github.com/gagliardetto/golang-go@v0.0.0-20201020153340-53909ea70814/cmd/compile/internal/ssa/loopreschedchecks.go (about) 1 // Copyright 2016 The Go Authors. All rights reserved. 2 // Use of this source code is governed by a BSD-style 3 // license that can be found in the LICENSE file. 4 5 package ssa 6 7 import ( 8 "github.com/gagliardetto/golang-go/cmd/compile/internal/types" 9 "fmt" 10 ) 11 12 // an edgeMem records a backedge, together with the memory 13 // phi functions at the target of the backedge that must 14 // be updated when a rescheduling check replaces the backedge. 15 type edgeMem struct { 16 e Edge 17 m *Value // phi for memory at dest of e 18 } 19 20 // a rewriteTarget is a value-argindex pair indicating 21 // where a rewrite is applied. Note that this is for values, 22 // not for block controls, because block controls are not targets 23 // for the rewrites performed in inserting rescheduling checks. 24 type rewriteTarget struct { 25 v *Value 26 i int 27 } 28 29 type rewrite struct { 30 before, after *Value // before is the expected value before rewrite, after is the new value installed. 31 rewrites []rewriteTarget // all the targets for this rewrite. 32 } 33 34 func (r *rewrite) String() string { 35 s := "\n\tbefore=" + r.before.String() + ", after=" + r.after.String() 36 for _, rw := range r.rewrites { 37 s += ", (i=" + fmt.Sprint(rw.i) + ", v=" + rw.v.LongString() + ")" 38 } 39 s += "\n" 40 return s 41 } 42 43 // insertLoopReschedChecks inserts rescheduling checks on loop backedges. 44 func insertLoopReschedChecks(f *Func) { 45 // TODO: when split information is recorded in export data, insert checks only on backedges that can be reached on a split-call-free path. 46 47 // Loop reschedule checks compare the stack pointer with 48 // the per-g stack bound. If the pointer appears invalid, 49 // that means a reschedule check is needed. 50 // 51 // Steps: 52 // 1. locate backedges. 53 // 2. Record memory definitions at block end so that 54 // the SSA graph for mem can be properly modified. 55 // 3. Ensure that phi functions that will-be-needed for mem 56 // are present in the graph, initially with trivial inputs. 57 // 4. Record all to-be-modified uses of mem; 58 // apply modifications (split into two steps to simplify and 59 // avoided nagging order-dependencies). 60 // 5. Rewrite backedges to include reschedule check, 61 // and modify destination phi function appropriately with new 62 // definitions for mem. 63 64 if f.NoSplit { // nosplit functions don't reschedule. 65 return 66 } 67 68 backedges := backedges(f) 69 if len(backedges) == 0 { // no backedges means no rescheduling checks. 70 return 71 } 72 73 lastMems := findLastMems(f) 74 75 idom := f.Idom() 76 po := f.postorder() 77 // The ordering in the dominator tree matters; it's important that 78 // the walk of the dominator tree also be a preorder (i.e., a node is 79 // visited only after all its non-backedge predecessors have been visited). 80 sdom := newSparseOrderedTree(f, idom, po) 81 82 if f.pass.debug > 1 { 83 fmt.Printf("before %s = %s\n", f.Name, sdom.treestructure(f.Entry)) 84 } 85 86 tofixBackedges := []edgeMem{} 87 88 for _, e := range backedges { // TODO: could filter here by calls in loops, if declared and inferred nosplit are recorded in export data. 89 tofixBackedges = append(tofixBackedges, edgeMem{e, nil}) 90 } 91 92 // It's possible that there is no memory state (no global/pointer loads/stores or calls) 93 if lastMems[f.Entry.ID] == nil { 94 lastMems[f.Entry.ID] = f.Entry.NewValue0(f.Entry.Pos, OpInitMem, types.TypeMem) 95 } 96 97 memDefsAtBlockEnds := make([]*Value, f.NumBlocks()) // For each block, the mem def seen at its bottom. Could be from earlier block. 98 99 // Propagate last mem definitions forward through successor blocks. 100 for i := len(po) - 1; i >= 0; i-- { 101 b := po[i] 102 mem := lastMems[b.ID] 103 for j := 0; mem == nil; j++ { // if there's no def, then there's no phi, so the visible mem is identical in all predecessors. 104 // loop because there might be backedges that haven't been visited yet. 105 mem = memDefsAtBlockEnds[b.Preds[j].b.ID] 106 } 107 memDefsAtBlockEnds[b.ID] = mem 108 if f.pass.debug > 2 { 109 fmt.Printf("memDefsAtBlockEnds[%s] = %s\n", b, mem) 110 } 111 } 112 113 // Maps from block to newly-inserted phi function in block. 114 newmemphis := make(map[*Block]rewrite) 115 116 // Insert phi functions as necessary for future changes to flow graph. 117 for i, emc := range tofixBackedges { 118 e := emc.e 119 h := e.b 120 121 // find the phi function for the memory input at "h", if there is one. 122 var headerMemPhi *Value // look for header mem phi 123 124 for _, v := range h.Values { 125 if v.Op == OpPhi && v.Type.IsMemory() { 126 headerMemPhi = v 127 } 128 } 129 130 if headerMemPhi == nil { 131 // if the header is nil, make a trivial phi from the dominator 132 mem0 := memDefsAtBlockEnds[idom[h.ID].ID] 133 headerMemPhi = newPhiFor(h, mem0) 134 newmemphis[h] = rewrite{before: mem0, after: headerMemPhi} 135 addDFphis(mem0, h, h, f, memDefsAtBlockEnds, newmemphis, sdom) 136 137 } 138 tofixBackedges[i].m = headerMemPhi 139 140 } 141 if f.pass.debug > 0 { 142 for b, r := range newmemphis { 143 fmt.Printf("before b=%s, rewrite=%s\n", b, r.String()) 144 } 145 } 146 147 // dfPhiTargets notes inputs to phis in dominance frontiers that should not 148 // be rewritten as part of the dominated children of some outer rewrite. 149 dfPhiTargets := make(map[rewriteTarget]bool) 150 151 rewriteNewPhis(f.Entry, f.Entry, f, memDefsAtBlockEnds, newmemphis, dfPhiTargets, sdom) 152 153 if f.pass.debug > 0 { 154 for b, r := range newmemphis { 155 fmt.Printf("after b=%s, rewrite=%s\n", b, r.String()) 156 } 157 } 158 159 // Apply collected rewrites. 160 for _, r := range newmemphis { 161 for _, rw := range r.rewrites { 162 rw.v.SetArg(rw.i, r.after) 163 } 164 } 165 166 // Rewrite backedges to include reschedule checks. 167 for _, emc := range tofixBackedges { 168 e := emc.e 169 headerMemPhi := emc.m 170 h := e.b 171 i := e.i 172 p := h.Preds[i] 173 bb := p.b 174 mem0 := headerMemPhi.Args[i] 175 // bb e->p h, 176 // Because we're going to insert a rare-call, make sure the 177 // looping edge still looks likely. 178 likely := BranchLikely 179 if p.i != 0 { 180 likely = BranchUnlikely 181 } 182 if bb.Kind != BlockPlain { // backedges can be unconditional. e.g., if x { something; continue } 183 bb.Likely = likely 184 } 185 186 // rewrite edge to include reschedule check 187 // existing edges: 188 // 189 // bb.Succs[p.i] == Edge{h, i} 190 // h.Preds[i] == p == Edge{bb,p.i} 191 // 192 // new block(s): 193 // test: 194 // if sp < g.limit { goto sched } 195 // goto join 196 // sched: 197 // mem1 := call resched (mem0) 198 // goto join 199 // join: 200 // mem2 := phi(mem0, mem1) 201 // goto h 202 // 203 // and correct arg i of headerMemPhi and headerCtrPhi 204 // 205 // EXCEPT: join block containing only phi functions is bad 206 // for the register allocator. Therefore, there is no 207 // join, and branches targeting join must instead target 208 // the header, and the other phi functions within header are 209 // adjusted for the additional input. 210 211 test := f.NewBlock(BlockIf) 212 sched := f.NewBlock(BlockPlain) 213 214 test.Pos = bb.Pos 215 sched.Pos = bb.Pos 216 217 // if sp < g.limit { goto sched } 218 // goto header 219 220 cfgtypes := &f.Config.Types 221 pt := cfgtypes.Uintptr 222 g := test.NewValue1(bb.Pos, OpGetG, pt, mem0) 223 sp := test.NewValue0(bb.Pos, OpSP, pt) 224 cmpOp := OpLess64U 225 if pt.Size() == 4 { 226 cmpOp = OpLess32U 227 } 228 limaddr := test.NewValue1I(bb.Pos, OpOffPtr, pt, 2*pt.Size(), g) 229 lim := test.NewValue2(bb.Pos, OpLoad, pt, limaddr, mem0) 230 cmp := test.NewValue2(bb.Pos, cmpOp, cfgtypes.Bool, sp, lim) 231 test.SetControl(cmp) 232 233 // if true, goto sched 234 test.AddEdgeTo(sched) 235 236 // if false, rewrite edge to header. 237 // do NOT remove+add, because that will perturb all the other phi functions 238 // as well as messing up other edges to the header. 239 test.Succs = append(test.Succs, Edge{h, i}) 240 h.Preds[i] = Edge{test, 1} 241 headerMemPhi.SetArg(i, mem0) 242 243 test.Likely = BranchUnlikely 244 245 // sched: 246 // mem1 := call resched (mem0) 247 // goto header 248 resched := f.fe.Syslook("goschedguarded") 249 mem1 := sched.NewValue1A(bb.Pos, OpStaticCall, types.TypeMem, resched, mem0) 250 sched.AddEdgeTo(h) 251 headerMemPhi.AddArg(mem1) 252 253 bb.Succs[p.i] = Edge{test, 0} 254 test.Preds = append(test.Preds, Edge{bb, p.i}) 255 256 // Must correct all the other phi functions in the header for new incoming edge. 257 // Except for mem phis, it will be the same value seen on the original 258 // backedge at index i. 259 for _, v := range h.Values { 260 if v.Op == OpPhi && v != headerMemPhi { 261 v.AddArg(v.Args[i]) 262 } 263 } 264 } 265 266 f.invalidateCFG() 267 268 if f.pass.debug > 1 { 269 sdom = newSparseTree(f, f.Idom()) 270 fmt.Printf("after %s = %s\n", f.Name, sdom.treestructure(f.Entry)) 271 } 272 } 273 274 // newPhiFor inserts a new Phi function into b, 275 // with all inputs set to v. 276 func newPhiFor(b *Block, v *Value) *Value { 277 phiV := b.NewValue0(b.Pos, OpPhi, v.Type) 278 279 for range b.Preds { 280 phiV.AddArg(v) 281 } 282 return phiV 283 } 284 285 // rewriteNewPhis updates newphis[h] to record all places where the new phi function inserted 286 // in block h will replace a previous definition. Block b is the block currently being processed; 287 // if b has its own phi definition then it takes the place of h. 288 // defsForUses provides information about other definitions of the variable that are present 289 // (and if nil, indicates that the variable is no longer live) 290 // sdom must yield a preorder of the flow graph if recursively walked, root-to-children. 291 // The result of newSparseOrderedTree with order supplied by a dfs-postorder satisfies this 292 // requirement. 293 func rewriteNewPhis(h, b *Block, f *Func, defsForUses []*Value, newphis map[*Block]rewrite, dfPhiTargets map[rewriteTarget]bool, sdom SparseTree) { 294 // If b is a block with a new phi, then a new rewrite applies below it in the dominator tree. 295 if _, ok := newphis[b]; ok { 296 h = b 297 } 298 change := newphis[h] 299 x := change.before 300 y := change.after 301 302 // Apply rewrites to this block 303 if x != nil { // don't waste time on the common case of no definition. 304 p := &change.rewrites 305 for _, v := range b.Values { 306 if v == y { // don't rewrite self -- phi inputs are handled below. 307 continue 308 } 309 for i, w := range v.Args { 310 if w != x { 311 continue 312 } 313 tgt := rewriteTarget{v, i} 314 315 // It's possible dominated control flow will rewrite this instead. 316 // Visiting in preorder (a property of how sdom was constructed) 317 // ensures that these are seen in the proper order. 318 if dfPhiTargets[tgt] { 319 continue 320 } 321 *p = append(*p, tgt) 322 if f.pass.debug > 1 { 323 fmt.Printf("added block target for h=%v, b=%v, x=%v, y=%v, tgt.v=%s, tgt.i=%d\n", 324 h, b, x, y, v, i) 325 } 326 } 327 } 328 329 // Rewrite appropriate inputs of phis reached in successors 330 // in dominance frontier, self, and dominated. 331 // If the variable def reaching uses in b is itself defined in b, then the new phi function 332 // does not reach the successors of b. (This assumes a bit about the structure of the 333 // phi use-def graph, but it's true for memory.) 334 if dfu := defsForUses[b.ID]; dfu != nil && dfu.Block != b { 335 for _, e := range b.Succs { 336 s := e.b 337 338 for _, v := range s.Values { 339 if v.Op == OpPhi && v.Args[e.i] == x { 340 tgt := rewriteTarget{v, e.i} 341 *p = append(*p, tgt) 342 dfPhiTargets[tgt] = true 343 if f.pass.debug > 1 { 344 fmt.Printf("added phi target for h=%v, b=%v, s=%v, x=%v, y=%v, tgt.v=%s, tgt.i=%d\n", 345 h, b, s, x, y, v.LongString(), e.i) 346 } 347 break 348 } 349 } 350 } 351 } 352 newphis[h] = change 353 } 354 355 for c := sdom[b.ID].child; c != nil; c = sdom[c.ID].sibling { 356 rewriteNewPhis(h, c, f, defsForUses, newphis, dfPhiTargets, sdom) // TODO: convert to explicit stack from recursion. 357 } 358 } 359 360 // addDFphis creates new trivial phis that are necessary to correctly reflect (within SSA) 361 // a new definition for variable "x" inserted at h (usually but not necessarily a phi). 362 // These new phis can only occur at the dominance frontier of h; block s is in the dominance 363 // frontier of h if h does not strictly dominate s and if s is a successor of a block b where 364 // either b = h or h strictly dominates b. 365 // These newly created phis are themselves new definitions that may require addition of their 366 // own trivial phi functions in their own dominance frontier, and this is handled recursively. 367 func addDFphis(x *Value, h, b *Block, f *Func, defForUses []*Value, newphis map[*Block]rewrite, sdom SparseTree) { 368 oldv := defForUses[b.ID] 369 if oldv != x { // either a new definition replacing x, or nil if it is proven that there are no uses reachable from b 370 return 371 } 372 idom := f.Idom() 373 outer: 374 for _, e := range b.Succs { 375 s := e.b 376 // check phi functions in the dominance frontier 377 if sdom.isAncestor(h, s) { 378 continue // h dominates s, successor of b, therefore s is not in the frontier. 379 } 380 if _, ok := newphis[s]; ok { 381 continue // successor s of b already has a new phi function, so there is no need to add another. 382 } 383 if x != nil { 384 for _, v := range s.Values { 385 if v.Op == OpPhi && v.Args[e.i] == x { 386 continue outer // successor s of b has an old phi function, so there is no need to add another. 387 } 388 } 389 } 390 391 old := defForUses[idom[s.ID].ID] // new phi function is correct-but-redundant, combining value "old" on all inputs. 392 headerPhi := newPhiFor(s, old) 393 // the new phi will replace "old" in block s and all blocks dominated by s. 394 newphis[s] = rewrite{before: old, after: headerPhi} // record new phi, to have inputs labeled "old" rewritten to "headerPhi" 395 addDFphis(old, s, s, f, defForUses, newphis, sdom) // the new definition may also create new phi functions. 396 } 397 for c := sdom[b.ID].child; c != nil; c = sdom[c.ID].sibling { 398 addDFphis(x, h, c, f, defForUses, newphis, sdom) // TODO: convert to explicit stack from recursion. 399 } 400 } 401 402 // findLastMems maps block ids to last memory-output op in a block, if any 403 func findLastMems(f *Func) []*Value { 404 405 var stores []*Value 406 lastMems := make([]*Value, f.NumBlocks()) 407 storeUse := f.newSparseSet(f.NumValues()) 408 defer f.retSparseSet(storeUse) 409 for _, b := range f.Blocks { 410 // Find all the stores in this block. Categorize their uses: 411 // storeUse contains stores which are used by a subsequent store. 412 storeUse.clear() 413 stores = stores[:0] 414 var memPhi *Value 415 for _, v := range b.Values { 416 if v.Op == OpPhi { 417 if v.Type.IsMemory() { 418 memPhi = v 419 } 420 continue 421 } 422 if v.Type.IsMemory() { 423 stores = append(stores, v) 424 for _, a := range v.Args { 425 if a.Block == b && a.Type.IsMemory() { 426 storeUse.add(a.ID) 427 } 428 } 429 } 430 } 431 if len(stores) == 0 { 432 lastMems[b.ID] = memPhi 433 continue 434 } 435 436 // find last store in the block 437 var last *Value 438 for _, v := range stores { 439 if storeUse.contains(v.ID) { 440 continue 441 } 442 if last != nil { 443 b.Fatalf("two final stores - simultaneous live stores %s %s", last, v) 444 } 445 last = v 446 } 447 if last == nil { 448 b.Fatalf("no last store found - cycle?") 449 } 450 lastMems[b.ID] = last 451 } 452 return lastMems 453 } 454 455 // mark values 456 type markKind uint8 457 458 const ( 459 notFound markKind = iota // block has not been discovered yet 460 notExplored // discovered and in queue, outedges not processed yet 461 explored // discovered and in queue, outedges processed 462 done // all done, in output ordering 463 ) 464 465 type backedgesState struct { 466 b *Block 467 i int 468 } 469 470 // backedges returns a slice of successor edges that are back 471 // edges. For reducible loops, edge.b is the header. 472 func backedges(f *Func) []Edge { 473 edges := []Edge{} 474 mark := make([]markKind, f.NumBlocks()) 475 stack := []backedgesState{} 476 477 mark[f.Entry.ID] = notExplored 478 stack = append(stack, backedgesState{f.Entry, 0}) 479 480 for len(stack) > 0 { 481 l := len(stack) 482 x := stack[l-1] 483 if x.i < len(x.b.Succs) { 484 e := x.b.Succs[x.i] 485 stack[l-1].i++ 486 s := e.b 487 if mark[s.ID] == notFound { 488 mark[s.ID] = notExplored 489 stack = append(stack, backedgesState{s, 0}) 490 } else if mark[s.ID] == notExplored { 491 edges = append(edges, e) 492 } 493 } else { 494 mark[x.b.ID] = done 495 stack = stack[0 : l-1] 496 } 497 } 498 return edges 499 }