux16 <t> x y) -> (ANDL (SHRL <t> x y) (SBBLcarrymask <t> (CMPWconst y [32]))) 121 (Rsh32Ux8 <t> x y) -> (ANDL (SHRL <t> x y) (SBBLcarrymask <t> (CMPBconst y [32]))) 122 123 (Rsh16Ux32 <t> x y) -> (ANDL (SHRW <t> x y) (SBBLcarrymask <t> (CMPLconst y [16]))) 124 (Rsh16Ux16 <t> x y) -> (ANDL (SHRW <t> x y) (SBBLcarrymask <t> (CMPWconst y [16]))) 125 (Rsh16Ux8 <t> x y) -> (ANDL (SHRW <t> x y) (SBBLcarrymask <t> (CMPBconst y [16]))) 126 127 (Rsh8Ux32 <t> x y) -> (ANDL (SHRB <t> x y) (SBBLcarrymask <t> (CMPLconst y [8]))) 128 (Rsh8Ux16 <t> x y) -> (ANDL (SHRB <t> x y) (SBBLcarrymask <t> (CMPWconst y [8]))) 129 (Rsh8Ux8 <t> x y) -> (ANDL (SHRB <t> x y) (SBBLcarrymask <t> (CMPBconst y [8]))) 130 131 // Signed right shift needs to return 0/-1 if shift amount is >= width of shifted value. 132 // We implement this by setting the shift value to -1 (all ones) if the shift value is >= width. 133 134 (Rsh32x32 <t> x y) -> (SARL <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPLconst y [32]))))) 135 (Rsh32x16 <t> x y) -> (SARL <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPWconst y [32]))))) 136 (Rsh32x8 <t> x y) -> (SARL <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPBconst y [32]))))) 137 138 (Rsh16x32 <t> x y) -> (SARW <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPLconst y [16]))))) 139 (Rsh16x16 <t> x y) -> (SARW <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPWconst y [16]))))) 140 (Rsh16x8 <t> x y) -> (SARW <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPBconst y [16]))))) 141 142 (Rsh8x32 <t> x y) -> (SARB <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPLconst y [8]))))) 143 (Rsh8x16 <t> x y) -> (SARB <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPWconst y [8]))))) 144 (Rsh8x8 <t> x y) -> (SARB <t> x (ORL <y.Type> y (NOTL <y.Type> (SBBLcarrymask <y.Type> (CMPBconst y [8]))))) 145 146 // constant shifts 147 // generic opt rewrites all constant shifts to shift by Const64 148 (Lsh32x64 x (Const64 [c])) && uint64(c) < 32 -> (SHLLconst x [c]) 149 (Rsh32x64 x (Const64 [c])) && uint64(c) < 32 -> (SARLconst x [c]) 150 (Rsh32Ux64 x (Const64 [c])) && uint64(c) < 32 -> (SHRLconst x [c]) 151 (Lsh16x64 x (Const64 [c])) && uint64(c) < 16 -> (SHLLconst x [c]) 152 (Rsh16x64 x (Const64 [c])) && uint64(c) < 16 -> (SARWconst x [c]) 153 (Rsh16Ux64 x (Const64 [c])) && uint64(c) < 16 -> (SHRWconst x [c]) 154 (Lsh8x64 x (Const64 [c])) && uint64(c) < 8 -> (SHLLconst x [c]) 155 (Rsh8x64 x (Const64 [c])) && uint64(c) < 8 -> (SARBconst x [c]) 156 (Rsh8Ux64 x (Const64 [c])) && uint64(c) < 8 -> (SHRBconst x [c]) 157 158 // large constant shifts 159 (Lsh32x64 _ (Const64 [c])) && uint64(c) >= 32 -> (Const32 [0]) 160 (Rsh32Ux64 _ (Const64 [c])) && uint64(c) >= 32 -> (Const32 [0]) 161 (Lsh16x64 _ (Const64 [c])) && uint64(c) >= 16 -> (Const16 [0]) 162 (Rsh16Ux64 _ (Const64 [c])) && uint64(c) >= 16 -> (Const16 [0]) 163 (Lsh8x64 _ (Const64 [c])) && uint64(c) >= 8 -> (Const8 [0]) 164 (Rsh8Ux64 _ (Const64 [c])) && uint64(c) >= 8 -> (Const8 [0]) 165 166 // large constant signed right shift, we leave the sign bit 167 (Rsh32x64 x (Const64 [c])) && uint64(c) >= 32 -> (SARLconst x [31]) 168 (Rsh16x64 x (Const64 [c])) && uint64(c) >= 16 -> (SARWconst x [15]) 169 (Rsh8x64 x (Const64 [c])) && uint64(c) >= 8 -> (SARBconst x [7]) 170 171 // constant rotates 172 (RotateLeft32 x (MOVLconst [c])) -> (ROLLconst [c&31] x) 173 (RotateLeft16 x (MOVLconst [c])) -> (ROLWconst [c&15] x) 174 (RotateLeft8 x (MOVLconst [c])) -> (ROLBconst [c&7] x) 175 176 // Lowering comparisons 177 (Less32 x y) -> (SETL (CMPL x y)) 178 (Less16 x y) -> (SETL (CMPW x y)) 179 (Less8 x y) -> (SETL (CMPB x y)) 180 (Less32U x y) -> (SETB (CMPL x y)) 181 (Less16U x y) -> (SETB (CMPW x y)) 182 (Less8U x y) -> (SETB (CMPB x y)) 183 // Use SETGF with reversed operands to dodge NaN case 184 (Less64F x y) -> (SETGF (UCOMISD y x)) 185 (Less32F x y) -> (SETGF (UCOMISS y x)) 186 187 (Leq32 x y) -> (SETLE (CMPL x y)) 188 (Leq16 x y) -> (SETLE (CMPW x y)) 189 (Leq8 x y) -> (SETLE (CMPB x y)) 190 (Leq32U x y) -> (SETBE (CMPL x y)) 191 (Leq16U x y) -> (SETBE (CMPW x y)) 192 (Leq8U x y) -> (SETBE (CMPB x y)) 193 // Use SETGEF with reversed operands to dodge NaN case 194 (Leq64F x y) -> (SETGEF (UCOMISD y x)) 195 (Leq32F x y) -> (SETGEF (UCOMISS y x)) 196 197 (Greater32 x y) -> (SETG (CMPL x y)) 198 (Greater16 x y) -> (SETG (CMPW x y)) 199 (Greater8 x y) -> (SETG (CMPB x y)) 200 (Greater32U x y) -> (SETA (CMPL x y)) 201 (Greater16U x y) -> (SETA (CMPW x y)) 202 (Greater8U x y) -> (SETA (CMPB x y)) 203 // Note Go assembler gets UCOMISx operand order wrong, but it is right here 204 // Bug is accommodated at generation of assembly language. 205 (Greater64F x y) -> (SETGF (UCOMISD x y)) 206 (Greater32F x y) -> (SETGF (UCOMISS x y)) 207 208 (Geq32 x y) -> (SETGE (CMPL x y)) 209 (Geq16 x y) -> (SETGE (CMPW x y)) 210 (Geq8 x y) -> (SETGE (CMPB x y)) 211 (Geq32U x y) -> (SETAE (CMPL x y)) 212 (Geq16U x y) -> (SETAE (CMPW x y)) 213 (Geq8U x y) -> (SETAE (CMPB x y)) 214 // Note Go assembler gets UCOMISx operand order wrong, but it is right here 215 // Bug is accommodated at generation of assembly language. 216 (Geq64F x y) -> (SETGEF (UCOMISD x y)) 217 (Geq32F x y) -> (SETGEF (UCOMISS x y)) 218 219 (Eq32 x y) -> (SETEQ (CMPL x y)) 220 (Eq16 x y) -> (SETEQ (CMPW x y)) 221 (Eq8 x y) -> (SETEQ (CMPB x y)) 222 (EqB x y) -> (SETEQ (CMPB x y)) 223 (EqPtr x y) -> (SETEQ (CMPL x y)) 224 (Eq64F x y) -> (SETEQF (UCOMISD x y)) 225 (Eq32F x y) -> (SETEQF (UCOMISS x y)) 226 227 (Neq32 x y) -> (SETNE (CMPL x y)) 228 (Neq16 x y) -> (SETNE (CMPW x y)) 229 (Neq8 x y) -> (SETNE (CMPB x y)) 230 (NeqB x y) -> (SETNE (CMPB x y)) 231 (NeqPtr x y) -> (SETNE (CMPL x y)) 232 (Neq64F x y) -> (SETNEF (UCOMISD x y)) 233 (Neq32F x y) -> (SETNEF (UCOMISS x y)) 234 235 // Lowering loads 236 (Load <t> ptr mem) && (is32BitInt(t) || isPtr(t)) -> (MOVLload ptr mem) 237 (Load <t> ptr mem) && is16BitInt(t) -> (MOVWload ptr mem) 238 (Load <t> ptr mem) && (t.IsBoolean() || is8BitInt(t)) -> (MOVBload ptr mem) 239 (Load <t> ptr mem) && is32BitFloat(t) -> (MOVSSload ptr mem) 240 (Load <t> ptr mem) && is64BitFloat(t) -> (MOVSDload ptr mem) 241 242 // Lowering stores 243 // These more-specific FP versions of Store pattern should come first. 244 (Store {t} ptr val mem) && t.(*types.Type).Size() == 8 && is64BitFloat(val.Type) -> (MOVSDstore ptr val mem) 245 (Store {t} ptr val mem) && t.(*types.Type).Size() == 4 && is32BitFloat(val.Type) -> (MOVSSstore ptr val mem) 246 247 (Store {t} ptr val mem) && t.(*types.Type).Size() == 4 -> (MOVLstore ptr val mem) 248 (Store {t} ptr val mem) && t.(*types.Type).Size() == 2 -> (MOVWstore ptr val mem) 249 (Store {t} ptr val mem) && t.(*types.Type).Size() == 1 -> (MOVBstore ptr val mem) 250 251 // Lowering moves 252 (Move [0] _ _ mem) -> mem 253 (Move [1] dst src mem) -> (MOVBstore dst (MOVBload src mem) mem) 254 (Move [2] dst src mem) -> (MOVWstore dst (MOVWload src mem) mem) 255 (Move [4] dst src mem) -> (MOVLstore dst (MOVLload src mem) mem) 256 (Move [3] dst src mem) -> 257 (MOVBstore [2] dst (MOVBload [2] src mem) 258 (MOVWstore dst (MOVWload src mem) mem)) 259 (Move [5] dst src mem) -> 260 (MOVBstore [4] dst (MOVBload [4] src mem) 261 (MOVLstore dst (MOVLload src mem) mem)) 262 (Move [6] dst src mem) -> 263 (MOVWstore [4] dst (MOVWload [4] src mem) 264 (MOVLstore dst (MOVLload src mem) mem)) 265 (Move [7] dst src mem) -> 266 (MOVLstore [3] dst (MOVLload [3] src mem) 267 (MOVLstore dst (MOVLload src mem) mem)) 268 (Move [8] dst src mem) -> 269 (MOVLstore [4] dst (MOVLload [4] src mem) 270 (MOVLstore dst (MOVLload src mem) mem)) 271 272 // Adjust moves to be a multiple of 4 bytes. 273 (Move [s] dst src mem) 274 && s > 8 && s%4 != 0 -> 275 (Move [s-s%4] 276 (ADDLconst <dst.Type> dst [s%4]) 277 (ADDLconst <src.Type> src [s%4]) 278 (MOVLstore dst (MOVLload src mem) mem)) 279 280 // Medium copying uses a duff device. 281 (Move [s] dst src mem) 282 && s > 8 && s <= 4*128 && s%4 == 0 283 && !config.noDuffDevice -> 284 (DUFFCOPY [10*(128-s/4)] dst src mem) 285 // 10 and 128 are magic constants. 10 is the number of bytes to encode: 286 // MOVL (SI), CX 287 // ADDL $4, SI 288 // MOVL CX, (DI) 289 // ADDL $4, DI 290 // and 128 is the number of such blocks. See src/runtime/duff_386.s:duffcopy. 291 292 // Large copying uses REP MOVSL. 293 (Move [s] dst src mem) && (s > 4*128 || config.noDuffDevice) && s%4 == 0 -> 294 (REPMOVSL dst src (MOVLconst [s/4]) mem) 295 296 // Lowering Zero instructions 297 (Zero [0] _ mem) -> mem 298 (Zero [1] destptr mem) -> (MOVBstoreconst [0] destptr mem) 299 (Zero [2] destptr mem) -> (MOVWstoreconst [0] destptr mem) 300 (Zero [4] destptr mem) -> (MOVLstoreconst [0] destptr mem) 301 302 (Zero [3] destptr mem) -> 303 (MOVBstoreconst [makeValAndOff(0,2)] destptr 304 (MOVWstoreconst [0] destptr mem)) 305 (Zero [5] destptr mem) -> 306 (MOVBstoreconst [makeValAndOff(0,4)] destptr 307 (MOVLstoreconst [0] destptr mem)) 308 (Zero [6] destptr mem) -> 309 (MOVWstoreconst [makeValAndOff(0,4)] destptr 310 (MOVLstoreconst [0] destptr mem)) 311 (Zero [7] destptr mem) -> 312 (MOVLstoreconst [makeValAndOff(0,3)] destptr 313 (MOVLstoreconst [0] destptr mem)) 314 315 // Strip off any fractional word zeroing. 316 (Zero [s] destptr mem) && s%4 != 0 && s > 4 -> 317 (Zero [s-s%4] (ADDLconst destptr [s%4]) 318 (MOVLstoreconst [0] destptr mem)) 319 320 // Zero small numbers of words directly. 321 (Zero [8] destptr mem) -> 322 (MOVLstoreconst [makeValAndOff(0,4)] destptr 323 (MOVLstoreconst [0] destptr mem)) 324 (Zero [12] destptr mem) -> 325 (MOVLstoreconst [makeValAndOff(0,8)] destptr 326 (MOVLstoreconst [makeValAndOff(0,4)] destptr 327 (MOVLstoreconst [0] destptr mem))) 328 (Zero [16] destptr mem) -> 329 (MOVLstoreconst [makeValAndOff(0,12)] destptr 330 (MOVLstoreconst [makeValAndOff(0,8)] destptr 331 (MOVLstoreconst [makeValAndOff(0,4)] destptr 332 (MOVLstoreconst [0] destptr mem)))) 333 334 // Medium zeroing uses a duff device. 335 (Zero [s] destptr mem) 336 && s > 16 && s <= 4*128 && s%4 == 0 337 && !config.noDuffDevice -> 338 (DUFFZERO [1*(128-s/4)] destptr (MOVLconst [0]) mem) 339 // 1 and 128 are magic constants. 1 is the number of bytes to encode STOSL. 340 // 128 is the number of STOSL instructions in duffzero. 341 // See src/runtime/duff_386.s:duffzero. 342 343 // Large zeroing uses REP STOSQ. 344 (Zero [s] destptr mem) 345 && (s > 4*128 || (config.noDuffDevice && s > 16)) 346 && s%4 == 0 -> 347 (REPSTOSL destptr (MOVLconst [s/4]) (MOVLconst [0]) mem) 348 349 // Lowering constants 350 (Const(8|16|32) [val]) -> (MOVLconst [val]) 351 (Const(32|64)F [val]) -> (MOVS(S|D)const [val]) 352 (ConstNil) -> (MOVLconst [0]) 353 (ConstBool [b]) -> (MOVLconst [b]) 354 355 // Lowering calls 356 (StaticCall [argwid] {target} mem) -> (CALLstatic [argwid] {target} mem) 357 (ClosureCall [argwid] entry closure mem) -> (CALLclosure [argwid] entry closure mem) 358 (InterCall [argwid] entry mem) -> (CALLinter [argwid] entry mem) 359 360 // Miscellaneous 361 (IsNonNil p) -> (SETNE (TESTL p p)) 362 (IsInBounds idx len) -> (SETB (CMPL idx len)) 363 (IsSliceInBounds idx len) -> (SETBE (CMPL idx len)) 364 (NilCheck ptr mem) -> (LoweredNilCheck ptr mem) 365 (GetG mem) -> (LoweredGetG mem) 366 (GetClosurePtr) -> (LoweredGetClosurePtr) 367 (GetCallerPC) -> (LoweredGetCallerPC) 368 (GetCallerSP) -> (LoweredGetCallerSP) 369 (Addr {sym} base) -> (LEAL {sym} base) 370 (LocalAddr {sym} base _) -> (LEAL {sym} base) 371 372 // block rewrites 373 (If (SETL cmp) yes no) -> (LT cmp yes no) 374 (If (SETLE cmp) yes no) -> (LE cmp yes no) 375 (If (SETG cmp) yes no) -> (GT cmp yes no) 376 (If (SETGE cmp) yes no) -> (GE cmp yes no) 377 (If (SETEQ cmp) yes no) -> (EQ cmp yes no) 378 (If (SETNE cmp) yes no) -> (NE cmp yes no) 379 (If (SETB cmp) yes no) -> (ULT cmp yes no) 380 (If (SETBE cmp) yes no) -> (ULE cmp yes no) 381 (If (SETA cmp) yes no) -> (UGT cmp yes no) 382 (If (SETAE cmp) yes no) -> (UGE cmp yes no) 383 (If (SETO cmp) yes no) -> (OS cmp yes no) 384 385 // Special case for floating point - LF/LEF not generated 386 (If (SETGF cmp) yes no) -> (UGT cmp yes no) 387 (If (SETGEF cmp) yes no) -> (UGE cmp yes no) 388 (If (SETEQF cmp) yes no) -> (EQF cmp yes no) 389 (If (SETNEF cmp) yes no) -> (NEF cmp yes no) 390 391 (If cond yes no) -> (NE (TESTB cond cond) yes no) 392 393 // Write barrier. 394 (WB {fn} destptr srcptr mem) -> (LoweredWB {fn} destptr srcptr mem) 395 396 (PanicBounds [kind] x y mem) && boundsABI(kind) == 0 -> (LoweredPanicBoundsA [kind] x y mem) 397 (PanicBounds [kind] x y mem) && boundsABI(kind) == 1 -> (LoweredPanicBoundsB [kind] x y mem) 398 (PanicBounds [kind] x y mem) && boundsABI(kind) == 2 -> (LoweredPanicBoundsC [kind] x y mem) 399 400 (PanicExtend [kind] hi lo y mem) && boundsABI(kind) == 0 -> (LoweredPanicExtendA [kind] hi lo y mem) 401 (PanicExtend [kind] hi lo y mem) && boundsABI(kind) == 1 -> (LoweredPanicExtendB [kind] hi lo y mem) 402 (PanicExtend [kind] hi lo y mem) && boundsABI(kind) == 2 -> (LoweredPanicExtendC [kind] hi lo y mem) 403 404 // *************************** 405 // Above: lowering rules 406 // Below: optimizations 407 // *************************** 408 // TODO: Should the optimizations be a separate pass? 409 410 // Fold boolean tests into blocks 411 (NE (TESTB (SETL cmp) (SETL cmp)) yes no) -> (LT cmp yes no) 412 (NE (TESTB (SETLE cmp) (SETLE cmp)) yes no) -> (LE cmp yes no) 413 (NE (TESTB (SETG cmp) (SETG cmp)) yes no) -> (GT cmp yes no) 414 (NE (TESTB (SETGE cmp) (SETGE cmp)) yes no) -> (GE cmp yes no) 415 (NE (TESTB (SETEQ cmp) (SETEQ cmp)) yes no) -> (EQ cmp yes no) 416 (NE (TESTB (SETNE cmp) (SETNE cmp)) yes no) -> (NE cmp yes no) 417 (NE (TESTB (SETB cmp) (SETB cmp)) yes no) -> (ULT cmp yes no) 418 (NE (TESTB (SETBE cmp) (SETBE cmp)) yes no) -> (ULE cmp yes no) 419 (NE (TESTB (SETA cmp) (SETA cmp)) yes no) -> (UGT cmp yes no) 420 (NE (TESTB (SETAE cmp) (SETAE cmp)) yes no) -> (UGE cmp yes no) 421 (NE (TESTB (SETO cmp) (SETO cmp)) yes no) -> (OS cmp yes no) 422 423 // Special case for floating point - LF/LEF not generated 424 (NE (TESTB (SETGF cmp) (SETGF cmp)) yes no) -> (UGT cmp yes no) 425 (NE (TESTB (SETGEF cmp) (SETGEF cmp)) yes no) -> (UGE cmp yes no) 426 (NE (TESTB (SETEQF cmp) (SETEQF cmp)) yes no) -> (EQF cmp yes no) 427 (NE (TESTB (SETNEF cmp) (SETNEF cmp)) yes no) -> (NEF cmp yes no) 428 429 // fold constants into instructions 430 (ADDL x (MOVLconst [c])) -> (ADDLconst [c] x) 431 (ADDLcarry x (MOVLconst [c])) -> (ADDLconstcarry [c] x) 432 (ADCL x (MOVLconst [c]) f) -> (ADCLconst [c] x f) 433 (ADCL (MOVLconst [c]) x f) -> (ADCLconst [c] x f) 434 435 (SUBL x (MOVLconst [c])) -> (SUBLconst x [c]) 436 (SUBL (MOVLconst [c]) x) -> (NEGL (SUBLconst <v.Type> x [c])) 437 (SUBLcarry x (MOVLconst [c])) -> (SUBLconstcarry [c] x) 438 (SBBL x (MOVLconst [c]) f) -> (SBBLconst [c] x f) 439 440 (MULL x (MOVLconst [c])) -> (MULLconst [c] x) 441 442 (ANDL x (MOVLconst [c])) -> (ANDLconst [c] x) 443 444 (ANDLconst [c] (ANDLconst [d] x)) -> (ANDLconst [c & d] x) 445 446 (XORLconst [c] (XORLconst [d] x)) -> (XORLconst [c ^ d] x) 447 448 (MULLconst [c] (MULLconst [d] x)) -> (MULLconst [int64(int32(c * d))] x) 449 450 (ORL x (MOVLconst [c])) -> (ORLconst [c] x) 451 452 (XORL x (MOVLconst [c])) -> (XORLconst [c] x) 453 454 (SHLL x (MOVLconst [c])) -> (SHLLconst [c&31] x) 455 (SHRL x (MOVLconst [c])) -> (SHRLconst [c&31] x) 456 (SHRW x (MOVLconst [c])) && c&31 < 16 -> (SHRWconst [c&31] x) 457 (SHRW _ (MOVLconst [c])) && c&31 >= 16 -> (MOVLconst [0]) 458 (SHRB x (MOVLconst [c])) && c&31 < 8 -> (SHRBconst [c&31] x) 459 (SHRB _ (MOVLconst [c])) && c&31 >= 8 -> (MOVLconst [0]) 460 461 (SARL x (MOVLconst [c])) -> (SARLconst [c&31] x) 462 (SARW x (MOVLconst [c])) -> (SARWconst [min(c&31,15)] x) 463 (SARB x (MOVLconst [c])) -> (SARBconst [min(c&31,7)] x) 464 465 (SARL x (ANDLconst [31] y)) -> (SARL x y) 466 467 (SHLL x (ANDLconst [31] y)) -> (SHLL x y) 468 469 (SHRL x (ANDLconst [31] y)) -> (SHRL x y) 470 471 // Rotate instructions 472 473 (ADDL (SHLLconst [c] x) (SHRLconst [d] x)) && d == 32-c -> (ROLLconst [c] x) 474 ( ORL (SHLLconst [c] x) (SHRLconst [d] x)) && d == 32-c -> (ROLLconst [c] x) 475 (XORL (SHLLconst [c] x) (SHRLconst [d] x)) && d == 32-c -> (ROLLconst [c] x) 476 477 (ADDL <t> (SHLLconst x [c]) (SHRWconst x [d])) && c < 16 && d == 16-c && t.Size() == 2 -> (ROLWconst x [c]) 478 ( ORL <t> (SHLLconst x [c]) (SHRWconst x [d])) && c < 16 && d == 16-c && t.Size() == 2 -> (ROLWconst x [c]) 479 (XORL <t> (SHLLconst x [c]) (SHRWconst x [d])) && c < 16 && d == 16-c && t.Size() == 2 -> (ROLWconst x [c]) 480 481 (ADDL <t> (SHLLconst x [c]) (SHRBconst x [d])) && c < 8 && d == 8-c && t.Size() == 1 -> (ROLBconst x [c]) 482 ( ORL <t> (SHLLconst x [c]) (SHRBconst x [d])) && c < 8 && d == 8-c && t.Size() == 1 -> (ROLBconst x [c]) 483 (XORL <t> (SHLLconst x [c]) (SHRBconst x [d])) && c < 8 && d == 8-c && t.Size() == 1 -> (ROLBconst x [c]) 484 485 (ROLLconst [c] (ROLLconst [d] x)) -> (ROLLconst [(c+d)&31] x) 486 (ROLWconst [c] (ROLWconst [d] x)) -> (ROLWconst [(c+d)&15] x) 487 (ROLBconst [c] (ROLBconst [d] x)) -> (ROLBconst [(c+d)& 7] x) 488 489 // Constant shift simplifications 490 491 (SHLLconst x [0]) -> x 492 (SHRLconst x [0]) -> x 493 (SARLconst x [0]) -> x 494 495 (SHRWconst x [0]) -> x 496 (SARWconst x [0]) -> x 497 498 (SHRBconst x [0]) -> x 499 (SARBconst x [0]) -> x 500 501 (ROLLconst [0] x) -> x 502 (ROLWconst [0] x) -> x 503 (ROLBconst [0] x) -> x 504 505 // Note: the word and byte shifts keep the low 5 bits (not the low 4 or 3 bits) 506 // because the x86 instructions are defined to use all 5 bits of the shift even 507 // for the small shifts. I don't think we'll ever generate a weird shift (e.g. 508 // (SHRW x (MOVLconst [24])), but just in case. 509 510 (CMPL x (MOVLconst [c])) -> (CMPLconst x [c]) 511 (CMPL (MOVLconst [c]) x) -> (InvertFlags (CMPLconst x [c])) 512 (CMPW x (MOVLconst [c])) -> (CMPWconst x [int64(int16(c))]) 513 (CMPW (MOVLconst [c]) x) -> (InvertFlags (CMPWconst x [int64(int16(c))])) 514 (CMPB x (MOVLconst [c])) -> (CMPBconst x [int64(int8(c))]) 515 (CMPB (MOVLconst [c]) x) -> (InvertFlags (CMPBconst x [int64(int8(c))])) 516 517 // strength reduction 518 // Assumes that the following costs from https://gmplib.org/~tege/x86-timing.pdf: 519 // 1 - addl, shll, leal, negl, subl 520 // 3 - imull 521 // This limits the rewrites to two instructions. 522 // Note that negl always operates in-place, 523 // which can require a register-register move 524 // to preserve the original value, 525 // so it must be used with care. 526 (MULLconst [-9] x) -> (NEGL (LEAL8 <v.Type> x x)) 527 (MULLconst [-5] x) -> (NEGL (LEAL4 <v.Type> x x)) 528 (MULLconst [-3] x) -> (NEGL (LEAL2 <v.Type> x x)) 529 (MULLconst [-1] x) -> (NEGL x) 530 (MULLconst [0] _) -> (MOVLconst [0]) 531 (MULLconst [1] x) -> x 532 (MULLconst [3] x) -> (LEAL2 x x) 533 (MULLconst [5] x) -> (LEAL4 x x) 534 (MULLconst [7] x) -> (LEAL2 x (LEAL2 <v.Type> x x)) 535 (MULLconst [9] x) -> (LEAL8 x x) 536 (MULLconst [11] x) -> (LEAL2 x (LEAL4 <v.Type> x x)) 537 (MULLconst [13] x) -> (LEAL4 x (LEAL2 <v.Type> x x)) 538 (MULLconst [19] x) -> (LEAL2 x (LEAL8 <v.Type> x x)) 539 (MULLconst [21] x) -> (LEAL4 x (LEAL4 <v.Type> x x)) 540 (MULLconst [25] x) -> (LEAL8 x (LEAL2 <v.Type> x x)) 541 (MULLconst [27] x) -> (LEAL8 (LEAL2 <v.Type> x x) (LEAL2 <v.Type> x x)) 542 (MULLconst [37] x) -> (LEAL4 x (LEAL8 <v.Type> x x)) 543 (MULLconst [41] x) -> (LEAL8 x (LEAL4 <v.Type> x x)) 544 (MULLconst [45] x) -> (LEAL8 (LEAL4 <v.Type> x x) (LEAL4 <v.Type> x x)) 545 (MULLconst [73] x) -> (LEAL8 x (LEAL8 <v.Type> x x)) 546 (MULLconst [81] x) -> (LEAL8 (LEAL8 <v.Type> x x) (LEAL8 <v.Type> x x)) 547 548 (MULLconst [c] x) && isPowerOfTwo(c+1) && c >= 15 -> (SUBL (SHLLconst <v.Type> [log2(c+1)] x) x) 549 (MULLconst [c] x) && isPowerOfTwo(c-1) && c >= 17 -> (LEAL1 (SHLLconst <v.Type> [log2(c-1)] x) x) 550 (MULLconst [c] x) && isPowerOfTwo(c-2) && c >= 34 -> (LEAL2 (SHLLconst <v.Type> [log2(c-2)] x) x) 551 (MULLconst [c] x) && isPowerOfTwo(c-4) && c >= 68 -> (LEAL4 (SHLLconst <v.Type> [log2(c-4)] x) x) 552 (MULLconst [c] x) && isPowerOfTwo(c-8) && c >= 136 -> (LEAL8 (SHLLconst <v.Type> [log2(c-8)] x) x) 553 (MULLconst [c] x) && c%3 == 0 && isPowerOfTwo(c/3) -> (SHLLconst [log2(c/3)] (LEAL2 <v.Type> x x)) 554 (MULLconst [c] x) && c%5 == 0 && isPowerOfTwo(c/5) -> (SHLLconst [log2(c/5)] (LEAL4 <v.Type> x x)) 555 (MULLconst [c] x) && c%9 == 0 && isPowerOfTwo(c/9) -> (SHLLconst [log2(c/9)] (LEAL8 <v.Type> x x)) 556 557 // combine add/shift into LEAL 558 (ADDL x (SHLLconst [3] y)) -> (LEAL8 x y) 559 (ADDL x (SHLLconst [2] y)) -> (LEAL4 x y) 560 (ADDL x (SHLLconst [1] y)) -> (LEAL2 x y) 561 (ADDL x (ADDL y y)) -> (LEAL2 x y) 562 (ADDL x (ADDL x y)) -> (LEAL2 y x) 563 564 // combine ADDL/ADDLconst into LEAL1 565 (ADDLconst [c] (ADDL x y)) -> (LEAL1 [c] x y) 566 (ADDL (ADDLconst [c] x) y) -> (LEAL1 [c] x y) 567 568 // fold ADDL into LEAL 569 (ADDLconst [c] (LEAL [d] {s} x)) && is32Bit(c+d) -> (LEAL [c+d] {s} x) 570 (LEAL [c] {s} (ADDLconst [d] x)) && is32Bit(c+d) -> (LEAL [c+d] {s} x) 571 (LEAL [c] {s} (ADDL x y)) && x.Op != OpSB && y.Op != OpSB -> (LEAL1 [c] {s} x y) 572 (ADDL x (LEAL [c] {s} y)) && x.Op != OpSB && y.Op != OpSB -> (LEAL1 [c] {s} x y) 573 574 // fold ADDLconst into LEALx 575 (ADDLconst [c] (LEAL1 [d] {s} x y)) && is32Bit(c+d) -> (LEAL1 [c+d] {s} x y) 576 (ADDLconst [c] (LEAL2 [d] {s} x y)) && is32Bit(c+d) -> (LEAL2 [c+d] {s} x y) 577 (ADDLconst [c] (LEAL4 [d] {s} x y)) && is32Bit(c+d) -> (LEAL4 [c+d] {s} x y) 578 (ADDLconst [c] (LEAL8 [d] {s} x y)) && is32Bit(c+d) -> (LEAL8 [c+d] {s} x y) 579 (LEAL1 [c] {s} (ADDLconst [d] x) y) && is32Bit(c+d) && x.Op != OpSB -> (LEAL1 [c+d] {s} x y) 580 (LEAL2 [c] {s} (ADDLconst [d] x) y) && is32Bit(c+d) && x.Op != OpSB -> (LEAL2 [c+d] {s} x y) 581 (LEAL2 [c] {s} x (ADDLconst [d] y)) && is32Bit(c+2*d) && y.Op != OpSB -> (LEAL2 [c+2*d] {s} x y) 582 (LEAL4 [c] {s} (ADDLconst [d] x) y) && is32Bit(c+d) && x.Op != OpSB -> (LEAL4 [c+d] {s} x y) 583 (LEAL4 [c] {s} x (ADDLconst [d] y)) && is32Bit(c+4*d) && y.Op != OpSB -> (LEAL4 [c+4*d] {s} x y) 584 (LEAL8 [c] {s} (ADDLconst [d] x) y) && is32Bit(c+d) && x.Op != OpSB -> (LEAL8 [c+d] {s} x y) 585 (LEAL8 [c] {s} x (ADDLconst [d] y)) && is32Bit(c+8*d) && y.Op != OpSB -> (LEAL8 [c+8*d] {s} x y) 586 587 // fold shifts into LEALx 588 (LEAL1 [c] {s} x (SHLLconst [1] y)) -> (LEAL2 [c] {s} x y) 589 (LEAL1 [c] {s} x (SHLLconst [2] y)) -> (LEAL4 [c] {s} x y) 590 (LEAL1 [c] {s} x (SHLLconst [3] y)) -> (LEAL8 [c] {s} x y) 591 (LEAL2 [c] {s} x (SHLLconst [1] y)) -> (LEAL4 [c] {s} x y) 592 (LEAL2 [c] {s} x (SHLLconst [2] y)) -> (LEAL8 [c] {s} x y) 593 (LEAL4 [c] {s} x (SHLLconst [1] y)) -> (LEAL8 [c] {s} x y) 594 595 // reverse ordering of compare instruction 596 (SETL (InvertFlags x)) -> (SETG x) 597 (SETG (InvertFlags x)) -> (SETL x) 598 (SETB (InvertFlags x)) -> (SETA x) 599 (SETA (InvertFlags x)) -> (SETB x) 600 (SETLE (InvertFlags x)) -> (SETGE x) 601 (SETGE (InvertFlags x)) -> (SETLE x) 602 (SETBE (InvertFlags x)) -> (SETAE x) 603 (SETAE (InvertFlags x)) -> (SETBE x) 604 (SETEQ (InvertFlags x)) -> (SETEQ x) 605 (SETNE (InvertFlags x)) -> (SETNE x) 606 607 // sign extended loads 608 // Note: The combined instruction must end up in the same block 609 // as the original load. If not, we end up making a value with 610 // memory type live in two different blocks, which can lead to 611 // multiple memory values alive simultaneously. 612 // Make sure we don't combine these ops if the load has another use. 613 // This prevents a single load from being split into multiple loads 614 // which then might return different values. See test/atomicload.go. 615 (MOVBLSX x:(MOVBload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) -> @x.Block (MOVBLSXload <v.Type> [off] {sym} ptr mem) 616 (MOVBLZX x:(MOVBload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) -> @x.Block (MOVBload <v.Type> [off] {sym} ptr mem) 617 (MOVWLSX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) -> @x.Block (MOVWLSXload <v.Type> [off] {sym} ptr mem) 618 (MOVWLZX x:(MOVWload [off] {sym} ptr mem)) && x.Uses == 1 && clobber(x) -> @x.Block (MOVWload <v.Type> [off] {sym} ptr mem) 619 620 (MOVBLZX x:(MOVBloadidx1 [off] {sym} ptr idx mem)) && x.Uses == 1 && clobber(x) -> @x.Block (MOVBloadidx1 <v.Type> [off] {sym} ptr idx mem) 621 (MOVWLZX x:(MOVWloadidx1 [off] {sym} ptr idx mem)) && x.Uses == 1 && clobber(x) -> @x.Block (MOVWloadidx1 <v.Type> [off] {sym} ptr idx mem) 622 (MOVWLZX x:(MOVWloadidx2 [off] {sym} ptr idx mem)) && x.Uses == 1 && clobber(x) -> @x.Block (MOVWloadidx2 <v.Type> [off] {sym} ptr idx mem) 623 624 // replace load from same location as preceding store with zero/sign extension (or copy in case of full width) 625 (MOVBload [off] {sym} ptr (MOVBstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) -> (MOVBLZX x) 626 (MOVWload [off] {sym} ptr (MOVWstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) -> (MOVWLZX x) 627 (MOVLload [off] {sym} ptr (MOVLstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) -> x 628 (MOVBLSXload [off] {sym} ptr (MOVBstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) -> (MOVBLSX x) 629 (MOVWLSXload [off] {sym} ptr (MOVWstore [off2] {sym2} ptr2 x _)) && sym == sym2 && off == off2 && isSamePtr(ptr, ptr2) -> (MOVWLSX x) 630 631 // Fold extensions and ANDs together. 632 (MOVBLZX (ANDLconst [c] x)) -> (ANDLconst [c & 0xff] x) 633 (MOVWLZX (ANDLconst [c] x)) -> (ANDLconst [c & 0xffff] x) 634 (MOVBLSX (ANDLconst [c] x)) && c & 0x80 == 0 -> (ANDLconst [c & 0x7f] x) 635 (MOVWLSX (ANDLconst [c] x)) && c & 0x8000 == 0 -> (ANDLconst [c & 0x7fff] x) 636 637 // Don't extend before storing 638 (MOVWstore [off] {sym} ptr (MOVWL(S|Z)X x) mem) -> (MOVWstore [off] {sym} ptr x mem) 639 (MOVBstore [off] {sym} ptr (MOVBL(S|Z)X x) mem) -> (MOVBstore [off] {sym} ptr x mem) 640 641 // fold constants into memory operations 642 // Note that this is not always a good idea because if not all the uses of 643 // the ADDQconst get eliminated, we still have to compute the ADDQconst and we now 644 // have potentially two live values (ptr and (ADDQconst [off] ptr)) instead of one. 645 // Nevertheless, let's do it! 646 (MOV(L|W|B|SS|SD)load [off1] {sym} (ADDLconst [off2] ptr) mem) && is32Bit(off1+off2) -> (MOV(L|W|B|SS|SD)load [off1+off2] {sym} ptr mem) 647 (MOV(L|W|B|SS|SD)store [off1] {sym} (ADDLconst [off2] ptr) val mem) && is32Bit(off1+off2) -> (MOV(L|W|B|SS|SD)store [off1+off2] {sym} ptr val mem) 648 649 ((ADD|SUB|MUL|AND|OR|XOR)Lload [off1] {sym} val (ADDLconst [off2] base) mem) && is32Bit(off1+off2) -> 650 ((ADD|SUB|MUL|AND|OR|XOR)Lload [off1+off2] {sym} val base mem) 651 ((ADD|SUB|MUL|AND|OR|XOR)Lloadidx4 [off1] {sym} val (ADDLconst [off2] base) idx mem) && is32Bit(off1+off2) -> 652 ((ADD|SUB|MUL|AND|OR|XOR)Lloadidx4 [off1+off2] {sym} val base idx mem) 653 ((ADD|SUB|MUL|AND|OR|XOR)Lloadidx4 [off1] {sym} val base (ADDLconst [off2] idx) mem) && is32Bit(off1+off2*4) -> 654 ((ADD|SUB|MUL|AND|OR|XOR)Lloadidx4 [off1+off2*4] {sym} val base idx mem) 655 ((ADD|SUB|MUL|DIV)SSload [off1] {sym} val (ADDLconst [off2] base) mem) && is32Bit(off1+off2) -> 656 ((ADD|SUB|MUL|DIV)SSload [off1+off2] {sym} val base mem) 657 ((ADD|SUB|MUL|DIV)SDload [off1] {sym} val (ADDLconst [off2] base) mem) && is32Bit(off1+off2) -> 658 ((ADD|SUB|MUL|DIV)SDload [off1+off2] {sym} val base mem) 659 ((ADD|SUB|AND|OR|XOR)Lmodify [off1] {sym} (ADDLconst [off2] base) val mem) && is32Bit(off1+off2) -> 660 ((ADD|SUB|AND|OR|XOR)Lmodify [off1+off2] {sym} base val mem) 661 ((ADD|SUB|AND|OR|XOR)Lmodifyidx4 [off1] {sym} (ADDLconst [off2] base) idx val mem) && is32Bit(off1+off2) -> 662 ((ADD|SUB|AND|OR|XOR)Lmodifyidx4 [off1+off2] {sym} base idx val mem) 663 ((ADD|SUB|AND|OR|XOR)Lmodifyidx4 [off1] {sym} base (ADDLconst [off2] idx) val mem) && is32Bit(off1+off2*4) -> 664 ((ADD|SUB|AND|OR|XOR)Lmodifyidx4 [off1+off2*4] {sym} base idx val mem) 665 ((ADD|AND|OR|XOR)Lconstmodify [valoff1] {sym} (ADDLconst [off2] base) mem) && ValAndOff(valoff1).canAdd(off2) -> 666 ((ADD|AND|OR|XOR)Lconstmodify [ValAndOff(valoff1).add(off2)] {sym} base mem) 667 ((ADD|AND|OR|XOR)Lconstmodifyidx4 [valoff1] {sym} (ADDLconst [off2] base) idx mem) && ValAndOff(valoff1).canAdd(off2) -> 668 ((ADD|AND|OR|XOR)Lconstmodifyidx4 [ValAndOff(valoff1).add(off2)] {sym} base idx mem) 669 ((ADD|AND|OR|XOR)Lconstmodifyidx4 [valoff1] {sym} base (ADDLconst [off2] idx) mem) && ValAndOff(valoff1).canAdd(off2*4) -> 670 ((ADD|AND|OR|XOR)Lconstmodifyidx4 [ValAndOff(valoff1).add(off2*4)] {sym} base idx mem) 671 672 // Fold constants into stores. 673 (MOVLstore [off] {sym} ptr (MOVLconst [c]) mem) && validOff(off) -> 674 (MOVLstoreconst [makeValAndOff(int64(int32(c)),off)] {sym} ptr mem) 675 (MOVWstore [off] {sym} ptr (MOVLconst [c]) mem) && validOff(off) -> 676 (MOVWstoreconst [makeValAndOff(int64(int16(c)),off)] {sym} ptr mem) 677 (MOVBstore [off] {sym} ptr (MOVLconst [c]) mem) && validOff(off) -> 678 (MOVBstoreconst [makeValAndOff(int64(int8(c)),off)] {sym} ptr mem) 679 680 // Fold address offsets into constant stores. 681 (MOV(L|W|B)storeconst [sc] {s} (ADDLconst [off] ptr) mem) && ValAndOff(sc).canAdd(off) -> 682 (MOV(L|W|B)storeconst [ValAndOff(sc).add(off)] {s} ptr mem) 683 684 // We need to fold LEAQ into the MOVx ops so that the live variable analysis knows 685 // what variables are being read/written by the ops. 686 // Note: we turn off this merging for operations on globals when building 687 // position-independent code (when Flag_shared is set). 688 // PIC needs a spare register to load the PC into. Having the LEAL be 689 // a separate instruction gives us that register. Having the LEAL be 690 // a separate instruction also allows it to be CSEd (which is good because 691 // it compiles to a thunk call). 692 (MOV(L|W|B|SS|SD|BLSX|WLSX)load [off1] {sym1} (LEAL [off2] {sym2} base) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) 693 && (base.Op != OpSB || !config.ctxt.Flag_shared) -> 694 (MOV(L|W|B|SS|SD|BLSX|WLSX)load [off1+off2] {mergeSym(sym1,sym2)} base mem) 695 696 (MOV(L|W|B|SS|SD)store [off1] {sym1} (LEAL [off2] {sym2} base) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) 697 && (base.Op != OpSB || !config.ctxt.Flag_shared) -> 698 (MOV(L|W|B|SS|SD)store [off1+off2] {mergeSym(sym1,sym2)} base val mem) 699 700 (MOV(L|W|B)storeconst [sc] {sym1} (LEAL [off] {sym2} ptr) mem) && canMergeSym(sym1, sym2) && ValAndOff(sc).canAdd(off) 701 && (ptr.Op != OpSB || !config.ctxt.Flag_shared) -> 702 (MOV(L|W|B)storeconst [ValAndOff(sc).add(off)] {mergeSym(sym1, sym2)} ptr mem) 703 704 // generating indexed loads and stores 705 (MOV(B|W|L|SS|SD)load [off1] {sym1} (LEAL1 [off2] {sym2} ptr idx) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> 706 (MOV(B|W|L|SS|SD)loadidx1 [off1+off2] {mergeSym(sym1,sym2)} ptr idx mem) 707 (MOVWload [off1] {sym1} (LEAL2 [off2] {sym2} ptr idx) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> 708 (MOVWloadidx2 [off1+off2] {mergeSym(sym1,sym2)} ptr idx mem) 709 (MOV(L|SS)load [off1] {sym1} (LEAL4 [off2] {sym2} ptr idx) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> 710 (MOV(L|SS)loadidx4 [off1+off2] {mergeSym(sym1,sym2)} ptr idx mem) 711 (MOVSDload [off1] {sym1} (LEAL8 [off2] {sym2} ptr idx) mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> 712 (MOVSDloadidx8 [off1+off2] {mergeSym(sym1,sym2)} ptr idx mem) 713 714 (MOV(B|W|L|SS|SD)store [off1] {sym1} (LEAL1 [off2] {sym2} ptr idx) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> 715 (MOV(B|W|L|SS|SD)storeidx1 [off1+off2] {mergeSym(sym1,sym2)} ptr idx val mem) 716 (MOVWstore [off1] {sym1} (LEAL2 [off2] {sym2} ptr idx) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> 717 (MOVWstoreidx2 [off1+off2] {mergeSym(sym1,sym2)} ptr idx val mem) 718 (MOV(L|SS)store [off1] {sym1} (LEAL4 [off2] {sym2} ptr idx) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> 719 (MOV(L|SS)storeidx4 [off1+off2] {mergeSym(sym1,sym2)} ptr idx val mem) 720 (MOVSDstore [off1] {sym1} (LEAL8 [off2] {sym2} ptr idx) val mem) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> 721 (MOVSDstoreidx8 [off1+off2] {mergeSym(sym1,sym2)} ptr idx val mem) 722 723 ((ADD|SUB|MUL|AND|OR|XOR)Lload [off1] {sym1} val (LEAL [off2] {sym2} base) mem) 724 && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) -> 725 ((ADD|SUB|MUL|AND|OR|XOR)Lload [off1+off2] {mergeSym(sym1,sym2)} val base mem) 726 ((ADD|SUB|MUL|AND|OR|XOR)Lloadidx4 [off1] {sym1} val (LEAL [off2] {sym2} base) idx mem) 727 && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) -> 728 ((ADD|SUB|MUL|AND|OR|XOR)Lloadidx4 [off1+off2] {mergeSym(sym1,sym2)} val base idx mem) 729 ((ADD|SUB|MUL|DIV)SSload [off1] {sym1} val (LEAL [off2] {sym2} base) mem) 730 && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) -> 731 ((ADD|SUB|MUL|DIV)SSload [off1+off2] {mergeSym(sym1,sym2)} val base mem) 732 ((ADD|SUB|MUL|DIV)SDload [off1] {sym1} val (LEAL [off2] {sym2} base) mem) 733 && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) -> 734 ((ADD|SUB|MUL|DIV)SDload [off1+off2] {mergeSym(sym1,sym2)} val base mem) 735 ((ADD|SUB|AND|OR|XOR)Lmodify [off1] {sym1} (LEAL [off2] {sym2} base) val mem) 736 && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) -> 737 ((ADD|SUB|AND|OR|XOR)Lmodify [off1+off2] {mergeSym(sym1,sym2)} base val mem) 738 ((ADD|SUB|AND|OR|XOR)Lmodifyidx4 [off1] {sym1} (LEAL [off2] {sym2} base) idx val mem) 739 && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) -> 740 ((ADD|SUB|AND|OR|XOR)Lmodifyidx4 [off1+off2] {mergeSym(sym1,sym2)} base idx val mem) 741 ((ADD|AND|OR|XOR)Lconstmodify [valoff1] {sym1} (LEAL [off2] {sym2} base) mem) 742 && ValAndOff(valoff1).canAdd(off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) -> 743 ((ADD|AND|OR|XOR)Lconstmodify [ValAndOff(valoff1).add(off2)] {mergeSym(sym1,sym2)} base mem) 744 ((ADD|AND|OR|XOR)Lconstmodifyidx4 [valoff1] {sym1} (LEAL [off2] {sym2} base) idx mem) 745 && ValAndOff(valoff1).canAdd(off2) && canMergeSym(sym1, sym2) && (base.Op != OpSB || !config.ctxt.Flag_shared) -> 746 ((ADD|AND|OR|XOR)Lconstmodifyidx4 [ValAndOff(valoff1).add(off2)] {mergeSym(sym1,sym2)} base idx mem) 747 748 (MOV(B|W|L|SS|SD)load [off] {sym} (ADDL ptr idx) mem) && ptr.Op != OpSB -> (MOV(B|W|L|SS|SD)loadidx1 [off] {sym} ptr idx mem) 749 (MOV(B|W|L|SS|SD)store [off] {sym} (ADDL ptr idx) val mem) && ptr.Op != OpSB -> (MOV(B|W|L|SS|SD)storeidx1 [off] {sym} ptr idx val mem) 750 751 (MOV(B|W|L)storeconst [x] {sym1} (LEAL1 [off] {sym2} ptr idx) mem) && canMergeSym(sym1, sym2) -> 752 (MOV(B|W|L)storeconstidx1 [ValAndOff(x).add(off)] {mergeSym(sym1,sym2)} ptr idx mem) 753 (MOVWstoreconst [x] {sym1} (LEAL2 [off] {sym2} ptr idx) mem) && canMergeSym(sym1, sym2) -> 754 (MOVWstoreconstidx2 [ValAndOff(x).add(off)] {mergeSym(sym1,sym2)} ptr idx mem) 755 (MOVLstoreconst [x] {sym1} (LEAL4 [off] {sym2} ptr idx) mem) && canMergeSym(sym1, sym2) -> 756 (MOVLstoreconstidx4 [ValAndOff(x).add(off)] {mergeSym(sym1,sym2)} ptr idx mem) 757 758 (MOV(B|W|L)storeconst [x] {sym} (ADDL ptr idx) mem) -> (MOV(B|W|L)storeconstidx1 [x] {sym} ptr idx mem) 759 760 // combine SHLL into indexed loads and stores 761 (MOVWloadidx1 [c] {sym} ptr (SHLLconst [1] idx) mem) -> (MOVWloadidx2 [c] {sym} ptr idx mem) 762 (MOVLloadidx1 [c] {sym} ptr (SHLLconst [2] idx) mem) -> (MOVLloadidx4 [c] {sym} ptr idx mem) 763 (MOVWstoreidx1 [c] {sym} ptr (SHLLconst [1] idx) val mem) -> (MOVWstoreidx2 [c] {sym} ptr idx val mem) 764 (MOVLstoreidx1 [c] {sym} ptr (SHLLconst [2] idx) val mem) -> (MOVLstoreidx4 [c] {sym} ptr idx val mem) 765 (MOVWstoreconstidx1 [c] {sym} ptr (SHLLconst [1] idx) mem) -> (MOVWstoreconstidx2 [c] {sym} ptr idx mem) 766 (MOVLstoreconstidx1 [c] {sym} ptr (SHLLconst [2] idx) mem) -> (MOVLstoreconstidx4 [c] {sym} ptr idx mem) 767 768 // combine ADDL into indexed loads and stores 769 (MOV(B|W|L|SS|SD)loadidx1 [c] {sym} (ADDLconst [d] ptr) idx mem) -> (MOV(B|W|L|SS|SD)loadidx1 [int64(int32(c+d))] {sym} ptr idx mem) 770 (MOVWloadidx2 [c] {sym} (ADDLconst [d] ptr) idx mem) -> (MOVWloadidx2 [int64(int32(c+d))] {sym} ptr idx mem) 771 (MOV(L|SS)loadidx4 [c] {sym} (ADDLconst [d] ptr) idx mem) -> (MOV(L|SS)loadidx4 [int64(int32(c+d))] {sym} ptr idx mem) 772 (MOVSDloadidx8 [c] {sym} (ADDLconst [d] ptr) idx mem) -> (MOVSDloadidx8 [int64(int32(c+d))] {sym} ptr idx mem) 773 774 (MOV(B|W|L|SS|SD)storeidx1 [c] {sym} (ADDLconst [d] ptr) idx val mem) -> (MOV(B|W|L|SS|SD)storeidx1 [int64(int32(c+d))] {sym} ptr idx val mem) 775 (MOVWstoreidx2 [c] {sym} (ADDLconst [d] ptr) idx val mem) -> (MOVWstoreidx2 [int64(int32(c+d))] {sym} ptr idx val mem) 776 (MOV(L|SS)storeidx4 [c] {sym} (ADDLconst [d] ptr) idx val mem) -> (MOV(L|SS)storeidx4 [int64(int32(c+d))] {sym} ptr idx val mem) 777 (MOVSDstoreidx8 [c] {sym} (ADDLconst [d] ptr) idx val mem) -> (MOVSDstoreidx8 [int64(int32(c+d))] {sym} ptr idx val mem) 778 779 (MOV(B|W|L|SS|SD)loadidx1 [c] {sym} ptr (ADDLconst [d] idx) mem) -> (MOV(B|W|L|SS|SD)loadidx1 [int64(int32(c+d))] {sym} ptr idx mem) 780 (MOVWloadidx2 [c] {sym} ptr (ADDLconst [d] idx) mem) -> (MOVWloadidx2 [int64(int32(c+2*d))] {sym} ptr idx mem) 781 (MOV(L|SS)loadidx4 [c] {sym} ptr (ADDLconst [d] idx) mem) -> (MOV(L|SS)loadidx4 [int64(int32(c+4*d))] {sym} ptr idx mem) 782 (MOVSDloadidx8 [c] {sym} ptr (ADDLconst [d] idx) mem) -> (MOVSDloadidx8 [int64(int32(c+8*d))] {sym} ptr idx mem) 783 784 (MOV(B|W|L|SS|SD)storeidx1 [c] {sym} ptr (ADDLconst [d] idx) val mem) -> (MOV(B|W|L|SS|SD)storeidx1 [int64(int32(c+d))] {sym} ptr idx val mem) 785 (MOVWstoreidx2 [c] {sym} ptr (ADDLconst [d] idx) val mem) -> (MOVWstoreidx2 [int64(int32(c+2*d))] {sym} ptr idx val mem) 786 (MOV(L|SS)storeidx4 [c] {sym} ptr (ADDLconst [d] idx) val mem) -> (MOV(L|SS)storeidx4 [int64(int32(c+4*d))] {sym} ptr idx val mem) 787 (MOVSDstoreidx8 [c] {sym} ptr (ADDLconst [d] idx) val mem) -> (MOVSDstoreidx8 [int64(int32(c+8*d))] {sym} ptr idx val mem) 788 789 // Merge load/store to op 790 ((ADD|AND|OR|XOR|SUB|MUL)L x l:(MOVLload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && clobber(l) -> ((ADD|AND|OR|XOR|SUB|MUL)Lload x [off] {sym} ptr mem) 791 ((ADD|AND|OR|XOR|SUB|MUL)L x l:(MOVLloadidx4 [off] {sym} ptr idx mem)) && canMergeLoadClobber(v, l, x) && clobber(l) -> 792 ((ADD|AND|OR|XOR|SUB|MUL)Lloadidx4 x [off] {sym} ptr idx mem) 793 ((ADD|SUB|MUL|AND|OR|XOR)Lload [off1] {sym1} val (LEAL4 [off2] {sym2} ptr idx) mem) 794 && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> 795 ((ADD|SUB|MUL|AND|OR|XOR)Lloadidx4 [off1+off2] {mergeSym(sym1,sym2)} val ptr idx mem) 796 ((ADD|SUB|MUL|DIV)SD x l:(MOVSDload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && !config.use387 && clobber(l) -> ((ADD|SUB|MUL|DIV)SDload x [off] {sym} ptr mem) 797 ((ADD|SUB|MUL|DIV)SS x l:(MOVSSload [off] {sym} ptr mem)) && canMergeLoadClobber(v, l, x) && !config.use387 && clobber(l) -> ((ADD|SUB|MUL|DIV)SSload x [off] {sym} ptr mem) 798 (MOVLstore {sym} [off] ptr y:((ADD|AND|OR|XOR)Lload x [off] {sym} ptr mem) mem) && y.Uses==1 && clobber(y) -> ((ADD|AND|OR|XOR)Lmodify [off] {sym} ptr x mem) 799 (MOVLstore {sym} [off] ptr y:((ADD|SUB|AND|OR|XOR)L l:(MOVLload [off] {sym} ptr mem) x) mem) && y.Uses==1 && l.Uses==1 && clobber(y) && clobber(l) -> 800 ((ADD|SUB|AND|OR|XOR)Lmodify [off] {sym} ptr x mem) 801 (MOVLstoreidx4 {sym} [off] ptr idx y:((ADD|AND|OR|XOR)Lloadidx4 x [off] {sym} ptr idx mem) mem) && y.Uses==1 && clobber(y) -> 802 ((ADD|AND|OR|XOR)Lmodifyidx4 [off] {sym} ptr idx x mem) 803 (MOVLstoreidx4 {sym} [off] ptr idx y:((ADD|SUB|AND|OR|XOR)L l:(MOVLloadidx4 [off] {sym} ptr idx mem) x) mem) && y.Uses==1 && l.Uses==1 && clobber(y) && clobber(l) -> 804 ((ADD|SUB|AND|OR|XOR)Lmodifyidx4 [off] {sym} ptr idx x mem) 805 (MOVLstore {sym} [off] ptr y:((ADD|AND|OR|XOR)Lconst [c] l:(MOVLload [off] {sym} ptr mem)) mem) 806 && y.Uses==1 && l.Uses==1 && clobber(y) && clobber(l) && validValAndOff(c,off) -> 807 ((ADD|AND|OR|XOR)Lconstmodify [makeValAndOff(c,off)] {sym} ptr mem) 808 (MOVLstoreidx4 {sym} [off] ptr idx y:((ADD|AND|OR|XOR)Lconst [c] l:(MOVLloadidx4 [off] {sym} ptr idx mem)) mem) 809 && y.Uses==1 && l.Uses==1 && clobber(y) && clobber(l) && validValAndOff(c,off) -> 810 ((ADD|AND|OR|XOR)Lconstmodifyidx4 [makeValAndOff(c,off)] {sym} ptr idx mem) 811 ((ADD|AND|OR|XOR)Lmodifyidx4 [off] {sym} ptr idx (MOVLconst [c]) mem) && validValAndOff(c,off) -> 812 ((ADD|AND|OR|XOR)Lconstmodifyidx4 [makeValAndOff(c,off)] {sym} ptr idx mem) 813 (SUBLmodifyidx4 [off] {sym} ptr idx (MOVLconst [c]) mem) && validValAndOff(-c,off) -> 814 (ADDLconstmodifyidx4 [makeValAndOff(-c,off)] {sym} ptr idx mem) 815 816 (MOV(B|W|L)storeconstidx1 [x] {sym} (ADDLconst [c] ptr) idx mem) -> 817 (MOV(B|W|L)storeconstidx1 [ValAndOff(x).add(c)] {sym} ptr idx mem) 818 (MOVWstoreconstidx2 [x] {sym} (ADDLconst [c] ptr) idx mem) -> 819 (MOVWstoreconstidx2 [ValAndOff(x).add(c)] {sym} ptr idx mem) 820 (MOVLstoreconstidx4 [x] {sym} (ADDLconst [c] ptr) idx mem) -> 821 (MOVLstoreconstidx4 [ValAndOff(x).add(c)] {sym} ptr idx mem) 822 823 (MOV(B|W|L)storeconstidx1 [x] {sym} ptr (ADDLconst [c] idx) mem) -> 824 (MOV(B|W|L)storeconstidx1 [ValAndOff(x).add(c)] {sym} ptr idx mem) 825 (MOVWstoreconstidx2 [x] {sym} ptr (ADDLconst [c] idx) mem) -> 826 (MOVWstoreconstidx2 [ValAndOff(x).add(2*c)] {sym} ptr idx mem) 827 (MOVLstoreconstidx4 [x] {sym} ptr (ADDLconst [c] idx) mem) -> 828 (MOVLstoreconstidx4 [ValAndOff(x).add(4*c)] {sym} ptr idx mem) 829 830 // fold LEALs together 831 (LEAL [off1] {sym1} (LEAL [off2] {sym2} x)) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> 832 (LEAL [off1+off2] {mergeSym(sym1,sym2)} x) 833 834 // LEAL into LEAL1 835 (LEAL1 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && x.Op != OpSB -> 836 (LEAL1 [off1+off2] {mergeSym(sym1,sym2)} x y) 837 838 // LEAL1 into LEAL 839 (LEAL [off1] {sym1} (LEAL1 [off2] {sym2} x y)) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> 840 (LEAL1 [off1+off2] {mergeSym(sym1,sym2)} x y) 841 842 // LEAL into LEAL[248] 843 (LEAL2 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && x.Op != OpSB -> 844 (LEAL2 [off1+off2] {mergeSym(sym1,sym2)} x y) 845 (LEAL4 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && x.Op != OpSB -> 846 (LEAL4 [off1+off2] {mergeSym(sym1,sym2)} x y) 847 (LEAL8 [off1] {sym1} (LEAL [off2] {sym2} x) y) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) && x.Op != OpSB -> 848 (LEAL8 [off1+off2] {mergeSym(sym1,sym2)} x y) 849 850 // LEAL[248] into LEAL 851 (LEAL [off1] {sym1} (LEAL2 [off2] {sym2} x y)) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> 852 (LEAL2 [off1+off2] {mergeSym(sym1,sym2)} x y) 853 (LEAL [off1] {sym1} (LEAL4 [off2] {sym2} x y)) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> 854 (LEAL4 [off1+off2] {mergeSym(sym1,sym2)} x y) 855 (LEAL [off1] {sym1} (LEAL8 [off2] {sym2} x y)) && is32Bit(off1+off2) && canMergeSym(sym1, sym2) -> 856 (LEAL8 [off1+off2] {mergeSym(sym1,sym2)} x y) 857 858 // Absorb InvertFlags into branches. 859 (LT (InvertFlags cmp) yes no) -> (GT cmp yes no) 860 (GT (InvertFlags cmp) yes no) -> (LT cmp yes no) 861 (LE (InvertFlags cmp) yes no) -> (GE cmp yes no) 862 (GE (InvertFlags cmp) yes no) -> (LE cmp yes no) 863 (ULT (InvertFlags cmp) yes no) -> (UGT cmp yes no) 864 (UGT (InvertFlags cmp) yes no) -> (ULT cmp yes no) 865 (ULE (InvertFlags cmp) yes no) -> (UGE cmp yes no) 866 (UGE (InvertFlags cmp) yes no) -> (ULE cmp yes no) 867 (EQ (InvertFlags cmp) yes no) -> (EQ cmp yes no) 868 (NE (InvertFlags cmp) yes no) -> (NE cmp yes no) 869 870 // Constant comparisons. 871 (CMPLconst (MOVLconst [x]) [y]) && int32(x)==int32(y) -> (FlagEQ) 872 (CMPLconst (MOVLconst [x]) [y]) && int32(x)<int32(y) && uint32(x)<uint32(y) -> (FlagLT_ULT) 873 (CMPLconst (MOVLconst [x]) [y]) && int32(x)<int32(y) && uint32(x)>uint32(y) -> (FlagLT_UGT) 874 (CMPLconst (MOVLconst [x]) [y]) && int32(x)>int32(y) && uint32(x)<uint32(y) -> (FlagGT_ULT) 875 (CMPLconst (MOVLconst [x]) [y]) && int32(x)>int32(y) && uint32(x)>uint32(y) -> (FlagGT_UGT) 876 (CMPWconst (MOVLconst [x]) [y]) && int16(x)==int16(y) -> (FlagEQ) 877 (CMPWconst (MOVLconst [x]) [y]) && int16(x)<int16(y) && uint16(x)<uint16(y) -> (FlagLT_ULT) 878 (CMPWconst (MOVLconst [x]) [y]) && int16(x)<int16(y) && uint16(x)>uint16(y) -> (FlagLT_UGT) 879 (CMPWconst (MOVLconst [x]) [y]) && int16(x)>int16(y) && uint16(x)<uint16(y) -> (FlagGT_ULT) 880 (CMPWconst (MOVLconst [x]) [y]) && int16(x)>int16(y) && uint16(x)>uint16(y) -> (FlagGT_UGT) 881 (CMPBconst (MOVLconst [x]) [y]) && int8(x)==int8(y) -> (FlagEQ) 882 (CMPBconst (MOVLconst [x]) [y]) && int8(x)<int8(y) && uint8(x)<uint8(y) -> (FlagLT_ULT) 883 (CMPBconst (MOVLconst [x]) [y]) && int8(x)<int8(y) && uint8(x)>uint8(y) -> (FlagLT_UGT) 884 (CMPBconst (MOVLconst [x]) [y]) && int8(x)>int8(y) && uint8(x)<uint8(y) -> (FlagGT_ULT) 885 (CMPBconst (MOVLconst [x]) [y]) && int8(x)>int8(y) && uint8(x)>uint8(y) -> (FlagGT_UGT) 886 887 // Other known comparisons. 888 (CMPLconst (SHRLconst _ [c]) [n]) && 0 <= n && 0 < c && c <= 32 && (1<<uint64(32-c)) <= uint64(n) -> (FlagLT_ULT) 889 (CMPLconst (ANDLconst _ [m]) [n]) && 0 <= int32(m) && int32(m) < int32(n) -> (FlagLT_ULT) 890 (CMPWconst (ANDLconst _ [m]) [n]) && 0 <= int16(m) && int16(m) < int16(n) -> (FlagLT_ULT) 891 (CMPBconst (ANDLconst _ [m]) [n]) && 0 <= int8(m) && int8(m) < int8(n) -> (FlagLT_ULT) 892 // TODO: DIVxU also. 893 894 // Absorb flag constants into SBB ops. 895 (SBBLcarrymask (FlagEQ)) -> (MOVLconst [0]) 896 (SBBLcarrymask (FlagLT_ULT)) -> (MOVLconst [-1]) 897 (SBBLcarrymask (FlagLT_UGT)) -> (MOVLconst [0]) 898 (SBBLcarrymask (FlagGT_ULT)) -> (MOVLconst [-1]) 899 (SBBLcarrymask (FlagGT_UGT)) -> (MOVLconst [0]) 900 901 // Absorb flag constants into branches. 902 (EQ (FlagEQ) yes no) -> (First yes no) 903 (EQ (FlagLT_ULT) yes no) -> (First no yes) 904 (EQ (FlagLT_UGT) yes no) -> (First no yes) 905 (EQ (FlagGT_ULT) yes no) -> (First no yes) 906 (EQ (FlagGT_UGT) yes no) -> (First no yes) 907 908 (NE (FlagEQ) yes no) -> (First no yes) 909 (NE (FlagLT_ULT) yes no) -> (First yes no) 910 (NE (FlagLT_UGT) yes no) -> (First yes no) 911 (NE (FlagGT_ULT) yes no) -> (First yes no) 912 (NE (FlagGT_UGT) yes no) -> (First yes no) 913 914 (LT (FlagEQ) yes no) -> (First no yes) 915 (LT (FlagLT_ULT) yes no) -> (First yes no) 916 (LT (FlagLT_UGT) yes no) -> (First yes no) 917 (LT (FlagGT_ULT) yes no) -> (First no yes) 918 (LT (FlagGT_UGT) yes no) -> (First no yes) 919 920 (LE (FlagEQ) yes no) -> (First yes no) 921 (LE (FlagLT_ULT) yes no) -> (First yes no) 922 (LE (FlagLT_UGT) yes no) -> (First yes no) 923 (LE (FlagGT_ULT) yes no) -> (First no yes) 924 (LE (FlagGT_UGT) yes no) -> (First no yes) 925 926 (GT (FlagEQ) yes no) -> (First no yes) 927 (GT (FlagLT_ULT) yes no) -> (First no yes) 928 (GT (FlagLT_UGT) yes no) -> (First no yes) 929 (GT (FlagGT_ULT) yes no) -> (First yes no) 930 (GT (FlagGT_UGT) yes no) -> (First yes no) 931 932 (GE (FlagEQ) yes no) -> (First yes no) 933 (GE (FlagLT_ULT) yes no) -> (First no yes) 934 (GE (FlagLT_UGT) yes no) -> (First no yes) 935 (GE (FlagGT_ULT) yes no) -> (First yes no) 936 (GE (FlagGT_UGT) yes no) -> (First yes no) 937 938 (ULT (FlagEQ) yes no) -> (First no yes) 939 (ULT (FlagLT_ULT) yes no) -> (First yes no) 940 (ULT (FlagLT_UGT) yes no) -> (First no yes) 941 (ULT (FlagGT_ULT) yes no) -> (First yes no) 942 (ULT (FlagGT_UGT) yes no) -> (First no yes) 943 944 (ULE (FlagEQ) yes no) -> (First yes no) 945 (ULE (FlagLT_ULT) yes no) -> (First yes no) 946 (ULE (FlagLT_UGT) yes no) -> (First no yes) 947 (ULE (FlagGT_ULT) yes no) -> (First yes no) 948 (ULE (FlagGT_UGT) yes no) -> (First no yes) 949 950 (UGT (FlagEQ) yes no) -> (First no yes) 951 (UGT (FlagLT_ULT) yes no) -> (First no yes) 952 (UGT (FlagLT_UGT) yes no) -> (First yes no) 953 (UGT (FlagGT_ULT) yes no) -> (First no yes) 954 (UGT (FlagGT_UGT) yes no) -> (First yes no) 955 956 (UGE (FlagEQ) yes no) -> (First yes no) 957 (UGE (FlagLT_ULT) yes no) -> (First no yes) 958 (UGE (FlagLT_UGT) yes no) -> (First yes no) 959 (UGE (FlagGT_ULT) yes no) -> (First no yes) 960 (UGE (FlagGT_UGT) yes no) -> (First yes no) 961 962 // Absorb flag constants into SETxx ops. 963 (SETEQ (FlagEQ)) -> (MOVLconst [1]) 964 (SETEQ (FlagLT_ULT)) -> (MOVLconst [0]) 965 (SETEQ (FlagLT_UGT)) -> (MOVLconst [0]) 966 (SETEQ (FlagGT_ULT)) -> (MOVLconst [0]) 967 (SETEQ (FlagGT_UGT)) -> (MOVLconst [0]) 968 969 (SETNE (FlagEQ)) -> (MOVLconst [0]) 970 (SETNE (FlagLT_ULT)) -> (MOVLconst [1]) 971 (SETNE (FlagLT_UGT)) -> (MOVLconst [1]) 972 (SETNE (FlagGT_ULT)) -> (MOVLconst [1]) 973 (SETNE (FlagGT_UGT)) -> (MOVLconst [1]) 974 975 (SETL (FlagEQ)) -> (MOVLconst [0]) 976 (SETL (FlagLT_ULT)) -> (MOVLconst [1]) 977 (SETL (FlagLT_UGT)) -> (MOVLconst [1]) 978 (SETL (FlagGT_ULT)) -> (MOVLconst [0]) 979 (SETL (FlagGT_UGT)) -> (MOVLconst [0]) 980 981 (SETLE (FlagEQ)) -> (MOVLconst [1]) 982 (SETLE (FlagLT_ULT)) -> (MOVLconst [1]) 983 (SETLE (FlagLT_UGT)) -> (MOVLconst [1]) 984 (SETLE (FlagGT_ULT)) -> (MOVLconst [0]) 985 (SETLE (FlagGT_UGT)) -> (MOVLconst [0]) 986 987 (SETG (FlagEQ)) -> (MOVLconst [0]) 988 (SETG (FlagLT_ULT)) -> (MOVLconst [0]) 989 (SETG (FlagLT_UGT)) -> (MOVLconst [0]) 990 (SETG (FlagGT_ULT)) -> (MOVLconst [1]) 991 (SETG (FlagGT_UGT)) -> (MOVLconst [1]) 992 993 (SETGE (FlagEQ)) -> (MOVLconst [1]) 994 (SETGE (FlagLT_ULT)) -> (MOVLconst [0]) 995 (SETGE (FlagLT_UGT)) -> (MOVLconst [0]) 996 (SETGE (FlagGT_ULT)) -> (MOVLconst [1]) 997 (SETGE (FlagGT_UGT)) -> (MOVLconst [1]) 998 999 (SETB (FlagEQ)) -> (MOVLconst [0]) 1000 (SETB (FlagLT_ULT)) -> (MOVLconst [1]) 1001 (SETB (FlagLT_UGT)) -> (MOVLconst [0]) 1002 (SETB (FlagGT_ULT)) -> (MOVLconst [1]) 1003 (SETB (FlagGT_UGT)) -> (MOVLconst [0]) 1004 1005 (SETBE (FlagEQ)) -> (MOVLconst [1]) 1006 (SETBE (FlagLT_ULT)) -> (MOVLconst [1]) 1007 (SETBE (FlagLT_UGT)) -> (MOVLconst [0]) 1008 (SETBE (FlagGT_ULT)) -> (MOVLconst [1]) 1009 (SETBE (FlagGT_UGT)) -> (MOVLconst [0]) 1010 1011 (SETA (FlagEQ)) -> (MOVLconst [0]) 1012 (SETA (FlagLT_ULT)) -> (MOVLconst [0]) 1013 (SETA (FlagLT_UGT)) -> (MOVLconst [1]) 1014 (SETA (FlagGT_ULT)) -> (MOVLconst [0]) 1015 (SETA (FlagGT_UGT)) -> (MOVLconst [1]) 1016 1017 (SETAE (FlagEQ)) -> (MOVLconst [1]) 1018 (SETAE (FlagLT_ULT)) -> (MOVLconst [0]) 1019 (SETAE (FlagLT_UGT)) -> (MOVLconst [1]) 1020 (SETAE (FlagGT_ULT)) -> (MOVLconst [0]) 1021 (SETAE (FlagGT_UGT)) -> (MOVLconst [1]) 1022 1023 // Remove redundant *const ops 1024 (ADDLconst [c] x) && int32(c)==0 -> x 1025 (SUBLconst [c] x) && int32(c) == 0 -> x 1026 (ANDLconst [c] _) && int32(c)==0 -> (MOVLconst [0]) 1027 (ANDLconst [c] x) && int32(c)==-1 -> x 1028 (ORLconst [c] x) && int32(c)==0 -> x 1029 (ORLconst [c] _) && int32(c)==-1 -> (MOVLconst [-1]) 1030 (XORLconst [c] x) && int32(c)==0 -> x 1031 // TODO: since we got rid of the W/B versions, we might miss 1032 // things like (ANDLconst [0x100] x) which were formerly 1033 // (ANDBconst [0] x). Probably doesn't happen very often. 1034 // If we cared, we might do: 1035 // (ANDLconst <t> [c] x) && t.Size()==1 && int8(x)==0 -> (MOVLconst [0]) 1036 1037 // Convert constant subtracts to constant adds 1038 (SUBLconst [c] x) -> (ADDLconst [int64(int32(-c))] x) 1039 1040 // generic constant folding 1041 // TODO: more of this 1042 (ADDLconst [c] (MOVLconst [d])) -> (MOVLconst [int64(int32(c+d))]) 1043 (ADDLconst [c] (ADDLconst [d] x)) -> (ADDLconst [int64(int32(c+d))] x) 1044 (SARLconst [c] (MOVLconst [d])) -> (MOVLconst [d>>uint64(c)]) 1045 (SARWconst [c] (MOVLconst [d])) -> (MOVLconst [d>>uint64(c)]) 1046 (SARBconst [c] (MOVLconst [d])) -> (MOVLconst [d>>uint64(c)]) 1047 (NEGL (MOVLconst [c])) -> (MOVLconst [int64(int32(-c))]) 1048 (MULLconst [c] (MOVLconst [d])) -> (MOVLconst [int64(int32(c*d))]) 1049 (ANDLconst [c] (MOVLconst [d])) -> (MOVLconst [c&d]) 1050 (ORLconst [c] (MOVLconst [d])) -> (MOVLconst [c|d]) 1051 (XORLconst [c] (MOVLconst [d])) -> (MOVLconst [c^d]) 1052 (NOTL (MOVLconst [c])) -> (MOVLconst [^c]) 1053 1054 // generic simplifications 1055 // TODO: more of this 1056 (ADDL x (NEGL y)) -> (SUBL x y) 1057 (SUBL x x) -> (MOVLconst [0]) 1058 (ANDL x x) -> x 1059 (ORL x x) -> x 1060 (XORL x x) -> (MOVLconst [0]) 1061 1062 // checking AND against 0. 1063 (CMP(L|W|B)const l:(ANDL x y) [0]) && l.Uses==1 -> (TEST(L|W|B) x y) 1064 (CMPLconst l:(ANDLconst [c] x) [0]) && l.Uses==1 -> (TESTLconst [c] x) 1065 (CMPWconst l:(ANDLconst [c] x) [0]) && l.Uses==1 -> (TESTWconst [int64(int16(c))] x) 1066 (CMPBconst l:(ANDLconst [c] x) [0]) && l.Uses==1 -> (TESTBconst [int64(int8(c))] x) 1067 1068 // TEST %reg,%reg is shorter than CMP 1069 (CMP(L|W|B)const x [0]) -> (TEST(L|W|B) x x) 1070 1071 // Combining byte loads into larger (unaligned) loads. 1072 // There are many ways these combinations could occur. This is 1073 // designed to match the way encoding/binary.LittleEndian does it. 1074 (ORL x0:(MOVBload [i0] {s} p mem) 1075 s0:(SHLLconst [8] x1:(MOVBload [i1] {s} p mem))) 1076 && i1 == i0+1 1077 && x0.Uses == 1 1078 && x1.Uses == 1 1079 && s0.Uses == 1 1080 && mergePoint(b,x0,x1) != nil 1081 && clobber(x0) 1082 && clobber(x1) 1083 && clobber(s0) 1084 -> @mergePoint(b,x0,x1) (MOVWload [i0] {s} p mem) 1085 1086 (ORL o0:(ORL 1087 x0:(MOVWload [i0] {s} p mem) 1088 s0:(SHLLconst [16] x1:(MOVBload [i2] {s} p mem))) 1089 s1:(SHLLconst [24] x2:(MOVBload [i3] {s} p mem))) 1090 && i2 == i0+2 1091 && i3 == i0+3 1092 && x0.Uses == 1 1093 && x1.Uses == 1 1094 && x2.Uses == 1 1095 && s0.Uses == 1 1096 && s1.Uses == 1 1097 && o0.Uses == 1 1098 && mergePoint(b,x0,x1,x2) != nil 1099 && clobber(x0) 1100 && clobber(x1) 1101 && clobber(x2) 1102 && clobber(s0) 1103 && clobber(s1) 1104 && clobber(o0) 1105 -> @mergePoint(b,x0,x1,x2) (MOVLload [i0] {s} p mem) 1106 1107 (ORL x0:(MOVBloadidx1 [i0] {s} p idx mem) 1108 s0:(SHLLconst [8] x1:(MOVBloadidx1 [i1] {s} p idx mem))) 1109 && i1==i0+1 1110 && x0.Uses == 1 1111 && x1.Uses == 1 1112 && s0.Uses == 1 1113 && mergePoint(b,x0,x1) != nil 1114 && clobber(x0) 1115 && clobber(x1) 1116 && clobber(s0) 1117 -> @mergePoint(b,x0,x1) (MOVWloadidx1 <v.Type> [i0] {s} p idx mem) 1118 1119 (ORL o0:(ORL 1120 x0:(MOVWloadidx1 [i0] {s} p idx mem) 1121 s0:(SHLLconst [16] x1:(MOVBloadidx1 [i2] {s} p idx mem))) 1122 s1:(SHLLconst [24] x2:(MOVBloadidx1 [i3] {s} p idx mem))) 1123 && i2 == i0+2 1124 && i3 == i0+3 1125 && x0.Uses == 1 1126 && x1.Uses == 1 1127 && x2.Uses == 1 1128 && s0.Uses == 1 1129 && s1.Uses == 1 1130 && o0.Uses == 1 1131 && mergePoint(b,x0,x1,x2) != nil 1132 && clobber(x0) 1133 && clobber(x1) 1134 && clobber(x2) 1135 && clobber(s0) 1136 && clobber(s1) 1137 && clobber(o0) 1138 -> @mergePoint(b,x0,x1,x2) (MOVLloadidx1 <v.Type> [i0] {s} p idx mem) 1139 1140 // Combine constant stores into larger (unaligned) stores. 1141 (MOVBstoreconst [c] {s} p x:(MOVBstoreconst [a] {s} p mem)) 1142 && x.Uses == 1 1143 && ValAndOff(a).Off() + 1 == ValAndOff(c).Off() 1144 && clobber(x) 1145 -> (MOVWstoreconst [makeValAndOff(ValAndOff(a).Val()&0xff | ValAndOff(c).Val()<<8, ValAndOff(a).Off())] {s} p mem) 1146 (MOVBstoreconst [a] {s} p x:(MOVBstoreconst [c] {s} p mem)) 1147 && x.Uses == 1 1148 && ValAndOff(a).Off() + 1 == ValAndOff(c).Off() 1149 && clobber(x) 1150 -> (MOVWstoreconst [makeValAndOff(ValAndOff(a).Val()&0xff | ValAndOff(c).Val()<<8, ValAndOff(a).Off())] {s} p mem) 1151 (MOVWstoreconst [c] {s} p x:(MOVWstoreconst [a] {s} p mem)) 1152 && x.Uses == 1 1153 && ValAndOff(a).Off() + 2 == ValAndOff(c).Off() 1154 && clobber(x) 1155 -> (MOVLstoreconst [makeValAndOff(ValAndOff(a).Val()&0xffff | ValAndOff(c).Val()<<16, ValAndOff(a).Off())] {s} p mem) 1156 (MOVWstoreconst [a] {s} p x:(MOVWstoreconst [c] {s} p mem)) 1157 && x.Uses == 1 1158 && ValAndOff(a).Off() + 2 == ValAndOff(c).Off() 1159 && clobber(x) 1160 -> (MOVLstoreconst [makeValAndOff(ValAndOff(a).Val()&0xffff | ValAndOff(c).Val()<<16, ValAndOff(a).Off())] {s} p mem) 1161 1162 (MOVBstoreconstidx1 [c] {s} p i x:(MOVBstoreconstidx1 [a] {s} p i mem)) 1163 && x.Uses == 1 1164 && ValAndOff(a).Off() + 1 == ValAndOff(c).Off() 1165 && clobber(x) 1166 -> (MOVWstoreconstidx1 [makeValAndOff(ValAndOff(a).Val()&0xff | ValAndOff(c).Val()<<8, ValAndOff(a).Off())] {s} p i mem) 1167 (MOVWstoreconstidx1 [c] {s} p i x:(MOVWstoreconstidx1 [a] {s} p i mem)) 1168 && x.Uses == 1 1169 && ValAndOff(a).Off() + 2 == ValAndOff(c).Off() 1170 && clobber(x) 1171 -> (MOVLstoreconstidx1 [makeValAndOff(ValAndOff(a).Val()&0xffff | ValAndOff(c).Val()<<16, ValAndOff(a).Off())] {s} p i mem) 1172 1173 (MOVWstoreconstidx2 [c] {s} p i x:(MOVWstoreconstidx2 [a] {s} p i mem)) 1174 && x.Uses == 1 1175 && ValAndOff(a).Off() + 2 == ValAndOff(c).Off() 1176 && clobber(x) 1177 -> (MOVLstoreconstidx1 [makeValAndOff(ValAndOff(a).Val()&0xffff | ValAndOff(c).Val()<<16, ValAndOff(a).Off())] {s} p (SHLLconst <i.Type> [1] i) mem) 1178 1179 // Combine stores into larger (unaligned) stores. 1180 (MOVBstore [i] {s} p (SHR(W|L)const [8] w) x:(MOVBstore [i-1] {s} p w mem)) 1181 && x.Uses == 1 1182 && clobber(x) 1183 -> (MOVWstore [i-1] {s} p w mem) 1184 (MOVBstore [i] {s} p w x:(MOVBstore {s} [i+1] p (SHR(W|L)const [8] w) mem)) 1185 && x.Uses == 1 1186 && clobber(x) 1187 -> (MOVWstore [i] {s} p w mem) 1188 (MOVBstore [i] {s} p (SHRLconst [j] w) x:(MOVBstore [i-1] {s} p w0:(SHRLconst [j-8] w) mem)) 1189 && x.Uses == 1 1190 && clobber(x) 1191 -> (MOVWstore [i-1] {s} p w0 mem) 1192 (MOVWstore [i] {s} p (SHRLconst [16] w) x:(MOVWstore [i-2] {s} p w mem)) 1193 && x.Uses == 1 1194 && clobber(x) 1195 -> (MOVLstore [i-2] {s} p w mem) 1196 (MOVWstore [i] {s} p (SHRLconst [j] w) x:(MOVWstore [i-2] {s} p w0:(SHRLconst [j-16] w) mem)) 1197 && x.Uses == 1 1198 && clobber(x) 1199 -> (MOVLstore [i-2] {s} p w0 mem) 1200 1201 (MOVBstoreidx1 [i] {s} p idx (SHR(L|W)const [8] w) x:(MOVBstoreidx1 [i-1] {s} p idx w mem)) 1202 && x.Uses == 1 1203 && clobber(x) 1204 -> (MOVWstoreidx1 [i-1] {s} p idx w mem) 1205 (MOVBstoreidx1 [i] {s} p idx w x:(MOVBstoreidx1 [i+1] {s} p idx (SHR(L|W)const [8] w) mem)) 1206 && x.Uses == 1 1207 && clobber(x) 1208 -> (MOVWstoreidx1 [i] {s} p idx w mem) 1209 (MOVBstoreidx1 [i] {s} p idx (SHRLconst [j] w) x:(MOVBstoreidx1 [i-1] {s} p idx w0:(SHRLconst [j-8] w) mem)) 1210 && x.Uses == 1 1211 && clobber(x) 1212 -> (MOVWstoreidx1 [i-1] {s} p idx w0 mem) 1213 (MOVWstoreidx1 [i] {s} p idx (SHRLconst [16] w) x:(MOVWstoreidx1 [i-2] {s} p idx w mem)) 1214 && x.Uses == 1 1215 && clobber(x) 1216 -> (MOVLstoreidx1 [i-2] {s} p idx w mem) 1217 (MOVWstoreidx1 [i] {s} p idx (SHRLconst [j] w) x:(MOVWstoreidx1 [i-2] {s} p idx w0:(SHRLconst [j-16] w) mem)) 1218 && x.Uses == 1 1219 && clobber(x) 1220 -> (MOVLstoreidx1 [i-2] {s} p idx w0 mem) 1221 1222 (MOVWstoreidx2 [i] {s} p idx (SHRLconst [16] w) x:(MOVWstoreidx2 [i-2] {s} p idx w mem)) 1223 && x.Uses == 1 1224 && clobber(x) 1225 -> (MOVLstoreidx1 [i-2] {s} p (SHLLconst <idx.Type> [1] idx) w mem) 1226 (MOVWstoreidx2 [i] {s} p idx (SHRLconst [j] w) x:(MOVWstoreidx2 [i-2] {s} p idx w0:(SHRLconst [j-16] w) mem)) 1227 && x.Uses == 1 1228 && clobber(x) 1229 -> (MOVLstoreidx1 [i-2] {s} p (SHLLconst <idx.Type> [1] idx) w0 mem) 1230 1231 // For PIC, break floating-point constant loading into two instructions so we have 1232 // a register to use for holding the address of the constant pool entry. 1233 (MOVSSconst [c]) && config.ctxt.Flag_shared -> (MOVSSconst2 (MOVSSconst1 [c])) 1234 (MOVSDconst [c]) && config.ctxt.Flag_shared -> (MOVSDconst2 (MOVSDconst1 [c])) 1235 1236 (CMP(L|W|B) l:(MOV(L|W|B)load {sym} [off] ptr mem) x) && canMergeLoad(v, l) && clobber(l) -> (CMP(L|W|B)load {sym} [off] ptr x mem) 1237 (CMP(L|W|B) x l:(MOV(L|W|B)load {sym} [off] ptr mem)) && canMergeLoad(v, l) && clobber(l) -> (InvertFlags (CMP(L|W|B)load {sym} [off] ptr x mem)) 1238 1239 (CMP(L|W|B)const l:(MOV(L|W|B)load {sym} [off] ptr mem) [c]) 1240 && l.Uses == 1 1241 && validValAndOff(c, off) 1242 && clobber(l) -> 1243 @l.Block (CMP(L|W|B)constload {sym} [makeValAndOff(c,off)] ptr mem) 1244 1245 (CMPLload {sym} [off] ptr (MOVLconst [c]) mem) && validValAndOff(int64(int32(c)),off) -> (CMPLconstload {sym} [makeValAndOff(int64(int32(c)),off)] ptr mem) 1246 (CMPWload {sym} [off] ptr (MOVLconst [c]) mem) && validValAndOff(int64(int16(c)),off) -> (CMPWconstload {sym} [makeValAndOff(int64(int16(c)),off)] ptr mem) 1247 (CMPBload {sym} [off] ptr (MOVLconst [c]) mem) && validValAndOff(int64(int8(c)),off) -> (CMPBconstload {sym} [makeValAndOff(int64(int8(c)),off)] ptr mem) 1248 1249 (MOVBload [off] {sym} (SB) _) && symIsRO(sym) -> (MOVLconst [int64(read8(sym, off))]) 1250 (MOVWload [off] {sym} (SB) _) && symIsRO(sym) -> (MOVLconst [int64(read16(sym, off, config.BigEndian))]) 1251 (MOVLload [off] {sym} (SB) _) && symIsRO(sym) -> (MOVLconst [int64(int32(read32(sym, off, config.BigEndian)))])